
A Space Optimal, Deterministic,
Self-Stabilizing, Leader Election Algorithm

for Unidirectional Rings

Faith E. Fich1 and Colette Johnen2

1 Department of Computer Science, University of Toronto, Canada
fich@cs.toronto.edu

2 Laboratoire de Recherche en Informatique, CNRS–Université de Paris-Sud, France
colette@lri.fr

Abstract. A new, self-stabilizing algorithm for electing a leader on a
unidirectional ring of prime size is presented for the composite atom-
icity model with a centralized daemon. Its space complexity is optimal
to within a small additive constant number of bits per processor, signif-
icantly improving previous self-stabilizing algorithms for this problem.
In other models or when the ring size is composite, no deterministic
solutions exist, because it is impossible to break symmetry.

1 Introduction

Electing a leader on a ring is a well studied problem in the theory of distributed
computing, with recent textbooks devoting entire chapters to it [19, 3]. It requires
exactly one processor in the ring be chosen as a leader. More formally, there
is a distinguished subset of possible processor states in which a processor is
considered to be a leader. The state of the processor that is chosen leader reaches
and then remains within the subset, whereas the states of all other processors
remain outside the subset. A related problem of interest is token circulation,
where a single token moves around the ring from processor to processor, with at
most one processor having the token in any configuration. The formal definition
of a processor having a token is that the state of the processor belongs to a
subset of distinguished states.

Self-stabilizing algorithms are those which eventually achieve a desired prop-
erty (for example, having a unique leader) no matter which configuration they
are started in (and, hence, after transient faults occur). Dijkstra introduced the
concept of self-stabilization and gave a number of self-stabilizing algorithms for
token circulation on a bidirectional ring, assuming the existence of a leader [9].
One of these algorithms uses only 3 states per processor [11]. On a unidirection-
al ring with a leader, Gouda and Haddix [13] can perform self-stabilizing token
circulation using 8 states per processor.

Conversely, given a self-stabilizing token circulation algorithm on a ring of
size n, there is an easy self-stabilizing algorithm to elect a leader using only an
additional dlog2 ne bits per processor. Specifically, each processor stores a name



from {0, . . . , n− 1} as part of its state. Whenever a processor gets the token, it
updates its name by adding 1 to the name of its left neighbour and then taking
the result modulo n. Eventually, there will a unique processor with name 0,
which is the leader.

Without the ability to break symmetry, deterministic self-stabilizing leader
election and token circulation are impossible [2]. For example, consider a syn-
chronous system of anonymous processors. If all processors start in the same
state with the same environment, they will always remain in the same state
as one another. Similarly, in an asynchronous shared memory system of anony-
mous processors with atomic reads and writes, where all registers have the same
initial contents, or in an asynchronous message passing system of anonymous
processors, where all communication links contain the same nonempty sequence
of messages, many schedules, for example, a round robin schedule, will maintain
symmetry among all the processors. Therefore, the study of deterministic algo-
rithms for leader election and token passing in systems of anonymous processors
has focussed on Dijkstra’s composite atomicity model with a centralized daemon
(where a step consists of a state transition by a single processor, based on its
state and the states of its neighbours). Even in this model, symmetry among
equally spaced, nonadjacent processors in a ring can be maintained by an ad-
versarial scheduler. Therefore, deterministic algorithms for leader election and
token circulation are possible in a ring of n anonymous processors only when n
is prime [2, 10, 7].

Randomization is a well known technique to break symmetry and randomized
algorithms for both problems have been considered on a variety of models [1, 15,
4]. This work is beyond the scope of our paper.

There are deterministic self-stabilizing leader election algorithms for bidirec-
tional rings (of prime size using the composite atomicity model with a centralized
daemon) that use only a constant amount of space per processor [17]. For uni-
directional rings, Burns and Pachl [7] presented a deterministic self-stabilizing
token circulation algorithm that uses O(n2) states per processor, as well as a
more complicated variant that uses O(n2/ log n) states per processor. They left
the determination of the space complexity of this problem as an open question.
Lin and Simon [18] further improved their algorithm to O

(
n
√
n/ log n log log n

)
states per processor.

Beauquier, Gradinariu, and Johnen [4] proved a lower bound of n states
per processor for any deterministic self-stabilizing leader election algorithm on
a unidirectional ring of size n. They also mentioned a similar lower bound of
(n− 1)/2 states per processor for token circulation due to Jaap-Henk Hoepman.

In Section 3, we present a deterministic self-stabilizing leader election al-
gorithm for unidirectional rings (of prime size using the composite atomicity
model with a centralized daemon) in which the number of states is O(n). This
matches the lower bound to within a small constant factor. Hence, our algorithm
matches the number of bits of storage used at each processor to within a smal-
l additive constant of the number required by the lower bound. An algorithm
for self-stabilizing token circulation on a unidirectional ring can be obtained by



combining our algorithm for electing a leader with Gouda and Haddix’s token
circulation algorithm that assumes the existence of a leader [13]. The result-
ing algorithm has provably optimal space complexity to within a small additive
constant, solving Burns and Pachl’s open question.

