A Fault-Tolerant Token Passing Algorithm on
Tree Networks

Gianluigi Alari, Joffroy Beauquier, Ajoy K. Datta, Colette Johnen, Visalakshi Thiagarajan

Abstract— We present a self-stabilizing token pass-
ing algorithm for a tree network. The algorithm is
based on the 4-state mutual exclusion algorithm of
Dijkstra [5] and works under the distributed daemon
model of execution.

Keywords—Distributed algorithms, fault-tolerance,
mutual exclusion, self-stabilization, token passing.

I. INTRODUCTION

Dijkstra [5] pioneered the study of self-
stabilization in distributed systems in 1974. A self-
stabilizing system, regardless of the initial states
of the processes and initial messages in the links,
is guaranteed to converge to the intended behavior
within finite time. Dijkstra introduced the prop-
erty of self-stabilization in distributed systems and
applied it to algorithms for mutual exclusion on a
ring [5]. A solution to the mutual exclusion prob-
lem on a ring is to implement a token circulating
from one process to the next in one direction; the
token moves around the ring and a process having
the token is granted access to the shared resource
and may execute the code in the critical section;
Brown, Gouda, and Wu take this view in [2]. Several
self-stabilizing token passing algorithms for different
topologies have been proposed in the literature [16]:
Dijkstra [5], [6], [7], Burns and Pachl [3], Flatebo
and Datta [9], and Flatebo, Datta, and Schoone [10]
for a ring; Brown, Gouda, and Wu [2] and Ghosh
[11] for a linear array of processors, and Tchuente
[18] on general networks. Recently, Huang and Chen
[13] presented a token circulation protocol for a
connected network in non-deterministic depth-first-
search order, and Dolev, Israeli, and Moran [8] gave
a mutual exclusion protocol on a tree network un-
der the model whose actions only allow read/write
atomicity. A memory efficient token passing pro-
tocol on general network is presented in [15]. This
algorithm needs needs only O(1) bits per edge of the
network. In [5] Dijkstra presented a mutual exclu-
sion algorithm on a ring of 4-state machines where

G. Alari is with Unité d’Informatique, Université
catholique de Louvain, Belgium. J. Beauquier and C. Johnen
are with L.R.I./C.N.R.S., Université de Paris-Sud, France.
A. Datta and V. Thiagarajan are with Department of Com-
puter Science, University of Nevada Las Vegas.

the neighborhood relationship between the two ex-
ceptional machines is not exploited. Ghosh [11] pro-
posed an alternate solution to the 4-state mutual
exclusion problem originally presented in [5]; his al-
gorithm is simpler in the sense that the behavior of
both the exceptional machines is identical with re-
spect to their sole neighbors and the behavior of a
non-exceptional machine is symmetric with respect
to both of its neighbors.

In this paper, we propose a token passing algo-
rithm for tree networks that works under the dis-
tributed daemon execution model; our approach is
based on the 4-state algorithm of Dijkstra [5] and
its variation by Ghosh [11]. Although our algorithm
relies upon an underlying tree network topology it
is not less general than the protocol in [13] since
a spanning tree of a network can be obtained by
a number of self-stabilizing algorithms [1], [4], [12],
[17]. Token passing on a spanning tree thus places
no restriction on the topology of the underlying dis-
tributed system.

The remainder of the paper is organized as fol-
lows. In the next section, we introduce the sys-
tem model and the formal definition of the prob-
lem. The token passing algorithm and the informal
description of the algorithm are presented in Sec-
tion ITI. Section IV provides the proof of correct-
ness. Finally, we make our concluding remarks in
Section VI.

II. MODEL, NOTATION, AND PROBLEM
DEFINITION

A. Model

We model a distributed system by an undirected,
connected graph G = (V,E) where V and E are
the set of vertices (or nodes) and set of edges, re-
spectively. The vertices represent the processes and
links are denoted by the edges of the graph. Exist-
ing methods can be used to construct a rooted span-
ning tree ' = (V, E’) of G with E' C E in a self-
stabilizing manner. Our algorithm then provides
the token passing on the underlying tree topology.
We will denote by P; : i € {1..n} the set of system
processes, where |V| = n, and by P, the root process
of T'. Every process P; in the system has a multiple-

reader/single-writer register r; which is serializable
with respect to read and write operations.

