
Self-Stabilizing Neighborhood Synchronizer in Tree Networks

Colette Johnen� Luc O. Alima� Ajoy K. Datta��

Sébastien Tixeuil�

� Laboratoire de Recherche en Informatique, Université de Paris-Sud, France
� Unité d’Informatique, Université catholique de Louvain, Belgium

� Dept of Computer Science, University of Nevada Las Vegas

Abstract

We propose a self-stabilizing synchronization technique,
called the Neighborhood Synchronizer (NS), that synchro-
nizes nodes with their neighbors in a tree network. The
NS scheme has extremely small memory requirement—
only � bit per processor. Algorithm NS is inherently self-
stabilizing. We apply our synchronizer to design a broad-
casting algorithm BA in tree networks. Algorithm BA is
also inherently self-stabilizing and needs only �h��m� �
rounds to broadcast m messages, where h is the height of
the tree.

1. Introduction

Robustness is one of the most important requirements
of modern distributed systems. Various types of faults are
likely to occur at various parts of the system. These systems
go through the transient faults because they are exposed to
constant change of their environment.

The concept of self-stabilization [11] is the most general
technique to design a system to tolerate arbitrary transient
faults. A self-stabilizing system, regardless of the initial
states of the processors and initial messages in the links,
is guaranteed to converge to the intended behavior in fi-
nite time. In distributed systems, the task of synchroniza-
tion is crucial, and has been covered in depth in [17], [18],
and [19]. Informally, a synchronizer is a protocol than al-
lows asynchronous systems to simulate the behavior of syn-
chronous systems.

Related Work. The research in the area of synchronizers
started from the seminal work of Awerbuch [4]. This work
is not self-stabilizing.

�Supported in part by a sabbatical leave grant from the University of
Nevada Las Vegas.

Any self-stabilizing reset protocol [3, 1, 6] can be com-
bined with the protocol of [4] to design a self-stabilizing
synchronizer. Some general self-stabilizing synchronizers
have been proposed in [7, 5, 20].

A global self-stabilizing synchronizer for tree networks
is proposed in [2]. The space complexity of the algorithm
is � bits and the time complexity is O�h� rounds. The no-
tion of the legitimate state as defined in [11] is modified
in [16] to allow concurrent moves in different branches of a
tree. Although Kruijer’s paper did not discuss the problem
of synchronization, the algorithm he presented can also be
considered as a global synchronizer in tree networks.

A space optimal self-stabilizing propagation of informa-
tion with feedback (PIF) scheme in tree networks is pre-
sented in [8]. The stabilizing time of this PIF scheme is
h� � steps and the space requirement is � states.

A local and a global synchronizer are presented in [13].
The local synchronizer is designed to synchronize colors of
a two processor system and is also used to design the global
synchronizer on a tree network. The stabilization time of
the global synchronizer is O��h� where � is the degree of
the tree and h is the height of the tree.

Our Contribution. We propose a self-stabilizing syn-
chronization technique, called the Neighborhood Synchro-
nizer (NS), that synchronizes nodes with their neighbors in
a tree network. TheNS scheme has a constant stabilization
time and requires only � bit of memory per processor.

We then present a solution to the broadcasting prob-
lem in tree networks as an application of the neighbor-
hood synchronizer. The broadcasting algorithm needs only
�h � �m � � rounds to broadcast m messages. The lo-
cal synchronizer of [13] synchronizes only two processors,
whereas Algorithm NS presented in this paper synchro-
nizes a processor with all its neighbors (parent and children
in the tree network).

The self-stabilizing spanning tree construction algo-
rithms have been proposed in [1], [3], [5], [10], [12],
and [15]. Any of these algorithms can be combined with



our synchronizer to design a synchronizer for a general
network. In [14], Gouda and Haddix proposed a self-
stabilizing alternator on a chain that transforms any linear
system that is stabilizing, but works under a central daemon,
to one that is stabilizing and works under a distributed dae-
mon. The Neighborhood Synchronizer is a self-stabilizing
alternator on the tree networks as defined in [14].