Our algorithm was inspired by and is closely related to Burns and Pachl’s
basic algorithm. To achieve small space, our idea is to time share the space: two
pieces of information are stored alternately in one variable instead of in parallel
using two different variables. However, the correct implementation of this simple
idea in a self-stabilizing manner is non-trivial.

When developing our algorithm, we use Beauquier, Gradinariu, and Johnen’s
alternating schedule approach [4, 5] to simplify the description and the proof of
correctness. In Section 2, we give a more careful description of our model of
computation, define the set of alternating schedules, and state some important
properties of executions that have alternating schedules. Most of these results
describe how information flows from one processor to another during the course
of an execution.

2 The Model

We consider a system consisting of n identical, anonymous processors arranged
in a ring, where n is prime. The value of n is known to the processors. The
left neighbour of a processor P will be denoted PL and its right neighbour
will be denoted PR. The ring is unidirectional, that is, each processor can only
directly get information from its left neighbour. The distance from processor P
to processor Q is measured starting from P and moving to the right until Q is
reached. In particular, the distance from P to PL is n− 1.

In any algorithm, each processor is in one of a finite number of states. A
configuration specifies the state of every processor. An action of a processor is a
state transition, where its next state depends on its current state and the state of
its left neighbour. Note that the next state might be the same as the current state.
Only one processor performs an action at a time. This is Dijkstra’s composite
atomicity model with a centralized daemon [9]. An algorithm is deterministic
if, for each processor, its actions can be described by a total state transition
function from the cross product of its state set and the state set of its left
neighbour. In other words, in every configuration, each processor has exactly
one action it can perform. A processor is enabled in a configuration if there is
an action that causes the processor to change its state. Some authors prefer to
describe a deterministic algorithm using partial state transition functions, not
defining those transitions in which a processor is not enabled.

A schedule is a sequence whose elements are chosen from the set of n proces-
sors. If P is the t’th element of the schedule, we say that t is a step of P and P
takes a step at time t. A processor P takes a step during the time interval [t, t′′]
if it takes a step at some time t′, where t ≤ t′ ≤ t′′. In particular, if t > t′′, then
the interval [t, t′′] is empty and no processor takes a step during this interval.



An execution is an infinite sequence of configurations and processors

config(0), proc(1), config(1), proc(2), config(2), . . .

where configuration config(t) is obtained from configuration config(t− 1) by the
action of processor proc(t), for all t > 0. We say that config(t) is the configuration
at time t of the execution. The initial configuration of this execution is config(0),
the configuration at time 0. The schedule of the execution is the subsequence
proc(1), proc(2), . . . of processors. An infinite schedule or execution is fair if
every processor appears in the sequence infinitely often.

Fix an execution. If processor P takes a step at time T , then the state of
P at time T is influenced by the state of PL at time T − 1. If P does not take
any steps in the interval [T + 1, t′], then it will have the same state at T and
t′. Similarly, if PL does not take any steps in the interval [t+ 1, T ], then it will
have the same state at t and T − 1. Thus the state of PL at time t influences the
state of P at time t′. The following definition extends this relationship to pairs
of processors that are further apart.

Definition 1. Suppose P0, P1, . . . , Pk are k + 1 ≤ n consecutive processors, in
order, rightwards along the ring. Then the state of P0 at time t0 influences the
state of Pk at time t′ > t0, denoted

(P0, t0)→ (Pk, t′),

if and only if there exist times t0 < t1 < · · · < tk ≤ t′ such that Pk takes no
steps during the time interval [tk+1, t′] and, for i = 1, . . . , k, Pi−1 takes no steps
during the time interval [ti−1 + 1, ti], but Pi takes a step at time ti.

This definition of influence only captures the communication of information
around the ring. It does not capture knowledge that a processor retains when it
takes steps. For example, if P takes a step at time T , then (P, T − 1) 6→ (P, T ).
The following results are easy consequences of the definition.

Proposition 1. Suppose P , P ′, and P ′′ are distinct processors with P ′ on the
path from P to P ′′. If (P, t) → (P ′′, t′′) then there exists t < t′ < t′′ such that
P ′ takes a step at time t′, (P, t)→ (P ′, t′), and (P ′, t′)→ (P ′′, t′′). Conversely,
if (P, t)→ (P ′, t′) and (P ′, t′)→ (P ′′, t′′), then (P, t)→ (P ′′, t′′).

Proposition 2. Suppose P takes no steps in the interval [t+ 1, T ] and P ′ takes
no steps in the interval [t′ + 1, T ′], where t ≤ T and t′ ≤ T ′. Then the follow-
ing are equivalent: (P, t) → (P ′, t′), (P, t) → (P ′, T ′), (P, T ) → (P ′, t′), and
(P, T )→ (P ′, T ′).

