Fault-tolerant Implementations of the Atomic-state
Communication Model in Weaker Networks *

Colette Johnen' and Lisa Higham?

L' LRI, Univ. Paris-Sud, CNRS, F-91405 Orsay, France colette@lri.fr
? Computer Science Department, University of Calgary, Canada higham@ucalgary.ca

There is a proliferation of models for distributed computing, consisting of both shared memory and
message passing paradigms. Different communities adopt different variants as the “standard” model for
their research setting. Since subtle changes in the communication model can result in significant changes to
the solvability /unsolvability or to the complexity of various problems, it becomes imperative to understand
the relationships between the many models. The situation becomes even more complicated when additional
requirements such as fault-tolerance are added to the mix. This motivates us to determine exactly under
what circumstances a program designed for one model and delivering some set of additional guarantees can
be converted into an “equivalent” programs for a different model while delivering comparable guarantees.
Once these relationships are understood, they can be exploited in system design.

Our work addresses this question for networks of processors that communication by locally shared reg-
isters. A network that uses locally shared registers can be modelled by a graph where nodes represent
processors and there is an edge between two nodes if and only if the corresponding processors communicate
directly by reading or writing registers shared between them. Two variants are defined by specifying whether
the registers are single-writer/multi-reader and located at the nodes (called state models) or single-writer/
single-reader and located on the edges (called link models).

The shared registers used by the communicating processors further distinguishes possible models. Lam-
port [4] defined three models of single-writer/multi-reader registers, differentiated by the possible outcome
of read operations that overlap concurrent write operations. These three register types, in order of increasing
power, are called safe, regular, and atomic. Program design is easier assuming atomic registers rather than
weaker registers but the hardware implementation of an atomic register is costlier than the implementation
of one of the weaker ones.

By specifying either state or link communication, via shared registers that are either regular, atomic, or
safe we arrive at six different network models that use locally shared registers. For example, the atomic-state
model has atomic registers located at the nodes of the network. The other models are named similarly. An
algorithm for any one of these networks could provide some fault tolerance. So, we consider a third parameter,
namely, wait-freedom, which captures tolerance of stopping failures of components of the network, or self-
stabilization, which captures recovery of the network from transient errors of its components.

We seek to determine under what conditions it is possible to transform a wait-free (respectively, self-
stabilizing) solution to a given problem under one of these models into a wait-free solution (respectively,
self-stabilizing) solution under another of the six models.

In an earlier paper [2], we proved that a wait-free compiler from atomic-state systems to atomic-link
systems requires that if two processors, a and b, each share a register with a third processor ¢, then a and
b must themselves share a register. But, in a network, processors that are not neighbours cannot share a
register. A consequence of this essential distinction between networks and globally shared memory systems is
the impossibility: “There is no wait-free compiler from atomic-state systems to regular-state systems for the
same network graph for any network graph that is not complete”. We also presented a self-stabilizing compiler
from network graphs where neighbours communicate via atomic-state registers to systems where neighbours
communicate via atomic-link registers [2]. This compiler, however, had some shortcomings. It is not a silence-
preserving compiler; it requires that each processor in the atomic-state system being implemented executes
an atomic-state read operation infinitely often; the implementation of the atomic-state write operation is not
wait-free; the implementation of the atomic-state read operation is not even obstruction-free. Furthermore,

* This work was partially supported by the program ACI ”security and dependability” FRAGILE and by NSERC
(canada) Discovery Grant.



the proof of correctness failed to characterize the legitimate configurations: instead it only established that
all computations of the compiled algorithm are eventually linearizable.

Contributions Our principal result is a self-stabilizing compiler from the atomic-state model to the regular-
state model. This compiler is also silent. That is, if, once registers are stabilized, the atomic-state algorithm
does not require the participation of neighbours, then the transformed regular-state algorithm also does not
require the participation of neighbours. As a consequence, our compiler does not add significant overhead to
communication. The code and the self-stabilization proof is presented in a technical report [3]. Our compiler
has some additional appealing properties: The size of each shared regular register used by the compiled
algorithm is log(M) + 1+ log(B) bits where M is the number of processor states of the initial algorithm and
B is greater than the network degree. The compiled algorithm has strong progress guarantees. Specifically,
the implementation of any write operation is wait-free. The implementation of a read is not wait-free, but it
is obstruction-free.

For all the remaining relationships (both possibilities and impossibilities) among the four models that
use atomic and regular registers under either self-stabilizing and wait-free requirements, we either observe
that they have been answered by existing research or we show how they can be derived from combinations of
earlier results. Thus, our compiler closes the proposed questions among four of the six models. These results
are summarized in the following figure.

State Link
< B
Atomic [2]
Bl AN 2] A
[3]5 : __\K_/__ NV [3]; %[4]
- - - -
| VB ] o y
______________________ Bl o
A—=B: Self—Stabilizing implementation of A into B A 7= X7> B :Impossibility of Wait—Free implementation
A = B: Wait-Free and Self-stabilizing implementation

Fig. 1. Transformations between network models

What remains open is whether or not there is a self-stabilizing compiler from networks (state or link)
with regular registers, to the corresponding network with only safe registers. Interestingly, Lamport’s con-
struction of single-writer single-reader single-bit regular registers from single-writer single-reader single-bit
safe registers [4] fails to be self-stabilizing [1]. We conjecture that this shortcoming can be rectified at the
expense of wait-freedom.

References

1. JH Hoepman, M Papatriantafilou, and P Tsigas. Self-stabilization of wait-free shared memory objects. Journal
of Parallel and Distributed Computing, 62(5):818-842, 2002.

2. L Higham and C Johnen. Relationships between communication models in networks using atomic registers. In
IPDPS’2006, the 20th IEEE International Parallel € Distributed Processing Symposium, 2006.

3. L. Higham and C. Johnen. Self-stabilizing implementation of atomic register by regular register in networks
framework. Technical Report 1449, L.R.I, 2006.

4. L Lamport. On interprocess communication. Distributed Computing, 1(2):77-101, 1986.



