Fast, silent self-stabilizing distance-k independent dominating set construction^{$\frac{1}{3}$}

Colette Johnen

Univ. Bordeaux, LaBRI UMR 5800, F-3340 Talence, France

Abstract

We propose a fast, silent self-stabilizing protocol building a distance-k independent dominating set, named \mathcal{FID} . The convergence of the protocol \mathcal{FID} is established for any computation under the unfair distributed scheduler. The protocol \mathcal{FID} reaches a terminal (also legitimate) configuration in at most 4n+k rounds, where n is the network size; it requires (k+1)log(n+1) bits per node.

keywords: distributed computing, fault tolerance, self-stabilization, distance-k independent dominating set, distance-k dominating set, distance-k independent set

1. Introduction

In this paper, we consider the problem of computing a distance-k independent dominating set in a self-stabilizing manner in the case where k > 1. A set of nodes is a distance-k independent dominating set if and only if this set is a distance-k independent set and a distance-k dominating set. A set I of nodes is distance-k independent if every node in I is at distance at least k + 1 to any other node of I. A set of nodes D is distance-k dominating if every node not belonging to D is at distance at most k of a node in D. We propose a very simple and fast protocol, called \mathcal{FID} . The protocol \mathcal{FID} reaches a terminal

[☆]This work was partially supported by the ANR project Displexity.

Email address: johnen@labri.fr (Colette Johnen)

URL: www.labri.fr/~johnen (Colette Johnen)

configuration in at most 4n + k rounds, where *n* is the network size. \mathcal{FID} requires (k+1)log(n+1) bits per node. The obtained distance-*k* independent dominating set contains at most $\lfloor 2n/(k+2) \rfloor$ nodes.

Related Works. Silent self-stabilizing protocols building distance-k dominating set are proposed in [1, 2]. These protocols do not build a k-independent set.

In [3, 4], Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under various assupptions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

In [5], a silent self-stabilizing protocol extracting a minimal distance-k dominating set from any distance-k dominating set is proposed. A minimal distancek dominating set has no proper subset being a distance-k dominating set. The protocol converges in O(n) rounds, it requires at least O(k.log(n)) bits per node. The paper [6] presents a silent self-stabilizing protocol building a small distancek dominating set : the obtained dominating set contains at most $\lceil n/(k+1) \rceil$. The protocol of [6] converges in O(n) rounds, it requires O(log(n) + k.log(n/k))bits per node. The protocol of [7] builds competitive k-dominating sets : the obtained dominating set contains at most $1 + \lfloor (n-1)/(k+1) \rfloor$ nodes. The protocol of [7] converges in O(n) rounds; and it requires $O(log(2k.2(\Delta + 1).2n.D))$ bits per node, where D is the network diameter, and Δ is a bound on node degree. The protocols of [7, 6] use the hierachical collateral composition of several silent self-stabilizing protocols including a leader election protocol and a spanning tree construction rooted to the elected leader. So their convergence time are larger than 4n + k rounds.

The presented protocol is simple : no use of the hierarchical collateral composition, no need for a leader election process, neither for a spanning tree building. Therefore, the protocol \mathcal{FID} is fast.

2. Model and Concepts

A distributed system S is an undirected graph G = (V, E) where the vertex set, V, is the set of nodes and the edge set, E, is the set of communication links. A link $(u, v) \in E$ if and only if u and v can directly communicate (links are bidirectional); so, the node u and v are neighbors. N_v denotes the set of v's neighbors: $N_v = \{u \in V \mid (u, v) \in E\}$. The distance between the nodes u and v is denoted by dist(u, v). The set of nodes at distance at most k to a node v is denoted by $k\text{-neigborhood}(v) = \{u \in V \mid dist(u, v) \in [1, k]\}$.

Definition 1 (distance-k independent dominating set). Let D be a subset of V; D is a distance-k dominating set if and only if $\forall v \in V/D$ we have k-neigborhood $(v) \cap D \neq \emptyset$. Let I be a subset of V; I is a distance-k independent set if and only if $\forall u \in I$ we have k-neigborhood $(u) \cap I = \emptyset$. A subset of V is a distance-k independent dominating set if this subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by id_v . Two distinct nodes have distinct identifiers. It is possible to order the identifier values. The symbol \perp denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The *state* of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the *configuration* of the system. The *program* of each node is a set of *rules*. Each rule has the form: $Rule_i :< Guard_i > \longrightarrow <$ $Action_i >$. The guard of a v's rule is a boolean expression involving the state of the node v, and those of its neighbors. The *action* of a v's rule updates v's state. A rule can be executed by a node v only if it is *enabled*, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled. A configuration is *terminal* if and only if no node can execute a rule. During a *computation step* from a configuration one or more enabled nodes simultaneously perform an action to reach another configuration. A *computation* e is a sequence of configurations $e = c_0, c_1, ..., c_i, ...$, where c_{i+1} is reached from c_i by a single computation step, $\forall i \ge 0$. A computation e is *maximum* if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let \mathcal{L} be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to \mathcal{L} if and only if (1) all terminal configurations satisfy \mathcal{L} ; (2) all computations reach a terminal configuration.