Outline of the Paper. In Section 2, we describe the dis-
tributed systems and the model we consider in this paper.
The synchronization scheme, called neighborhood synchro-
nizer and its correctness proof are presented in Section 3.
We present a self-stabilizing broadcast algorithm as an ap-
plication of the local synchronizer in Section 4. The cor-
rectness of the broadcast algorithm is given in Sections 4.2.
Finally, we give the concluding remarks in Section 5.

2. Preliminaries

In this section, we define the distributed systems and pro-
grams considered in this paper, and state what it means for
a protocol to be self-stabilizing.

System. A distributed system is an undirected connected
graph, D � �V�E�, where V is the set of nodes (jV j � n)
and E is the set of edges. Nodes represent processors and
edges represent bidirectional communication links. We con-
sider networks which are asynchronous and tree structured.
We denote the root processor by r, the set of leaf processors
by L, and the set of internal processors by I . So, the set of
all processors, V � frg � I � L. We denote the processors
by p 		 p � f���ng and the root processor by r. The num-
bers, ���n, are used for notation only, since no processor,
except the root, is aware of its identity. A communication
link �p� q� exists iff p and q are neighbors. Each processor
p maintains its set of neighbors, denoted as Np. The degree
of p is the number of neighbors of p, i.e., equal to jNpj. We
assume that each processor p (p �� r) knows its parent, de-
noted by Pp. We consider Np and Pp as constants in our
algorithm. An actual implementation will maintain them by
using a self-stabilizing underlying protocol. The height of a
tree is denoted by h. We use hp to denote the height of the
subtree rooted at p.

Programs. The program consists of a set of shared vari-
ables (henceforth referred to as variables) and a finite set of
actions. A processor can only write to its own variables and
can only read its own variables and variables owned by the
neighboring processors. Each action is uniquely identified
by a label and is of the following form:

� label �		 � guard � �� � statement �

The guard of an action in the program of p is a boolean
expression involving the variables of p and its neighbors.

The statement of an action of p updates one or more vari-
ables of p. An action can be executed only if its guard eval-
uates to true.

We assume that the actions are atomically executed: the
evaluation of a guard and the execution of the corresponding
statement of an action, if executed, are done in one atomic
step. The atomic execution of an action of p is called a step
of p. Since the system is asynchronous, we define a time
unit, round, to consider the slowest processor of the system.
We define a round as a computation step during which all
processors which have at least one guard set to true, execute
an action. The state of a processor is defined by the values
of its variables. The state of a system is a product of the
states of all processors (� V ). In the sequel, we refer to
the state of a processor and system as a (local) state and
configuration, respectively.

Let a distributed protocol P be a collection of binary
transition relations denoted by ��, on C, the set of all pos-
sible configurations of the system. A computation of a
protocol P is a maximal sequence of configurations e �
���� ��� ���� �i� �i��� ����, such that for i � 
� �i �� �i�� (a
single computation step) if �i�� exists, or �i is a terminal
configuration. Maximality means that the sequence is either
infinite, or it is finite and no action of P is enabled in the fi-
nal configuration. All computations considered in this paper
are assumed to be maximal. During a computation step, one
or more processors execute an action and a processor may
take at most one action. This execution model is known as
the distributed daemon [9].

We use the notation Enable �A� p� �� to indicate that the
guard of the action A is true at processor p in the config-
uration �. We write Enable�p� �� if the guard of at least
one action is true at p in �. We assume a weakly fair dae-
mon, meaning that if processor p is continuously enabled,
p will be eventually chosen by the daemon to execute an
action. The set of computations of a protocol P in sys-
tem S starting with a particular configuration � � C is de-
noted by E�. The set of all possible computations of P in
system S is denoted as E . A configuration � is reachable
from �, denoted as � � �, if there exists a computation
e � ���� ��� � � � � �i� �i��� � � �� � E��� � ��� such that
� � �i (i � 
).