A subset of the configurations of an algorithm is closed if any action per-
formed from a configuration in this set results in a configuration in this set. Let
H be a predicate defined on configurations. An algorithm stabilizes to H under a
set of schedules S if there is a closed set of configurations, L, all of which satisfy
H, such that every execution whose schedule is in S contains a configuration



that is in L. The configurations in L are called safe. When an execution reaches
a safe configuration, we say that it has stabilized. The stabilization time of an
algorithm is the maximum, over all executions in S, of the number of actions
performed until the execution stabilizes. A self-stabilizing algorithm is silent if
no processors are enabled in safe configurations.

Let LE be the predicate, defined on configurations of an algorithm, that is
true when exactly one processor is a leader (i.e. its state is in the specified set).
An algorithm that stabilizes to LE under the set of all fair schedules is called
a self-stabilizing leader election algorithm. Notice that, once an execution of a
leader election algorithm stabilizes, the leader does not change. This is because
processors change state one at a time, so between a configuration in which one
processor is the only leader and a configuration in which another processor is
the only leader, there must be an unsafe configuration.

We present an algorithm in Section 3 that stabilizes to LE under the set
of alternating schedules, defined in Section 2.1, using 5n states per processor.
Beauquier, Gradinariu, and Johnen [4] prove the following result about stabi-
lization under the set of alternating schedules.

Theorem 1. Any algorithm on a ring that stabilizes to predicate H under the
set of alternating schedules can be converted into an algorithm that stabilizes to
H under all fair schedules, using only double the number of states (i.e. only one
additional bit of storage) at each processor.

Applying their transformation to our algorithm gives a self-stabilizing leader
election algorithm that uses 10n states per processor.

2.1 Alternating Schedules

A schedule is alternating if, between every two successive steps of each proces-
sor, there is exactly one step of its left neighbour and exactly one step of its
right neighbour. Any round robin schedule is alternating. For a ring of size 5
with processors P1, P2, P3, P4, P5 in order around the ring, the finite schedule
P1, P2, P5, P4, P1, P5, P3, P4, P2, P3, P1, P2, P5, P1, P4, P5, P3, P2 is also an alter-
nating schedule. It is equivalent to say that a schedule is alternating if, between
every two steps of each processor, there is at least one step of each of its neigh-
bours.

The assumption of an alternating schedule allows us to determine more situ-
ations where the state of a processor at one step influences the state of another
processor at some later step. The proofs of the following lemmas are by induc-
tion on the distance from P to Q and can be found in the complete paper. They
will be used in the proof that our algorithm stabilizes to LE under the set of
alternating schedules.

The first result says that if a step of P influences a step of Q, then earlier or
later steps of P influence correspondingly earlier or later steps of Q.

Lemma 1. Consider an alternating schedule in which processor P takes k steps
in the interval [t+ 1, T ] and processor Q takes k steps in the interval [t′+ 1, T ′].
Then (P, t)→ (Q, t′) if and only if (P, T )→ (Q,T ′).



Another important property is that each step of each processor will eventually
influence some step of every other processor.

Lemma 2. Let P and Q be distinct processors. Suppose P takes a step at time
t of an alternating schedule. Then there exists a step t′ > t of Q such that
(P, t)→ (Q, t′).

The next results bound when a processor will influence another processor, as
a function of the distance from one to the other.

Lemma 3. Let P and Q be distinct processors, where the distance from P to Q
is k. If P takes at least k + 1 steps by time t′ in an alternating schedule, then
there exists a time t < t′ such that (P, t) → (Q, t′), P takes at most k steps in
the interval [t+ 1, t′], and P takes a step at time t.

Lemma 4. Let P and Q be distinct processors, where the distance from P to Q
is k. If Q takes at least k steps by time t′ in an alternating schedule, then there
exists a time t < t′ such that (P, t) → (Q, t′), Q takes at most k steps in the
interval [t, t′], and either t = 0 or P takes a step at time t.

Finally, the difference between the numbers of steps that have been taken by
two processors can be bounded by the distance from one processor to the other.

Lemma 5. Suppose the distance from P to Q is k and (P, t) → (Q, t′). If Q
takes at least m steps by time t′ in an alternating schedule, then P takes at least
m− k steps by time t.

Lemma 6. Suppose the distance between P and Q is k. If P takes m steps by
time t, then Q takes between m− k and m+ k steps by time t.

3 A New Leader Election Algorithm

In this section, we present a deterministic leader election algorithm for a unidi-
rectional ring that uses 5n states per processor and stabilizes under the set of
alternating schedules within O(n2) time.

We begin by describing some of the ideas from Burns and Pachl’s token
circulation algorithm [7] and how they are used in our leader election algorithm.

