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Abstract

A distributed system is commonly modelled by a
graph where nodes represent processors and there is an
edge between two processors if and only if they can com-
municate directly. In shared-registers versions of this
general description, neighbouring processors communi-
cate by reading or writing shared registers, where each
read or write is one atomic step. Variants of shared reg-
ister models occur in the literature. This paper de�ned
two models of shared registers determined by selecting
the register locations. In the atomic-state model each
processor has a register; in the atomic-link model, each
communication link has a register.

We determine under what conditions and with what
robustness and/or failure-tolerance guarantees it is pos-
sible to transform a solution under the atomic-state
model into a solution under the atomic-link model. The
fault-tolerant models considered in this paper are wait-
freedom and self-stabilization.

These questions are addressed by �rst establishing a
framework for de�ning correct transformations, which
may be useful for similar studies of the relationship be-
tween various models of distributed computation.

Keywords: distributed algorithms, communication
models, shared atomic registers, single-readers, multi-
readers, wait-freedom, self-stabilization.

1. Introduction

Network communication models There is a pro-
liferation of network communication models for dis-
tributed computing consisting of both shared memory
and message passing paradigms. Di�erent communi-
ties adopt di�erent variants as the \standard" model

for their research setting. Some are less realistic but
support easier reasoning; others more closely capture
reality but are harder to work with. In the �rst pa-
per on self-stabilizing distributed algorithms [5], Dijk-
stra assumed that in a network, each processor could
read the state of each of its neighbours and update its
own state in one atomic step. Let us call the model
used by Dijkstra the composite state model. Dolev, Is-
raeli and Moran [7] introduced a read/write atomicity
model for self-stabilizing algorithms to better capture
the actual possible communication between processors.
In their model, for each link between two processors,
there are two single-writer/single-reader atomic regis-
ters, each one writable by one processor and readable
by the other [7, 6]. This model can be used to simulate
a message passing setting. Let us call this model the
atomic-link model.

Many subsequent papers have used similar atomic
register models. Furthermore, much research has been
dedicated to constructing compilers that translate pro-
grams designed for the composite state model to pro-
grams that are correct and e�cient assuming only
read/write atomicity. There is, however, an impor-
tant distinction between the two variants of read/write
atomicity assumed in the self-stabilization literature.
In several papers, the read/write atomicity model as-
sumes that a single-writer/multi-reader atomic regis-
ter resides at each processor and each processor owns
the registers that it holds [17]. Each such register is
writable by the owner and readable by each neighbour
of the owner. Let us call this model the atomic-state
model. In both the atomic-state and atomic-link mod-
els, an atomic step by a processor consists of either
reading or writing one of the available registers. We
are interested in the di�erences between the atomic-
state and atomic-link models, and in determining the



existence of compilers between these two models.

As the size and complexity of networks increases,
the likelihood of failure of a component somewhere
in the system increases. This motivates us to design
algorithms (and compilers) that have built-in fault-
tolerance. The fault-tolerant models considered in this
paper are wait-freedom and self-stabilization.

Informally, an operation is wait-free if no processor
invoking the operation can be forced to wait inde�-
nitely for another processor [9]. Such robustness im-
plies that stopping failures (or very slow execution) of
any subset of processors cannot prevent another pro-
cessor from correctly completing its operation. Since
unbounded waiting is prohibited, wait-free algorithms
are necessarily lock-free. Wait-free implementations
avoid well-known problems such as deadlock and live-
lock. Most of the research on wait-free implemen-
tations, however, assumes a globally shared memory
model, where each processor can read and write any
register, which is substantially stronger than either the
atomic-state or atomic-link network models.

Informally, a self-stabilizing system is guaranteed to
converge to the intended behavior in �nite time, re-
gardless of the initial states of either the processors
or the communication registers. An algorithm is self-
stabilizing if, after a burst of transient errors of some
components of a distributed system (which leaves the
system in an arbitrary con�guration), the system re-
covers and returns to the speci�ed con�gurations. If a
self-stabilizing algorithm is general enough, it can also
deal with topology change, so that the system will still
automatically converge to eventually have a correct be-
havior as the network topology changes over time.

