
Self-stabilizing Neighborhood Unique Naming
under Unfair Scheduler

Maria Gradinariu and Colette Johnen

Laboratoire de Recherche en Informatique, UMR CNRS 8623,
Université de Paris Sud, F91405 Orsay cedex, France

{mariag,colette}@lri.fr

Abstract.
We propose a self-stabilizing probabilistic solution for the neighborhood
unique naming problem in uniform, anonymous networks with arbitrary
topology. This problem is important in the graph theory Our solution
stabilizes under the unfair distributed scheduler. We prove that this so-
lution needs in average only one trial per processor.
We use our algorithm to transform the [6] maximal matching algorithm
self-stabilizing to be able to cope up with a distributed scheduler.

1 Introduction

Self-stabilization. Self-stabilization introduced by Dijkstra, [2], provides an uni-
form approach to fault-tolerance, [9]. More precisely, this technique guarantees
that, regardless of the initial state, the system will eventually converge to the
intended behavior without the need for explicit exception handler of backward
recovery. In this paper we are particular interested in uniform (every processor
in the system executes the same algorithm) and anonymous systems (processors
does not have a distinct identifier).

Neighborhood Unique Naming (NUN) problem. In [5] is defined the labeling
graphs problem with conditions at distance 2. NUN problem, issued from this
theoretical graph problem, ensures that in each neighborhood the vertex have
distinct labels. In other words, there is no vertex with the same label as one of
its neighbors and there is no vertex having neighbors named identically. This
problem is a classical coloring problem with an additional restriction: the vertex
at distance two have distinct labels. A practical application is the assigning radio
frequencies to transmitters such that transmitters that are close (distance 1 or
2 apart) to each other use different frequencies.

Maximal Matching (MAM) problem. The MAM problem is issued from graph
theory. A matching in a graph is a set of edges where no two edges are adjacent.
The matching set M is called maximal if there is no other matching set M ′ such
that M ⊂ M ′. The main applications of this problem in distributed computing
area are job assignment and task scheduling.

Related works. The classical vertex coloring problem is a restriction of the NUM
problem. The vertex coloring was previously studied for planar and bipartite
graphs (see [3, 14, 12, 13]). Using a well-known result from graph theory, Gosh
and Karaata [3] provide an elegant solution for coloring acyclic planar graphs
with exactly six colors, along with an identifier based solution for acyclic ori-
entation of planar graphs. This makes their solution limited to systems whose
communication graph is planar and processors have unique identifiers. Sur and
Srimani [14] vertex coloring algorithm is only valid for bipartite graphs. A paper
by Shukla et al. (see [13]) provides a randomized self-stabilizing solution to the
two coloring problem for several classes of bipartite graphs, namely complete
odd-degree bipartite graphs and tree graphs. In [4] the authors presents three
coloring algorithms for the arbitrary networks. Their solutions use O(D) colors,
where D is the maximal degree of the network.
Nevertheless, all the previous presented algorithms are not solutions for the NUN
problem since it may be possible that vertex at distance 2 are labeled identically.
The NUN has multiple applications such as: the acyclic orientation of general
networks or finding the maximal matching sets. The first application is trivial,
therefore we focus on the MAM problem. There are several works treating the
MAM problem. The faster known sequential algorithm is a wave algorithm due
to Micali and Vazirani, [7]. This solution is not self-stabilizing.
A deterministic self-stabilizing solution for the MAM problem was provided by
Huang and Hsu in [6]. Their solution stabilizes only under a central scheduler.

Our contribution. We present the first self-stabilizing solution for the NUM
problem. Our solution works on anonymous, uniform networks with any topo-
logy and it needs in average only one trial per processor under the distributed
scheduler. (I.E. a processor randomly updates its local identifier one time on
the average). This algorithm is used to transform the [6] MAM algorithm such
that it stabilizes under a distributed scheduler. Note that in the transformed
algorithm the randomization is used only for breaking the symmetry, once any
processor of the network gets an unique local identifier, the NUN algorithm has
no further influence (no action is performed), the MAM algorithm evolution is
then deterministic. Our solution copes up with the most powerful scheduler —
the distributed scheduler : only the processors with a locally maximal identifier
can choose their match. Hence, we avoid the matching cycles generation (more
details in Section 5).