Our model supports composite atomicity so that
a process can read the value of its own and its
neighbors’ registers and write its register in a sin-
gle atomic step. The composite atomicity model
is more restricted than the read/write model in
which a single read or write operation constitutes
an atomic step. However, by a simple modifica-
tion according to the method described in [1] and
[14], our protocol may be used in the more general
read/write atomicity model.

B. The Problem

The problem of mutual exclusion is to ensure that
at most one process can execute (or enter) the criti-
cal section at any time, and in a finite time, all pro-
cesses get a chance to execute the critical section.
network while ensuring that fairness is preserved.

In a distributed system, the global state can be
defined as the vector of all local states. For pur-
poses of self-stabilization, the set of all global states
G is partitioned into two sets: the set L of legitimate
states, and the remainder Z = G\ £, the set of illegit-
imate states. An algorithm is called self-stabilizing
if the following two conditions hold: first, starting
from an arbitrary global state, the system reaches a
legitimate state within a finite amount of time; sec-
ond, any step taken while it is in a legitimate state
causes a transition to a legitimate state. The re-
quired properties for a self-stabilizing token passing
algorithm are:

Token System Token Uniqueness: In alegitimate
state, there exists no more than one token at any
time.

Fairness or Starvation-Freedom: If a state is legit-
imate, then every process obtains the token within
a finite amount of time, and may thus execute the
critical section code.

Self-Stabilization Stability or Closure: If a state
is legitimate, then after the the daemon schedules
an action, the corresponding state transition results
in a legitimate state.

Finite Convergence: Starting from any system
state, the system will reach a legitimate state af-
ter a finite time.

III. ToKEN PASSING ALGORITHM ON A TREE

The state of each process P; is maintained by a
read/write register r; containing the following fields:

’I"Z[d the id of P1
ri.Parent the id of the parent of P;,

except for the root, which has zero

r;.S the state of P;
ri.FirstChild the first child of P;
r;.CurrentChild the child P; is considering

We assume that every process maintains a circular
list of its children (in the tree 7' = (V, E')). We will
denote the list of process P; by ChildrenList(i). A
special element of this list is designated to be the
first child of the process. Note that this list need
not be stored at a process, and can be easily com-
puted by a process P; from the state of the neighbors
and the total order of the process identifiers. ;.5
is in {0,2} if P; is the root of the tree, in {1,3} if
P; is a leaf, and in {0,1,2,3} otherwise. r;.Id is a
non-corruptible constant. 7;.Parent is maintained
by the underlying self-stabilizing spanning tree pro-
tocol so that r,..Parent is null. Obviously, the leaf
processes set ;. FirstChild and r;.CurrentChild to
null.

In order to simplify the presentation of the rules,
the following macros are used in the algorithm (all
macros are defined for P;):

NEXTCHILD(i)
{return ChildrenList(r;.CurrentChild).next;}
LASTCHILD(i)
{if (NEXTCHILD(i) = r;.FirstChild)
then return TRUE); else return FALSE; }
CURRENTCHILD(i)
{if (7, parent-CurrentChild = r;.I1d)
then return TRUE; else return FALSE; }
The algorithm for process P; is given below.
{For the root process P, }
RO = (Trr.CurrentChild-S = T’I’"S + 1) A
~ LASTCHILD(r)
— r..CurrentChild .= NEXTCHILD(r)
R1 = (TT,‘.CurrentChild-S = ’rr-S +]-) A
LASTCHILD(r)
— r.S =S 4 2
rr.CurrentChild :== NEXTCHILD(r)
{For the leaf process P;}
R2 (rryParent-S = 1.8 + 1) A
CURRENTCHILD(i)
— ri.S =S+ 2
{For the interior process P;}
R3 (rnlpwent.s = .S +].) AN
CURRENTCHILD(1)
— ri.S =S+ 1
R4 = (rri.CurrentChildS = Ti~S + 1) A
~ LASTCHILD(i)
— r.CurrentChild := NEXTCHILD(i)

1

LAll + operations in the rules are modulo 4.