Related research There are several papers [2, 17]
that provide self-stabilizing compilers from the com-
posite state model to atomic-state model for various
sets of network topologies. Antonoiu and Srimani's
compiler [2] applies to general topologies where pro-
cessors have distinct identi�ers. It depend on un-
bounded timestamps. The same paper also presents
a self-stabilizing compiler for any spanning tree net-
work that uses bounded timestamps. To ensure safety,
Antonoiu and Srimani's compilers require that no pro-
cessor enters the critical section while the timestamps
are \wrapping around". Nesterenko and Arora's com-
piler [17] is based on a bounded space self-stabilizing
dining philosophers protocol for systems with atomic-
state registers. The processors require distinct identi-
�ers and every processor has to participate even if its
does not want to perform an operation.

Dolev [6] presents several techniques for converting
a self-stabilizing protocol from one system to another

one. For instance, in networks with distinct identi�ers,
to get a self-stabilizing compiler from composite state
systems to atomic-link systems, one can fairly compose
Dolev's [6] self-stabilizing Leader Election in atomic-
link systems with Dolev et.al. [7] self-stabilizing Mutual
Exclusion.

Wait free (but not self-stabilizing) transformation
from one register model to another one have been ex-
tensively studied [1, 8, 16, 3]. Hoepman, Papatrian-
fa�ou and Tsigas [12] presented self-stabilizing versions
of well-known implementations of shared register. For
instance, they present a wait-free self-stabilizing imple-
mentation of a multi-writer/multi-reader atomic regis-
ter using single-writer/dual-reader regular registers of
unbounded size. These implementations require glob-
ally shared memory.

In the full version of this paper[11], we study the re-
lationships between four di�erent models: the atomic-
state, and the atomic-linkmodels and the two corre-
sponding models where the registers are only regular
rather than atomic. We determine the existence or
not of wait-free compilers between these models. We
present a self-stabilizing compiler from any of these
four models to any other one.

Paper organization Section 2 de�nes the commu-
nication models atomic-state and atomic-link, and
the fault-tolerance requirements wait-freedom and self-
stabilization. We formalize the notion of a compiler
from a network using one communication model to the
same network topology where communication assumes
a di�erent model. The brief Section 2.2 lists some re-
lationships between wait-freedom and self-stabilization
that are exposed by their formal de�nitions.

Sections 3 and 4 present our main impossibility and
possibility results respectively. Section 3 establishes
that there is no general wait-free compiler from atomic-
state networks to atomic-link networks. The proof pro-
ceeds by showing that any such compiler would require
shared registers between any two processors, which is
not the case in general networks. The proof relies
heavily on the proof ([3], page 222) that in any wait-
free construction of a single-writer/multi-reader atomic
register from single-writer/single-reader atomic regis-
ters, some reader must write. In section 4, we present
a self-stabilizing compiler from networks where neigh-
bours communicate via atomic-state registers to sys-
tems where neighbours communicate via atomic-link
registers.



2. De�nitions

2.1. Distributed systems

Shared registers Let R be a single-writer/multi-
reader register that can contain any value in domain T .
R supports only the operations read and write, each
of which has a time interval corresponding to the time
between the operation invocation and its response. Be-
cause there is only one writer, write operations to
R happen sequentially, so they cannot overlap. read
operations, however, may overlap each other and may
overlap a write. Lamport [15] de�ned three types of
such registers depending of the semantics when read

and write operations overlap. Let I be a set of read
and write operations labelled with their time inter-
vals. Register R is atomic if (i) each read that does
not overlap any write returns the value of the most
recent preceding write, and, (ii) if a read overlaps a
write and returns the value being written, then any
subsequent read that overlaps the same write must
not return the value of a preceding write. A sequence
of read and write operation intervals on an atomic
register is valid for atomic registers (or just valid) if
each read interval in the sequence satis�es this con-
dition. This de�nition of validity is equivalent to the
de�nition of Linearizability [10] of read and write op-
erations on registers.