2 Model

Distributed Systems. A distributed system is a set of state machines called pro-
cessors. Each processor can communicate with some processors called neighbors.
A processor p communicates to its neighbors via its variables that its neighbors
can read but cannot update. We will use Np to denote the set of neighbors of
the processor p.

A processor p in a distributed system executes an algorithm which is a finite set
of guarded actions where each guard is a boolean expression over its variables
and the variables of its neighbors, and where each statement is a deterministic
or probabilistic update of the local and variables of p.
The state of a processor p is the value of its variables. A configuration of a
distributed system is an instance of the processor states. A processor is enabled in
a given configuration if at least one of the guards of its algorithm is true. During
a computation step, one or more enabled processors perform the statement of an
enabled action. A computation of a distributed system DS is a maximal sequence
of computations steps. Maximality means that the sequence is either infinite, or
the terminal configuration is a deadlock.
A distributed system can be modeled by a transition system. A transition system
is a three-tuple S = (C, T , I) where C is the collection of all configurations, I is
a subset of C called the set of initial configurations, and T is a function T from
C to the set of C subsets. A C subset of T (c) is called a c transition. An element
of a c transition t, is called an output of t. In a probabilistic system, there is a
probabilistic law on the output of a transition; in a deterministic system, each
transition has only one output.

Scheduler. In this model, a scheduler is a predicate over the system computa-
tions. In a computation, a transition (ci, ci+1) occurs due to the execution of
a nonempty subset of the enabled processors in the configuration ci. In every
computation step, this subset is chosen by the scheduler : a central (resp. dis-
tributed) scheduler chooses one and only one enabled processor (resp. a subset
of the enabled processors) to execute a statement action. A scheduler may be
unfair.
A strategy is the set of computations that can be obtained under a specific
scheduler choice. At the initial configuration, the scheduler “chooses” one set of
enabled processors (it chooses a transition). For each output of the selected tran-
sition, the scheduler chooses a second transition, and so on. The strategy formal
definition is based on the tree of computations. Let c be a system configuration.
A TS-tree rooted in c, T ree(c), is the tree-representation of all computations be-
ginning in c. Let n be a node in T ree(c) (i.e. a configuration), a branch rooted in
n is the set of all T ree(c) computations starting in n with a computation step of
the same n transition. The degree of n is the number of branches rooted in n. A
sub-TS-tree of degree 1 rooted in c is a restriction of T ree(c) such that the degree
of any T ree(c)’s node (configuration) is at most 1. Let st be a strategy of the
distributed system DS, an st-cone Ch is the set of all possible st-computations
with the same prefix h (for more details see [10]). The last configuration of h is
denoted last(h). We have equipped a strategy with a probabilistic space (see [1]
for more details). The measure of an st-cone Ch is the measure of the prefix h
(i.e., the product of the probability of every computation step occurring in h).

Probabilistic self-stabilization. Let DS be a distributed system. A predicate P
is closed for the computations of DS if and only if when P holds in a con-
figuration c, P also holds in any configuration reachable from c. Let D be a
scheduler and st be a strategy of DS under D. Let CP be the set of all system
configurations satisfying a closed predicate P (formally ∀c ∈ CP, c ` P). The
set of st-computations that reach configurations of CP is denoted by EP and its
probability by Pst(EP).

In this paper we study quasi-silent algorithms : those for which a legitimate
configuration (i.e. it verifies the problem specification) is also a deadlock. A
quasi-silent probabilistic self-stabilizing algorithm is not silent because it may
have infinite executions (these executions do not converge). The measure of these
executions is null, in any strategy.