R5 = (Tm.CurrentChild-S = r.S + 1) A
LASTCHILD(37)
— rp.S =S+ 1
ri.CurrentChild := NEXTCHILD(i)
We associate to rules R1, R2 and R3 the ability to
hold the token and access the shared resource.

We now describe the system dynamics at stabi-
lization, i.e., how the token circulates when the sys-
tem is already in a legitimate state. The details of
how the system stabilizes will be given in Section I'V.

Suppose that the system is in a legitimate state
L € L such that the root has an even value of S (say
x), all other processes have the same odd value of S
(z+1), the root’s CurrentChild is its last child (say
Pi), and every other process’ CurrentChild is its
FirstChild. The current state is a legitimate state
since the only process to enjoy a privilege (rule R1
is true) and to have the token is the root P,.; P, may
execute the critical section, then P, will change r,..S
to x + 2, and advance its CurrentChild pointer to
its FirstChild (say P;). P; now has the token (rule
R3); it gets its turn to access the shared resource,
and later moves changing ;.5 to x 4 2. The token
continues to traverse down the tree from the root
following the FirstChild pointers until it reaches
a leaf process (say P,); every process in the path
from the root FirstChild to P, ’s parent P, got
the token once (rule R3) and possibly entered the
critical section. Suppose that all the children of P,
are leaf processes. P,,, has the token and by rule
R2 accesses the shared resource and changes its S
to £+ 3. This amounts to backtracking the privilege
(not the token) to its parent P,, that now moves by
rule R4 passing the token to Pp,,’s next child (say
P,,,) which gets its turn to enter the critical section
(rule R2). The above process continues until P,
points to its last child (say Py,). Pm, accesses the
resource, increments its S value to x + 3 by rule R2
passing again the privilege to P, that now, by rule
R5, advances its CurrentChild to its FirstC'hild
P,,, and changes its S to x + 3 (equal to its last
child’s S). The case when not all children of P, are
leaf processes is analogous; it is sufficient to repeat
the same arguments to each subtree rooted at P,,’s
non-leaf children.

Let us run the system until the last child of the
root, Py, moves by rule R5 or R2 setting r.S to 43
and pointing again to its FirstChild and call this
final global system state L’. It should be obvious
now that starting from L, the token traverses the
tree in depth-first-search (DFS) order. When the
DFS completes, the system state L’ is equivalent
to the initial one: the root has r..S = z + 2, all
other processes have S = x + 3; P, points to its

LastChild Py, and all other processes point to their
FirstChild.

IV. PROOF OF CORRECTNESS

Definition 1: A privilege is a program guard
whose corresponding action allows a process to mod-
ify the value of the “state” field of its read/write
register.

Definition 2: A semi-privilege is a program guard
whose corresponding action allows a process to mod-
ify the value of some of the register fields but not
the “state” field.

The execution of an action due to a (semi) privilege
is called a move and a process P; is said to enjoy
a (semi) privilege when at least one of its guards is
satisfied and the process can make the correspond-
ing move. We will denote by P_Priv(i) a privi-
lege depending on the value of S of the Parent
of process P; (see guards of rules R2 and R3), by
C_Priv(i) a privilege depending on the value of S
of the LastChild of P; (see guards of rules R1 and
R5) and by S_Priv(i) a semi-privilege depending on
the value of S of the CurrentChild (different from
its LastChild) of P; (see guards of rules RO and R4).

Definition 3: A process P;, i # r holds a token if
P_Priv(i) is satisfied, and the root P, holds a token
it C_Priv(r) is true.

Observation 1: A (semi) privilege is always re-
lated to a pair of processes (P;, P;) where
P, = rj.Parent, P; = r;CurrentChild, and
P_Priv(j) — ~ (C_Priv(i) V S_Priv(i)). Further-
more, if |r;.S — r;.S| mod 2 = 1, then one and only
one among C_Priv(i), P_Priv(j), and S_Priv(i) is
satisfied.

