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Abstract

We propose a fast, silent self-stabilizing protocol building a distance-k inde-

pendent dominating set, named FID. The convergence of the protocol FID

is established for any computation under the unfair distributed scheduler. The

protocol FID reaches a terminal (also legitimate) configuration in at most 4n+k

rounds, where n is the network size; it requires (k + 1)log(n + 1) bits per node.

keywords: distributed computing, fault tolerance, self-stabilization, distance-k
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1. Introduction

In this paper, we consider the problem of computing a distance-k independent

dominating set in a self-stabilizing manner in the case where k > 1. A set of

nodes is a distance-k independent dominating set if and only if this set is a

distance-k independent set and a distance-k dominating set. A set I of nodes

is distance-k independent if every node in I is at distance at least k + 1 to any

other node of I. A set of nodes D is distance-k dominating if every node not

belonging to D is at distance at most k of a node in D. We propose a very

simple and fast protocol, called FID. The protocol FID reaches a terminal
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configuration in at most 4n + k rounds, where n is the network size. FID

requires (k + 1)log(n + 1) bits per node. The obtained distance-k independent

dominating set contains at most b2n/(k + 2)c nodes.

Related Works. Silent self-stabilizing protocols building distance-k dominat-

ing set are proposed in [1, 2]. These protocols do not build a k-independent

set.

In [3, 4], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols

under various assupmtions. These protocols ensure, if possible, that each node

has l cluster-heads at distance at most k from itself.

In [5], a silent self-stabilizing protocol extracting a minimal distance-k domi-

nating set from any distance-k dominating set is proposed. A minimal distance-

k dominating set has no proper subset being a distance-k dominating set. The

protocol converges in O(n) rounds, it requires at least O(k.log(n)) bits per node.

The paper [6] presents a silent self-stabilizing protocol building a small distance-

k dominating set : the obtained dominating set contains at most dn/(k + 1)e.

The protocol of [6] converges in O(n) rounds, it requires O(log(n) +k.log(n/k))

bits per node. The protocol of [7] builds competitive k-dominating sets : the ob-

tained dominating set contains at most 1+b(n−1)/(k+1)c nodes. The protocol

of [7] converges in O(n) rounds; and it requires O(log(2k.2(∆ + 1).2n.D)) bits

per node, where D is the network diameter, and ∆ is a bound on node degree.

The protocols of [7, 6] use the hierachical collateral composition of several silent

self-stabilizing protocols including a leader election protocol and a spanning tree

construction rooted to the elected leader. So their convergence time are larger

than 4n + k rounds.

The presented protocol is simple : no use of the hierachical collateral composi-

tion, no need for a leader election process, neither for a spanning tree building.

Therefore, the protocol FID is fast.
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2. Model and Concepts

A distributed system S is an undirected graph G = (V,E) where the vertex set,

V , is the set of nodes and the edge set, E, is the set of communication links.

A link (u, v) ∈ E if and only if u and v can directly communicate (links are

bidirectional); so, the node u and v are neighbors. Nv denotes the set of v’s

neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The distance between the nodes u and

v is denoted by dist(u, v). The set of nodes at distance at most k to a node v

is denoted by k-neigborhood(v) = {u ∈ V | dist(u, v) ∈ [1, k]}.

Definition 1 (distance-k independent dominating set). Let D be a sub-

set of V ; D is a distance-k dominating set if and only if ∀v ∈ V/D we have

k-neigborhood(v) ∩ D 6= ∅. Let I be a subset of V ; I is a distance-k inde-

pendent set if and only if ∀u ∈ I we have k-neigborhood(u)∩I = ∅. A subset

of V is a distance-k independent dominating set if this subset is a distance-k

dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by idv. Two

distinct nodes have distinct identifiers. It is possible to order the identifier

values. The symbol ⊥ denotes a value smaller than any identifier value in the

network.