Definition 1 (Probabilistic Stabilization of a quasi-silent algorithm).
A distributed system DS is self-stabilizing under a scheduler D for a specification
L (a legitimacy predicate on configurations) such that in any strategy st of S
under D, the following conditions hold :
• The probability of the set of st-computations, that reach a configuration sat-
isfying L is 1. Formally, ∀st, Pst(EL) = 1.
• A configuration satisfies L iff it is a deadlock.

Convergence of Probabilistic Stabilizing Systems. Building on previous works on
probabilistic automata (see [11, 15, 10, 8],), [1] presented a framework for proving
self-stabilization of probabilistic distributed systems. In the following we recall a
key property of the system called local convergence and denoted by LC. Let DS
be a distributed system. Let st be a strategy of DS, PR1 and PR2 be two closed
predicates on configurations of DS. Let Ch be a st-cone where last(h) ` PR1.
In st, from last(h), if the probability to reach a configuration that verifies PR2
in at most N computation steps is greater or equal than ε then we say that Ch
satisfies LC(PR1, PR2, ε,N).
If in strategy st, there exist δst > 0 and Nst ≥ 1 such that any st-cone, Ch with
last(h) ` PR1, satisfies LC(PR1, PR2, εst, Nst), then the main theorem of [1]
states that the probability of the set of st-computations reaching configurations
satisfying PR1 ∧ PR2 is 1.

3 Impossibility Results

Unique Local Naming (ULN) problem is to ensure that neighbor processors have
distinct identifiers but processors at distance 2 may have the same identifier.

Lemma 1. There is no deterministic self-stabilizing algorithm solving the ULN
or the NUM problem in uniform and anonymous networks under distributed
scheduler.

Proof. We will study a ring of n processors running such an algorithm. Let c0
be a configuration where all processors are in the same state. c0 is illegitimate :
in c0, at least one processor may execute an action. Thus, all processors are able
to execute the same action. After the computation step where all processors
have performed the same action, the obtained configuration is symmetrical : all
processors are in the same state.

4 Self-stabilizing NUN under a Distributed Scheduler

In the current section, we present a self-stabilizing probabilistic solution for the
NUN problem. Algorithm 4.1 idea is very simple. Each processor has a variable,
referred in the algorithm as lid, which indicates its local identifier and a flag
which signals the presence of at least two neighbors having the same lid. The
space complexity for Algorithm 4.1 is O(log(n)) bits per processor. A processor
which cannot execute A2, having at least two neighbors with the same local
identifier, l, sets its flag to l (Action A1). A processor having a neighbor with
the same value of lid chooses randomly a new identifier from a bounded set of
values (Action A2). The same action is executed by the processor, p, when it
has a neighbor, q, which flag value is set to p’s lid. In this case, the processor q
has at least two neighbors (p and another one) with the same lid.

Algorithm 4.1 NUN algorithm on the processor i

Constant :
B : integer constant proven optimal for the value 2n2

Variable :
flag.i : a positive integer bounded by B

Actions :
A1 : (∀j ∈ N .i (lid.i 6= lid.j) ∧ (lid.i 6= flag.j)) ∧

(∃(j, k) ∈ N .i (lid.j = lid.k) ∧ (flag.i 6= lid.j))∧
(6 ∃ (t, l) ∈ N .i, (lid.t = lid.l = flag.i)) −→ flag.i = lid.j;

A2 : ∃j ∈ N .i (lid.i = lid.j) ∨ (lid.i = flag.j) −→ lid.i = random(1, . . . , B);

Definition 2. Let p be a processor. Correct lid(p) is the following predicate on
configurations: (i) ∀q neighbor of p, lid.p 6= lid.q; and lid.p 6= flag.q; (ii) ∀r
neighbor of a p’s neighbor, lid.p 6= lid.r. Let c be a configuration. We name mc

the number of processors p which does not verify Correct lid(p). c is legitimate
iff c satisfies the predicate LID ≡ (mc = 0).