Lemma 1: If P; is such that even(r;.S), then
there exists at least one process enjoying a (semi)
privilege in the path from P; to a leaf process fol-
lowing the CurrentChild pointers downwards.
Proof: The proof derives directly from Observa-
tion 1 and the fact that leaf processes have odd
values of S. a

Lemma 2: There is at least one (semi) privilege
in the system (no deadlock).

Proof: This follows directly from Lemma 1 and the
fact that the root may only have an even value of
S. O

Lemma 3: Every process must make a move in a

finite amount of time.

Proof: Proof by contradiction.

Assume that process P; with r;.S = x does not
move. Then, the processes in the subtree T; rooted
at P; may move only a finite number of times; oth-
erwise, S of P;’s current child could reach the value
x+1 and either C'_Priv(i) or S_Priv(i) would hold.

Let « be even. Then by Lemma 1, there will al-
ways be at least a (semi) privilege in the subtree T;
contradicting the above hypothesis.

If x is odd, then the parent of P; must move only a
finite number of times; otherwise, it could reach the
value x—1 and enable P, when CURRENTCHILD
is satisfied. This argument must hold for all pro-
cesses in the path from P; up to the root process.
This contradicts the fact that root, always having
an even value of S, must make a move in a finite
amount of time. m|

Corollary 1: Eventually every process will enjoy a
privilege and thus change its S field (no starvation).
Proof: Since by Lemma 3 every process must make a
move in a finite amount of time, if P; never changes
7.9, it must always move due to a semi-privilege.
This is a contradiction since, when LASTCHILD
holds, P; may only move by Rules (R3) and (R5)
and thus change r;.S. |

We now define the set £ of legitimate states and
prove the closure of £ and the finite convergence of
our algorithm to a state L € L.

Being the set of global states G the product space
of all local states, we define the set L of legitimate
states for our token passing algorithm as follows:

Definition 4: Let p(i) be the number of (semi)
privileges enjoyed by P;. L = {g€ G| X, p(i) =
1)

This means that in a legitimate state there must be
only one process enjoying only one (semi) privilege.

Observation 2: The only case in which a move
by process P; may generate two (semi) privileges is
when C_Priv(i) is satisfied and the following condi-
tions are satisfied (see Figure 1 for an example): let
P, be P;’s parent, P; and Pj be the first and last
child of P;, respectively; |r;.S — rp.S| mod 2 = 0,
.S —r;.S| mod 2 =0 and 7.5 = r;.S + 1. After
P; moves, its CurrentChild is P; and Observation
1 holds for the pair of process (P;, P;) and (P,, P;).
In all other cases, a move may never produce more
than one new (semi) privilege.

Observation 3: It follows from Observation 2 that
if P; is parent of leaf processes only, (i) it can never
create two new privileges since its children are forced
to have odd values of S, (ii) the state transition
odd(r;.S) — even(r;.S) may only happen due to
P;’s parent.

Lemma 4: The set L of legitimate states is closed
under algorithm execution (stability or closure).
Proof: By Lemma 1, the system will always have at
least one (semi) privileged process. This is sufficient
to avoid a deadlock situation in which no (semi)
privileged process exists. Thus, all that we need to

Fig. 1. Creating two new privileges in a single move:
privileged processes are shaded and bold lines denote
CurrentChild pointers

prove is that the system, starting from a legal state
in which there is a single (semi) privilege, will never
have more than one (semi) privilege (Definition 4).

Observation 2 shows the only situation where a
move by a (semi) privileged process may generate
two new (semi) privileges. This situation would take
the system into an illegitimate state. Now, we need
to prove that if a configuration, as described in the
right side of Figure 1, is present in a global state,
then this state cannot be a legitimate state.

From the configuration used in Observation 2, if
r;.S is even, ;.5 is also even. Then, by Observa-
tion 3, P; is not a leaf process, and from Lemma
1, there exists at least one more (semi) privilege in
the path from P; to the leaf processes following the
CurrentChild pointers.

On the other hand, if r;.S is odd, then r;.S is
even. As above, P, is not a leaf and there exists
at least one (semi) privilege in the path from P
to the leaf processes. In both cases, there are at
least two (semi) privileges and the system is not in
a legitimate state. a

We will now prove that the convergence with re-
spect to L is guaranteed by the algorithm.

