Self-stabilization versus Robust Self-stabilization
for clustering in Ad-hoc network

Colette Johnen! and Fouzi Mekhaldi?

! LaBRI, Univ. Bordeaux, CNRS. F-33405 Talence Cedex, France
2 LRI, Univ. Paris-Sud XI, CNRS. F-91405 Orsay Cedex, France

Abstract. In this paper, we compare the two fault tolerant approaches:
self-stabilization and robust self-stabilization, and we investigate their
performances in dynamic networks. We study the behavior of four clus-
tering protocols; two self-stabilizing GDMAC and BSC, and their robust
self-stabilizing version R-GDMAC and R-BSC. The performances of proto-
cols are compared in terms of their cluster-heads number, availability of
both minimal and optimum services and the stabilization time.

Key words. Ad-hoc networks, clustering, self-Stabilization, Robust self-
stabilization.

1 Introduction

A mobile ad-hoc network is a multi-hop wireless communication network, sup-
porting mobile users, realised without any existing infrastructure. In a flat archi-
tecture of ad-hoc network, all nodes are considered equal and they take the same
part in the network management, like routing and forwarding tasks. To achieve
the routing in flat architecture, each node maintains a routing table with entries
for all nodes in the network. Moreover, owing to the lack of infrastructure, each
node must relay data packets of all its neighbors. Hence, flat routing protocols in
ad-hoc networks are not scalable, due to the communication cost, size of routing
tables and, energy consumption. Therefore, clustering was introduced in ad-hoc
networks to improve the scalability by allowing hierarchical routing.

Clustering is a hierarchical network organization which consists in partitioning
the network into clusters, such that nodes within a closed proximity form a
cluster. Each cluster is composed of a single cluster-head and some ordinary
nodes. As nodes are mobile, the clustering protocol must maintain the clustering
structure in spite of topological changes like nodes arrival/departure and links
creation/failure.

Self-stabilization and Robust self-stabilization. One of the most wanted
properties of distributed systems is the fault tolerance and adaptivity to topo-
logical changes, which consist of the system’s ability to react to faults and per-
turbations in a well-defined manner. Self-stabilization is an approach to design
fault-tolerant and adaptive to topological changes distributed systems.

A self-stabilizing protocol, regardless of its initial state, converges in finite time
(called stabilization period) to a legitimate state where the intended behavior is

exhibited, without any external intervention. Thus, self-stabilizing protocols are
attractive because they do not require any correct initialization (as any state
can be the initial one), they can recover from any transient failure, and they are
adaptive to dynamic topology reconfigurations. Whatever is the current con-
figuration, the system converges to a legitimate configuration according to the
current network topology.

Despite such advantages, self-stabilization has a major drawback. During all
stabilization periods, a self-stabilizing protocol does not guarantee any property.
Thus, self-stabilization is suited for distributed systems with intermittent dis-
ruptions, where the delay between two successive disruptions is so large that the
system can reach a legitimate state and provide the full (optimum) service for
some time. Whereas in large scale mobile ad-hoc networks where the network
topology changes very often, the paradigm of self-stabilization is no more sat-
isfying. Indeed, as the delay between two successive disruptions is very small,
the system is continuously disrupted and it may never provide its optimum ser-
vice. As a consequence, the availability and reliability of self-stabilizing systems
is compromised. To overcome these drawbacks, the robust self-stabilization ap-
proach has been developed [1,2].

A protocol is robust self-stabilizing if (1) it is self-stabilizing; (2) it quickly
reaches a safe configuration where a minimal useful service is provided; (3) the
minimal useful service holds during progress of the protocol toward the opti-
mum service (i.e., during convergence to a legitimate configuration); (4) and
it is also maintained despite multiple occurrences of some specific disruptions,
called highly tolerated disruptions. Whatever the occurrence of highly tolerated
disruptions, the useful minimal service still provided. Whereas the occurrence of
other disruptions is handled by the self-stabilization mechanism, i.e., after their
occurrence, the system may behave arbitrarily, but it will quickly provide the
minimal useful service. Therefore, the robustness as defined in [1,2] may be seen
as a service guarantee, which is provided by both: the fast recovering to a desired
system characteristic (minimal useful service), and its preservation in spite of
highly tolerated disruptions.