In a token circulation algorithm, some, but not all, of the tokens must disap-
pear when more than one token exists. Similarly, in a leader election algorithm,
when a ring contains more than one leader, some, but not all, of the leaders
must become nonleaders. Because the only direct flow of information is from a
processor to the processor on its right, the first token or leader a processor can
receive information from is the first one that is encountered travelling left from
the processor. We call this the preceding token or leader. The following token
or leader is the closest one to the processor’s right. We define the strength of a
token or leader to be the distance to it from the preceding token or leader. If
there is only one token or leader in a ring of size n, then its strength is n.



In Burns and Pachl’s basic algorithm, each processor has two variables: one
to store its distance from the preceding token (which, in the case of a processor
with a token is the strength of that token) and the other to store the strength
of the preceding token. The value of each variable is in [1, n]. Thus, the total
number of states per processor is O(n2).

A processor whose left neighbour has a token knows that it is at distance 1
from the preceding token. Any other processor can determine its distance from
the preceding token by adding 1 to the corresponding value of its left neighbour.
Every processor can obtain the strength of the preceding token directly from its
left neighbour: from the first variable, if its left neighbour has a token and from
the second variable, if its left neighbour does not have a token.

When a processor with a token learns that the preceding token is stronger,
it destroys its own token. On a ring whose size is prime, the distances between
successive tokens cannot be all identical. Thus, extra tokens will eventually dis-
appear.

In our algorithm, the state of each processor consists of two components: a
tag X ∈ {c, d,B,C,D} and a value v ∈ [1, n]. We say that a processor is a leader
if its tag is B, C, or D; otherwise it is called a nonleader.

The safe configurations of our algorithm each contain exactly one leader,
which is in state (D,n). In addition, the nonleader at distance i from the leader
is in state (d, i), for i = 1, . . . , n − 1. It is easy to verify that no processors are
enabled in safe configurations. Hence, our algorithm is silent.

Actions of our algorithm are described by specifying the state (X, v) of a
processor P and the state (XL, vL) of its left neighbour PL and then giving P ’s
new state (X ′, v′). Such an action will be written

(XL, vL) (X, v) 7→ (X ′, v′).

Instead of presenting all the actions at once, we present them in small groups,
together with a brief discussion of their intended effect.

For a leader, v usually contains its strength, i.e. its distance from the preceding
leader. Sometimes, nonleaders are used to determine the strength of a leader. In
this case, the processor has tag d and v contains its distance from the preceding
leader. A nonleader can also have tag c, indicating that v is conveying strength
information from the preceding leader to the following leader.

An example of an unsafe configuration of our algorithm is illustrated in Figure
1. Here P and P ′ are leaders with strength 4, P ′′ is a leader with strength 3,
and the other 8 processors are nonleaders.

When the tag of a leader is B or D, this signals the sequence of nonleaders
to its right to compute their distance from the leader, as follows: The right
neighbour of the leader sets its value to 1 and each subsequent nonleader sets
its value to one more than the value of the nonleader to its left. They set their
tags to d, to relay the signal. Because the schedule is alternating, the signal is
guaranteed to reach the entire sequence of nonleaders to the right of the leader.

1. (XL, vL) (X, v) 7→ (d, 1) for XL = B,D and X = c, d



2. (d, vL) (X, v) 7→ (d, 1 + (vL mod n)) for X = c, d and vL 6= n− 1

When the tag of a leader is C, this signals the nonleaders to its right to convey
the strength of this leader, by copying the value from their left neighbour and
setting their tag to c. For example, in Figure 1, if the processor at distance 2
from P ′′ takes the next step, its state will change from (d, 2) to (c, 3).

3. (XL, vL) (d, v) 7→ (c, vL) for XL = c, C

Our algorithm ensures that if a processor has tag C or c immediately before
it takes a step, then it has neither tag immediately afterwards. This implies that
processors with tag c will not perform either of the following two actions after
taking their first step. When the tag of its left neighbour is C, processor P with
tag c simply treats its left neighbour’s tag as if it were D and enters state (d, 1).
However, when its left neighbour’s tag is c, it is possible that all processors have
tag c. To ensure that the ring contains at least one leader, P becomes a leader.

4. (C, vL) (c, v) 7→ (d, 1)
5. (c, vL) (c, v) 7→ (B, 1)

A processor in state (d, n − 1) suggests that its right neighbour is the only
leader. If that right neighbour is a nonleader, it can correct the problem by
becoming a leader. This avoids another situation where no leader may exits.

6. (d, n− 1) (X, v) 7→ (B, 1) for X = c, d

A leader with tag B is a beginner: it has performed n or fewer steps as a
leader. For beginners, the value v records the number of steps for which the
processor has been a leader, up to a maximum of n. Thus, when a nonleader
becomes a leader, it begins in state (B, 1). After a leader has performed n steps
as a beginner, it should get tag D and record its strength in v. But when its left
neighbour has tag c, the processor cannot determine its own strength. Therefore
it waits in state (B,n) until its next step. In the meanwhile, its left neighbour
will take exactly one step and, hence, will have a different tag. Thus, a processor
performs at most n+ 1 consecutive steps as a beginner.

