
A Fault�Tolerant Token Passing Algorithm on
Tree Networks

Gianluigi Alari� Jo�roy Beauquier� Ajoy K� Datta� Colette Johnen� Visalakshi Thiagarajan

Abstract�We present a self�stabilizing token pass�
ing algorithm for a tree network� The algorithm is
based on the ��state mutual exclusion algorithm of
Dijkstra ��� and works under the distributed daemon
model of execution�

Keywords�Distributed algorithms� fault�tolerance�
mutual exclusion� self�stabilization� token passing�

I� Introduction

Dijkstra ��� pioneered the study of self�
stabilization in distributed systems in ���	
 A self�
stabilizing system� regardless of the initial states
of the processes and initial messages in the links�
is guaranteed to converge to the intended behavior
within �nite time
 Dijkstra introduced the prop�
erty of self�stabilization in distributed systems and
applied it to algorithms for mutual exclusion on a
ring ���
 A solution to the mutual exclusion prob�
lem on a ring is to implement a token circulating
from one process to the next in one direction the
token moves around the ring and a process having
the token is granted access to the shared resource
and may execute the code in the critical section
Brown� Gouda� and Wu take this view in ���
 Several
self�stabilizing token passing algorithms for di�erent
topologies have been proposed in the literature �����
Dijkstra ���� ���� ���� Burns and Pachl ���� Flatebo
and Datta ���� and Flatebo� Datta� and Schoone ����
for a ring Brown� Gouda� and Wu ��� and Ghosh
���� for a linear array of processors� and Tchuente
���� on general networks
 Recently� Huang and Chen
���� presented a token circulation protocol for a
connected network in non�deterministic depth��rst�
search order� and Dolev� Israeli� and Moran ��� gave
a mutual exclusion protocol on a tree network un�
der the model whose actions only allow read�write
atomicity
 A memory e�cient token passing pro�
tocol on general network is presented in ����
 This
algorithm needs needs only O��� bits per edge of the
network
 In ��� Dijkstra presented a mutual exclu�
sion algorithm on a ring of 	�state machines where

G� Alari is with Unit�e d�Informatique� Universit�e
catholique de Louvain� Belgium� J� Beauquier and C� Johnen
are with L�R�I��C�N�R�S�� Universit�e de Paris�Sud� France�
A� Datta and V� Thiagarajan are with Department of Com�
puter Science� University of Nevada Las Vegas�

the neighborhood relationship between the two ex�
ceptional machines is not exploited
 Ghosh ���� pro�
posed an alternate solution to the 	�state mutual
exclusion problem originally presented in ��� his al�
gorithm is simpler in the sense that the behavior of
both the exceptional machines is identical with re�
spect to their sole neighbors and the behavior of a
non�exceptional machine is symmetric with respect
to both of its neighbors

In this paper� we propose a token passing algo�

rithm for tree networks that works under the dis�
tributed daemon execution model our approach is
based on the 	�state algorithm of Dijkstra ��� and
its variation by Ghosh ����
 Although our algorithm
relies upon an underlying tree network topology it
is not less general than the protocol in ���� since
a spanning tree of a network can be obtained by
a number of self�stabilizing algorithms ���� �	�� �����
����
 Token passing on a spanning tree thus places
no restriction on the topology of the underlying dis�
tributed system

The remainder of the paper is organized as fol�

lows
 In the next section� we introduce the sys�
tem model and the formal de�nition of the prob�
lem
 The token passing algorithm and the informal
description of the algorithm are presented in Sec�
tion III
 Section IV provides the proof of correct�
ness
 Finally� we make our concluding remarks in
Section VI


II� Model� Notation� and Problem

Definition

A� Model

We model a distributed system by an undirected�
connected graph G � �V�E� where V and E are
the set of vertices �or nodes� and set of edges� re�
spectively
 The vertices represent the processes and
links are denoted by the edges of the graph
 Exist�
ing methods can be used to construct a rooted span�
ning tree T � �V�E�� of G with E� � E in a self�
stabilizing manner
 Our algorithm then provides
the token passing on the underlying tree topology