Contribution. Self-stabilizing protocols are almost evaluated only in terms of
worst-case time and space complexities. In this context, theoretical studies of
the robust self-stabilization approach has been done in [1,2]. However, cluster-
ing protocols presented in these two papers are written in the shared memory
state model (a non realistic model). Furthermore, no experimental study has
been made to compare the two approaches (i.e., self-stabilization and robust
self-stabilization), and to investigate their performances in dynamic networks.
In this paper, we compare the two approaches, through an experimental study.
We study the behavior of four clustering protocols; two self-stabilizing protocols
GDMAC [3] (Generalized Distributed Mobility-Adaptive Clustering) and BSC [4]
(Bounded Size Clustering), and their robust self-stabilizing version R-GDMAC [1]
and R-BSC [2]. The performances of protocols are compared in terms of their
number of cluster-heads, availability of minimal and optimum services, and the
stabilization time.

For our study, we use the standard simulation environment in the research com-
munity: Network Simulator 2 (NS2) [5]. Obviously to achieve this study, protocols
were adapted to the message passing model.

Related Works. The problem of clustering is well studied in the literature, and
several clustering protocols have been proposed in the context of multi-hop wire-
less networks. A large number of them are self-stabilizing [6,7,8,9,10,11,12,13].
However, only [1,2] are robust self-stabilizing. A survey on clustering protocols
can be found in [14].

GDMAC protocol is evaluated in [15] with respect to its convergence time and mes-
sage complexity. Whereas, according to our knowledge, the three other protocols
(R-GDMAC, BSC and R-BSC) have never been evaluated.

The remainder of the paper is organized as follows. In Section 2, an overview
of the studied clustering protocols is given. In Section 3, the simulation model
and some important remarks are discussed. The observed metrics are described
in section 4, and the performance evaluation results with the analysis remarks
are detailed in Section 5. Finally, we conclude our study in Section 6.

2 Overview of the studied clustering protocols

A clustering protocol consists of partitioning the network into non-overlapping
groups of nodes called clusters. Each cluster has a single head (called cluster-
head), and eventually a set of ordinary nodes. Each cluster-head acts as local
coordinator of its cluster, and may participate to the management of the global
network. So, cluster-heads have more tasks to perform than ordinary nodes. As
consequence, cluster-heads must be more suitable than ordinary nodes.
Protocols GDMAC, R-GDMAC, BSC and R-BSC consider weight-based networks, i.e.,
a weight W, is assigned to each node v of the network. In ad-hoc or sensor
networks, amount of bandwidth, memory space, processing capacity or battery
power of a node could be used to determine weight values. The choice of cluster-
heads is based on the weight associated to each node: the higher the weight of a
node is, the better this node is appropriate for the role of cluster-head.

The studied protocols build 1-hop clusters, where the ordinary nodes are neigh-
bor of their cluster-head, i.e., they can directly communicate with it. Note that
both GDMAC and R-GDMAC (resp. BSC and R-BSC) provide the same final clustering
structure.

e GDMAC [3] is a self-stabilizing protocol building clusters having the following
ad-hoc clustering properties:
- The cluster-head has the highest weight in its cluster.
- A cluster-head cannot have more than k neighbor cluster-heads.
- For every ordinary node v, there is no a v’s neighbor cluster-head Y such
that Wy > Wx + h where X is the current cluster-head of v. Otherwise, v
changes the affiliation and it chooses Y as new cluster-head.

k and h are protocol parameters, and their value may be different from a node
to another one. The parameter k allows to bound the number of cluster-heads

that can be neighbors. Whereas h is used to reduce the switching overhead of
an ordinary node (i.e., the number of moves from its current cluster to a new
neighbor one due to cluster-head’s weight change).

e R-GDMAC [1] is a robust self-stabilizing version of the GDMAC protocol.

e BSC [4] is a self-stabilizing protocol building bounded size clusters. The built
clusters respect the following well balanced clustering properties:

- The cluster-head has the highest weight in its cluster.

