EWD391
Self-Stabilization in Spite of Distributed Control

A systematic way for finding the algorithm ensuring some desired form of co-operation between a set of loosely coupled sequential processes can in general terms be described as follows: the relation “the system is in a legitimate state” is kept invariant. As a consequence, each intended individual process step that could possibly cause violation of that invariant relation has to be preceded by a test that it won’t do so, and depending on the outcome of that test the critical process step is either caused to take place or it — and with it the process of which it is a part — is delayed until a more favourable system state has been reached. With a suitable choice of the set of legitimate states one can indeed introduce the rule that a critical process step will be delayed only as long as its execution would lead to violation of the corresponding invariant relation.

The resulting design is readily implemented if the different sequential processes can be granted mutually exclusive access to a common store in which the current system state is recorded. Then a relation between (the values of) the variables in that commonly accessible store is the core of what we could call “the centralized control”.

A complication arises when there is no such commonly accessible store and “the system state” must be recorded in variables distributed over the various processes, and furthermore the communication facilities are limited in the sense that each process can only exchange information with “its neighbours”, a (possibly small) subset of the total set of processes. (We can view the processes as nodes of a connected graph in which each of the (sparse) set of edges denotes the neighbour relation.) The complication is that a node’s behaviour can only be influenced by the part of the total system state description that is available in that node: local actions taken on account of local information must accomplish a global objective. Such
systems (with what is quite aptly called "distributed control") have been
designed, but all such designs I am familiar with are unstable in the sense
that, when once in an illegitimate state, they could remain so forever. I call a
system "self-stabilizing" when, regardless of its initial state, it is guaranteed
to arrive at a legitimate state in a finite number of steps. (Whether the
property of self-stabilization is interesting as a start procedure, for the sake
of system robustness, or merely as an intriguing problem, is a question that
falls outside the scope of this article.)

Unable to decide on theoretical grounds whether non-trivial self-stabilizing
systems with distributed control could exist at all, I decided to try
to design one under the following constraints and objectives.

We consider a system built from $N + 1$ finite state machines numbered
from 0 through N. (The state space for the total system is then the Cartesian
product of the $N + 1$ individual state spaces of the respective machines.)
The machines are arranged in a ring, i.e. for $0 \leq i \leq N$, machine $nr.i$ has
machine $i + 1$ as its right-hand neighbour, and machine N has machine 0 as
its right-hand neighbour.

In the middle of the ring stands a demon, each time giving, in "fair
random order", one of the machines the command "to adjust itself". (In
"fair random order" means that in each infinite sequence of successive
commands issued by the demon, each machine receives the command to
adjust itself infinitely often.) Upon "adjustment" a machine goes into a
(new) state, which must be a function of its own (old) state and the current
states of its (two) neighbours.

Furthermore, as a function of its own state (and possibly of the states of
its neighbours) a machine may be "privileged". The legitimate states are
defined as those states in which exactly one machine is privileged and for
which all possible successor states are legitimate as well; furthermore it is
required that then the privilege will rotate around the ring.

SIDE REMARK. I was hoping for an existence proof of self-stabilizing systems
with distributed control: a ring is then one of the most natural, simple
connection graphs. My choice of legitimate states, viz. requiring conver-
gence towards a solution of the mutual exclusion problem, is understand-
able for historical reasons [1], [2], [3], [4], it is also justified by its central
position in the whole field of controlling co-operation between loosely
coupled processes. Finally, the choice of the demon was suggested by a
recent experience with a cyclic relaxation problem in which "fair random
relaxation" would converge to a limit, while simultaneous relaxation could
lead to oscillation (EWD386, unpublished). So much for the justification of
the problem choice.

Again I beg my intrigued readers to stop reading here and to try to solve
the stated problem themselves, for only then will they (slowly!) build up
some sympathy with my difficulties: the problem has been with me for
many months, while I was oscillating between trying to find a solution

--- and many an at first --- and trying to prove that I had no indication in my
simplicity or complexity of the question.