7. (XL, vL) (B, v) 7→ (B, v + 1) for XL = B, c, d and v 6= n
8. (d, vL) (B,n) 7→ (D, 1 + (vL mod n))
9. (B, vL) (B,n) 7→ (D, 1)

10. (c, vL) (B,n) 7→ (B,n)

When the system is in a configuration with multiple leaders, some of these
leaders have to be destroyed. If P is a leader whose left neighbour has tag C or
D, then P resigns its leadership by setting its state to (d, 1). However, if P ’s left
neighbour has tag B, then P waits in state (D, 1). Provided P ’s left neighbour
stays a leader long enough, P will be destroyed, too.

11. (XL, vL) (X, v) 7→ (d, 1) for XL = C,D and X = B,C,D



12. (B, vL) (X, v) 7→ (D, 1) for X = C,D

When P is a leader whose left neighbour, PL, has tag c, then vL contains the
strength of the preceding leader. In this case, P can compare its strength against
that of the preceding leader. If P is stonger, it remains a leader. Otherwise, P
resigns its leadership by setting its tag to d. However, the value vL does not
provide information from which P can compute its distance from the preceding
leader. Consequently, P sets its value to n, to act as a place holder until P ’s
next step, when PL will have a different tag.

13. (c, vL) (X, v) 7→ (D, v) for X = C,D and v ≥ vL
14. (c, vL) (X, v) 7→ (d, n) for X = C,D and v < vL

A processor can enter state (d, n) only by resigning its leadership. When the
left neighbour of a leader is in state (d, n), the leader cannot use vL to determine
its strength. In this case, the leader leaves its value v unchanged.

15. (d, n) (D, v) 7→ (D, v)

When its left neighbour PL has tag d, a leader P that is not a beginner
can update its value with a better estimate of its strength. Such a processor
usually alternates its tag between C and D. The only exception is when P ’s left
neighbour has value n−1, which indicates that P is the only leader. In this case,
P stays in state (D,n).

16. (d, vL) (D, v) 7→ (C, 1 + vL) for vL 6= n− 1, n
17. (d, vL) (C, v) 7→ (D, 1 + (vL mod n))
18. (d, n− 1) (D, v) 7→ (D,n)

4 Properties of the Algorithm

In this section, we present a number of results about the behaviour of our al-
gorithm. They are useful for the proof of correctness presented in Section 5.
Throughout this section and Section 5, we assume that all schedules are alter-
nating.

The first result relates the value of a processor with tag d to its distance from
a leader or a processor that has just resigned its leadership. It can be proved by
induction.

Lemma 7. Suppose (P, t)→ (Q, t′), the distance from P to Q is k, and Q has
tag d at time t′. If, at time t, P is a leader or has state (d, n), then, at time t′,
either Q has value n or value at most k. Conversely, if Q has value k at time
t′, then, at time t, either P is a leader or has state (d, n).

A leader that is not a beginner cannot have become a leader recently.

Lemma 8. Let [t+1, t′] be an interval that contains at most n steps of processor
P . If P has tag C or D at time t′, then P is a leader throughout the interval
[t, t′].



Proof. Suppose that P becomes a leader during the interval [t + 1, t′]. At that
time, P has state (B, 1). It cannot get tag C or D until it has performed at least
n more steps, which occurs after time t′.

The next result identifies a situation in which a leader cannot be created.

Lemma 9. Suppose (P, t) → (Q, t′) and Q takes at least one step before t′. If
P is a leader throughout the interval [t, t′ − 1], then Q does not become a leader
at time t′.

Proof sketch. Suppose Q becomes a leader at time t′. It follows that QL has state
(d, n− 1) at time t′ − 1. Then Lemma 7 is applied to obtain a contradiction.

4.1 Experienced Leaders

An experienced leader is a processor that has been a leader long enough so that
the fact that it is a leader influences and has been influenced by every other
processor. Formally, an experienced leader is a processor with tag C or D that
has taken at least n steps. Then, either an experienced leader has remained a
leader since the initial configuration, or it has served its full time as a beginner,
since last becoming a leader.

The existence of an experienced leader in a configuration of an execution
provides a lot of information about what actions may occur.

Lemma 10. No new leader will be created whenever there is an experienced
leader.

Proof. To obtain a contradiction, suppose there is a time t′′ at which P is an
experienced leader and Q becomes a leader. Since P has taken at least n steps,
it follows by Lemma 6 that Q has taken at least one step before time t′′. This
implies that, at time t′′, Q performs action 6, QL has state (d, n − 1), and
P 6= Q,QL.