- The leader of a cluster is not overburden by the management workload of
its cluster. Thus, a cluster can have at most SizeBound ordinary nodes
(SizeBound is a parameter of the protocol).

- A node stays cluster-head only if it cannot join a neighbor cluster: all neigh-
bor clusters are full. This property limits the number of cluster-heads locally.
Therefore, if a leader v has a neighbor leader u such that W, > W,,, then
the cluster of v is full, i.e., it contains exactly Size Bound members.

e R-BSC [2] is a robust self-stabilizing version of BSC protocol.

The main idea of GDMAC and R-GDMAC protocols is that an ordinary node v

becomes cluster-head if in its neighborhood there is not a cluster-head having a
weight greater than v’s weight.
Each cluster-head should have less than k£ neighbor cluster-heads. Hence, if sev-
eral (more than k) cluster-heads become neighbor, at least a cluster-head has
to resign its status. To implement this property, each cluster-head v checks the
number of its neighbors that are cluster-heads. If they exceed k, then it deter-
mines the (k+1)"" highest weight among neighbor cluster-heads. All v’s neighbor
cluster-heads having a weight less than this value have to become ordinary.

Similarly, in BSC and R-BSC protocols, a node v becomes cluster-head if there

is not cluster-head in v’s neighborhood. Furthermore, a cluster-head v stays in
this status only when it cannot join one of its neighbor clusters without violating
the well-balanced clustering properties.
BSC and R-BSC build bounded size clusters. So, in order to prevent the violation
of the size condition, a node u cannot freely join a cluster: u needs the permission
of its potential new cluster-head. Therefore, each cluster-head v maintains a list
of nodes who are authorized to join its cluster.

Robustness property. The robustness in R-GDMAC and R-BSC ensures that a
minimal useful service is quickly provided. Once the minimal service is available,
each node belongs to a cluster, and each cluster has a cluster-head. Furthermore,
for R-BSC protocol, no cluster should have more than Size Bound ordinary nodes.
Preserving the minimal useful service ensures that the hierarchical structure is
continuously provided throughout the network even during the its reorganiza-
tion. In order to maintain the hierarchical structure over the network during
reconstruction of clusters, R—-GDMAC and R-BSC protocols use the following resig-
nation process.

Resignation process. A cluster-head v that wants to become ordinary, does
not take the ordinary status: v becomes a nearly ordinary node (i.e., it takes the

nearly ordinary status). In this state, v performs correctly its task of cluster-
head, but no node can join v’s cluster. The members of v’s cluster has to quit
their cluster. Moreover, v can become ordinary only once its cluster is empty.
These conditions guarantee that during construction/maintenance of clusters,
no cluster-head abandons its leadership.

The robustness property in clustering protocols is very useful. It ensure a high
availability of hierarchical organization; and it allows the continuity functioning
of upper-layer hierarchical protocols, as hierarchical routing protocols.

The set of highly tolerated disruptions handled by robust protocols are:

e the change of node’s weight,

e the crash of ordinary nodes,

e the creation of new communication links without the emergence of new
nodes,

e the failure of communication links between (1) two ordinary nodes, (2) two
nodes behaving as cluster-heads (i.e., cluster-head or nearly ordinary node)

e the emergence of networks correctly partitionned (i.e., where the minimal
service is already provided).