Network models A distributed network can be
modelled by a graph G = (V;E) where V is a set of
processors and an edge hpqi 2 E if and only if proces-
sors p and q can communicate directly. Several variants
have been de�ned depending on the precise meaning of
\communicate directly". In this paper we consider two
variants where each processor uses a collection of lo-
cal registers accessible only to itself and communicates
with its neighbours via shared registers. The way these
registers are shared distinguishes the models.

In the atomic-state network model, each processor p
owns a single-writer multi-reader shared atomic regis-
ter Rp, which is writable by p and readable by each of
the p's neighbours. In one step a processor can either
read an atomic register of one of its neighbours (stor-
ing its value into its own local variables) or write its
own shared atomic register. In an atomic-state network
model, the write and read operations are denoted:

� atomic-state-write(R, �) to denote the write
of value � to the shared register R.

� �  �atomic-state-read(R) to denote the read
of the shared register R that returns the value �.

In the atomic-link network model, for each edge
hpqi 2 E, there are two single-writer, single-reader
atomic registers. Register Rpq is writable by p and
readable by q; register Rqp is writable by q and read-
able by p. In one atomic step a processor can ei-
ther read one of the shared registers to which it has
read access, or write a shared register to which it has
write access. The atomic-link model is identical to a
model used by Dolev, Israeli and Moran [7]. In an
atomic-link network model, the write and read op-
erations are denoted atomic-link-write(R, �) and
�  �atomic-link-read(R) respectively.

Distributed algorithms, distributed systems A
distributed algorithm is an assignment of a program to
each processor in the network; this assignment gives
rise to a distributed system. The assigned program
must use only the register types and operations avail-
able in the network model.

Con�gurations and computations A con�gura-
tion of a distributed system is a collection of values
assigned to all the registers of the system. Given some
non-empty subset of processors, S, and a con�gura-
tion C, the con�guration S(C) arises when, starting
in C, all processors in S simultaneously execute the
next step of their programs. A schedule is a sequence
of non-empty subsets of processors. The computation
that arises from a schedule S = S1; S2; : : : and a start-
ing con�guration C0 is the sequence of con�gurations
C = C0; C1; : : : where Ci = Si(Ci�1) for i � 1. A
Scheduler is any collection of schedules.

Some Schedulers are of particular interest. The Un-
fair Scheduler has no requirement to eventually select
each processor. A Scheduler is fair if, in every in�-
nite computation, every processor executes an in�nite
number of steps.

Distributed problems and solutions Without
loss of generality we assume that a distributed com-
putation problem is speci�ed as a predicate over com-
putations. A (deterministic) distributed algorithm A

solves problem P for network class N if for any net-
work N 2 N all computations of algorithm A on N

satis�es predicate P .

2.2. Fault-tolerance

A operation on a shared object is wait-free if every
invocation of the operation completes in a �nite num-
ber of steps of the invoking processor regardless of the
number of steps taken by any other processor.



Let L be a predicate de�ned on con�gurations. A
distributed system is self-stabilizing to L if and only
if

convergence: starting from any con�guration,
any computation reaches a con�guration satisfying
L.

closure: from any con�guration C satisfying L the
next step under any computation satis�es L.

The predicate L is called a legitimacy predicate and
when the system has converged to a con�guration sat-
isfying L we say it has stabilized.

A self-stabilizing system cannot terminate, because
otherwise it is possible that at termination a fault oc-
curs, which would never be detected and thus not cor-
rected.

Some Relationships Between wait-freedom, and
self-stabilization Some relationships are exposed
by examining the safety and liveness requirements
of the fault-tolerance models considered here (wait-
freedom and self-stabilization).
A self-stabilizing system requires:

safety: Safety (closure to con�gurations satisfy-
ing the legitimacy predicate) is required eventually
regardless of the con�guration in which the algo-
rithm begins.

liveness: System liveness (convergence to the legit-
imacy predicate) is required under a set of sched-
ules.

A wait-free implementation of an object requires:
safety: Safety is required always provided the al-
gorithm begins in one of the speci�ed initial con-
�gurations.

liveness: Unconditional liveness is required always.
Individual progress is required regardless of the
participation of other processors.