Each node maintains a set of shared variables. A node can read its own variables

and those of its neighbors, but it can modify only its variables. The state of

a node is defined by the values of its local variables. The cartesian product of

states of all nodes determines the configuration of the system. The program of

each node is a set of rules. Each rule has the form: Rulei :< Guardi >−→<

Actioni >. The guard of a v’s rule is a boolean expression involving the state

of the node v, and those of its neighbors. The action of a v’s rule updates v’s

state. A rule can be executed by a node v only if it is enabled, i.e., its guard is

satisfied by the node v. A node is said to be enabled if at least one of its rules is

enabled. A configuration is terminal if and only if no node can execute a rule.
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During a computation step from a configuration one or more enabled nodes

simultaneously perform an action to reach another configuration. A computation

e is a sequence of configurations e = c0, c1, ..., ci, ..., where ci+1 is reached from

ci by a single computation step, ∀i > 0. A computation e is maximum if it is

infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let L be a predicate on the con-

figuration. A distributed system S is a silent self-stabilizing system to L if and

only if (1) all terminal configurations satisfy L; (2) all computations reach a

terminal configuration.

Stabilization time. We use the round notion to measure the time complex-

ity. The first round of a computation e = c1, ..., cj , ... is the minimal prefix

e1 = c1, ..., cj , such that every enabled node in c1 either executes a rule or is

neutralized during a computation step of e1. A node v is neutralized during a

computation step if v is disabled in the reached configuration.

Let e′ be the suffix of e such that e = e1e
′. The second round of e is the first

round of e′, and so on.

The stabilization time is the maximal number of rounds needed by any compu-

tation from any configuration to reach a terminal configuration.

3. The protocol FID

The protocol FID, presented in protocol 1, builds a distance-k independent

dominating set.

Notation 1. A node v is a head if dom[0](v) = idv; otherwise it is an ordinary

node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood

a head having an identifier larger than its own identifier. And, the set of heads

is a distance-k independent set.
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Protocol 1 : FID: Fast distance-k independent dominating set construction

Shared variables

• dom[](v) is a table of k + 1 members. A member is an identifier or ⊥.

Predicates

• resignation(v) ≡ idv < max {dom[i](v) | 0 < i ≤ k}

• toUpdate(v) ≡ ∃ i ∈ [1, k] such that

dom[i](v) 6= max {dom[i-1](u) | u ∈ Nv}

• ordinaryToUpdate(v) : dom[0](v) 6= ⊥

• headToUpdate(v) : dom[0](v) 6= idv

Rules

RU(v) : toUpdate(v) −→

for i ∈ [1, k] do dom[i](v) := max {dom[i-1](u) | u ∈ Nv} ;

if resignation(v) then dom[0](v) := ⊥ ; else dom[0](v) := idv ;

RE(v) : ¬toUpdate(v) ∧ ¬resignation(v) ∧ headToUpdate(v) −→

dom[0](v) := idv ;

RR(v) : ¬toUpdate(v) ∧ resignation(v) ∧ ordinaryToUpdate(v);−→

dom[0](v) := ⊥ ;

The value of dom[i](v) is ⊥ if there is no path of length i from a head to v.

Otherwise, the value of dom[i](v) is the largest head identifier such that there

is a path of length i from this head to v.

When an ordinary node v has no head in its k-neighborhood then the table

dom[] in v does not contain any identifier. Notice that in this case, the predi-

cates ¬resignation(v) and headToUpdate(v) are verified. So, the node v can

perform the rule RE or the rule RU. Hence, the set of heads is a distance-k

dominating set in a terminal configuration.
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Figure 1: A terminal configuration of FID

The predicate resignation(v) is verified when the node v has in its k-neigborhood

a head u having an identifier larger than v’s identifier (i.e. idv < idu). If the

node v is a head then the predicate ordinaryToUpdate(v) is also verified. In

this case, v can perform the rule RR or the rule RU. Therefore, the set of

heads is a distance-k independent set in any terminal configuration.

The figure 3 presents a terminal configuration of FID with k = 4. The color of

a node is the color of the head in its k-neigborhood having the largest identifier;

the head identifiers are underlined. On each node, for 0 ≤ i ≤ k, the value

of dom[i] is indicated unless it is ⊥. So, the table dom[] of node 82 contains

the values (⊥, ⊥, 70, 80, 90). Therefore, the node 78 has dom[3] ≥ 70 and

dom[4] ≥ 80. As dom[4] ≥ 80, in the node 78; this node cannot become a head.

The piece of information dom[3] ≥ 70, in the node 78 allows to the node 67

to be aware of the existence of the single head in its 4-neighborhood having an

identifier larger than its own identifier.
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4. Correctness of the protocol FID

In this section, we prove that the set of heads is a distance-k independent

dominating set, in every terminal configuration of the FID protocol.