3 Model and simulation remarks

The simulation experiments are carried out thanks to the NS2.34 simulator [5].
Our network is composed of mobile nodes with a propagation radio range of
250m randomly placed within a 1200m*1200m area. The density of a node (i.e.,
the number of neighbors per node) is at most 15. The parameters value used
during simulation are presented in Figure 1.

Mobility model. Each node moves ran-

) Parameter Value
domly according to the Random Way- Simulation fime 100s
point model [16]. Initially, network nodes Number of nodes 70
are randomly placed in the network area. —

LY . . Transmission range 250m
At the beginning of the simulation, each Network area |1200m*1200m
node selects a random destination and Densit 5
moves toward it with a randomly chosen y
speed (uniformly distributed between 0 Spee(.i Om/s - 12m/s
and Speed m/s). Upon reaching this des- Pause Flme 0.5s
tination, another random speed and des- Wmin 50
tination are targeted after a pause time. Wmax 80
The process is repeated until the simu- A 2
lation ends. SizeBound 10
Weight variation model. The four stud- i g
ied protocols assume that each node has
a weight, that can change during time. freq 2

Initialy, each node randomly chooses its
weight w between two values Wmain and
Wmazx. The weight of a node changes according to a frequency freq, which is

Fig. 1. Parameters value.

the number of changes per second. For example, if freq = 0.2¢/s, then the node’s
weight changes once every 5 seconds. According to the frequency value, the time
when a node undergoes the weight change is chosen randomly. The new weight
of a node is chosen randomly between W — A and W + A.

In order to study the influence of network size, mobility of nodes, and node’s
weight variation, 3 different types of simulations have been conducted:

1. Network size variation: nodes are not mobile, and their number varies be-
tween 10 and 70. The frequency of weight variation is set to 2¢/s.

2. Weight variation: in order to see how protocols behave when reconstruction
of clusters is high, we increase the frequency of the weight variation in a
static network of 70 nodes. The values of frequency considered are: 0.05, 0.1,
0.2,0.3,0.4, 0.5, 1, 2, 3, 4 and 5.

3. Mobility variation: the speed of nodes is varied between Om/s and 12m/s to
see how protocols behave in presence of mobile nodes. The network contains
70 nodes and the weight changes twice per second.

For all protocols, identical mobility and weight variation scenarios are used in
order to gather fair results. Furthermore, to get accurate results, each simulation
is driven with ten different runs. The presented metrics are then averaged on
these different runs. Furthermore, in order to show how these average values are
confident, a confidence interval is computed using the confidence level 95%.

4 Observed metrics

To analyze the performance of clustering protocols and to compare robust self-
stabilization with self-stabilization, the following metrics are studied:

e The average number of cluster-heads: as small as it is the number of cluster-
heads, the protocol is far from being trivial; because in a trivial solution, all
nodes are cluster-head. Thus, one goal of clustering protocols is to provide a
hierarchical structure with a small number of cluster-heads.

e The availability of minimum service: it represents the percentage of time where
the minimum service is available. A configuration where the minimum service
is available is a configuration where the hierarchical structure is provided. More
specifically, it is a configuration where:

— Each ordinary node belongs to a cluster.

— Each ordinary node is a neighbor of its leader (within its transmission range).

— Moreover, for protocols BSC and R-BSC, each cluster must have at most
SizeBound members.

e The availability of optimum service: it represents the percentage of time where
the optimum service is available. The optimum service is available in a configu-
ration (called legitimate) if the built clusters verify the ad-hoc or well balanced
clustering properties defined in Section 2.

As these metrics vary over time according to weight change and nodes mobility,
measurements are collected every 0.02 seconds to obtain the average values.

5 Simulation results and Performances analysis

5.1 Average number of cluster-heads

The variation of cluster-heads number in function of the network size, weight
variation frequency and nodes speed are presented respectively in Figures 2(a),
2(b) and 2(c).