Predicates. LetX be a set. x 	 P means that an element
x � X satisfies the predicate P defined on the set X . A
predicate is non-empty if there exists at least one element
that satisfies the predicate. We define a special predicate
true as follows: for any x � X , x 	 true.

Self-Stabilization. We use the following term, attractor
in the definition of self-stabilization.

Definition 2.1 (Closed Attractor) Let X and Y be two
predicates defined on C of system S. Y is a closed attractor
for X if and only if the following conditions are true:



(i) 
� 	 X 	 
e � E� 	 e � ���� ��� � � �� 		 �i � 
� �i 	
Y

(ii) 
� 	 Y 	 
e � E� 	 e � ���� ��� � � �� 		 
i � 
� �i 	
Y .

We denote this relation as X 	 Y .

Informally, X 	 Y means that in any computation � E�,
starting from an arbitrary configuration satisfying X , the
system is guaranteed to reach a configuration which satisfies
Y , and also, Y is closed.

Definition 2.2 (Self-stabilization) A protocol P is self-
stabilizing for a specification SPP on E if and only if there
exists a predicate LP (called the legitimacy predicate) de-
fined on C such that the following conditions hold:

(i) 
� 	 LP 	 
e � E� 		 e 	 SPP (correctness).

(ii) true 	LP (closure and convergence).

3. Neighborhood Synchronizer (NS)

In this section, we provide a scheme to implement the
synchronization among the neighboring processors. We
first give the specification of theNS problem. Then we de-
scribe the scheme informally, followed by Algorithm NS .
Finally, we prove the correctness of Algorithm NS .

Problem to be Solved. We are now ready to define
the specification, SPNS of Algorithm NS . We consider
a computation e to satisfy SPNS if between every two suc-
cessive actions executed by a processor in e, all its neigh-
bors execute exactly one action. We also require Algorithm
NS to be self-stabilizing.

3.1. Informal Description

Every processor uses a binary color variable, c to in-
dicate its change of state to its neighbors. The main idea
about the neighborhood synchronization is as follows: An
internal processor p changes its state (the color) variable, c,
only when it finds that all its children have the same value
as c and its parent has a new (different) value of c. The pro-
tocol of the root and leaf processors are similar except the
fact that the root has no parent and the leaves do not have
any children.

The Neighborhood synchronization can be applied when
there is a need for simulating a reliable message passing
mechanism using a register-based communication model.
The basic scheme for this application is as follows: The root
sends a new message to its children and then waits until all
its children read that new message. When that happens, the
root can send another message. An internal processor reads
a new message from its parent only when it finds that all its

children have read its previous message. The leaves simply
read a new message from their parent whenever the parent
sends a new message. The root changes c to signal to its
children that it has sent a new message. The internal and
leaf processors change their value of c to acknowledge to
their parent that they have read the previous message sent
by the parent, and also to indicate to their children that they
now hold a new message.

3.2. Algorithm NS

The Neighborhood Synchronizer algorithm NS is
shown in Algorithm 3.1. Every processor imaintains a vari-
able ci, the state of i. We denote the set of children of i by
Cldi, where Cldi � Ni n fPig.

Algorithm 3.1 (NS) Neighborhood Synchronizer Algo-
rithm for processor i.
Variable:

ci: The color variable.
Constants:

Cldi: The set of children.
Pi: The parent processor.

Actions:
fFor the rootg
S� 		 
j � Cldi 		 cj � ci �� ci 	� �ci

fFor the internal processorsg
S� 		 cPi

�� ci 
 �
j � Cldi 		 cj � ci� �� ci 	� cPi

fFor the leaf processorsg
S� 		 cPi

�� ci �� ci 	� cPi

3.3. Correctness of Algorithm NS

We will first prove the liveness of the algorithm. Then,
the proof of the desired behavior of the computation of Al-
gorithm NS follows from the liveness result. The follow-
ing property follows directly from Algorithm 3.1.

Property 3.1 
� � C 	 
i � V 		 Enable�i� �� � �
j �
Ni 		 �Enable�j� ���.