From Lemma 3 and Proposition 1, there are times t < t′ < t′′ such that
(P, t) → (QL, t′) → (Q, t′′), QL takes a step at time t′, and P takes at most n
steps in the interval [t, t′′]. Then Lemma 8 implies that P is a leader throughout
this interval. Since the distance from P to QL is at most n − 2, it follows from
Lemma 7 that QL cannot have value n − 1 at time t′, However, QL has state
(d, n− 1) at time t′′ and takes no steps in the interval [t′ + 1, t′′]. Thus QL has
state (d, n− 1) at time t′. This is a contradiction.

The proofs of the next two results appear in the full paper. They use Propo-
sition 2 and Lemmas 1, 4, 3, 5, 7, 8, and 9.

Lemma 11. If an experienced leader has value v > 1, then the v− 1 processors
to its left are nonleaders.

This says that the value of an experienced leader is a lower bound on its
strength.

Lemma 12. While a processor is an experienced leader, its value never decreas-
es.



5 Proof of Self-Stabilization

Here, we prove that the algorithm presented in Section 3 stabilizes to LE under
the set of alternating schedules.

The proof has the following main steps. First, we show that every execution
reaches a configuration in which there is a leader. Then, from some point on, all
configurations will contain an experienced leader. By Lemma 10, no new leaders
will be created, so, eventually, all leaders will be experienced leaders. As in Burns
and Pachl’s algorithm, if there is more than one leader, they cannot have the
same strength, because the ring size is prime. Thus resignations must take place
until only one leader remains. Finally, a safe configuration is reached.

Lemma 13. Consider any time interval [t, t′] during which each processor takes
at least n steps. Then there is a time in [t−1, t′] at which some processor is leader.

Proof. Without loss of generality, we may assume that t = 1. To obtain a con-
tradiction, suppose that no processor is a leader in [0, t′]. Only actions 2 and
3 are performed during [1, t′], since all other actions either require or create a
leader.

Let v be the maximum value that any processor has as a result of performing
action 2 for its first time. Then 1 ≤ v < n. Say processor P0 has value v at time
t0 as a result of performing action 2 for its first time. Let Pi be the processor
at distance i from P0, for i = 1, . . . , n− v. Then by Lemma 2, there exist times
t1 < · · · < tn−v such that (P0, t0)→ (P1, t1)→ · · · → (Pn−v, tn−v) and Pi takes
a step at time ti for i = 1, . . . , n − v. Note that Pn−v takes at most n steps by
time tn−v; otherwise, Lemma 5 implies that P0 takes at least two steps before
t0. This is impossible, since P0 cannot perform action 3 twice in a row. Hence,
tn−v ≤ t′.

It follows by induction that processor Pn−1−v has state (d, n − 1) at time
tn−1−v. But then Pn−v performs action 6 at time tn−v and becomes a leader.
This is a contradiction.

Lemma 14. If there is only one experienced leader and it has taken at least 3n
steps, then it cannot resign its leadership.

Proof sketch. To obtain a contradiction, suppose that processor P0 has taken at
least 3n steps before time t0, it is the only experienced leader at time t0−1, and
it resigns its leadership at time t0. Then P0 performs action 14 at time t0. Let
v0 denote the value of P0 at time t0 − 1 and let k0 = 0.

We prove, by induction, that there exist processors P1, . . . , Pn−1, values
v0 < v1 < · · · < vn−1, distances 1 < k1 < · · · < kn−1 < n, and times
t1, t

′
1, . . . , tn−1, t

′
n−1 such that, for i = 1, . . . , n− 1,

– Pi performs action 14 at time ti < t0,
– Pi takes a step at time t′i < ti,
– the distance from Pi to P0 is ki,
– Pi has value vi at time ti − 1, and



– (Pi, t′i)→ (P0, t0).

But this is impossible.

Lemma 15. After each processor has taken 6n + 1 steps, there is always an
experienced leader.

Proof. Consider any execution of the algorithm. Let t be the first time at which
every processor has taken at least 3n steps and let t′′ > t be the first time such
that all processors have taken at least n steps in [t+ 1, t′′]. By Lemma 13, there
is a time t′ ∈ [t, t′′] at which some processor P is a leader. If P has tag C or
D at time t′, then P is an experienced leader. Otherwise, P has state (B, v) for
some value v ≥ 1. Unless an experienced leader is created, P will perform action
7 at each step until it has state (B,n), it will perform action 10 at most once,
and then perform action 8 or 9 to become an experienced leader. Note that, at
t′, every processor has taken at least 3n steps, so Lemma 14 implies that there
is at least one experienced leader in every subsequent configuration.

By time t, some processor has taken exactly 3n steps, so Lemma 6 implies
that no processor has taken more than b7n/2c steps. Similarly, some processor
takes exactly n steps in the interval [t+ 1, t′′], so no processor takes more than
b3n/2c steps in this interval. This implies that P takes at most 5n steps by time
t′′. Therefore P becomes an experienced leader within 6n+1 steps, since P takes
at most n+ 1 steps after t′ until this happens.

Lemma 16. After each processor has taken at least b15n/2c+2 steps, all leaders
are experienced.