A wait-free self-stabilizing system requires:
safety: Safety (closure to con�gurations satisfy-
ing the legitimacy predicate) is required eventually
regardless of the con�guration in which the algo-
rithm begins.

liveness: Unconditional liveness is required always.
Individual progress is required regardless of the
participation of other processors.

Observe that a wait-free self-stabilizing system re-
quires the safety of self-stabilization and the liveness
of wait-freedom.

Schedulers, wait-freedom, and self-stabilization
Schedulers can be used to describe wait-freedom. The

unfair scheduler is unrestricted as to what set of pro-
cessors it chooses at each step. Thus, in these models,
any algorithm that is self-stabilizing under the unfair
scheduler, is also wait-free.

Observation 2.1 For any atomic-state or atomic-
link system, self-stabilization under the unfair Sched-
uler implies wait-free self-stabilization under the unfair
Scheduler.

2.3. System transformations and compilers

A transformation of a system on a speci�ed net-
work model to a system on another network model
(called the target model) is achieved by transform-
ing each operation available at the speci�cation level
to a program of operations available in the target
model. This paper is concerned with program trans-
formations from atomic-state networks to atomic-link
networks. Let G be a graph; denote by AS(G)
the atomic-state network with topology G, and de-
note by AL(G) the atomic-link network with topol-
ogy G. To transform an algorithm for AS(G) to an
algorithm for AL(G) we replace each atomic-state-

write and atomic-state-read by every processor
p in AS(G) with a program for p in AL(G) that
uses only local operations and the operations atomic-
link-write and atomic-link-read. Thus a pro-
gram transformation from AS(G) to AL(G) is just
a mapping, � , where �(atomic-state-write(R, �)),
and �(atomic-state-read(R)) are programs whose
operations are on registers in AL(G) and such that
�(atomic-state-read(R)) returns a value. We desire
these program transformations to preserve correctness.
Since correctness is de�ned by a predicate on computa-
tions or/and on con�gurations, and the computations
and con�gurations di�er in each network model, we
need to make precise what is meant for � to "preserves
correctness".

Let A be an program for AS(G). A computation
C of �(A) on AL(G) is Linearizable if the collection
of operation in C are valid for atomic registers. It is
straightforward to check that this correctness condi-
tion agrees with Linearizability as used by Lamport
[15] and named and used by Herlihy and Wing [10].
That is, for a Linearizable computation, there is a lin-
earization point for each write and read operation
o by A between the invocation and response of �(o)
such that, with operations ordered according to their
linearization point, each read returns the value of the
most recent preceding write to the same register. The
algorithm �(A) implements A on AL(G) if every com-
putation of �(A) is Linearizable; in this case �(A) is
an implementation of A on AL(G).



A compiler from AS(G) to AL(G) is a transforma-
tion that implements every algorithm for AS(G) on
AL(G). A transformation is a self-stabilizing compiler
if it is a compiler and it maps self-stabilizing systems
to self-stabilizing systems. A compiler is wait-free if it
maps wait-free algorithms to wait-free algorithms.

3. Impossibility of a Wait-free Com-

piler from Atomic State Systems to

Atomic Link Systems

Let G be any connected graph. Given an algorithm
Alg for an atomic-state network AS(G), we would like
to implement it on the atomic-link network AL(G).
Attiya and Welch ([3] page 366) provide a wait-free
compiler for this task provided the network G is a
complete graph. Also there are existing implementa-
tions of a multi-reader register by single-reader regis-
ters [4, 13, 18, 19] and it is straightforward to con-
vert these to a compiler from atomic-state to atomic-
link provided the network is complete. Furthermore,
the most sophisticated of these implementations [3] use
bounded time-stamps to ensure that these implementa-
tions use only bounded size single-reader registers pro-
vided the original multi-reader registers have bounded
size. In this section, we show that if G is not a com-
plete graph, then there is no compiler that can do this
conversion in a wait-free manner.