Lemma 3.1 For every processor i � �frg � I�, the follow-
ing is true: 
� � C 	 ��� 	 � � �� 	 
j � Cldi 		 cj � ci
in ��.

Proof: Assume that i executes an action (S� or S�)
during a computation e. Then, all the children of i must
have the color of i before i executes the action (see the guard
of S� and S�).

Let us now consider the case where i never executes an
action during the computation e (i.e., i never changes its



color). Once a child j of i has the color of i, j cannot exe-
cute any action. We will prove this case by induction on the
height of the subtree rooted at i.

(i) Base Case: hi � �, i.e., i is a parent of some leaf
processors. Assume that there exists a processor j �
Cldi such that cj never becomes equal to ci during
a computation e. Then, in all configurations in e, S�
remains enabled until j executes S�. By fairness, j
will eventually execute S� and cj � ci becomes true.
Eventually, all the children of i will get the color of i.

(ii) Hypothesis: Assume that the lemma is true for 
 �

hi � m�m � h� �. Assume that there exist two pro-
cessors i and j such that hi � m � �� j � Cldi, and
j never gets the color of i during e. j cannot execute
S� because that would make cj � ci. By the induc-
tion hypothesis, the system will reach a configuration
� where the children of j will get the color of j. Then
Enable�S�� j� �� will be true and will remain true un-
til j executes S� (by Property 3.1). By fairness, j will
eventually execute S� and cj � ci becomes true. Once
cj � ci, j cannot change its color. Thus eventually, all
the children of i will get the color of i.

�

Now, we are ready to prove the liveness of Algorithm
NS .

Lemma 3.2 (Liveness) 
e � E �
i � V� i executes an ac-
tion infinitely often.

Proof: We will prove this by contradiction. Assume
that there exists at least one processor that stops executing
any action from the configuration � during a computation
e. Let i be the processor nearest to the root among these
processors. By Lemma 3.1, in some configuration ��, � �
��, all children of i will have the same color as i. As i

cannot change its color, no child of i can also change its
color in any configuration from �� onwards in e.

(i) Assume that i � r. Then Enable�S�� i� ��� is true. By
fairness, i will eventually execute S�.

(ii) Assume that i �� r and ci �� cPi
. Then either

Enable�S�� i� ��� (if i � I) or Enable�S�� i� ��� (if
i � L) will be true. By fairness, i will eventually exe-
cute S� or S�.

(iii) Assume that i �� r and ci � cPi
. Pi will eventually ex-

ecute an action and change its color because according
to the hypothesis, all ancestors of i infinitely change
their color. After Pi executes its action, ci �� cPi

will
be true. Now, Pi cannot change its color again since
i does not change its color. Thus, by fairness, i will
eventually execute S� or S�. �

Lemma 3.3 (Synchronization) Let Si denote an action
executed by processor i. 
e � E �
i � �frg�I��
j � Cldi�

the projection of e on the actions of i and j can be repre-
sented by the following expression: �SiSj�

� � �SjSi�
�.

This expression reads as :

(i) between any two actions of i (resp. j) and j (resp. i),
exactly one action is performed, and

(ii) i and j execute actions infinitely often.

Proof: Follows from Lemmas 3.2 and 3.1. �

Theorem 3.1 (Self-Stabilizing) Algorithm NS is a self-
stabilizing neighborhood synchronizer algorithm.

Proof: Lemma 3.3 proves that between any two ac-
tions executed by a processor, all of its neighbors execute
exactly one action. This means that any computation of the
NS Algorithm is correct. Since any initial configuration is
adequate for Lemma 3.3 to be correct, the closure and con-
vergence properties are also trivially satisfied, meaning that
Algorithm NS is self-stabilizing. �

Complexity. Algorithm NS uses only one boolean
variable c. Constants Cld and P are not taken into account
since they are either stored in the ROM code of each pro-
cessor if the network is actually a tree or maintained by an
underlying tree construction algorithm. Thus, Algorithm
NS requires only � bit space. Since any computation start-
ing from any initial configuration satisfies the specification,
the NS Algorithm has a constant stabilization time.