Observation 1. Let v be a node. In a terminal configuration, dom[0](v) =

idv ∨ dom[0](v) = ⊥

Definition 3. (OrdinaryPr(i)). For all i ∈ [1, k], the property OrdinaryPr(i)

is defined as follow: if there is no path of length i from a head to the node v

then dom[i](v) = ⊥; otherwise, dom[i](v) = idu where idu is the largest head

identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is verified.

Proof. According to observation 1, dom[0](u) 6= ⊥ if and only if u is a head

(dom[0](u) = idu).

Let v be an ordinary node, in a terminal configuration. If v has no head in

its neigborhood then dom[0](u) = ⊥, ∀u ∈ Nv. So dom[1](v) = ⊥. ⊥ is

smaller than any identifier value. So, if v has a head in its neigborhood then

dom[1](v) = max {idu | u ∈ Nv and dom[0](u) = idu}. �

Lemma 2. Let i be a positive integer strictly smaller than k. In a termi-

nal configuration, if the property OrdinaryPr(i) is verified then the property

OrdinaryPr(i+1) is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which the

property OrdinaryPr(i) is verified. There is no path of length i+ 1 from a head

to v if and only if no neighbor of v has a path of length i to a head. We have

dom[i](u) = ⊥, ∀u ∈ Nv. So dom[i+1](v) = ⊥.

Let w be the head having the largest identifier such that there is a path of

length i + 1 from w to v. v has a neighbor, denoted by u, on its path to w. As

OrdinaryPr(i) is verified, dom[i](u) = idw, and dom[i](u′) ≤ idw for any node

u′ ∈ Nv. So dom[i+1](v) = idw. �
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Theorem 1. Let c be a terminal configuration. In c, any ordinary node u has

a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has no head in its k-neigborhood

then the configuration c is not terminal.

In c, for all i ∈ [1, k], the property OrdinaryPr(i) is verified by the lemma 1

and to the lemma 2. Let u be an ordinary node without any head in its k-

neighborhood. So there is no path of length lesser than k + 1 between u and a

head. We have dom[i](u) = ⊥, ∀i ∈ [0, k]. So the predicate ¬resignation(u)∧

headToUpdate(u) is verified in c. The node u can perform the rule RE or the

rule RU. �

The following theorem establishes that the set of heads is a distance-k indepen-

dent set.

Theorem 2. Let c be a terminal configuration. In c, a head has no head in its

k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then the

configuration c is not terminal.

Let wrongHeadSet be the set of heads having one or more heads are in their

k-neigborhood. Assume that wrongHeadSet is not empty. Let v1 be the node

of wrongHeadSet having the smallest identifier. Let v2 be the closest head to

v1. Let d be the distance between v1 and v2. We have 0 < d ≤ k. According

to the property OrdinaryPr(d), dom[d](v1) ≥ idv2. So, in the configuration c,

the predicate resignation(v1)∧ ordinaryToUpdate(v1) is satisfied. The node

v1 can perform the rule RR or the rule RU. �

5. Termination of the protocol FID

In this section, we prove that all maximal computations of FID protocol under

the unfair distributed scheduler are finite by reductio ad absurdam arguments.

Lemma 3. Let e be a computation of FID protocol under any scheduler. The

computation e has a suffix, named, e′ where no node changes its dom[0]’s value.
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Proof. Assume that one or more nodes infinitely often modify their value of

dom[0]. Let Set+ be the set of nodes that infinitely often modify their value of

dom[0]. We denote by u+ the node of Set+ having the largest identifier.

Let e1 be the suffix of e in which no node having a larger identifier than u+’s

identifier modifies its value of dom[0].

According to the definition of predicate resignation, there is an integer i such

that dom[i](u+) > idu+ infinitely often (at these times, u+ becomes ordinary)

and dom[i](u+) ≤ idu+ infinitely often (at these times, u+ becomes head).

So u+ has a neighbor named ui−1 such that (i) the value of dom[i-1](ui−1)

is infinitely often greater than idu+ and (ii) the value of dom[i-1](ui−1) is

infinitely often smaller than idu+ . It is possible only if there is a path of i nodes,

ui−1, ui−2, ui−3, ..., u0, such that (i) the value of dom[i-j](ui−j) is infinitely

often greater than idu+ and (ii) the value of dom[i-j](ui−j) is infinitely often

smaller than idu+ with 1 ≤ j ≤ i. So, the value dom[0](u0) is infinitely often

greater than idu+ ; and infinitely often smaller than idu+ . dom[0](u0) can only

take two values: ⊥ or idu0 . As ⊥ is smaller than any identifier value: u0 has

a larger identifier than u+, and u0 infinitely often changes its value of dom[0]

during the computation e1.

There is a contradiction. So, e1 has a suffix e′ where no node changes its value

of dom[0].

Lemma 4. Let e be a computation of FID protocol under any scheduler. The

computation e has a suffix where no node changes any dom[i]’s values for 0 ≤

i ≤ k.

Proof. The computation e has a suffix e′ where no node changes its value of

dom[0] (Lemma 3).

For 0 < i ≤ k, let us name ui a node that infinitely often modifies its value

of dom[i] during the computation e′. It is possible only if there is a path of i
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nodes, ui−1, ui−2, ui−3, ..., u0, such that the value of dom[i-j](ui−j) infinitely

often changes, for 1 ≤ j ≤ i. So, the value of dom[0](u0) changes infinitely

often during the computation e′.

There is a contradiction.

In Lemma 4, we have established that any computation e has a suffix where all

tables dom[] have their final values. Any action by any node v modifies a value

of its table dom[]. So, a terminal configuration is reached.

Corollary 1. Under any scheduler, all computations are finite.

6. Convergence time

In this section, we establish that the convergence time is at most 4n+k rounds.

Lemma 5. let M bet the integer value of max(nd(k + 1)/2e−1, 1). The size of

a distance-k independent set is at most M .

Proof. Let I be a k-independent set such that |I| > 1. Let v be a node of I.

We denote by closest(v) the set of nodes closer to v than any other node of I.

Notice that
⋃

w∈I closest(w) ⊂ V and closest(v)∩ closest(u) = ∅,∀(u, v) ∈

I2. Let u be the closest node to v that belongs to I. Let x be node on the

path from v to u such that 0 ≤ dist(v, x) ≤ bk/2c. Let w be a node of I other

than v. We have dist(w, x) > k − dist(v, x) ≥ bk/2c because k < dist(w, v) ≤

dist(v, x) + dist(x,w). So, closest(v) contains the first bk/2c+ 1 nodes in the

path from v to u. We conclude that 1 ≤ |I| ≤ nd(k + 1)/2e−1. �

Notation 2. Set0 = ∅; Vi = V − Seti; vhi is the node of Vi having the largest

identifier; Seti+1 = Seti ∪ k-neighborhood(vhi) ∪ {vhi}; Ti = 2i(k + 1).

For all nodes u, after the first round, the value of dom[0](u) is the identifier of

a node in V ; this will stay true during the computation. For all nodes u, after

the second round, the value of dom[1](u) is also the identifier of a node in V ;

this will stay true during the computation.
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So, for all nodes u, after the k+ 1 first rounds, the table dom[](u) contains only

identifiers of nodes in V ; this will stay true during the computation.

After one more round, vh0, the node having the largest identifier, is a head. It

will remain a head during the computation (because resignation(vh0) is never

verified). After k more rounds, all nodes of k-neighborhood(vh0), are and will

remain ordinary because on these nodes, the predicate resignation remains

verified forever.

So after T1 = 2(k+1) rounds, the nodes of Set1 have their final status (ordinary

or head).

After Ti + k + 1 rounds, for all l ∈ [0, k], we have dom[l](ui) ∈ Vi for any node

ui of Vi. This will stay true during the computation. So, after one more round,

vhi is a head; and it will remain a head.

After k more rounds, all nodes of k-neighborhood(vhi), are and will stay or-

dinary (because, on these nodes, the predicate resignation remains verified

forever).

So after Ti+1 = 2(k + 1) +Ti rounds, the nodes of Seti+1 have their final status

(ordinary or head).

The set HX = {v | ∃i such that v = vhi} is a distance-k independent set. So

VM = ∅.

We conclude that after at most 2n < TM < 4n rounds, all nodes have their final

status (ordinary or head). After k more rounds, in any node, the table dom[]

has its final values.
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