The relationship between the atomic-state and
atomic-link models is similar to the relationship be-
tween single-writer/multi-reader registers and single-
writer/single-reader registers. We �rst show any
shared memory wait-free implementation of a single-
writer/multi-reader register from a collection of single-
writer/single-reader registers must have a register
shared between each pair of readers.

Attiya and Welch ([3] page 222) show that in any
wait-free construction of a single-writer/multi-reader
atomic register from single-writer/single-reader atomic
registers, some reader must write. In fact, all construc-
tions in the literature employ a shared register between
each pair of readers. The next claim shows that, as
conjectured by Lamport [15], communication between
each pair of readers is necessary. The proof is by con-
tradiction; it constructs a computation that cannot be
linearized. The technique is inspired by that of At-
tiya and Welch. There are now writes occurring by the
readers as well as the writers, however, which can in-
uence the writer's behavior. Thus one cannot �x in
advance the sequence of writes by the writer. Instead
we construct the required computation as the execution
proceeds.

Lemma 3.1 Any wait-free implementation of a
single-writer/multi-reader atomic register from single-
writer/single-reader atomic registers must have a
single-writer/single-reader register shared between
each pair of readers.

Proof: LetR be the single-writer/multi-reader atomic
register to be implemented, and let w denote the writer.
Denote the write and read operations to R by write

and read respectively. Denote by write and read,
the operations on the single-writer/single-reader regis-
ters of the implementations. By way of contradiction,
suppose p and q are any two readers that do not share
any register. Suppose the initial value of R is 0. We
construct a computation that has p and q repeatedly
executing read of R while w executes a single write
of value 1 to R. No processes other than w, p and q

access R during this interval. The computation will
have some read return the old value 0, after an earlier
read returns the new value 1, providing the required
contradiction.

First form a partial execution, E, inductively as fol-
lows. Initially E is empty and has 0 segments. Extend
E a segment at a time, by, at each step, letting w run
alone until it has executed exactly one (more) write

in its program for write. Then pause w and sequen-
tially execute a complete read of R by p, followed by
a non-overlapping and complete read of R by q. Be-
cause read of R is a wait-free operation, it can be
performed in between two write operations. The par-
tial execution E consists of all segments up to but not
including the �rst segment where either p or q returns
the new value, 1. Since the write by w is wait-free,
it will eventually complete. After that, all subsequent
read operations must return 1 to be correct. So even-
tually p or q must return 1. Thus E has a �nite number
of segments, and in every segment of E both p and q

return 0 for their read operations.

Now construct two alternative extensions of E by
one more segment. In the �rst, E is extended to E1
by letting w run alone until it has executed exactly
one (more) write. Then pause w and sequentially ex-
ecute a complete read of R by p, followed by a non-
overlapping and complete read of R by q, followed by
letting w �nish its write to completion while execut-
ing alone. From the construction of E, in computation
E1 either p or q returns 1 for its read in this last
segment.

In the second, E is extended to E2 in nearly the
same way except that the ordering of p and q reversed.
That is, add one more segment by letting w run alone
until it has executed exactly one more write in its pro-
gram for write, followed by a read of R by q, and



then a non-overlapping read of R by p, followed by
letting w �nish its write to completion while execut-
ing alone.

Since the write by w at the beginning of the last
segment is to a single-writer/single-reader register, it
can be read by at most one of p and q, and cannot be
overwritten by either. Since p and q do not share any
registers, and no other processors are participating, p
and q have no information other than this one write

by w that is di�erent in the last segment from the pre-
ceding segment. So for at least one of p and q, there is
no write that has occurred since it executed its read
in the second last segment that is visible to it. For this
processor, the last two segments are indistinguishable.
Hence, this process will again return 0 for its read.

For each processor p and q, and for any segment i,
its state and the values of all its shared variables at the
beginning of its computation in segment i are identical
in both E1 and E2, so, E1 and E2 are indistinguishable
to either of p or q. Thus, in every segment of E2,
each processor will return the same value as it did in
the corresponding segment of E1. Hence, one returns
1 and the other returns 0 in the last segment. If p
returns 1 and q returns 0, then computation E1 fails
to implement the atomic register R because it contains
two non-overlapping reads where an old value of the
register is returned after a new value. If q returns 1
and p returns 0, then computation E2 fails for the same
reason. �

Theorem 3.2 If G is any network topology that is
not complete, then there is no wait-free compiler from
AS(G) to AL(G).