Lemma 5: Consider a subtree T; rooted at P;
such that P;’s k children F;, ... F;, are all leaf pro-
cesses. After at most k& moves of P;, all processes in
T; will have odd values of S.

Proof: It odd(r;.S), then the Lemma is proved. Let
even(r;.S) and r;.S = x. Then by Corollary 1, P,
will change ;.S by Rules (R3) or (R5) in a finite
amount of time and in both cases, r;.S will become
odd. In the worst case, when r; .S = x —1, j:
1.k, and the CurrentChild of P; is P;,, P; enjoys
k — 1 semi-privileges which makes P; point to its
LastChild P;,. Then P; enjoys a privilege (due to

its parent or last child) to increment r;.S to « + 1.
O

Lemma 6: The system will eventually converge to
a state where all processes but the root have an
value of S state and thus there is only one privileged
process (convergence).
Proof: Proof by induction on the height 2.
1. height = 1:
The system is composed only of the root and n — 1
leaf processes and the lemma holds from Observa-
tion 1 and the fact that leaf processes have odd val-
ues of S and the root has an even value of S.
2. height = I:
Assume that the lemma holds for a tree of height at
most [— 1 > 0. Consider a subtree T; as defined in
Lemma 5 where P; is at level [—1 and P;’s k children
P, ... P, atlevel . Let P; be the parent process of
P; and, without loss of generality, let all values of S
values in T; be odd and r;.S = x. Then eventually,
P_Priv(i) will hold (Corollary 1), and P; will move
changing its state value from x to r;.5 = x + 1 by
rule (R3). By Corollary 1, P; must move in a finite
time and increment r;.S to x+2. P; may only reach
2+ 2 due to a privilege from its parent or a privilege
from its last child. If P; moved because of its last
child, it implies that P; set r;.S to « + 2 and that,
with respect to P;, the subtree T; is functionally
equivalent to a single leaf process because the only

way P; may affect P; is by the state transition st
x + 2 with z and = + 2 being odd. We may then
fuse all processes in 7T; by only considering the single
process P;. This “fusion” process applies to all non-
leaf processes at level [— 1 and thus in a finite time
we reduce the height of the tree by one. O
Theorem 1: The algorithm of Section III is a self-
stabilizing algorithm with respect to the set of le-
gitimate states L.
Proof: 1t follows directly from Lemmas 4 and 6. O
Now we need to prove that the algorithm of Sec-
tion III also satisfies the Fuairness property. We will
also show that our algorithm implements a strictly
3 fair token circulation scheme.
First, we show that eventually the system reaches
a state where all processes but the root have the
same odd value of S. Next we demonstrate how the
token is passed in the network. Then our claim of
strictly fair token passing will be obvious.
Definition 5: A legitimate state S € L is a Start
state if the following condition holds:

2The height of a tree is defined as the maximum level of
the nodes of the tree. The level of a node is one plus the level
of its parent, the level of the root being zero.

3A strictly fair token circulation scheme implies that every
process gets the token equal number of times.

LASTCHILD(r) = TRUE AYi # r | ((r;.S =
rr.S+1)A(r;.CurrentChild = r;. FirstChild)), i.e.,
the root has an even value of S (say x), all other
processes have the same odd odd value of S (x +
1), the root’s CurrentChild is its last child, and
every other process’ CurrentChild is the process’
FirstChild.

Lemma 7: Consider a subtree T; rooted at pro-

cess P; such that P;’s k children P;, ... P;, are all
leaf processes. Starting from an arbitrary legitimate
state, after at most 2(k —1) moves of P;, all leaf pro-
cesses in 1; will have the same odd value of S and
P;’s CurrentChild will be its LastChild.
Proof: Assume that all processes in 7; have odd
values of S (Lemma 6). Since the system is in a
legitimate state, from Corollary 1, in a finite time,
P_Priv(i) is satisfied and P; makes a move setting
r;.S to x such that even(z). Next, again in a finite
time, C'_Priv(i) is satisfied and P; increments r;.S
tox + 1.