The crucial observation: if, in addition, we require the machines is non-prime
and of degree $n (1 < n < N)$, he gives his first n commands" of the
symmetry will not have a "fair (but nasty) behalf forever, a single machine
identical can be assigned to all different or by all machines enforce asymmetry, it
seems the most promising.

Secondly, it is now possible to "adjust yourself" is the machine command was given
as a particular desire to have a command directed towards a machine far away;
look for a solution in which the directed towards a machine is the function "privileged";
privileged, then "dead" or "alive", and we can connect the state from which

Thirdly, we may suppose that because we are considering sufficiently large
column K, the maximum of its elements establish progress to the counter value decreases
applied a limited number of definitions. This suggests an equality of states.

In terms of equality of states that at least one machine $nr.i$ is
$1 \leq i \leq N$ machines
Self-Stabilization in Spite of Distributed Control

and many an at first sight plausible construction turned out to be wrong! — and trying to prove the non-existence of a solution. And all the time I had no indication in which of the two directions to aim, nor of the simplicity or complexity of the argument — if any! — that would settle the question.

* * *

The crucial observation is that, in general, the problem cannot be solved if, in addition, we require our machines to be identical. For if the number of machines is non-prime, our starting situation can have a cyclic symmetry of degree \(n \) (where \(2 \leq n \leq N/2 \)) and if then the demon — and he is free to do so! — gives his first \(n \) commands equally spaced around the ring, the cyclic symmetry will not have been destroyed. If the demon continues with such fair (but nasty) behaviour, we shall never reach the state after which, forever, a single machine will be privileged. Making not all machines identical can be accomplished in two extreme ways: either by making them all different or by making one exceptional. In view of our obligation to enforce asymmetry, one exceptional machine and all others mutually equal seems the most promising choice.

Secondly, it is not a priori excluded that the net effect of the command “adjust yourself” is nil, viz., that the new state of the machine to which the command was given equals its old state. In a legitimate state we have no particular desire to let the adjustment command have any effect when given to a machine far away from the privileged one. To simplify matters we can look for a solution in which the adjustment command has only effect when directed towards a machine that at that moment is privileged, and the result of whose adjustment will be that it loses its privilege. When now the function “privileged” is chosen such that at least one machine must be privileged, then “dead ends” are excluded a priori: the ring will remain alive, and we can concentrate on the requirement that the system converge to the state from which a single privilege will rotate past all machines.

Thirdly, we may feel tempted to introduce some sort of counter, but because we are confined to finite machines, true counters are excluded and the best we can hope for are counters counting modulo \(K \), where \(K \) is some sufficiently large constant (certainly \(> 1 \)). For two counter values modulo \(K \), the maximum or minimum is not defined and we cannot hope to establish progress towards the legitimate state because some “maximum counter value” decreases. But equality and a successor function that can be applied a limited number of times without leading to ambiguity are well-defined. This suggests defining the function “being privileged” in terms of equality of states.

In terms of equality we can define a function “being privileged” such that at least one machine is privileged quite easily when bearing in mind that one machine — let it be machine 0 — should be exceptional. Let for \(1 \leq i \leq N \) machine \(i \) be privileged when its state differs from that of
machine \(i - 1 \), i.e. when \(x[i] \neq x[i - 1] \). We choose this — rather than the other way round — because now non-privileged implies \(x[i] = x[i - 1] \) and equality is transitive: in other words, when all machines except machine 0 are non-privileged, \(x[0] = x[N] \) and when we define this as the condition for machine 0 being privileged, our requirement of at least one machine being privileged is therefore met.

Furthermore we had suggested that adjustment would cause the machine in question to loose its privilege. For the normal machines \(1 \leq i \leq N \) we have no freedom anymore: adjustment of machine \(i \) means

\[
\text{"if } x[i] \neq x[i - 1] \text{ then } x[i] := x[i - 1] \text{ fi"}
\]

For the exceptional machine, 0, I now suggest

\[
\text{"if } x[0] = x[N] \text{ then } x[0] := (x[0] + 1) \mod K \text{ fi"}
\]

and it is only here, where a new state has to be generated, that it becomes significant that we consider the machine states \(x \) as a counter modulo \(K \).