Proof: Let p and q be two processors that are sepa-
rated by distance 2 in G and let w be a neighbour of
both p and q.
Consider the operations atomic-state-write(Rw, v)
and atomic-state-read(Rw) of a single-
writer/multi-reader register Rw owned by w and
shared with its neighbours in AS(G). If there is a
wait-free compiler that transforms an algorithm on
AS(G) to an algorithm AL(G), then it must compile
these atomic-state-write and atomic-state-read
operations into programs that use the atomic-link-

read and atomic-link-write operations available
to w, p and q in AL(G). Since each of these link-
registers is a single-writer/single-reader register, this
compiler implements the multi-reader register Rw

using single-reader registers. By Lemma 3.1, any such
implementation requires a shared register between p

and q, which does not exist in AL(G). Thus there is
no wait-free compiler from the from AS(G) to AL(G).
�

4. A Self-stabilizing Compiler from

Atomic State Systems to Atomic

Link Systems

Let A be the set of algorithms for the atomic-state
model that satisfy:

(i) every processor reads each of its in-registers in-
�nitely often, and

(ii) every processor writes its out-registers at least
two times during the stabilization time.

We show that Algorithm 1 is a self-stabilizing com-
piler from atomic-state networks to atomic-link net-
works for all algorithms in A.

The self-stabilizing communication primitives
acknowledged writing and acknowledged reading for
the atomic-link model appeared earlier [14]. These
primitives ensure that a processor writes a new value
in its registers only after that all its neighbours have
read the previously written values. This reliable
transfer of communication variables from neighbour-
ing processors p to q is achieved as follows. The
register Rqp has 2 � k �elds where k is the number of
communication variables. Two �elds called local x

and copy x are associated with each communication
variable, x. The local x �eld contains the value of
variable x that q wants to communicate to p. The
copy x �eld contains the last read value of p's variable
x by q. During a reading operation by p of register
Rqp, p copies the values of all local �elds of Rqp

into the copy �elds of the register Rpq. After a
writing operation, p checks to determine if the value
of each copy �eld of register Rqp is equal to the local
value of the associated communication variable. If
this checking succeeds, q has the latest values from
p of all the communication variables, so the local
variable ok:q is set to 1. Once all p's neighbours have
read the new values of communication variables the
acknowledged writing by p is over. Observe that
acknowledged reading is not blocking. The following
Claim is proved in earlier work [14].

Claim 4.1 ([14]) Assuming that each processor per-
forms acknowledged reading in�nitely often, any exe-
cution of acknowledged writing eventually completes.

The communication variables for Algorithm 1 are,
for each processor, the state variables (called state)
used in the algorithm A, plus a ag value (called flag).

During the second complete execution of the
acknowledged writing by p with distinct ags, all its
neighbours perform an atomic-link-write operation.



Algorithm 1 Self-stabilizing compiler from atomic-
state systems to atomic-link systems

structure of a register :
R= (local state, local flag, copy state, copy flag)

where local flag and copy flag �elds have
boolean values; local state and copy state

�elds have state values of the speci�ed algorithm.

local Variables on p :
flag - boolean variable
state - state variable of the speci�ed algorithm
8r 2 N :p, (N :p is the neighbours set of p),

okr - boolean variable
L Regpr and L Regpr - same structure as R

code on the processor p :
�(atomic-state-write)(Rp,new state)

state := new state;
flag := 0; acknowledged writing(state) [l1]
flag := 1; acknowledged writing(state) [l2]