35 T T T T 30 T T T T T T T T T
BSC —H— BSC
R-BSC —il— R-BSC
GDMAC —©— 28 GDMAC
R-GDMAC—@— R.GDMAC

30 b
2

Number of cluster-heads
NOR
—
4]_.

Number of cluster-heads

» T T b
. ‘ ‘ ‘ ‘ ‘ P s
10 20 30 40 50 60 70 o 05 1 15 2 25 3 35 a4 45 5
Network size Weight variation frequency
(a) varying the network size (b) varying the frequency of weight
changes

Number of cluster-heads

Speed motion

(c) varying the speed of nodes

Fig. 2. Average number of cluster-heads

Protocols GDMAC and R-GDMAC (resp. BSC and R-BSC) have the same behavior,
because they use the same cluster-heads selection policy: weight based criteria.

For clustering protocols based on dominating sets, the number of cluster-heads is
intrinsically related to the variant of dominating set computed. In fact, we distin-
guish a classification in two groups. Protocols BSC and R-BSC generate a smaller
number of cluster-heads than protocols GDMAC and R-GDMAC. The structure used
by BSC and R-BSC is the capacited dominating sets, where a cluster-head can
have a neighbor cluster-head only if its cluster is full. So, two cluster-heads are
rarely neighbor. While, the structure used by GDMAC and R-GDMAC is a k-fold
dominating set where at most k 4 1 cluster-heads can be neighbor. If due to the
mobility or weight change, k + 1 cluster-heads become neighbor, no one needs
resign its status. This feature leads to a higher total number of cluster-heads.

In a large scale network, a robust self-stabilizing clustering protocol generates a
slightly higher number of cluster-heads than its self-stabilizing version (see BSC
and R-BSC). Recall that during resignation process, robust self-stabilizing pro-
tocols use an intermediate hierarchical status, called nearly ordinary. A cluster-
head wanting to resign, it takes the nearly ordinary status. A nearly ordinary
node may become ordinary only once its cluster is empty; and during all this
period it behaves and it is considered as a cluster-head. This is why the average
number of cluster-heads is higher in a robust self-stabilizing protocol compared
to its self-stabilizing version. However, the difference in cluster-heads number de-
pends on the resignation overhead: how many cluster-heads resign their status
to be ordinary?

In BSC and R-BSC protocols, as soon as two cluster-heads become neighbors,
one of them must resign expect if one of clusters is full. Whereas in GDMAC
and R-GDMAC protocols, if the number of neighbor cluster-heads does not exceed
k 4+ 1, no resignation is required. As the resignation process is more frequent
in protocols BSC and R-BSC than GDMAC and R-GDMAC. Thus, the difference in
cluster-heads number between R-BSC and BSC is significant, but not between
GDMAC and R-GDMAC.

5.2 Availability of minimum service

The availability of minimal service in a static network according to the network
size and the frequency of weight variation are illustrated respectively in Figures
3(a) and 3(b).

Robust self-stabilizing protocols R—-GDMAC and R-BSC scale well to large networks,
and they are more resistant to weight change. In fact, R~GDMAC and R-BSC main-
tain the minimal service, once provided, during almost all their execution time
whatever the network size and the weight variation frequency.

This is not the case for self-stabilizing protocols. In GDMAC protocol, the mini-
mum service is broken by increasing the network size and the weight variation
frequency. Nevertheless, the rupture rate of the minimal service stays very small.
Indeed, in a network of 70 nodes where the weight changes twice per second, the
rupture rate is at most 3% (thus, 97% of time, the minimal service is available).
Whereas, BSC protocol has less guarantee of service than other protocols in a
large scale network. Indeed, in a network of 70 nodes, the minimal service is
unavailable during 12% of time. BSC is also the protocol which really suffers
the most from unavailability of minimal service when the frequency of weight
variation increases. Indeed, by changing the weight five time per second, the
minimal service is unavailable almost 20% of time.