To start with, we remark that when a machine "fires" — if we may use that term for the non-nil adjustment that takes place when the demon gives the command to a privileged machine — it loses its privilege, it may give the privilege to its righthand neighbour and to no one else. Because at least one machine must be privileged, firing of the only privileged machine will always give the only privilege to its righthand neighbour: once in a legitimate state the system will remain in a legitimate state and the privilege will rotate around the ring.

Furthermore: suppose that the exceptional machine is not privileged, i.e. \(x[0] \neq x[N] \), then in a finite number of commands it will become privileged. For let \(j \) be the minimum value such that \(x[j] \neq x[0] \); because \(j \) is the minimum value, \(x[j - 1] = x[0] \) and therefore \(x[j] \neq x[j - 1] \), i.e. machine \(j \) is privileged. In a finite number of commands the demon will point to it, thus increasing \(j \) if \(j < N \) or making \(x[N] = x[0] \) if \(j = N \), i.e. making the exceptional machine privileged. So the exceptional machine will continue forever to get the opportunity to fire.

Let us now investigate what happens when we start the system in an arbitrary state. When the exceptional machine fires for the first time, we colour its new state blue and all other states white; from then onwards each state created by the exceptional machine or copied from a blue state by a normal machine will be blue as well. If \(h \) is the number of times the exceptional machine fires while \(x[N] \) is still white, then — because \(K > 1 \) — \(h \) will satisfy \(h \leq N \); after the first firing, the copying process along the chain of normal machines can supply machine \(N \) at most with another \(N - 1 \) further white states, differing in succession.

Without loss of generality we could have chosen initially \(x[0] = K - 1 \). If \(K > N \), then the first \(N \) firings of the exceptional machine have created the blue states from 0 through \(N - 1 \), and scanning the blue states, starting at the exceptional machine and going to the right, we find a sequence of non-increasing states starting with \(x[0] = 0 \); moreover, \(x[N] = N \), i.e. the system remains in a legitimate state until the proof for the whole number \(K \), counter K.

So far, so good, but there is a problem that may be found even in a single machine agency, called "anomalous flushing".

Each variable in the system may be only inspected or read, not written to, and equipped with a non-privileged machine. Simultaneous access is not permitted; only machines with a privilege can be updated instead of waiting for a privileged machine, as the system does without the flushing machine.

Two simple cases are that the normal machines use the flushing machine, which cannot suffer from the problem because \(x[i] \neq x[N] \); and the flushing machine is normal itself, the problem arises. The single adjustment \(i \) if \(x[i] \neq x[i - 1] \) will differ from the normal case because the flushing machine behaves as if it had the same value equal to \(x[0] \), even if we had not taken care of flushing.

\section{Conclusion}

Self-stabilizing distributed algorithms are local decision-making schemes that guarantee global requirements, no matter what the initial building blocks are.