�(atomic-state-read)(Rq)
repeat

for r 2 N :p do
acknowledged reading(Rrp);

done
until L Regqp:local flag = 1 T

return L Regqp:local state

acknowledged writing(state):
for r 2 N :p do

acknowledged reading(Rrp); ok:r := 0;
done
repeat

for r 2 N :p do
acknowledged reading(Rrp);
if (L Regrp:copy state = state)
^ (L Regrp:copy flag = flag) then

ok:r := 1;
done

until (8r 2 N :p, ok:r = 1)

acknowledged reading(Rrp):
L Regrp  � atomic-link-read(Rrp)
L Regpr:local state = state;
L Regpr:local flag := flag;
L Regpr:copy state := L Regrp:local state;
L Regpr:copy flag := L Regrp:local flag;
atomic-link-write(Rpr,L Regpr);

This operation may not be inside a complete execution
of the acknowledged reading primitive. During the
third complete execution of the acknowledged writing

by p with distinct ags, all p's neighbours perform
a atomic-link-write operation inside a complete
execution of the acknowledged reading primitive.
Thus, at the end of three complete executions of the
acknowledged writing primitive by p with distinct
ags, for any neighbour q of p, L Regqp:copy state(q) =
L Regpq:local state(q) = state(p) and
L Regqp:copy flag(q) = L Regpq:local flag(q) =
flag(p) (see [14] for a formal proof).

Lemma 4.2 For any algorithm Alg in A, any exe-
cution of �(atomic-state-write) by any processor p
eventually terminates.

Proof: The lemma follows immediately from the code
for �(atomic-state-write) and Claim 4.1 and the
properties of A. �

De�nition 1 Consider the ith execution of
�(atomic-state-write) by processor p.

Let st(i; p) denote the start time.

Let et(i; p) denote the end time.

Let mt(i; p) denote the time that line [l1] has com-
pleted and line [l2] has not begun

The value of state(p) during the ith execution of
�(atomic-state-write) by p is denoted st:i:p.

Observation 4.3 At time mt(1; p), for any neighbour
q of p, we have : Rpq.local state = state(p) = st:1:p
and Rpq.local ag = flag(p) = 0.
At time et(1; p) for any neighbour q of p, we
have : L Regqp:copy state(q) = state(p) = st:1:p and
L Regqp:copy flag(q) = flag(p) = 1.
At time mt(i; p), and et(i; p), for i � 2, for any
neighbour q of p, we have : L Regqp:copy state(q) =
L Regpq:local state(q) = state(p) = st:i:p and
L Regqp:copy flag(q) = L Regpq:local flag(q) =
flag(p).

Lemma 4.4 Any execution of
�(atomic-state-read) eventually terminates.

Proof: Let p and q be two neighbouring proces-
sors. If q executes �(atomic-state-write) a �-
nite number of times, then L Regpq:copy flag(p),
L Regqp:local flag(p), and flag(q) will eventually
keep the value 1 forever. After that time, the execution
of �(atomic-state-read) by p consists only of jN :pj
atomic read operations. Therefore, any execution of
�(atomic-state-read) eventually terminates.

Assume that q executes �(atomic-state-write)
in�nitely often. Let t0 be the starting time of an



execution of �(atomic-state-read) by p. Let us
call t the next starting time of the execution by q

of �(atomic-state-write) after t0. Without lost of
generality, we can assume that was the ith call of
�(atomic-state-write) by q.

Assume that i > 1. Processor p executes
acknowledged reading(Regqp) at least once during the
time interval [mt(i; q), et(i; q)]. At the end of this
execution L Regpq:copy flag(q) = 1. p executes the
primitive acknowledged reading(Regqp) at least once
during the time interval [et(i; q), mt(i+ 1; q)]. At
the end of this execution L Regpq:copy flag(q) = 0.
Within the time interval [mt(i; p),mt(i+ 1; q)], p per-
formed the test T at least once at the time when
L Regqp:local flag(p) = 1. - between the two exe-
cutions of the primitive acknowledged reading(Regqp)
-. Thus, the execution of �(atomic-state-read) of
p terminates before the time mt(i+ 1; q) or before the
time mt(3; q) (if i = 1). �

Linearization points: The linearization point of the
ith call of �(atomic-state-write) by p is the time
mt(i; p) (where i > 1). The linearization point of a
�(atomic-state-read) is its ending time. Accord-
ing to Theorem 4.7, each �(atomic-state-read) of
the p's state that terminates after the time et(1; p),
returns the written state of the preceding call of
�(atomic-state-write) by p.