Let P;; : i@ < j < k be the current child of F;
when ;.5 becomes even and the only (semi) priv-
ilege of the system is confined in T;. It is easy to
verify that it takes exactly £ — j moves of P; so that
r;.CurrentChild = P;, (i.e., P; points to its last
child) and r;_.S = x+1, c: j..k. Assume that j = 1.
Then P; is in the state even(x) and is pointing to
its FlirstChild, and the lemma is proved. Now as-
sume that j > 1. First consider the case when P; is
not the root. P; makes the (k — j + 1) move, sets
r;.S to x+ 1, and points to its FirstC'hild P;,. The
next time P_Priv(i) is satisfied, P; goes through the
state transition x + 1 — x + 2, and then it makes
exactly & — 1 moves after which all its children have
the value of S equal to x + 3, and P;’s current child
is its last child. Summing up, the total number of
moves of P;is 2k—j4+2for1 < j < k,and kif j = 1.
On the other hand, if P; is the root, it always have
an even value of S and the total number of moves
is2k—jforl<j<k,and k—1if j=1. |

Corollary 2: Consider the subtree T; as defined in
Lemma 7 where P; # P,.. Starting from an arbitrary
legitimate state, after at most 2k+1 moves of P;, the
system reaches a state where P; has an even value
of S (=r;.S), all other processes in T; have the same
odd value of S (=r;.S + 1), and P;’s CurrentChild
is its FirstChild.

Proof: Follows from Lemma 7. a

Lemma 8: Starting from a legitimate state, the
system will eventually converge to a Start state.
Proof: Proof by induction on the height.

1. height = 1:
The system is composed only of the root P, and
n — 1 leaf processes P, ... P, ;. By Lemma 7 in at

most 2(n — 2) moves of P,, all leaf processes will
have the same odd value of S and the system will
be in a Start state.

2. height = I:

Assume that the lemma holds for a tree of height at
most (I—1) > 0. Consider a subtree T; as defined in
Lemma 7 where P; is at level [— 1 and P;’s children
Py ... P, are at level [. By Corollary 2, since P;
is not the root, after at most 2k + 1 moves of P;,
all processes in 7; have the same odd value of S
and P;’s CurrentChild is its FirstChild. By using
similar arguments as in Lemma 6, we may fuse all
processes in T; by considering the single process P;
thus reducing the height of the tree by one. O

The choice of associating a token to the rules R1,
R2, and R3 only should be clear from the following
observation:

Observation 4: When the system reaches a spe-
cial Start state (Lemma 8), the token traverses the
tree in the DF'S order.

Theorem 2: The algorithm of Section III is a self-
stabilizing token passing algorithm on a tree struc-
tured network. The token traverses the tree in the
DFS order, hence implementing a strictly fair token
management scheme.

Proof: Follows from Lemma 8 and Observation 4.
O

V. DISTRIBUTED DAEMON

In this section we will show that the algorithm
presented in Section III is such that the simultane-
ous moves of any subset of processes enjoying (semi)
privileges can be serialized. So, the arguments used
in proving closure and convergence in Section IV re-
main valid also for the distributed daemon model.
Then we can claim that the algorithm of Section
IIT solves the mutual exclusion problem on a tree
structured system in the presence of a distributed
daemon.

Definition 6: We define a privilege chain « as
a list of length |a| of successive (semi) priv-
ileged processes Pp---Pq such that Pyi1 =
ri.CurrentChild, 1 < k < |a|. A maximal privi-
lege chain is a privilege chain such that the parent
of the first process (if it exists) and the current child
of the last process (if it exists) are not privileged.

Definition 7: We will say that a process P; inter-
feres with another process P; if both P; and P; enjoy
a (semi) privilege, and a move by P; may cause P;
lose its (semi) privilege.

Remark 1: Processes executing in distinct max-
imal privilege chains cannot interfere with each
other.

Let ¥ = {P,C, S, R} be a finite alphabet of sym-
bols. It is possible to associate a privilege chain «
to a finite string o of symbols in ¥ of length |«| such
that the following conditions are true:

(i) P; is the i'" process in a.

(ii)) o = P — P_Priv(7).