We will denote by Pi � i � f���ng the set of system
processes� where jV j � n� and by Pr the root process
of T 
 Every process Pi in the system has a multiple�



reader�single�writer register ri which is serializable
with respect to read and write operations

Our model supports composite atomicity so that

a process can read the value of its own and its
neighbors� registers and write its register in a sin�
gle atomic step
 The composite atomicity model
is more restricted than the read�write model in
which a single read or write operation constitutes
an atomic step
 However� by a simple modi�ca�
tion according to the method described in ��� and
��	�� our protocol may be used in the more general
read�write atomicity model


B� The Problem

The problem of mutual exclusion is to ensure that
at most one process can execute �or enter� the criti�
cal section at any time� and in a �nite time� all pro�
cesses get a chance to execute the critical section

network while ensuring that fairness is preserved

In a distributed system� the global state can be

de�ned as the vector of all local states
 For pur�
poses of self�stabilization� the set of all global states
G is partitioned into two sets� the set L of legitimate
states� and the remainder I � GnL� the set of illegit�
imate states
 An algorithm is called self�stabilizing
if the following two conditions hold� �rst� starting
from an arbitrary global state� the system reaches a
legitimate state within a �nite amount of time sec�
ond� any step taken while it is in a legitimate state
causes a transition to a legitimate state
 The re�
quired properties for a self�stabilizing token passing
algorithm are�
Token System Token Uniqueness� In a legitimate
state� there exists no more than one token at any
time

Fairness or Starvation�Freedom� If a state is legit�
imate� then every process obtains the token within
a �nite amount of time� and may thus execute the
critical section code

Self�Stabilization Stability or Closure� If a state
is legitimate� then after the the daemon schedules
an action� the corresponding state transition results
in a legitimate state

Finite Convergence� Starting from any system
state� the system will reach a legitimate state af�
ter a �nite time


III� Token Passing Algorithm on a Tree

The state of each process Pi is maintained by a
read�write register ri containing the following �elds�

ri�Id the id of Pi
ri�Parent the id of the parent of Pi�

except for the root� which has zero

ri�S the state of Pi
ri�F irstChild the �rst child of Pi
ri�CurrentChild the child Pi is considering

We assume that every process maintains a circular
list of its children �in the tree T � �V�E���
 We will
denote the list of process Pi by ChildrenList�i�
 A
special element of this list is designated to be the
�rst child of the process
 Note that this list need
not be stored at a process� and can be easily com�
puted by a process Pi from the state of the neighbors
and the total order of the process identi�ers
 ri�S

is in f���g if Pi is the root of the tree� in f���g if
Pi is a leaf� and in f�������g otherwise
 ri�Id is a
non�corruptible constant
 ri�Parent is maintained
by the underlying self�stabilizing spanning tree pro�
tocol so that rr�Parent is null
 Obviously� the leaf
processes set ri�F irstChild and ri�CurrentChild to
null

In order to simplify the presentation of the rules�

the following macros are used in the algorithm �all
macros are de�ned for Pi��

NEXTCHILD�i�
freturn ChildrenList�ri�CurrentChild��nextg
LASTCHILD�i�
fif �NEXTCHILD�i� � ri�F irstChild�
then return TRUE else return FALSE g
CURRENTCHILD�i�
fif �rri�Parent�CurrentChild � ri�Id�
then return TRUE else return FALSE g
The algorithm for process Pi is given below
 �

fFor the root process Prg
R� �� �rrr�CurrentChild�S � rr�S � �� �

� LASTCHILD�r�
�� rr�CurrentChild �� NEXTCHILD�r�

R� �� �rrr�CurrentChild�S � rr�S � �� �
LASTCHILD�r�

�� rr�S �� rr�S � �
rr�CurrentChild �� NEXTCHILD�r�

fFor the leaf process Pig
R� �� �rri�Parent�S � ri�S � �� �

CURRENTCHILD�i�
�� ri�S �� ri�S � �

fFor the interior process Pig
R� �� �rri�Parent�S � ri�S � �� �

CURRENTCHILD�i�
�� ri�S �� ri�S � �

R	 �� �rri�CurrentChild�S � ri�S � �� �
� LASTCHILD�i�
�� ri�CurrentChild �� NEXTCHILD�i�

�All � operations in the rules are modulo 	�



R� �� �rri�CurrentChild�S � ri�S � �� �
LASTCHILD�i�

�� ri�S �� ri�S � � 
ri�CurrentChild �� NEXTCHILD�i�

We associate to rules R�� R� and R� the ability to
hold the token and access the shared resource

We now describe the system dynamics at stabi�

lization� i
e
� how the token circulates when the sys�
tem is already in a legitimate state
 The details of
how the system stabilizes will be given in Section IV

Suppose that the system is in a legitimate state

L � L such that the root has an even value of S �say
x�� all other processes have the same odd value of S
�x���� the root�s CurrentChild is its last child �say
Pk�� and every other process� CurrentChild is its
FirstChild
 The current state is a legitimate state
since the only process to enjoy a privilege �rule R�
is true� and to have the token is the root Pr Pr may
execute the critical section� then Pr will change rr�S
to x � �� and advance its CurrentChild pointer to
its FirstChild �say Pj�
 Pj now has the token �rule
R�� it gets its turn to access the shared resource�
and later moves changing rj �S to x� �
 The token
continues to traverse down the tree from the root
following the FirstChild pointers until it reaches
a leaf process �say Pm�

� every process in the path
from the root FirstChild to Pm�

�s parent Pm got
the token once �rule R�� and possibly entered the
critical section
 Suppose that all the children of Pm
are leaf processes
 Pm�

has the token and by rule
R� accesses the shared resource and changes its S
to x��
 This amounts to backtracking the privilege
�not the token� to its parent Pm that now moves by
rule R	 passing the token to Pm�s next child �say
Pm�

� which gets its turn to enter the critical section
�rule R��
 The above process continues until Pm
points to its last child �say Pmk

�
 Pmk
accesses the

resource� increments its S value to x�� by rule R�
passing again the privilege to Pm that now� by rule
R�� advances its CurrentChild to its FirstChild
Pm�

and changes its S to x � � �equal to its last
child�s S�
 The case when not all children of Pm are
leaf processes is analogous it is su�cient to repeat
the same arguments to each subtree rooted at Pm�s
non�leaf children

Let us run the system until the last child of the

root� Pk� moves by rule R� or R� setting rk�S to x��
and pointing again to its FirstChild and call this
�nal global system state L�
 It should be obvious
now that starting from L� the token traverses the
tree in depth��rst�search �DFS� order
 When the
DFS completes� the system state L� is equivalent
to the initial one� the root has rr�S � x � �� all
other processes have S � x � � Pr points to its

LastChild Pk� and all other processes point to their
FirstChild


IV� Proof of Correctness

De�nition �� A privilege is a program guard
whose corresponding action allows a process to mod�
ify the value of the �state� �eld of its read�write
register

De�nition 	� A semi�privilege is a program guard

whose corresponding action allows a process to mod�
ify the value of some of the register �elds but not
the �state� �eld

The execution of an action due to a �semi� privilege
is called a move and a process Pi is said to enjoy
a �semi� privilege when at least one of its guards is
satis�ed and the process can make the correspond�
ing move
 We will denote by P Priv�i� a privi�
lege depending on the value of S of the Parent

of process Pi �see guards of rules R� and R��� by
C Priv�i� a privilege depending on the value of S
of the LastChild of Pi �see guards of rules R� and
R�� and by S Priv�i� a semi�privilege depending on
the value of S of the CurrentChild �di�erent from
its LastChild� of Pi �see guards of rules R� and R	�

De�nition 
� A process Pi� i �� r holds a token if

P Priv�i� is satis�ed� and the root Pr holds a token
if C Priv�r� is true

Observation �� A �semi� privilege is always re�

lated to a pair of processes �Pi� Pj� where
Pi � rj �Parent� Pj � ri�CurrentChild� and
P Priv�j� � � �C Priv�i� � S Priv�i��
 Further�
more� if jri�S � rj �Sj mod � � �� then one and only
one among C Priv�i�� P Priv�j�� and S Priv�i� is
satis�ed

Lemma �� If Pi is such that even�ri�S�� then

there exists at least one process enjoying a �semi�
privilege in the path from Pi to a leaf process fol�
lowing the CurrentChild pointers downwards