Observation 1 In Algorithm 4.1, one may prove that a configuration is legiti-
mate iff it is deadlock. In any computation from a configuration c there are at
most n−mc consecutive computation steps in which Action A2 is not executed.

Scena is the following scenario described informally by : “at each computation
step, where at least one processor performs Action A2, (i) exactly one of these
processors verifies the Correct lid predicate after this computation step, (ii) the
other processors keep their previous lid value”. Let c be a configuration. On any
computation following the scenario Scena, the predicate Correct lid is closed :
once a processor p verifies Correct lid(p), no action of p, of p’s neighbor, or of
a neighbor of a p’s neighbor will change that.

Lemma 2. Let st be a strategy under a distributed scheduler on a system exe-
cuting the Algorithm 4.1. There exist ε > 0 and N > 0 such that all cone of st
satisfy LC (true, LID, ε, N).

Proof. Let Ch be a cone of the strategy st such that last(h) = c does not verify
LID. Assume that mc 6= 0. After at most n−mc computation steps a processor
executes Action A2. We study the scenario Scena
Let p be the processor which will change its lid value from the configuration
c. Let d1

p and d2
p the numbers of neighbors at distance 1 and 2 of p and let

(lidj)j=1,d1
p+d2

p
be their local identifiers and let (flagk)k=1,d1

p
be the flag values

for the neighbors at distance 1. The probability that p chooses a value equal to
lidj or flagk is 1

B . The probability that the new chosen value be different of all
lid values of its neighbors at distance 1 or 2 and of flag values of its neighbors

at distance 1 is 1 − (
∑j=d1

p+d2
p

j=1 Pst(lidp = lidj) +
∑j=d1

p

j=1 Pst(lidp = flagj)) =

1− 2d1
p+d2

p

B ≤ 1− 2(n−1)
B .

The probability of the computation step that we have defined is greater than
1
B

(m−1)(1− 2(n−1)
B) (The probability that a processor keeps its lid value, after A2

is 1
B). mc has decreased by 1, hence in at most m− 1 similar sequences of com-

putation steps, a legitimate configuration is obtained. Thus in st, from Ch, the
probability to reach a legitimate configuration in at most N = n2 computation

steps, is greater than ε =
(

1
B

n
2 (1− 2n

B)
)n−1

.

Theorem 1. Algorithm 4.1 is self-stabilizing under a distributed scheduler for
the NUN specification.

Lemma 3. When B > 2n(n−1) where n is the system size, a processor performs
in the average only one time the randomized Action A2.

Proof. Let c be the initial configuration of Algorithm 4.1. The probability that

after the action A2, a processor has an unique local name is 1− 2d1
p+d2

p

B . Note that
2d1
p+d2

p could be bounded by 2(n−1). In the average mc(1− 2(n−1)
B) processors

have an unique local identifier after all processors that do not verify Correct lid
have performed one time A2. B > 2n(n − 1) guarantees that in average, all
processors have an unique local name after at most one Action A2.

Algorithm 5.1 MAM algorithm on the processor i

Constants :
B : integer constant proven optimal for the value 2n2

Variables :
lid.i : a positive and no-null integer bounded by B
match.i : a positive integer bounded by B

Actions :
A1 : (match.i = 0) ∧ (lid.i > max(lid.k, k ∈ N .i ∧match.k = 0) ∧

(∃j ∈ N .i, match.j = 0) ∧ (∀k ∈ N .i,match.k 6= lid.i) −→ match.i = lid.j
A2 : (match.i = 0) ∧ (∃j ∈ N .i, match.j = lid.i) −→ match.i = lid.j
A3 : (match.i = lid.j) ∧ (match.j 6= 0) ∧ (match.j 6= lid.i) −→ match.i = 0
A4 : (match.i 6∈ {lid.j | j ∈ N .i}

⋃
{0}) −→ match.i = 0

5 Self-stabilizing MAM under a Distributed Scheduler

Definition 3 (Matched and Inactive processors). A processor p is un-
matched iff match.p = 0. Two neighbors (p, q) are matched iff match.p = q
and match.q = p. A processor p is inactive iff all its neighbors are matched
and match.p = 0. A legitimate configuration satisfies the predicate LID and all
processors are inactive or matched.

Observation 2 In a legitimate configuration, the states of match variables de-
fine a maximal matching. Let c be a deadlock configuration of Algorithm 5.1. In
c, if match.p 6= 0 then the processor p is matched. Thus, the deadlock configura-
tions are legitimate.

Theorem 2. Any computation starting in a configuration satisfying the predi-
cate LID is finite.

Proof (outline). Let e be a computation starting in a configuration satisfying the
predicate LID. Assume that e is an infinite computation. e has an infinite suffix
e′ where no processor performs the action A4 or the action A2. Between two
consecutive actions A1, a processor performs one and only one time the action
A3. Let cs be a computation step along e′ where a processor p performs the
action A1 to choose the processor q as “match”. Before the computation step, q
is unmatched. During the computation step and after that q does not perform
any action. Therefore, along e′, a processor p performs at most one action A1

(one can prove that along e′ no action A1 is performed).

6 Conclusion

We present the first algorithm for NUN problem, self-stabilizing on anonymous
and uniform systems. Our solution copes up with distributed schedulers and is

time optimal, more precisely we guarantee that the NUN is done in only one trial
per processor in the average under any unfair scheduler. The presented solution
is used as substratum in the modification of the [6] MAM algorithm such that
the new algorithm stabilizes under any distributed scheduler.

References

1. Beauquier, J., Gradinariu, M., and Johnen, C.: Randomized self-stabilizing op-
timal leader election under arbitrary scheduler on rings. Technical Report 1225,
Laboratoire de Recherche en Informatique (1999)

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the ACM, vol. 17 (1974) 643-644

3. Ghosh, S., and Karaata, M.H.: A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, 7 (1993) 55-59.

4. Gradinariu, M., and Tixeuil, S.: Tight space uniform self-stabilizing l-mutual ex-
clusion. Technical Report 1249, Laboratoire de Recherche en Informatique (2000)

5. Griggs, J. R., and Yeh., R. K.: Labeling graphs with a condition at distance two.
SIAM, Journal of Discrete Mathematics, 5 (1992) 586-595

6. Hsu, S., and Huang, S.: A self-stabilizing algorithm for maximal matching. In
Information Processing Letters, 43(2) (1992) 77-81

7. Micali, S., and Vazirani, V.: An algorithm for finding maximum matching in
general graphs. In 21st IEEE Annual Symposium on Foundations of Computer
Science (1980)

8. Pogosyants, A., Segala, R., and Lynch N.: Verification of the randomized consensus
algorithm of Aspen and Herlihy: a case study. In Distributed Computing, 13 (2000),
155-186

9. Schneider M.: Self-stabilization. ACM Computing Surveys, 25 (1993), 45-67
10. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, MIT, Dep. of Electrical EnG. and Comp. Science (1995)
11. Segala, R., and Lynch, N.: Probabilistic simulations for probabilistic processes.

In LNCS, CONCUR ’94, Concurrency Theory, 5th International Conference, Vol.
836 (1994)

12. Shukla, S., Rosenkrantz, D., and Ravi, S.: Developing self-stabilizing coloring
algorithms via systematic randomization. In Proc. of the Int. Workshop on Parallel
Processing (1994) 668-673

13. Shukla, S., Rosenkrantz, D., and Ravi, S.: Observations on self-stabilizing graph
algorithms for anonymous networks. In Proc. of the Second Workshop on Self-
stabilizing Systems, pages 7.1–7.15 (1995)

14. Sur S., and Srimani P. K.: A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences, 69 (1993) 219-227

15. Wu, S. H., Smolka, S. A., and Stark, E. W.: Composition and behaviors of proba-
bilistic i/o automata. In LNCS, CONCUR ’94, Concurrency Theory, 5th Interna-
tional Conference, Vol. 836 (1994) 513-528