Proof. Consider any execution of the algorithm and let t be the first time at
which every processor has taken at least 6n+1 steps. By Lemma 15, the execution
contains an experienced leader at all times from t on. Lemma 10 implies that
no new leader will be created after time t. Any beginner at t will become an
experienced leader or resign its leadership by the time it has taken n + 1 more
steps. By time t, some processor has taken exactly 6n + 1 steps, so Lemma 6
implies that no processor has taken more than b13n/2c steps. Thus, by the time
each processor has taken b15n/2c steps, all leaders are experienced.

Lemma 17. Consider any interval [t, t′] during which the set of leaders does
not change, all leaders are experienced, and every processor performs at least
n+ 1 steps. Then, at t′, the value of every leader is equal to its strength.

Proof. Let Q be a leader with value v at t′ and let P be the processor such that
the distance from P to Q is v. Suppose T ′ is the last time at or before t′ at
which Q takes a step and QL has tag d. Processor QL has value v− 1 at T ′. By
Lemma 3, there is a time T < T ′ such that (P, T )→ (QL, T ′), P takes at most
v − 1 steps in [T + 1, T ′], and P takes a step at time T . Lemma 7 implies that,
at time T , either P is a leader or has state (d, n).

If P has state (d, n) at time T , then P must have performed action 14 at time
T , resigning its leadership. But t < T < T ′ ≤ t′ and the set of leaders doesn’t



change throughout the interval [t, t′]. Thus P is a leader at time T and, hence,
at time t′.

By Lemma 11, the v − 1 processors to the left of Q are nonleaders at t′.
Hence, at t′, processor P is the leader preceding Q and Q has strength v.

Lemma 18. Let t be any time at which there is more than one leader and all
leaders are experienced. If every processor takes at least b5n/2c+2 steps in [t, t′′],
then some processor resigns during [t+ 1, t′′].

Proof. To obtain a contradiction, suppose that, during [t, t′′], all processors take
at least b5n/2c+2 steps and the set of leaders does not change. Let t′ > t be the
first time such that every processor performs at least n+ 1 steps in [t, t′]. Then
Lemma 17 implies that, throughout [t′, t′′], the value of every leader is equal to
its strength. Let P be one leader, let P ′ be the following leader, and let v and v′

denote their respective strengths. The processor that takes step t′ takes exactly
n steps during the interval [t, t′ − 1]. Then Lemma 6 implies that P takes at
most b3n/2c steps during [t, t′].

Consider the first time T ≥ t′ at which P has tag C. Then P performs at most
2 steps in [t′ + 1, T ]. By Lemma 2, there exist times T < T1 < · · · < Tv′−1 < T ′

such that (P, T ) → (P1, T1) → · · · → (Pv′−1, Tv′−1) → (P ′, T ′), where Pi is the
processor at distance i from P . At time Ti, processor Pi performs action 3 and
gets state (c, v), for i = 1, . . . , v′ − 1.

From Lemma 3, we know that P takes at most v′ ≤ n−1 steps in [T +1, T ′].
Hence P takes at most b5n/2c+ 1 steps during [t, T ′]. Therefore T ′ < t′′. Since
no processor resigns during [t + 1, t′′], processor P ′ performs action 13 at time
T ′. Therefore v′ ≥ v.

Since P is an arbitrary leader, this implies that the strengths of all leaders
are the same. Hence, the ring size n is divisible by the number of leaders. This
is impossible, because n is prime and the number of leaders lies strictly between
1 and n.

Lemma 19. From any configuration in which there is only one leader and that
leader is experienced, the algorithm in Section 3 reaches a safe configuration
within O(n2) steps.

Proof. Consider a time t at which there is only one leader P and suppose P
is experienced at t. By Lemmas 2 and 3, there exists a step t′ of PL such that
(P, t)→ (PL, t′) and P takes at most n steps in [t, t′]. If PL has tag d at time t′,
let T ′ = t′; otherwise, let T ′ be the time of PL’s next step. Then PL has tag d
at time T ′. By Lemma 1, there exists a time T such that (P, T )→ (PL, T ′) and,
by Lemma 7, PL will have value n− 1 at time T ′.

Processor P gets state (D,n) at its first step following T ′. From then on, P
remains in state (D,n), performing only actions 18 and 13 . Lemma 7 and an
easy induction on k show that if the distance from P to Q is k, P has state
(D,n) at time t′′, and (P, t′′) → (Q,T ′′), then Q has state (d, k) at time T ′′.
Thus, within O(n2) steps, a safe configuration is reached.

Our main result follows directly from these lemmas.



Theorem 2. The algorithm in Section 3 stabilizes to LE within O(n3) steps
under any alternating schedule.