Proof� The proof derives directly from Observa�
tion � and the fact that leaf processes have odd
values of S
 �

Lemma 	� There is at least one �semi� privilege
in the system �no deadlock�

Proof� This follows directly from Lemma � and the
fact that the root may only have an even value of
S
 �

Lemma 
� Every process must make a move in a
�nite amount of time

Proof� Proof by contradiction

Assume that process Pi with ri�S � x does not
move
 Then� the processes in the subtree Ti rooted
at Pi may move only a �nite number of times oth�
erwise� S of Pi�s current child could reach the value
x�� and either C Priv�i� or S Priv�i� would hold




Let x be even
 Then by Lemma �� there will al�
ways be at least a �semi� privilege in the subtree Ti
contradicting the above hypothesis

If x is odd� then the parent of Pi must move only a

�nite number of times otherwise� it could reach the
value x�� and enable Pi when CURRENTCHILD

is satis�ed
 This argument must hold for all pro�
cesses in the path from Pi up to the root process

This contradicts the fact that root� always having
an even value of S� must make a move in a �nite
amount of time
 �

Corollary �� Eventually every process will enjoy a
privilege and thus change its S �eld �no starvation�

Proof� Since by Lemma � every process must make a
move in a �nite amount of time� if Pi never changes
ri�S� it must always move due to a semi�privilege

This is a contradiction since� when LASTCHILD

holds� Pi may only move by Rules �R�� and �R��
and thus change ri�S
 �

We now de�ne the set L of legitimate states and
prove the closure of L and the �nite convergence of
our algorithm to a state L � L

Being the set of global states G the product space

of all local states� we de�ne the set L of legitimate
states for our token passing algorithm as follows�
De�nition �� Let p�i� be the number of �semi�

privileges enjoyed by Pi
 L � fg � G j �n
i�� p�i� �

�g
This means that in a legitimate state there must be
only one process enjoying only one �semi� privilege

Observation 	� The only case in which a move

by process Pi may generate two �semi� privileges is
when C Priv�i� is satis�ed and the following condi�
tions are satis�ed �see Figure � for an example�� let
Pp be Pi�s parent� Pj and Pk be the �rst and last
child of Pi� respectively jri�S � rp�Sj mod � � ��
jri�S � rj �Sj mod � � � and rk�S � ri�S � �
 After
Pi moves� its CurrentChild is Pj and Observation
� holds for the pair of process �Pi� Pj� and �Pp� Pi�

In all other cases� a move may never produce more
than one new �semi� privilege

Observation 
� It follows from Observation � that

if Pi is parent of leaf processes only� �i� it can never
create two new privileges since its children are forced
to have odd values of S� �ii� the state transition
odd�ri�S� � even�ri�S� may only happen due to
Pi�s parent

Lemma �� The set L of legitimate states is closed

under algorithm execution �stability or closure�

Proof� By Lemma �� the system will always have at
least one �semi� privileged process
 This is su�cient
to avoid a deadlock situation in which no �semi�
privileged process exists
 Thus� all that we need to

3

p

iP
P

Pj

P
p

i

k
P kj P

P

P
32

3

2

2

2

(R5)
2

Fig� 
� Creating two new privileges in a single move�
privileged processes are shaded and bold lines denote
CurrentChild pointers

prove is that the system� starting from a legal state
in which there is a single �semi� privilege� will never
have more than one �semi� privilege �De�nition 	�


Observation � shows the only situation where a
move by a �semi� privileged process may generate
two new �semi� privileges
 This situation would take
the system into an illegitimate state
 Now� we need
to prove that if a con�guration� as described in the
right side of Figure �� is present in a global state�
then this state cannot be a legitimate state


From the con�guration used in Observation �� if
ri�S is even� rj �S is also even
 Then� by Observa�
tion �� Pj is not a leaf process� and from Lemma
�� there exists at least one more �semi� privilege in
the path from Pj to the leaf processes following the
CurrentChild pointers


On the other hand� if ri�S is odd� then rk�S is
even
 As above� Pk is not a leaf and there exists
at least one �semi� privilege in the path from Pk
to the leaf processes
 In both cases� there are at
least two �semi� privileges and the system is not in
a legitimate state
 �

We will now prove that the convergence with re�
spect to L is guaranteed by the algorithm


Lemma �� Consider a subtree Ti rooted at Pi
such that Pi�s k children Pi� � � � Pik are all leaf pro�
cesses
 After at most k moves of Pi� all processes in
Ti will have odd values of S


Proof� If odd�ri�S�� then the Lemma is proved
 Let
even�ri�S� and ri�S � x
 Then by Corollary �� Pi
will change ri�S by Rules �R�� or �R�� in a �nite
amount of time and in both cases� ri�S will become
odd
 In the worst case� when rij �S � x � �� j �
���k� and the CurrentChild of Pi is Pi� � Pi enjoys
k � � semi�privileges which makes Pi point to its
LastChild Pik 
 Then Pi enjoys a privilege �due to



its parent or last child� to increment ri�S to x � �

�

Lemma � The system will eventually converge to
a state where all processes but the root have an
value of S state and thus there is only one privileged
process �convergence�

Proof� Proof by induction on the height �


�
 height � ��
The system is composed only of the root and n� �
leaf processes and the lemma holds from Observa�
tion � and the fact that leaf processes have odd val�
ues of S and the root has an even value of S

�
 height � l�
Assume that the lemma holds for a tree of height at
most l � � � �
 Consider a subtree Ti as de�ned in
Lemma � where Pi is at level l�� and Pi�s k children
Pi� � � � Pik at level l
 Let Pj be the parent process of
Pi and� without loss of generality� let all values of S
values in Ti be odd and ri�S � x
 Then eventually�
P Priv�i� will hold �Corollary ��� and Pi will move
changing its state value from x to rj �S � x � � by
rule �R��
 By Corollary �� Pj must move in a �nite
time and increment rj �S to x��
 Pj may only reach
x�� due to a privilege from its parent or a privilege
from its last child
 If Pj moved because of its last
child� it implies that Pi set ri�S to x � � and that�
with respect to Pj � the subtree Ti is functionally
equivalent to a single leaf process because the only

way Pi may a�ect Pj is by the state transition x
x��
��

x � � with x and x � � being odd
 We may then
fuse all processes in Ti by only considering the single
process Pi
 This �fusion� process applies to all non�
leaf processes at level l� � and thus in a �nite time
we reduce the height of the tree by one
 �

Theorem �� The algorithm of Section III is a self�
stabilizing algorithm with respect to the set of le�
gitimate states L

Proof� It follows directly from Lemmas 	 and �
 �
Now we need to prove that the algorithm of Sec�

tion III also satis�es the Fairness property
 We will
also show that our algorithm implements a strictly
� fair token circulation scheme

First� we show that eventually the system reaches

a state where all processes but the root have the
same odd value of S
 Next we demonstrate how the
token is passed in the network
 Then our claim of
strictly fair token passing will be obvious

De�nition �� A legitimate state S � L is a Start

state if the following condition holds�

�The height of a tree is de�ned as the maximum level of
the nodes of the tree� The level of a node is one plus the level
of its parent� the level of the root being zero�
�A strictly fair token circulation scheme implies that every

process gets the token equal number of times�

LASTCHILD�r� � TRUE � 	i �� r j ��ri�S �
rr�S�����ri�CurrentChild � ri�F irstChild��� i
e
�
the root has an even value of S �say x�� all other
processes have the same odd odd value of S �x �
��� the root�s CurrentChild is its last child� and
every other process� CurrentChild is the process�
FirstChild

Lemma �� Consider a subtree Ti rooted at pro�

cess Pi such that Pi�s k children Pi� � � � Pik are all
leaf processes
 Starting from an arbitrary legitimate
state� after at most ��k��� moves of Pi� all leaf pro�
cesses in Ti will have the same odd value of S and
Pi�s CurrentChild will be its LastChild

Proof� Assume that all processes in Ti have odd
values of S �Lemma ��
 Since the system is in a
legitimate state� from Corollary �� in a �nite time�
P Priv�i� is satis�ed and Pi makes a move setting
ri�S to x such that even�x�
 Next� again in a �nite
time� C Priv�i� is satis�ed and Pi increments ri�S
to x� �

Let Pij � i 
 j 
 k be the current child of Pi

when ri�S becomes even and the only �semi� priv�
ilege of the system is con�ned in Ti
 It is easy to
verify that it takes exactly k� j moves of Pi so that
ri�CurrentChild � Pik �i
e
� Pi points to its last
child� and ric �S � x��� c � j��k
 Assume that j � �

Then Pi is in the state even�x� and is pointing to
its FirstChild� and the lemma is proved
 Now as�
sume that j � �
 First consider the case when Pi is
not the root
 Pi makes the �k � j � ��th move� sets
ri�S to x��� and points to its FirstChild Pi� 
 The
next time P Priv�i� is satis�ed� Pi goes through the
state transition x � � � x � �� and then it makes
exactly k� � moves after which all its children have
the value of S equal to x��� and Pi�s current child
is its last child
 Summing up� the total number of
moves of Pi is �k�j�� for � � j 
 k� and k if j � �

On the other hand� if Pi is the root� it always have
an even value of S and the total number of moves
is �k � j for � � j 
 k� and k � � if j � �
 �

Corollary 	� Consider the subtree Ti as de�ned in
Lemma � where Pi �� Pr
 Starting from an arbitrary
legitimate state� after at most �k�� moves of Pi� the
system reaches a state where Pi has an even value
of S ��ri�S�� all other processes in Ti have the same
odd value of S ��ri�S � ��� and Pi�s CurrentChild
is its FirstChild

Proof� Follows from Lemma �
 �

Lemma �� Starting from a legitimate state� the
system will eventually converge to a Start state

Proof� Proof by induction on the height

�
 height � ��
The system is composed only of the root Pr and
n� � leaf processes P� � � � Pn��
 By Lemma � in at



most ��n � �� moves of Pr� all leaf processes will
have the same odd value of S and the system will
be in a Start state

�
 height � l�
Assume that the lemma holds for a tree of height at
most �l��� � �
 Consider a subtree Ti as de�ned in
Lemma � where Pi is at level l� � and Pi�s children
P� � � � Pk are at level l
 By Corollary �� since Pi
is not the root� after at most �k � � moves of Pi�
all processes in Ti have the same odd value of S
and Pi�s CurrentChild is its FirstChild
 By using
similar arguments as in Lemma �� we may fuse all
processes in Ti by considering the single process Pi
thus reducing the height of the tree by one
 �

The choice of associating a token to the rules R��
R�� and R� only should be clear from the following
observation�

Observation �� When the system reaches a spe�
cial Start state �Lemma ��� the token traverses the
tree in the DFS order


Theorem 	� The algorithm of Section III is a self�
stabilizing token passing algorithm on a tree struc�
tured network
 The token traverses the tree in the
DFS order� hence implementing a strictly fair token
management scheme


Proof� Follows from Lemma � and Observation 	

�

V� Distributed Daemon

In this section we will show that the algorithm
presented in Section III is such that the simultane�
ous moves of any subset of processes enjoying �semi�
privileges can be serialized
 So� the arguments used
in proving closure and convergence in Section IV re�
main valid also for the distributed daemon model

Then we can claim that the algorithm of Section
III solves the mutual exclusion problem on a tree
structured system in the presence of a distributed
daemon


De�nition � We de�ne a privilege chain � as
a list of length j�j of successive �semi� priv�
ileged processes P� � � �Pj�j such that Pk�� �
rk�CurrentChild� � 
 k � j�j
 A maximal privi�
lege chain is a privilege chain such that the parent
of the �rst process �if it exists� and the current child
of the last process �if it exists� are not privileged


De�nition �� We will say that a process Pi inter�
feres with another process Pj if both Pi and Pj enjoy
a �semi� privilege� and a move by Pi may cause Pj
lose its �semi� privilege


Remark �� Processes executing in distinct max�
imal privilege chains cannot interfere with each
other