(iii) o5 = C — C_Priv(i).

(v) o = S — S_Priv(i).

(v) o, = R — (P-Priv(i) A (S_Priv(i) V
C_Priv(i))), i.e., P; enjoys two (semi) privileges.

Lemma 9: Let a be a privilege chain and o its
corresponding string, then ¢ = P*.R*.{C, S} k==
where [= |af, z € {0,1}, and 0 < k <1 —j.

Proof: The proof follows directly from the fact that
if P; and P; are two successive processes in the priv-
ilege chain « such that P;’s parent is P;, from Ob-
servation 1, if P_Priv(j) holds, then (C_Priv(i) V
S_Priv(i)) cannot hold. O

Lemma 10: The simultaneous execution of moves
of the processes in a privilege chain « are serializ-
able.

Proof: Let 0 = P*.R*.{S,C}'=*=J correspond to a
privilege chain «. Consider the following schedule
of moves:

1. 2=0:

P; moves before P;_; for 1 < ¢ < k and before P4
for k <i <.

2. z=1:

If the processes move simultaneously, if Py1 moves
according to rule (R3), then let P, move before P;_;
for 1 <¢ <k+1 and before P for k+1 < i <.
Otherwise, if Pyy; moves according to rule (R4) or
rule (R5), let P; move before P;,_; for 1 < i < k and
before P11 for k+1<¢ <.

It is easy to verify that the above serial schedule
of moves results in a final state that is the same as
the one reached if all processes in o had moved si-
multaneously. a

Note that the above lemma holds for any privilege
chain and in particular, for any subset of a maximal
privilege chain.

Theorem 3: Any simultaneous execution of moves
in the system is serializable. Thus the algorithm in
Section III solves the mutual exclusion problem in
the presence of a distributed daemon.

Proof: 1t follows directly from Lemma 10 and from
the fact that simultaneous moves in different max-
imal privilege chains cannot interfere with each
other. |

VI. CONCLUSIONS

In this paper, we presented an algorithm for self-
stabilizing distributed mutual exclusion on a span-

ning tree under the composite atomicity model and
distributed daemon hypothesis. We first proved its
correctness under the more restrictive central dae-
mon model of execution and then we extended the
proof to the distributed daemon case by showing
serializability of simultaneous moves.

The algorithm may be applied to distributed sys-
tems whose interconnection network is a connected
graph by using layering techniques and combining it
with one of the well known self-stabilizing spanning
tree algorithms such as [1], [4].

The algorithm in [13] is a non-deterministic
depth-first-search token circulation on a connected
network whereas ours is a deterministic token cir-
culation algorithm on tree networks. Furthermore,
unlike [13], we formally prove the correctness of
our algorithm under the distributed daemon exe-
cution model. With respect to [8], one limitation of
our protocol is that it works under the distributed
daemon with the composite atomicity model which
is a stricter model than the read/write atomicity
model used in [8]. However, Arora and Gouda in
[1] and Huang, Wuu, and Tsai in [14] showed a
simple method to transform a protocol designed for
the composite atomicity model to an equivalent one
working under read/write atomicity.

Both our protocol and the protocol of [8] proceed
in phases or rounds starting with the token at the
root process of the tree network and terminating
when the token returns to the root process itself.
However, the algorithm presented in this paper im-
plements a strictly fair token circulation policy in
which every process gets the token exactly once dur-
ing a phase, whereas in [8], a process gets the token
d times during a single round, where d is the de-
gree of the node representing the process. Thus, if
the resource needing mutual exclusion is critical for
all processes in the system and if the degree of con-
tention for this resource is high, then our protocol
assures an equal distribution of accesses to all the
system units.

Our algorithm requires O(log n) space because
we need to store the Id, FirstChild, CurrentChild
and Parent process identifiers; the variable S re-
quires only two bits. The algorithm in [8] uses O(9)
memory where § is the maximum degree of a node
and Huang and Chen [13] have shown that their al-
gorithm needs O(n) memory.

If we implement our algorithm of Section III us-
ing read/write atomicity actions only, following the
method in [1], we only need two additional 4-state
variables at each process to maintain a copy of
Parent.S and CurrentChild.S. Thus, the memory
requirement of our algorithm still remains O(log n).