The poor performance of BSC protocol reflects the interest of the robustness
property in large scale networks, because R-BSC protocol maintains the minimal
service without any rupture whatever the network size and the weight variation
frequency.

Robust self-stabilizing protocols prevent the violation of the minimal service, by
using the resignation process discussed in Section 2. This mechanism guarantees

100

o8 b

9%

92

s

Availability of minimal service
Availability of minimal service

88

86

®

L L L L 82 L L L L L
10 20 30 40 50 60 70 0 05 1 15 2 25 3 a5 4 45 5

Network size Weight variation frequency

(a) varying the network size (b) varying the frequency of weight
changes

Availability of minimal service

Speed motion

(c) varying the speed of nodes

Fig. 3. Availability of minimal service

that during construction/maintenance of clusters, no clusterhead abandons its
leadership, so the minimal service is continuously provided.

The rupture of minimal service in self-stabilizing protocols happens during re-
construction of clusters due to weight change. Nevertheless, it is more frequent
in BSC than in GDMAC. In BSC, when two cluster-heads become neighbors, in most
cases one of them must defer to the other. This feature can trigger cluster-head
election /resignation that may propagate throughout the network, and generates
a continuous disruption of minimal service. Such an effect is called chain reac-
tion. In GDMAC, this chain reaction effect is minimized, and the minimal service
is not dramatically damaged. Furthermore, using the robust self-stabilization
property improves the availability of minimal service even in the presence of
chain reaction (R-BSC).

Robust protocols (R-GDMAC and R-BSC) are expected (theoretically proved in the
sharded memory model) to guarantee the minimum service whatever the network
size and frequency of weight change. The rupture observed (less than 0.3%) in
large scale network or when the frequency is very high, is due to the following.
In these protocols, when a node undergoes a change weight, it broadcasts a
message to its neighbors indicating its new state (so, its new weight). When the

10

weight variation is very high, the number of exchanged messages is important. So,
the message loss and the unordered message reception happen more frequently.
Owing to these disruptions, an ordinary node can affiliate with another node
(by considering it as cluster-head), but which is not a cluster-head anymore (it
already resigned).

Increasing the speed of nodes has a negative impact on the availability of minimal
service (see Figure 3(c)). In a dynamic network, due to nodes motion, an ordinary
node and its cluster-head may be outside the transmission range of each other,
i.e., they are no longer neighbors. This situation breaks the minimal service.
However, even in a dynamic network, the minimal service is preserved by robust
self-stabilizing protocols better than self-stabilizing ones.

5.3 Availability of optimum service

The availability of optimum service as a function of the network size, weight
change frequency and nodes speed are presented in Figures 4(a), 4(b) and 4(c).

100

%

80

70F

60 [

Availability of optimal service
Availabilty of optimal service

RGDMAC
o 05 T 15 2 25 3 35 4 15 5
Network size Weight variation frequency

(a) varying the network size (b) varying the frequency of weight
changes

Availability of optimal service

R-GDMAC—@—) .
0 2 4 6 8 10 12
Speed motion

(c) varying the speed of nodes

Fig. 4. Availability of optimum service

By increasing the network size, the weight variation frequency or the speed
of nodes, the optimum service is less available in BSC and R-BSC protocols than
GDMAC and R-GDMAC protocols.

11

In BSC and R-BSC protocols, due to weight changes or nodes mobility, the hi-
erarchical structure is continuously reconstructed in order to achieve the well-
balanced clustering properties. As a result, the optimum service is often broken,
so not highly available.

On the other hand, in GDMAC and R-GDMAC protocols, once the hierarchical struc-
ture respecting the ad-hoc clustering properties is built, it will rarely be modi-
fied due to the weight change. Furthermore, the mobility of nodes (especially of
cluster-heads) rarely generates selection or resignation of cluster-heads. So, the
optimum service is not affected.