4. Broadcasting Algorithm (BA): An Applica-
tion ofNS

In this section, we use AlgorithmNS as a building block
to design a self-stabilizing broadcasting algorithm on a tree
network. Informally, the problem to be solved is as fol-
lows: The root has an infinite sequence of messages to be
broadcast to all processors of the tree. The root only waits
for its children to acknowledge the receipt of the message
before the root sends another message. The root does not
need to wait until the previous message (sent by the root)
has reached all processors of the tree. Thus, at any time,
several messages may propagate down the tree, effectively,
implementing a pipelining mechanism. We will show in
Section 4.2 the efficiency of AlgorithmBA due to this con-
current propagation of messages.

First, we define the problem. Then we explain informally
how by making a few simple changes in AlgorithmNS , we
obtain Algorithm BA. We then show that Algorithm BA is
self-stabilizing.



Problem Specification. We denote the distance of a pro-
cessor p from the root r by 
p. We consider a computation
e to be satisfying the specification SPBA of the Broadcast
Task if the following conditions are true:

(i) Every message sent by the root is eventually received
by all processors in the tree in the order it was sent. We
refer to this property as Correct Delivery.

(ii) All messages, except (possibly) the first 
i messages
received by i, were sent by the root. We refer to this
property as Message Validity.

(iii) Algorithm BA is self-stabilizing.

4.1. Informal Description

We make a few simple modifications in Algorithm NS
to design AlgorithmBA. At node i, we use an extra variable
mi to hold the current message received from the parent.
The root r reads a new message and writes it in its variable
mr. The internal processors and leaf processors copy their
parent’s message frommPi

into their own message variable,
mi.

The Broadcasting Algorithm BA is shown in Algo-
rithm 4.1.

Algorithm 4.1 (BA) Broadcasting Algorithm for processor
i.
Variable:

ci: The color variable.
mi: The message variable.

Constants:
Cldi: The set of children.
Pi: The parent processor.

Actions:
fFor the rootg
B� 		 
j � Cldi 		 cj � ci ��

mi 	��next message�� ci 	� �ci

fFor the internal processorsg
B� 		 cPi

�� ci 
 �
j � Cldi 		 cj � ci� ��
mi 	� mPi

� ci 	� cPi

fFor the leaf processorsg
B� 		 cPi

�� ci �� mi 	� mPi
� ci 	� cPi

4.2. Correctness of Algorithm BA

Lemma 4.1 
i � �frg � I��
j � Cldi, the messages sent
by i are eventually received by j in the order they were sent,
with no loss or duplication.

Proof: By Lemma 3.3 and Algorithm 4.1, after i re-
ceives a message, it cannot execute its action until all its
children execute (and read the message from mi) their ac-
tion. �

As a corollary, we can state that:

Corollary 4.1 
i � �I�L�, all messages, except (possibly)
the first one, received by i were sent by Pi.

Note that the first received message by i may not have
been sent or received by Pi because the message may be
corrupted due to some transient faults.

Lemma 4.2 (Correct Delivery) Every message sent by the
root is eventually received by all processors in the tree in
the same order it was sent.

Proof: The proof follows from Lemma 4.1 and by using
induction on the height of the tree. �

Lemma 4.3 (Message Validity) All messages, except
(possibly) the first 
i messages received by i, were sent by
the root.

Proof: The proof follows from Corollary 4.1 and by
using induction on 
i, the distance of i from the root. �

Theorem 4.1 Algorithm BA is self-stabilizing.

Proof: From Lemmas 4.2 and 4.3, starting form any ar-
bitrary configuration, any subsequent computation satisfies
both the Correct Delivery and Message Validity predicates.
So, Algorithm BA is correct. Since all computations sat-
isfy the predicate SPBA, Algorithm BA trivially satisfies
the closure and convergence properties, and hence, is self-
stabilizing. �

4.3. Complexity

In this section, we present the time and space require-
ments of Algorithm BA and the time to broadcast m mes-
sages in the tree network.