Lemma 4.5 Let q and p be two neighbouring pro-
cessors. Let i > 1. Let t be a time where
a call of �(atomic-state-read) of p's state by q

terminates. If mt(i; p) < t < mt(i+ 1; p) then
�(atomic-state-read) returns the value st:i:p.

Proof: For i > 1, during the time interval [mt(i; p),
mt(i+ 1; p)], any neighbour q, of p veri�es the fol-
lowing predicate : (L Regpq:local state(q) = st:i:p _
L Regpq:local flag(q) = 0). Thus q can only get the
value st:i:p during time interval [mt(i; p), mt(i+ 1; p)].
�

De�nition 2 Let p and q two neighbouring processors.
We denote by wrong-read a call of
�(atomic-state-read) to get p's state that (i)
does not return st:1:p and (ii) that terminates during
the time interval [mt(1; p), mt(2; p)].

Lemma 4.6 A wrong-read of p's state terminates
before time et(1; p).

Proof: At the end of the execution of the
primitive acknowledged reading to read Rpq

which terminates after the time et(1; p), we have

L Regqp:copy state(q) = st:i:p: where i � 1 - see
Observation 4.3.

Let r be a wrong-read of p's state by q.
Let tr be the ending time of the last call to
acknowledged reading during this read operation, r,
of Rpq. At time tr, we have L Regqp:copy state(q) 6=
st:1:p; thus tr < et(1; p). Between tr and et(1; p), a
complete execution of the acknowledged reading prim-
itive to read Rpq has be done in order to obtain
L Regqp:copy state(q) = st:1:p at time et(1; p). There-
fore, r �nishes before time et(1; p). �

Theorem 4.7 Let q and r be two neighbours of pro-
cessor p. Let tq (resp. tr) be a time where a call of
�(atomic-state-read) by q (resp. r) to get p's state
terminates. If tr > tq � et(1; p) then (i) at time tq, q
gets the value st:iq:p where iq � 1, (ii) at time tr, r
gets the value st:ir:p where ir � 1, and (iii) ir � iq.

Proof: If we have tr > mt(iq + 1; p) then ir > iq � 1
otherwise ir = iq � 1 (see Lemma 4.5 and Lemma 4.6).
�

Lemma 4.8 Only the �rst �(atomic-state-read) of
p's state by q can be a wrong-read.

Proof: A �(atomic-state-read) contains a last exe-
cution of acknowledged reading to read Rpq. Let t be
the end time of this execution. We have mt(1; p) � t �
et(1; p) (see lemma 4.6). Between time t and et(1; p),
we have Rpq:local state = st:1:p.

The next wrong-read call should end before
et(1; p) (see lemma 4.6). Therefore, its starting time
t0 is also before et(1; p). At time t0, we should have
Rpq:local state 6= st:1:p, This is a contradiction. �

Between the time mt(1; p) and the time et(1; p), a
call of �(atomic-state-read) to get p's state can re-
turn st:1:p, and another call (by another neighbour q of
p) that terminates after the �rst one can return another
value (i.e. the initial value of L Regpq:local state(q),
the initial value of Rpq.local state, the initial value of
L Regpq:local state(p), or the initial value of state(p)).

Complexity The size of each register is 2�log(M)+2
where M is the number of processor states of the algo-
rithm Alg in A. The compiled algorithm in the atomic-
link model needs only bounded link registers if Alg
requires only bounded state registers. An atomic-

state-write operation requires at least 4 � jN � pj
atomic-link-read and atomic-link-write opera-
tions. An atomic-state-read operation requires at



least jN � pj atomic-link-read and atomic-link-

write operations. But there is no limit on the num-
ber of operations performed during an atomic-state-
read or during an atomic-state-write operation.
The duration of the �(atomic-state-write) on p

depends on the speed of p's neighbour (more pre-
cisely, on how often, they read p's registers). The
�(atomic-state-read) also takes time, a processor
may be locked for sometime, before obtaining a neigh-
bour state.
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