6 Conclusion

We have presented a deterministic, self-stabilizing leader election algorithm for
unidirectional, prime size rings of identical processors, proved it correct, and
analyzed its complexity. The number of states used by this algorithm is 10n
per processor, matching the lower bound [4] to within a small constant factor.
Combined with Gouda and Haddix’s algorithm [13], we get a deterministic, self-
stabilizing algorithm for token circulation on unidirectional prime size rings that
uses only a linear number of states per processor. This answers the open question
in [7] of determining the space complexity of of self-stabilizing token circulation
on unidirectional rings. We believe our work sheds new insight into the nature
of self-stabilization by more precisely delineating the boundary between what is
achievable and what is not.

Through our work with alternating schedules, we have improved our under-
standing of how the state of one processor influences the states of other proces-
sors. This enabled us to store two pieces of information alternately in a single
variable, yet have both pieces of information available when needed. This tech-
nique may be useful for designing other space efficient self-stabilizing algorithms
on the ring and, more generally, on other network topologies.

Our algorithm is silent under an alternating schedule. However, when com-
bined with the deterministic token algorithm, it is not silent: the deterministic
tokens circulate forever. One remaining open question is whether there exists a
silent, deterministic, self-stabilizing leader election on a unidirectional ring that
uses only a linear number of states per processor.

Acknowledgements

Faith Fich was supported by grants from the Natural Sciences and Engineering
Research Council of Canada and Communications and Information Technology
Ontario. Part of this research was done while she was a visitor at Laboratoire
de Recherche en Informatique, Université de Paris-Sud.

References

1. K. Abrahamson, A. Adler, R. Gelbart, L. Higham, and D. Kirkpartrick: The bit
complexity of randomized leader election on a ring. SIAM J. Comput. 18 (1989)
12–29

2. Dana Angluin: Local and global properties in networks of processors. 12th ACM
Symposium on the Theory of Computing. (1980) 82–93

3. Hagit Attiya and Jennifer Welch: Distributed Computing, Fundamentals, Simula-
tions and Advanced Topics. McGraw-Hill. (1998)



4. J. Beauquier, M. Gradinariu, and C. Johnen: Memory space requirements for self-
stabilizing leader election protocols. Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing. (1999) 199–208

5. J. Beauquier, M. Gradinariu, and C. Johnen: Self-stabilizing and space optimal
leader election under arbitrary scheduler on rings. Internal Report, LRI, Université
de Paris-Sud, France. (1999)

6. J. Beauquier, M. Gradinariu, and C. Johnen: Cross-over composition–enforcement
of fairness under unfair adversary. Fifth Workshop on Self-Stabilizing Systems.
(2001)

7. J.E. Burns and J. Pachl: Uniform self-stabilizing rings. ACM Transactions on Pro-
gramming Languages and Systems. 11 (1989) 330–344

8. S. Dolev, M.G. Gouda, and M. Schneider: Memory requirements for silent stabi-
lization. Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing. (1996) 27–34

9. E.W. Dijkstra: Self stabilizing systems in spite of distributed control. CACM 17
(1974) 643–644

10. E.W. Dijkstra: Self stabilizing systems in spite of distributed control. Selected
Writing on Computing: A Personal Perspective. Springer-Verlag. (1982) 41–46

11. E.W. Dijkstra: A belated proof of self-stabilization. Distributed Computing. 1
(1986) 5–6

12. Shlomi Dolev: Self-Stabilization. MIT Press. (2000)
13. M.G. Gouda and F.F. Haddix: The stabilizing token ring in three bits. Journal of

Parallel and Distributed Computing. 35 (1996) 43–48
14. Ted Herman: Comprehensive self-stabilization bibliography.

http://www.cs.uiowa.edu/ftp/selfstab/bibliography/ (2001)
15. L. Higham and S. Myers: Self-stabilizing token circulation on anonymous message

passing. Distributed Computing: OPODIS ’98. Hermes. (1998) 115–128
16. S.T. Huang: Leader election in uniform rings. ACM Transactions on Programming

Languages and Systems. 15 (1993) 563–573
17. G. Itkis, C. Lin, and J. Simon: Deterministic, constant space, self-stabilizing lead-

er election on uniform rings. Proceedings of the 9th International Workshop on
Distributed Algorithms, Lecture Notes in Computer Science. Springer-Verlag. 972
(1995) 288–302

18. C. Lin and J. Simon: Observing self-stabilization. Proceedings of the Eleventh
Annual ACM Symposium on Principles of Distributed Computing. (1992) 113–123

19. Nancy Lynch: Distributed Algorithms. Morgan Kaufmann. (1996)



(c,3)

(C,4)

(b)(a)

(d,8)

(d,10)

(d,9)

(d,7)

(d,6)

(d,5)

(d,4)
(d,3)

(d,2)

(d,1)

(D,n) Q

P"

P’4

3

4

(C,3)

P

(d,2)

(d,3)

(c,4)
(c,4)

(c,4)

(D,4)

(d,1)

(d,2)

Fig. 1. An unsafe configuration of our algorithm