\section{References}

\[x[i - 1]. \text{ We choose this — rather than the } x[i] = x[i - 1] \text{ and words, when all machines except machine 0 } \]
\[\text{and when we define this as the condition i, our requirement of at least one machine } \]
\[\text{at} \]
\[\text{ed that adjustment would cause the machine } \]
\[\text{e. For the normal machines } (1 \leq i \leq N) \text{ we } \]
\[\text{ment of machine } i \text{ means } \]
\[x[i - 1] \text{ if}'' \]
\[\text{I now suggest } \]
\[x[i] + 1 \mod K \text{ if}'' \]
\[\text{w state has to be generated, that it becomes } \]
\[\text{machine states } x \text{ as a counter modulo } K. \]
\[\text{at when a machine “fires” — if we may use } \]
\[\text{ment that takes place when the demon gives } \]
\[\text{machine — it loses its privilege, it may give the } \]
\[\text{bour and to no one else. Because at least one } \]
\[\text{firing of the only privileged machine will } \]
\[\text{to its righthand neighbour: once in a legiti- } \]
\[\text{in a legitimate state and the privilege will } \]
\[\text{he exceptional machine is not privileged, i.e. } \]
\[\text{number of commands it will become privi- } \]
\[\text{value such that } x[j] \neq x[0]; \text{ because } j \text{ is the } \]
\[x[0] \text{ and therefore } x[j] \neq x[j - 1], \text{ i.e. } \]
\[\text{nite number of commands the demon will } \]
\[j < N \text{ or making } x[N] = x[0] \text{ if } j = N, \text{ i.e. } \]
\[\text{e privileged. So the exceptional machine will } \]
\[\text{ortunity to fire. It happens when we start the system in an } \]
\[\text{tional machine fires for the first time, we } \]
\[\text{o other states white; from then onwards each } \]
\[\text{machine or copied from a blue state by a } \]
\[\text{as well. If } h \text{ is the number of times the } \]
\[x[N] \text{ is still white, then — because } K > 1— \]
\[\text{first firing, the copying process along the } \]
\[\text{s supply machine } N \text{ at most with another } \]
\[\text{ering in succession. It could have chosen initially } x[0] = K - 1. \text{ If } \]
\[\text{of the exceptional machine have created the } \]
\[1, \text{ and scanning the blue states, starting at } \]
\[\text{going to the right, we find a sequence of } \]
\[\text{non-increasing blue } x \text{-values. At the next firing of the exceptional machine } \]
\[x[0] = N - 1, \text{ also } x[N] = N - 1 \text{ must hold. At that moment, how- } \]
\[\text{ever, } x[N] \text{ must be blue as well and therefore all states must be } = N - 1, \]
\[\text{i.e. the system has arrived in one of its legitimate states. And this completes } \]
\[\text{the proof for self-stabilization provided } K > N \text{ (and, for smaller values of } \]
\[K, \text{ counter examples kill the assumption of self-stabilization).} \]
\[* * * \]

So far, so good, but one may object to using a rather powerful demon that may be very awkward to implement. Can we eliminate that centralized agency, can we replace it by “a distributed demon”?

Each variable } x[i] \text{ is only inspected and assigned to by machine } i \text{ and only adjusted by its right-hand neighbour. We assume each variable } x[i] \text{ equipped with its own, private, two-way switch, which excludes simultaneous access by the two neighbours it connects. And we assume that the machines will adjust themselves with a finite speed and a finite frequency, instead of waiting for the demon's command. Does it work? Amazingly it does without any further refinements.}

Two simultaneous adjustments of non-neighbouring machines have no mutual interference at all. An adjustment by the exceptional machine cannot suffer from simultaneous activity of its righthand neighbour } N, \text{ because } x[N] \text{ is inspected only once per adjustment. But adjustment of a } \]
\[\text{normal machine } i \text{, although possibly inspecting } x[i - 1] \text{ twice during a single adjustment, cannot suffer from its righthand neighbour activity either: if } \]
\[x[i - 1] \text{ changes its value between the two inspections, the first value differed from } x[i]; \text{ if the second value differs from } x[i] \text{ as well, the program behaves as if this value was also offered the first time, while if the second value equals } x[i], \text{ the assignment has no effect and it is as if the adjustment had not taken place at all!}

\section*{Conclusion}

Self-stabilizing systems with distributed control do exist in the sense that local decisions force the system towards satisfying and then maintaining a global requirement. In particular, local mutual exclusion is a sufficient building block for eventually achieving mutual exclusion globally.

\section*{References}

Before for the honor of Mary Goode Memorial, I'm getting this award and the thought of giving speeches makes me nervous. I think we should go for the first option.

One aspect of the recipient's speech is their profound appreciation for the award and the gratitude they feel. Another aspect is facing the challenges, which they regard this as a very difficult task. Memorial has been Bryn Mawr's lack of commitment to the award. No award ceremony and the lack of enhancements. I don't think we should guess — let's do it.

A next challenge would be the preparation, because of the lack of planning and insufficient time. An additional challenge is some circumspection about who one realizes that a comprehensive guide for a prize ceremony, whether bodies of awards, or a recipient of award, what embarks on the prize.

A third challenge is the effect of fame on a recipient.