The optimum service is slightly less available in the case of robust self-stabilizing
protocols compared to their self-stabilizing versions. This is caused by the con-
vergence (i.e., stabilization) time towards the optimum service. In fact, Figure
5 shows that the time required by a robust self-stabilizing protocol to reach the
optimum service is larger than the one required by its self-stabilizing version.

Stabilization time

10 20 20 40 50 60 70
Network size

Fig. 5. Stabilization time in function of the network size

6 Concluding remarks

This article presents the first experimental study results comparing robust self-
stabilization approach with self-stabilization for the clustering problem. Thanks
to this study, we extract the following remarks.

The property of robustness within clustering protocols induces an increase in
the average number of cluster-heads, however really negligible.

Since the robustness property consists to slow-down the convergence process, in
order to maintain the minimum service. This property leads to a slight increase
in the stabilization time. However, this growth in the stabilization time depends
on the size of the network, but not on the nodes speed nor the frequency of
weight change.

The availability of optimum service is lower in a robust self-stabilizing proto-
col than its self-stabilizing version. Nevertheless, the minimum service is highly
available in robust self-stabilizing protocols than self-stabilizing ones. As con-
sequence, thanks to the robustness, when the optimum service is not provided,

12

the minimum service is available and it will be preserved. Once the minimum
service is provided, the network is completely partitionned, and each cluster has
an effectual leader.

The minimum service is sufficient for the continuity of operation of upper-layer
hierarchical protocols, as hierarchical routing protocols, since the hierarchical or-
ganization is available throughout the network. Therefore, robust self-stabilizing
protocols are desirable, because they avoid disrupting upper-layer hierarchical
protocols by maintaining the minimal service.

References

10.

11.

12.

13.

14.

15.

16.

Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algo-
rithm. Theoretical Computer Science 410(6-7) (2009) 581-594

. Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of bounded size

weight-based clusters. In: Euro-Par’10, Springer LNCS 6271. (2010) 535-546
Basagni, S.: Distributed and mobility-adaptive clustering for multimedia support
in multi-hop wireless networks. In: VT C’99. (1999) 889-893

Johnen, C.,; Nguyen, L.H.: Self-stabilizing construction of bounded size clusters.
In: ISPA’08. (2008) 43-50

: The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/

Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster
algorithm in mobile ad hoc networks. In: ISPAN’05. (2005) 436441

Lin, C.R., Gerla, M.: Adaptive clustering for mobile wireless networks. IEEE
Journal on Selected Areas in Communications 15 (1997) 1265-1275

Chatterjee, M., Das, S.K., Turgut, D.:. WCA: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing 5(2) (2002) 193-204
Demirbas, M., Arora, A., Mittal, V., Kulathumani, V.: A fault-local self-stabilizing
clustering service for wireless ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems 17 (2006) 912-922

Drabkin, V., Friedman, R., Gradinariu, M.: Self-stabilizing wireless connected
overlays. In: OPODIS’06, Springer LNCS 4305. (2006) 425-439

Datta, A., Devismes, S., Larmore, L.: A self-stabilizing o(n)-round k-clustering
algorithm. In: SRDS’09. (2009)

Dolev, S., Tzachar, N.: Empire of colonies: Self-stabilizing and self-organizing
distributed algorithm. Theoretical Computer Science 410 (2009) 514-532
Mitton, N., Fleury, E., Guérin-Lassous, 1., Tixeuil, S.: Self-stabilization in self-
organized multihop wireless networks. In: WWAN’05. (2005) 909-915

Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor
networks. Computer Communications 30 (2007) 2826-2841

Bettstetter, C., Friedrich, B.: Time and message complexities of the generalized
distributed mobility-adaptive clustering (GDMAC) algorithm in wireless multihop
networks. In: VT'C’03-Spring., IEEE (April 2003) 176-180

Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wireless communications & Mobile computing (WCMC): Special issue
on mobile ad hoc networking: Research, trends and applications 2 (2002) 483-502