Let � � fP�C� S�Rg be a �nite alphabet of sym�
bols
 It is possible to associate a privilege chain �

to a �nite string � of symbols in � of length j�j such
that the following conditions are true�
�i� Pi is the i

th process in �

�ii� �i � P � P Priv�i�

�iii� �i � C � C Priv�i�

�iv� �i � S � S Priv�i�

�v� �i � R � �P Priv�i� � �S Priv�i� �
C Priv�i���� i
e
� Pi enjoys two �semi� privileges

Lemma �� Let � be a privilege chain and � its

corresponding string� then � � P k�Rz �fC� Sgl�k�z

where l � j�j� z � f�� �g� and � 
 k 
 l � j

Proof� The proof follows directly from the fact that
if Pi and Pj are two successive processes in the priv�
ilege chain � such that Pj �s parent is Pi� from Ob�
servation �� if P Priv�j� holds� then �C Priv�i� �
S Priv�i�� cannot hold
 �

Lemma ��� The simultaneous execution of moves
of the processes in a privilege chain � are serializ�
able

Proof� Let � � P k�Rz �fS�Cgl�k�j correspond to a
privilege chain �
 Consider the following schedule
of moves�
�
 z � ��
Pi moves before Pi�� for � � i 
 k and before Pi��
for k � i � l

�
 z � ��
If the processes move simultaneously� if Pk�� moves
according to rule �R��� then let Pi move before Pi��
for � � i 
 k � � and before Pi�� for k � � � i � l

Otherwise� if Pk�� moves according to rule �R	� or
rule �R��� let Pi move before Pi�� for � � i 
 k and
before Pi�� for k � � 
 i � l

It is easy to verify that the above serial schedule

of moves results in a �nal state that is the same as
the one reached if all processes in � had moved si�
multaneously
 �

Note that the above lemma holds for any privilege
chain and in particular� for any subset of a maximal
privilege chain

Theorem 
� Any simultaneous execution of moves

in the system is serializable
 Thus the algorithm in
Section III solves the mutual exclusion problem in
the presence of a distributed daemon

Proof� It follows directly from Lemma �� and from
the fact that simultaneous moves in di�erent max�
imal privilege chains cannot interfere with each
other
 �

VI� Conclusions

In this paper� we presented an algorithm for self�
stabilizing distributed mutual exclusion on a span�



ning tree under the composite atomicity model and
distributed daemon hypothesis
 We �rst proved its
correctness under the more restrictive central dae�
mon model of execution and then we extended the
proof to the distributed daemon case by showing
serializability of simultaneous moves

The algorithm may be applied to distributed sys�

tems whose interconnection network is a connected
graph by using layering techniques and combining it
with one of the well known self�stabilizing spanning
tree algorithms such as ���� �	�

The algorithm in ���� is a non�deterministic

depth��rst�search token circulation on a connected
network whereas ours is a deterministic token cir�
culation algorithm on tree networks
 Furthermore�
unlike ����� we formally prove the correctness of
our algorithm under the distributed daemon exe�
cution model
 With respect to ���� one limitation of
our protocol is that it works under the distributed
daemon with the composite atomicity model which
is a stricter model than the read�write atomicity
model used in ���
 However� Arora and Gouda in
��� and Huang� Wuu� and Tsai in ��	� showed a
simple method to transform a protocol designed for
the composite atomicity model to an equivalent one
working under read�write atomicity

Both our protocol and the protocol of ��� proceed

in phases or rounds starting with the token at the
root process of the tree network and terminating
when the token returns to the root process itself

However� the algorithm presented in this paper im�
plements a strictly fair token circulation policy in
which every process gets the token exactly once dur�
ing a phase� whereas in ���� a process gets the token
d times during a single round� where d is the de�
gree of the node representing the process
 Thus� if
the resource needing mutual exclusion is critical for
all processes in the system and if the degree of con�
tention for this resource is high� then our protocol
assures an equal distribution of accesses to all the
system units

Our algorithm requires O�log n� space because

we need to store the Id� FirstChild� CurrentChild
and Parent process identi�ers the variable S re�
quires only two bits
 The algorithm in ��� uses O���
memory where � is the maximum degree of a node
and Huang and Chen ���� have shown that their al�
gorithm needs O�n� memory

If we implement our algorithm of Section III us�

ing read�write atomicity actions only� following the
method in ���� we only need two additional 	�state
variables at each process to maintain a copy of
Parent�S and CurrentChild�S
 Thus� the memory
requirement of our algorithm still remains O�log n�


References


� A� Arora and M� Gouda� �Distributed Reset�� Proceed�
ings of the ��th Conference on Foundations of Software
Technology and Theoretical Computer Science� Banga�
lore� India� December 
��
�� 
���� pp��
����
� Lec�
ture Notes in Computer Science 	��� Springer�Verlag�
also IEEE Transaction of Computers� Vol� 
�� No� 

�
November 
���� pp� 
����
����

�� G� Brown� M� Gouda� and M� Wu� �Token Systems that
Self�Stabilize�� IEEE Transactions on Computers� Vol�
��� No� �� June 
���� pp� �	������

�� Burns J� and Pachl J� �Uniform Self�Stabilizing Rings��
ACM Transactions on Programming Language and Sys�
tems� Vol� 

� No� �� 
���� pp� �����		�

	� N� Chen� H� Yu� and S� Huang� �A Self�Stabilizing Al�
gorithm for Constructing Spanning Trees�� Information
Processing Letters� Vol� ��� 
��
� pp� 
	��
�
�

�� E� W� Dijkstra� �Self�Stabilizing Systems in Spite of
Distributed Control�� Communications of the ACM ���

��	� pp� �	���		�

�� E� W� Dijkstra� �Self�Stabilization in Spite of Dis�
tributed Control�� in Selected writings on computing� a
personal perspective� Springer�Verlag� Berlin� 
���� pp�
	
�	��

�� E� W� Dijkstra� �A Belated Proof of Self�Stabilization��
Distributed Computing� Vol� 
� No� 
� January 
���� pp�
����

�� S� Dolev� A� Israeli� and S� Moran� �Self�Stabilization
of Dynamic Systems Assuming only Read�Write Atom�
icity�� Proceedings of the �th Annual ACM Symposium
on Principles of Distributed Computing� Quebec City�
Canada� pp� 
���

�� 
���� also Distributed Computing
Vol� �� 
���� pp� ��
��

�� M� Flatebo and A� K� Datta� �Two�State Self�Stabilizing
Algorithms for Token Rings�� IEEE Transactions on
Software Engineering� June 
��	� pp� ������	�


�� M� Flatebo� A� K� Datta� and A� A� Schoone� �Self�
Stabilizing Multi�Token Rings�� Distributed Computing�
Vol� �� 
���� pp� 
���
	��



� S� Ghosh� �An Alternate Solution to a Problem on
Self�Stabilization�� ACM Transactions on Programming
Languages and Systems� Vol� 
�� No� 	� September 
����
pp� �����	��


�� S� Huang and N� Chen� �A Self�Stabilizing Algorithm
for Constructing Breadth First Trees�� Information Pro�
cessing Letters� Vol� 	
� January 
���� pp� 
���

��


�� S� Huang and N� Chen� �Self�Stabilizing Depth�First To�
ken Circulation on Networks�� Distributed Computing�
Vol� �� 
���� pp� �
����


	� S� Huang� L� Wuu� and M� Tsai� �Distributed Execution
Model for Self�Stabilizing Systems�� Proceedings of the
��th International Conference on Distributed Comput�
ing Systems� Poland� 
��	� pp� 	���	���


�� C� Johnen and J� Beauquier� �Space�E�cient Dis�
tributed Self�Stabilizing Depth�First Token Circula�
tion�� Proceedings of the 	nd Workshop on Self�
Stabilizing Systems� Las Vegas� Nevada� 
���� pp� 	�
�
	�
��


�� M� Schneider� �Self�Stabilization�� ACM Computing
Surveys� Vol� ��� No� 
� March 
���� pp� 	�����


�� S� Sur and P� K� Srimani��A Self�Stabilizing Distributed
Algorithm to Construct BFS Spanning Trees of a Sym�
metric Graph�� Parallel Processing Letters� Vol��� No� �
� �� September 
���� pp� 
�
�
���


�� M� Tchuente� �Sur l�auto�stabilisation dans un reseau
d�ordinateurs�� RAIRO Informatique Theorique �
� No�

� 
��
� pp�	�����


