Fast, silent self-stabilizing distance- k independent dominating set construction ${ }^{\text {T }}$

Colette Johnen
Univ. Bordeaux, LaBRI UMR 5800, F-3340 Talence, France

Abstract

We propose a fast, silent self-stabilizing protocol building a distance- k independent dominating set, named $\mathcal{F I D}$. The convergence of the protocol $\mathcal{F I D}$ is established for any computation under the unfair distributed scheduler. The protocol $\mathcal{F I D}$ reaches a terminal (also legitimate) configuration in at most $4 n+k$ rounds, where n is the network size; it requires $(k+1) \log (n+1)$ bits per node. keywords: distributed computing, fault tolerance, self-stabilization, distance- k independent dominating set, distance- k dominating set, distance- k independent set

1. Introduction

In this paper, we consider the problem of computing a distance- k independent dominating set in a self-stabilizing manner in the case where $k>1$. A set of nodes is a distance- k independent dominating set if and only if this set is a distance- k independent set and a distance- k dominating set. A set I of nodes is distance- k independent if every node in I is at distance at least $k+1$ to any other node of I. A set of nodes D is distance- k dominating if every node not belonging to D is at distance at most k of a node in D. We propose a very simple and fast protocol, called $\mathcal{F I D}$. The protocol $\mathcal{F I D}$ reaches a terminal

[^0]configuration in at most $4 n+k$ rounds, where n is the network size. $\mathcal{F I D}$ requires $(k+1) \log (n+1)$ bits per node. The obtained distance- k independent dominating set contains at most $\lfloor 2 n /(k+2)\rfloor$ nodes.

Related Works. Silent self-stabilizing protocols building distance- k dominating set are proposed in [1, 2]. These protocols do not build a k-independent set.

In [3, 4], Larsson and Tsigas propose self-stabilizing (l, k)-clustering protocols under various assupmtions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

In [5], a silent self-stabilizing protocol extracting a minimal distance- k dominating set from any distance- k dominating set is proposed. A minimal distancek dominating set has no proper subset being a distance- k dominating set. The protocol converges in $O(n)$ rounds, it requires at least $O(k \cdot \log (n))$ bits per node. The paper [6] presents a silent self-stabilizing protocol building a small distancek dominating set : the obtained dominating set contains at most $\lceil n /(k+1)\rceil$. The protocol of [6] converges in $O(n)$ rounds, it requires $O(\log (n)+k \cdot \log (n / k))$ bits per node. The protocol of [7] builds competitive k-dominating sets : the obtained dominating set contains at most $1+\lfloor(n-1) /(k+1)\rfloor$ nodes. The protocol of [7] converges in $O(n)$ rounds; and it requires $O(\log (2 k .2(\Delta+1) \cdot 2 n . D))$ bits per node, where D is the network diameter, and Δ is a bound on node degree. The protocols of [7, 6] use the hierachical collateral composition of several silent self-stabilizing protocols including a leader election protocol and a spanning tree construction rooted to the elected leader. So their convergence time are larger than $4 n+k$ rounds.

The presented protocol is simple : no use of the hierachical collateral composition, no need for a leader election process, neither for a spanning tree building. Therefore, the protocol $\mathcal{F I D}$ is fast.

2. Model and Concepts

A distributed system S is an undirected graph $G=(V, E)$ where the vertex set, V, is the set of nodes and the edge set, E, is the set of communication links. A link $(u, v) \in E$ if and only if u and v can directly communicate (links are bidirectional); so, the node u and v are neighbors. N_{v} denotes the set of v 's neighbors: $N_{v}=\{u \in V \mid(u, v) \in E\}$. The distance between the nodes u and v is denoted by $\operatorname{dist}(u, v)$. The set of nodes at distance at most k to a node v is denoted by k-neigborhood(v) $=\{u \in V \mid \operatorname{dist}(u, v) \in[1, k]\}$.

Definition 1 (distance- k independent dominating set). Let D be a subset of $V ; D$ is a distance- k dominating set if and only if $\forall v \in V / D$ we have k-neigborhood $(v) \cap D \neq \emptyset$. Let I be a subset of $V ; I$ is a distance- k independent set if and only if $\forall u \in I$ we have k -neigborhood $(u) \cap I=\emptyset$. A subset of V is a distance- k independent dominating set if this subset is a distance- k dominating set and a distance- k independent set.

To every node v in the network is assigned an identifier, denoted by $i d_{v}$. Two distinct nodes have distinct identifiers. It is possible to order the identifier values. The symbol \perp denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has the form: Rule $e_{i}:<$ Guard $_{i}>\longrightarrow<$ Action $_{i}>$. The guard of a v 's rule is a boolean expression involving the state of the node v, and those of its neighbors. The action of a v 's rule updates v 's state. A rule can be executed by a node v only if it is enabled, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled. A configuration is terminal if and only if no node can execute a rule.

During a computation step from a configuration one or more enabled nodes simultaneously perform an action to reach another configuration. A computation e is a sequence of configurations $e=c_{0}, c_{1}, \ldots, c_{i}, \ldots$, where c_{i+1} is reached from c_{i} by a single computation step, $\forall i \geqslant 0$. A computation e is maximum if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let \mathcal{L} be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to \mathcal{L} if and only if (1) all terminal configurations satisfy $\mathcal{L} ;(2)$ all computations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation $e=c_{1}, \ldots, c_{j}, \ldots$ is the minimal prefix $e_{1}=c_{1}, \ldots, c_{j}$, such that every enabled node in c_{1} either executes a rule or is neutralized during a computation step of e_{1}. A node v is neutralized during a computation step if v is disabled in the reached configuration.
Let e^{\prime} be the suffix of e such that $e=e_{1} e^{\prime}$. The second round of e is the first round of e^{\prime}, and so on.

The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

3. The protocol $\mathcal{F I D}$

The protocol $\mathcal{F I D}$, presented in protocol 1, builds a distance- k independent dominating set.

Notation 1. A node v is a head if $\operatorname{dom}[0](v)=i d_{v}$; otherwise it is an ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood a head having an identifier larger than its own identifier. And, the set of heads is a distance- k independent set.
$\overline{\text { Protocol 1 : } \mathcal{F I D} \text { : Fast distance-k independent dominating set construction }}$

Shared variables

- dom [](v) is a table of $k+1$ members. A member is an identifier or \perp.

Predicates

- resignation $(v) \equiv i d_{v}<\max \{\operatorname{dom}[i](v) \mid 0<i \leq k\}$
- toUpdate $(v) \equiv \exists i \in[1, k]$ such that

$$
\operatorname{dom}[\mathrm{i}](v) \neq \max \left\{\operatorname{dom}[\mathrm{i}-1](u) \mid u \in N_{v}\right\}
$$

- ordinaryToUpdate $(v): \operatorname{dom}[0](v) \neq \perp$
- headToUpdate $(v): \operatorname{dom}[0](v) \neq i d_{v}$

Rules

$$
\begin{aligned}
& \mathbf{R U}(v): \operatorname{toUpdate}(v) \longrightarrow \\
& \quad \text { for } i \in[1, k] \text { do dom }[i](v):=\max \left\{\operatorname{dom}[i-1](u) \mid u \in N_{v}\right\} ; \\
& \quad \text { if resignation }(v) \text { then } \operatorname{dom}[0](v):=\perp ; \operatorname{else} \operatorname{dom}[0](v):=i d_{v} ; \\
& \mathbf{R E}(v): \neg \operatorname{toUpdate}(v) \wedge \neg \operatorname{resignation}(v) \wedge \operatorname{headToUpdate}(v) \longrightarrow \\
& \operatorname{dom}[0](v):=i d_{v} ; \\
& \mathbf{R R}(v): \neg \operatorname{toUpdate}(v) \wedge \operatorname{resignation}(v) \wedge \operatorname{ordinaryToUpdate}(v) ; \longrightarrow \\
& \operatorname{dom}[0](v):=\perp ;
\end{aligned}
$$

The value of $\operatorname{dom}[\mathrm{i}](v)$ is \perp if there is no path of length i from a head to v. Otherwise, the value of dom[i] (v) is the largest head identifier such that there is a path of length i from this head to v.

When an ordinary node v has no head in its k-neighborhood then the table dom[] in v does not contain any identifier. Notice that in this case, the predicates \neg resignation (v) and headToUpdate (v) are verified. So, the node v can perform the rule $\mathbf{R E}$ or the rule $\mathbf{R U}$. Hence, the set of heads is a distance- k dominating set in a terminal configuration.

Figure 1: A terminal configuration of $\mathcal{F I D}$

The predicate resignation (v) is verified when the node v has in its k-neigborhood a head u having an identifier larger than v 's identifier (i.e. $i d_{v}<i d_{u}$). If the node v is a head then the predicate ordinaryToUpdate (v) is also verified. In this case, v can perform the rule $\mathbf{R R}$ or the rule $\mathbf{R U}$. Therefore, the set of heads is a distance- k independent set in any terminal configuration. The figure 3 presents a terminal configuration of $\mathcal{F I D}$ with $k=4$. The color of a node is the color of the head in its k-neigborhood having the largest identifier; the head identifiers are underlined. On each node, for $0 \leq i \leq k$, the value of dom[i] is indicated unless it is \perp. So, the table dom[] of node 82 contains the values $(\perp, \perp, 70,80,90)$. Therefore, the node 78 has dom $[3] \geq 70$ and $\operatorname{dom}[4] \geq 80$. As dom $[4] \geq 80$, in the node 78 ; this node cannot become a head. The piece of information dom [3] ≥ 70, in the node 78 allows to the node 67 to be aware of the existence of the single head in its 4-neighborhood having an identifier larger than its own identifier.

4. Correctness of the protocol $\mathcal{F I D}$

In this section, we prove that the set of heads is a distance- k independent dominating set, in every terminal configuration of the $\mathcal{F I D}$ protocol.

Observation 1. Let v be a node. In a terminal configuration, dom[0] $(v)=$ $i d_{v} \vee \operatorname{dom}[0](v)=\perp$

Definition 3. (OrdinaryPr(i)). For all $i \in[1, k]$, the property Ordinary $\operatorname{Pr}(\mathrm{i})$ is defined as follow: if there is no path of length i from a head to the node v then $\operatorname{dom}[\mathrm{i}](v)=\perp$; otherwise, $\operatorname{dom}[\mathrm{i}](v)=i d_{u}$ where $i d_{u}$ is the largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property $\operatorname{Ordinary} \operatorname{Pr}(1)$ is verified.

Proof. According to observation 1, dom[0] $(u) \neq \perp$ if and only if u is a head $\left(\operatorname{dom}[0](u)=i d_{u}\right)$.
Let v be an ordinary node, in a terminal configuration. If v has no head in its neigborhood then $\operatorname{dom}[0](u)=\perp, \forall u \in N_{v}$. So dom[1] $(v)=\perp . \perp$ is smaller than any identifier value. So, if v has a head in its neigborhood then $\operatorname{dom}[1](v)=\max \left\{i d_{u} \mid u \in N_{v}\right.$ and $\left.\operatorname{dom}[0](u)=i d_{u}\right\}$.

Lemma 2. Let i be a positive integer strictly smaller than k. In a terminal configuration, if the property OrdinaryPr(i) is verified then the property OrdinaryPr $(i+1)$ is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which the property $\operatorname{Ordinary} \operatorname{Pr}(\mathrm{i})$ is verified. There is no path of length $i+1$ from a head to v if and only if no neighbor of v has a path of length i to a head. We have $\operatorname{dom}[i](u)=\perp, \forall u \in N_{v}$. So $\operatorname{dom}[i+1](v)=\perp$.
Let w be the head having the largest identifier such that there is a path of length $i+1$ from w to $v . v$ has a neighbor, denoted by u, on its path to w. As $\operatorname{OrdinaryPr}(\mathrm{i})$ is verified, $\operatorname{dom}[\mathrm{i}](u)=i d_{w}$, and dom[i] $\left(u^{\prime}\right) \leq i d_{w}$ for any node $u^{\prime} \in N_{v}$. So $\operatorname{dom}[i+1](v)=i d_{w}$.

Theorem 1. Let c be a terminal configuration. In c, any ordinary node u has a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has no head in its k-neigborhood then the configuration c is not terminal.

In c, for all $i \in[1, k]$, the property $\operatorname{Ordinary} \operatorname{Pr}(\mathrm{i})$ is verified by the lemma 1 and to the lemma 2 Let u be an ordinary node without any head in its k neighborhood. So there is no path of length lesser than $k+1$ between u and a head. We have dom[i] $(u)=\perp, \forall i \in[0, k]$. So the predicate \neg resignation $(u) \wedge$ headToUpdate (u) is verified in c. The node u can perform the rule $\mathbf{R E}$ or the rule $\mathbf{R U}$.

The following theorem establishes that the set of heads is a distance- k independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has no head in its k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then the configuration c is not terminal.

Let wrongHeadSet be the set of heads having one or more heads are in their k-neigborhood. Assume that wrongHeadSet is not empty. Let $v 1$ be the node of wrongHeadSet having the smallest identifier. Let $v 2$ be the closest head to $v 1$. Let d be the distance between $v 1$ and $v 2$. We have $0<d \leq k$. According to the property $\operatorname{OrdinaryPr}(\mathrm{d})$, dom $[\mathrm{d}](v 1) \geq i d_{v 2}$. So, in the configuration c, the predicate resignation $(v 1) \wedge$ ordinaryToUpdate $(v 1)$ is satisfied. The node $v 1$ can perform the rule $\mathbf{R R}$ or the rule $\mathbf{R U}$.

5. Termination of the protocol $\mathcal{F} \mathcal{I D}$

In this section, we prove that all maximal computations of $\mathcal{F I D}$ protocol under the unfair distributed scheduler are finite by reductio ad absurdam arguments.

Lemma 3. Let e be a computation of $\mathcal{F I D}$ protocol under any scheduler. The computation e has a suffix, named, e^{\prime} where no node changes its dom [0]'s value.

Proof. Assume that one or more nodes infinitely often modify their value of dom [0]. Let Set $^{+}$be the set of nodes that infinitely often modify their value of dom [0]. We denote by u^{+}the node of Set $^{+}$having the largest identifier.

Let $e 1$ be the suffix of e in which no node having a larger identifier than u^{+}'s identifier modifies its value of dom [0].
According to the definition of predicate resignation, there is an integer i such that dom[i] $\left(u^{+}\right)>i d_{u^{+}}$infinitely often (at these times, u^{+}becomes ordinary) and $\operatorname{dom}[\mathrm{i}]\left(u^{+}\right) \leq i d_{u^{+}}$infinitely often (at these times, u^{+}becomes head). So u^{+}has a neighbor named u_{i-1} such that (i) the value of dom[i-1] $\left(u_{i-1}\right)$ is infinitely often greater than $i d_{u^{+}}$and (ii) the value of dom[i-1] $\left(u_{i-1}\right)$ is infinitely often smaller than $i d_{u^{+}}$. It is possible only if there is a path of i nodes, $u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_{0}$, such that (i) the value of dom[i-j] $\left(u_{i-j}\right)$ is infinitely often greater than $i d_{u^{+}}$and (ii) the value of dom $[i-j]\left(u_{i-j}\right)$ is infinitely often smaller than $i d_{u^{+}}$with $1 \leq j \leq i$. So, the value dom[0] (u_{0}) is infinitely often greater than $i d_{u^{+}}$; and infinitely often smaller than $i d_{u^{+}} . \operatorname{dom}[0]\left(u_{0}\right)$ can only take two values: \perp or $i d_{u_{0}}$. As \perp is smaller than any identifier value: u_{0} has a larger identifier than u^{+}, and u_{0} infinitely often changes its value of dom [0] during the computation $e 1$.

There is a contradiction. So, $e 1$ has a suffix e^{\prime} where no node changes its value of dom [0].

Lemma 4. Let e be a computation of $\mathcal{F I D}$ protocol under any scheduler. The computation e has a suffix where no node changes any dom[i]'s values for $0 \leq$ $i \leq k$.

Proof. The computation e has a suffix e^{\prime} where no node changes its value of dom [0] (Lemma 3).
For $0<i \leq k$, let us name u_{i} a node that infinitely often modifies its value of dom[i] during the computation e^{\prime}. It is possible only if there is a path of i
nodes, $u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_{0}$, such that the value of dom[i-j] $\left(u_{i-j}\right)$ infinitely often changes, for $1 \leq j \leq i$. So, the value of dom[0] $\left(u_{0}\right)$ changes infinitely often during the computation e^{\prime}.

There is a contradiction.

In Lemma 4 , we have established that any computation e has a suffix where all tables dom [] have their final values. Any action by any node v modifies a value of its table dom []. So, a terminal configuration is reached.

Corollary 1. Under any scheduler, all computations are finite.

6. Convergence time

In this section, we establish that the convergence time is at most $4 n+k$ rounds.

Lemma 5. let M bet the integer value of $\max \left(n\lceil(k+1) / 2\rceil^{-1}\right.$, 1$)$. The size of a distance- k independent set is at most M.