Space Complexity. Algorithm BA uses two variables,
c and m. Since m is used only to carry messages for the
application level, the extra space used by our algorithm is
only � bit.

Time Complexity. As seen in the proof of correctness
of Algorithm BA, any computation, starting from any ini-
tial configuration, is correct with respect to the specification
SPBA. Then, it is trivial to deduce the O��� stabilization
time.



Broadcasting Time. We need to prove some properties
to compute the time to broadcast messages. Next, We define
what it means for a processor and a configuration to be color
synchronized.

Definition 4.1 (Color Synchronization) A processor i �
V is color synchronized if at least one of the following con-
ditions is true: (i) i � �frg � L�, (ii) ci � cPi

or (iii)

j � Cldi 		 ci � cj .

A configuration is color synchronized when all proces-
sors are color synchronized. We define Lcs � Color Syn-
chronized Configuration.

Lemma 4.4 Let i be a processor such that i and its chil-
dren are color synchronized. After a round, i is still color
synchronized.

Proof: Consider a processor i � I . We do not need to
consider the root and the leaf processors because they are
always color synchronized by definition.

(i) Assume that i changes its color in this round by copy-
ing its parent’s color. By Property 3.1, the parent and
children of i cannot execute any action during this
round. Thus, i remains synchronized because Condi-
tion 2 of Definition 4.1 is satisfied.

(ii) Assume that i does not change its color during a round.
Let j be a child of i such that cj �� ci before the round
(in a configuration, called �). Since j is synchronized
in �, j must satisfy Condition 3 of Definition 4.1, i.e.,
all children of j have the same color of j in �. So,
either B� or B� will be enabled at j. In this round,
j will execute its action and cj will become equal to
ci. Let k be a child of i such that ck � ci before the
round. k will not execute an action during this round.
Condition 3 of Definition 4.1 at processor i is satisfied
after the round.

(iii) Assume that Pi changes its color during this round.
By Property 3.1, i cannot execute any action during
this round (see Case (i)).

�

Corollary 4.2 . 
� 	 Lcs 	 
e � E� 		 the configuration
reached after one round of computation starting from � is
also color synchronized.

Lemma 4.5 Starting from any arbitrary configuration, af-
ter h�� rounds, the system will reach a color synchronized
configuration.

Proof: We prove the lemma by induction on hi, the
height of the subtree rooted at i,

(i) Base Case: hi � 
. The lemma is true for hi � 
 (the
leaf processors) by definition.

(ii) Hypothesis: Assume that the lemma is true for 
 �
hi � m�m � h � �. (Note that the lemma is true for
hi � h because the root is always color synchronized.)
Processors which are the root of a subtree of height less
than or equal to mwill be color synchronized withinm
rounds and will remain color synchronized thereafter.
We now need to prove that the lemma is also true for
hi � m��. Let i be a processor such that hi � m��.
Assume that i is not color synchronized after m rounds
and �j � Cldi 		 cj �� ci before the m � �th round.
i will not change its color during the m � �th round.
If k is a child of i such that ck � ci before the m �
�th round, then k will not execute an action during the
m� �th round. Let j be a child of i such that cj �� ci
before the m��th round. As, hj � m, j will be color
synchronized within m rounds by the hypothesis. All
children of j will get the color of j after m rounds.
So, either B� or B� will be enabled at j. In the m �
�th round, j will execute its action and cj will become
equal to ci. Thus, after hi rounds, all children of i
share the color of i, and i is color synchronized.

�

Definition 4.2

Ld
even � 
k ��
� d� 	 
i � V 	 
i � �k 		 ci � cPi

A configuration � 	 Ld
even if all processors at a distance

�� 
� �� � � ��d from the root have the same color as their par-
ent.