(10]

11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

REFERENCES

A. Arora and M. Gouda, “Distributed Reset,” Proceed-
ings of the 10th Conference on Foundations of Software
Technology and Theoretical Computer Science, Banga-
lore, India, December 17-19, 1990, pp.316-331, Lec-
ture Notes in Computer Science 472, Springer-Verlag;
also IEEE Transaction of Computers, Vol. 19, No. 11,
November 1993, pp. 1026-1038.

G. Brown, M. Gouda, and M. Wu, “Token Systems that
Self-Stabilize,” IEEE Transactions on Computers, Vol.
38, No. 6, June 1989, pp. 845-852.

Burns J. and Pachl J. “Uniform Self-Stabilizing Rings,”
ACM Transactions on Programming Language and Sys-
tems, Vol. 11, No. 2, 1989, pp. 330-344.

N. Chen, H. Yu, and S. Huang, “A Self-Stabilizing Al-
gorithm for Constructing Spanning Trees,” Information
Processing Letters, Vol. 39, 1991, pp. 147-151.

E. W. Dijkstra, “Self-Stabilizing Systems in Spite of
Distributed Control,” Communications of the ACM 17,
1974, pp. 643-644.

E. W. Dijkstra, “Self-Stabilization in Spite of Dis-
tributed Control,” in Selected writings on computing: a
personal perspective, Springer-Verlag, Berlin, 1982, pp.
41-46.

E. W. Dijkstra, “A Belated Proof of Self-Stabilization,”
Distributed Computing, Vol. 1, No. 1, January 1986, pp.
5-6.

S. Dolev, A. Israeli, and S. Moran, “Self-Stabilization
of Dynamic Systems Assuming only Read/Write Atom-
icity,” Proceedings of the 9th Annual ACM Symposium
on Principles of Distributed Computing, Quebec City,
Canada, pp. 103-117, 1990; also Distributed Computing
Vol. 7, 1993, pp. 3-16.

M. Flatebo and A. K. Datta, “Two-State Self-Stabilizing
Algorithms for Token Rings,” IEEE Transactions on
Software Engineering, June 1994, pp. 500-504.

M. Flatebo, A. K. Datta, and A. A. Schoone, “Self-
Stabilizing Multi-Token Rings,” Distributed Computing,
Vol. 8, 1995, pp. 133-142.

S. Ghosh, “An Alternate Solution to a Problem on
Self-Stabilization,” ACM Transactions on Programming
Languages and Systems, Vol. 15, No. 4, September 1993,
pp. 735-742.

S. Huang and N. Chen, “A Self-Stabilizing Algorithm
for Constructing Breadth First Trees,” Information Pro-
cessing Letters, Vol. 41, January 1992, pp. 109-117.

S. Huang and N. Chen, “Self-Stabilizing Depth-First To-
ken Circulation on Networks,” Distributed Computing,
Vol. 7, 1993, pp. 61-66.

S. Huang, L. Wuu, and M. Tsai, “Distributed Execution
Model for Self-Stabilizing Systems,” Proceedings of the
14th International Conference on Distributed Comput-
ing Systems, Poland, 1994, pp. 432-439.

C. Johnen and J. Beauquier, “Space-Efficient Dis-
tributed Self-Stabilizing Depth-First Token Circula-
tion,” Proceedings of the 2nd Workshop on Self-
Stabilizing Systems, Las Vegas, Nevada, 1995, pp. 4.1-
4.15.

M. Schneider, “Self-Stabilization,” ACM Computing
Surveys, Vol. 25, No. 1, March 1993, pp. 45-67.

S. Sur and P. K. Srimani, “A Self-Stabilizing Distributed
Algorithm to Construct BFS Spanning Trees of a Sym-
metric Graph,” Parallel Processing Letters, Vol.2, No. 2
& 3, September 1992, pp. 171-180.

M. Tchuente, “Sur 'auto-stabilisation dans un reseau
d’ordinateurs,” RAIRO Informatique Theorique 15, No.
1, 1981, pp.47-66.