Proof. Let I be a k-independent set such that $|I|>1$. Let v be a node of I. We denote by closest(v) the set of nodes closer to v than any other node of I. Notice that $\bigcup_{w \in I}$ closest $(w) \subset V$ and $\operatorname{closest}(v) \cap \operatorname{closest}(u)=\emptyset, \forall(u, v) \in$ I^{2}. Let u be the closest node to v that belongs to I. Let x be node on the path from v to u such that $0 \leq \operatorname{dist}(v, x) \leq\lfloor k / 2\rfloor$. Let w be a node of I other than v. We have $\operatorname{dist}(w, x)>k-\operatorname{dist}(v, x) \geq\lfloor k / 2\rfloor$ because $k<\operatorname{dist}(w, v) \leq$ $\operatorname{dist}(v, x)+\operatorname{dist}(x, w)$. So, closest (v) contains the first $\lfloor k / 2\rfloor+1$ nodes in the path from v to u. We conclude that $1 \leq|I| \leq n\lceil(k+1) / 2\rceil^{-1}$.

Notation 2. $S^{\text {Set }}{ }_{0}=\emptyset ; V_{i}=V-S e t_{i} ; v h_{i}$ is the node of V_{i} having the largest identifier $;$ Set $_{i+1}=$ Set $_{i} \cup$ k-neighborhood $\left(v h_{i}\right) \cup\left\{v h_{i}\right\} ; T_{i}=2 i(k+1)$.

For all nodes u, after the first round, the value of dom [0] (u) is the identifier of a node in V; this will stay true during the computation. For all nodes u, after the second round, the value of $\operatorname{dom}[1](u)$ is also the identifier of a node in V; this will stay true during the computation.

So, for all nodes u, after the $k+1$ first rounds, the table dom [](u) contains only identifiers of nodes in V; this will stay true during the computation.

After one more round, $v h_{0}$, the node having the largest identifier, is a head. It will remain a head during the computation (because resignation $\left(v h_{0}\right)$ is never verified). After k more rounds, all nodes of k -neighborhood $\left(v h_{0}\right)$, are and will remain ordinary because on these nodes, the predicate resignation remains verified forever.

So after $T_{1}=2(k+1)$ rounds, the nodes of $S e t_{1}$ have their final status (ordinary or head).

After $T_{i}+k+1$ rounds, for all $l \in[0, k]$, we have $\operatorname{dom}[1]\left(u_{i}\right) \in V_{i}$ for any node u_{i} of V_{i}. This will stay true during the computation. So, after one more round, $v h_{i}$ is a head; and it will remain a head.

After k more rounds, all nodes of k -neighborhood $\left(v h_{i}\right)$, are and will stay ordinary (because, on these nodes, the predicate resignation remains verified forever).

So after $T_{i+1}=2(k+1)+T_{i}$ rounds, the nodes of $S_{\text {et }}^{i+1}$ have their final status (ordinary or head).

The set $H X=\left\{v \mid \exists i\right.$ such that $\left.v=v h_{i}\right\}$ is a distance- k independent set. So $V_{M}=\emptyset$.
We conclude that after at most $2 n<T_{M}<4 n$ rounds, all nodes have their final status (ordinary or head). After k more rounds, in any node, the table dom [] has its final values.

7. Reference

[1] A. K. Datta, L. L. Larmore, P. Vemula, A self-stabilizing $O(k)$-time k clustering algorithm, The Computer Journal 53 (3) (2010) 342-350.
[2] E. Caron, A. K. Datta, B. Depardon, L. L. Larmore, self-stabilizing k -
clustering algorithm for weighted graphs, Journal of Parallel and Distributed Computing 70 (2010) 1159-1173.
[3] A. Larsson, P. Tsigas, A self-stabilizing (k,r)-clustering algorithm with multiple paths for wireless ad-hoc networks, in: IEEE 31th International Conference on Distributed Computing Systems, (ICDCS'11), IEEE Computer Society, 2011, pp. 353-362.
[4] A. Larsson, P. Tsigas, Self-stabilizing (k,r)-clustering in clock rate-limited systems, in: 19th International Colloquium Structural Information and Communication Complexity, (SIROCCO'12), Springer, LNCS 7355, 2012, pp. 219-230.
[5] A. Datta, S. Devismes, L. Larmore, A self-stabilizing $O(n)$-round k clustering algorithm, in: 28th IEEE Symposium on Reliable Distributed Systems (SRDS'09), 2009, pp. 147-155.
[6] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Selfstabilizing small k-dominating sets, International Journal of Networking and Computing 3 (1) (2013) 116-136.
[7] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Competitive self-stabilizing k-clustering, in: IEEE 32th International Conference on Distributed Computing (ICDCS'12), 2012, pp. 476-485.

[^0]: ${ }^{\text {\# }}$ This work was partially supported by the ANR project Displexity. Email address: johnen@labri.fr (Colette Johnen)
 $U R L:$ www.labri.fr/ \sim johnen (Colette Johnen)