Ld
odd � 
k � �
� d� 	 
i � V 	 
i � �k � � 		 ci � cPi

A configuration � 	 Ld
odd if all processors at a distance

�� �� � � � ��d� � from the root have the same color as their
parent.

Gdeven � 
k ��
� d� 	 
i � V 	 
i � �k 		 ci �� cPi

A configuration � 	 Gdeven if all processors at a distance
�� 
� �� � � ��d from the root do not have the same color as
their parent.

Gdodd � 
k � �
� d� 	 
i � V 	 
i � �k � � 		 ci �� cPi

A configuration � 	 Gdodd if all processors at a distance
�� �� � � � ��d � � from the root do not have the same color
as their parent.
G�even � Lcs. Leven � Ld

even� �d � h. Lodd �
Ld
odd� �d � � � h. Geven � Gdeven� �d � h. Godd �

Gdodd� �d� � � h.

The following two properties follow from Algorithm BA.



Property 4.1 Let � be a configuration such that � 	 Lcs 

Ld
odd
G

d
even. After one round of computation starting from

�, the system will reach a configuration �� 	 Lcs 
Ld��
even 


Gdodd.

Property 4.2 Let � be a configuration such that � 	 Lcs 

Ld
even
G

d��
odd . After one round of computation starting from

�, the system will reach a configuration �� 	 Lcs 
 Ld
odd 


Gdeven.

Lemma 4.6 Starting from any arbitrary configuration � �
C, the system will reach a configuration �� in h � � or h
rounds such that �� 	 Lcs 
 L�odd.

Proof: By Lemma 4.5, all processors are synchronized
(i.e., Lcs is true) within h � � rounds. If all children of
the root have the same color as the root, then L�

odd is true.
Assume that there exists one child i of the root whose color
is not the same as the root. Since i is synchronized, all its
children have its color and B� is enabled at i. So, in the
next round, i will execute B�, copy the root’s color, and
L�odd will become true. �

Definition 4.3

Loe � Lcs 
 ��Lodd 
 Geven� � �Leven 
 Godd��

Lemma 4.7 Starting from a configuration � 	 Lcs 
 L�odd,
the system will reach a configuration �� in h�� rounds such
that �� 	 Loe.

Proof: Let � be a configuration satisfying Lcs 
L�odd 

G�even. Starting from �, during the next round, the system
will reach a configuration �� 	 Lcs 
 L�even 
 G

�
odd (Prop-

erty 4.1). Now, starting from ��, the system will reach a
configuration �� 	 Lcs
L�odd
G

�
even (Property 4.2). Thus,

after h� � rounds of computation starting from �, the sys-
tem will reach a configuration �� 	 Loe. �

The following properties follow from Lemma 4.7 and
Properties 4.1 and 4.2.

Property 4.3 Starting from a configuration � 	 Lcs 

Leven 
 Godd, in one round, the system will reach a con-
figuration �� 	 Lcs 
Lodd 
 Geven. Starting from a config-
uration � 	 Lcs 
 Lodd 
 Geven, in one round, the system
will reach a configuration �� 	 Lcs 
 Leven 
 Godd.

Property 4.4 Starting from a configuration � 	 Loe, in al-
ternate rounds, the processors at odd distance from the root
(i.e., 
i � �� �� � � �) and the processors at even distance from
the root (i.e., 
i � 
� �� � � �), execute an action.

Theorem 4.2 Starting from a configuration� 	 Lcs
L�odd,
a sequence of m messages broadcast by the root will reach
all processors of the tree within h� �m� � rounds.

Proof: Assume that � 	 Lcs 
 L�odd. The root can send
its first message in �. It takes h rounds after a message is
broadcast by the root to reach all processors of the tree.

By Property 4.4, the root will be able to send a message
once in every two rounds. Thus, starting from �, the root
will send the mth message in �m� �th round and this last
message will take another h rounds to reach all processors
of the tree.

Thus, the maximum number of rounds necessary to
broadcast m messages in the tree starting from � is h �
�m� �. �

Starting from an arbitrary configuration, it takes at most
�h��m�� rounds for all processors to receivemmessages
broadcast by the root (Lemma 4.6 and Theorem 4.2).

5. Conclusion

We presented a new space efficient self-stabilizing syn-
chronizing technique, the neighborhood synchronizer. This
method implements the synchronization between a proces-
sor and its neighbors. Moreover, this scheme allows concur-
rency among processors which do not have a neighborhood
relationship. The concurrency inherent in this scheme is
similar to the pipelining scheme. We show an application
of Algorithm NS to the design of an efficient broadcast-
ing algorithm. Algorithm BA requires only �h � �m � �
rounds to broadcast m messages in the tree network.

References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient
self-stabilization on general networks. In WDAG90 Dis-
tributed Algorithms 4th International Workshop Proceed-
ings, Springer-Verlag LNCS:486, pages 15–28, 1990.

[2] L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-
stabilization with global rooted synchronizers. In ICDCS98
Proceedings of the 18th International Conference on Dis-
tributed Computing Systems, pages 102–109, 1998.

[3] A. Arora and M. Gouda. Distributed reset. IEEE Transac-
tions on Computers, 43:1026–1038, 1994.

[4] B. Awerbuch. Complexity of network synchronization.
Journal of the Association of the Computing Machinery,
32(4):804–823, 1985.

[5] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization.
In STOC93 Proceedings of the 25th Annual ACM Sympo-
sium on Theory of Computing, pages 652–661, 1993.

[6] B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-
stabilization by local checking and correction. In FOCS91
Proceedings of the 31st Annual IEEE Symposium on Foun-
dations of Computer Science, pages 268–277, 1991.

[7] B. Awerbuch and G. Varghese. Distributed program check-
ing: a paradigm for building self-stabilizing distributed pro-
tocols. In FOCS91 Proceedings of the 31st Annual IEEE



Symposium on Foundations of Computer Science, pages
258–267, 1991.

[8] A. Bui, A. Datta, F. Petit, and V. Villain. Space optimal and
fast self-stabilizing pif in tree networks. Technical Report
RR 98-06, LaRIA, University of Picadie Jules Verne, 1998.

[9] J. Burns, M. Gouda, and R. Miller. On relaxing interleaving
assumptions. In Proceedings of the MCC Workshop on Self-
Stabilizing Systems, MCC Technical Report No. STP-379-
89, 1989.

[10] N. Chen, H. Yu, and S. Huang. A self-stabilizing algorithm
for constructing spanning trees. Information Processing Let-
ters, 39:147–151, 1991.

[11] E. Dijkstra. Self stabilizing systems in spite of distributed
control. Communications of the Association of the Comput-
ing Machinery, 17:643–644, 1974.

[12] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity. Dis-
tributed Computing, 7:3–16, 1993.

[13] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-
stabilizing leader election. IEEE Transactions on Parallel
and Distributed Systems, 8(4):424–440, 1997.

[14] M. Gouda and F. Haddix. The linear alternator. In Pro-
ceedings of the Third Workshop on Self-Stabilizing Systems,
pages 31–47. Carleton University Press, 1997.

[15] C. Johnen. Memory-efficient self-stabilizing algorithm to
construct BFS spanning trees. In Proceedings of the Third
Workshop on Self-Stabilizing Systems, pages 125–140. Car-
leton University Press, 1997.

[16] H. Kruijer. Self-stabilization (in spite of distributed control)
in tree-structured systems. Information Processing Letters,
8:91–95, 1979.

[17] N. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.
[18] M. Raynal and J. Helary. Synchronization and Control of

Distributed Systems and Programs. John Wiley and Sons,
Chichester, UK, 1990.

[19] G. Tel. Introduction to distributed algorithms. Cambridge
university press, 1994.

[20] G. Varghese. Self-stabilization by counter flushing. In
PODC94 Proceedings of the Thirteenth Annual ACM Sym-
posium on Principles of Distributed Computing, pages 244–
253, 1994.