Stabilization time. We use the *round* notion to measure the time complexity. The first round of a computation $e = c_1, ..., c_j, ...$ is the minimal prefix $e_1 = c_1, ..., c_j$, such that every enabled node in c_1 either executes a rule or is neutralized during a computation step of e_1 . A node v is *neutralized* during a computation step of e_1 .

Let e' be the suffix of e such that $e = e_1 e'$. The second round of e is the first round of e', and so on.

The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

3. The protocol \mathcal{FID}

The protocol \mathcal{FID} , presented in protocol 1, builds a distance-k independent dominating set.

Notation 1. A node v is a head if dom $[0](v) = id_v$; otherwise it is an ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood a head having an identifier larger than its own identifier. And, the set of heads is a distance-k independent set.

Shared variables

• dom[](v) is a table of k+1 members. A member is an identifier or \perp .

Predicates

- resignation(v) $\equiv id_v < max \{ dom[i](v) \mid 0 < i \leq k \}$
- toUpdate $(v) \equiv \exists i \in [1, k]$ such that

$$\operatorname{dom}[i](v) \neq \max \left\{ \operatorname{dom}[i-1](u) \mid u \in N_v \right\}$$

- ordinaryToUpdate(v) : dom[0](v) $\neq \bot$
- headToUpdate(v) : dom[0](v) $\neq id_v$

Rules

```
\begin{split} \mathbf{RU}(v): \mathtt{toUpdate}(v) &\longrightarrow \\ &\quad \text{for } i \in [1,k] \ \texttt{do dom[i]}(v) := max \left\{ \mathtt{dom[i-1]}(u) \mid u \in N_v \right\}; \\ &\quad \texttt{if resignation}(v) \ \texttt{then } \mathtt{dom[0]}(v) := \bot; \ \texttt{else } \mathtt{dom[0]}(v) := id_v; \\ &\quad \mathbf{RE}(v): \neg \mathtt{toUpdate}(v) \land \neg \mathtt{resignation}(v) \land \mathtt{headToUpdate}(v) \longrightarrow \\ &\quad \mathtt{dom[0]}(v) := id_v; \\ &\quad \mathbf{RR}(v): \neg \mathtt{toUpdate}(v) \land \mathtt{resignation}(v) \land \mathtt{ordinaryToUpdate}(v); \longrightarrow \\ &\quad \mathtt{dom[0]}(v) := \bot; \end{split}
```

The value of dom[i](v) is \perp if there is no path of length i from a head to v. Otherwise, the value of dom[i](v) is the largest head identifier such that there is a path of length i from this head to v.

When an ordinary node v has no head in its k-neighborhood then the table dom[] in v does not contain any identifier. Notice that in this case, the predicates $\neg resignation(v)$ and headToUpdate(v) are verified. So, the node v can perform the rule **RE** or the rule **RU**. Hence, the set of heads is a distance-k dominating set in a terminal configuration.

Figure 1: A terminal configuration of \mathcal{FID}

The predicate resignation(v) is verified when the node v has in its k-neigborhood a head u having an identifier larger than v's identifier (i.e. $id_v < id_u$). If the node v is a head then the predicate ordinaryToUpdate(v) is also verified. In this case, v can perform the rule **RR** or the rule **RU**. Therefore, the set of heads is a distance-k independent set in any terminal configuration.

The figure 3 presents a terminal configuration of \mathcal{FID} with k = 4. The color of a node is the color of the head in its k-neigborhood having the largest identifier; the head identifiers are underlined. On each node, for $0 \leq i \leq k$, the value of dom[i] is indicated unless it is \perp . So, the table dom[] of node 82 contains the values (\perp , \perp , 70, 80, 90). Therefore, the node 78 has dom[3] \geq 70 and dom[4] \geq 80. As dom[4] \geq 80, in the node 78; this node cannot become a head. The piece of information dom[3] \geq 70, in the node 78 allows to the node 67 to be aware of the existence of the single head in its 4-neighborhood having an identifier larger than its own identifier.

4. Correctness of the protocol \mathcal{FID}

In this section, we prove that the set of heads is a distance-k independent dominating set, in every terminal configuration of the \mathcal{FID} protocol.

Observation 1. Let v be a node. In a terminal configuration, dom[0](v) = $id_v \vee dom[0](v) = \bot$

Definition 3. (OrdinaryPr(i)). For all $i \in [1, k]$, the property OrdinaryPr(i) is defined as follow: if there is no path of length i from a head to the node v then dom[i] $(v) = \bot$; otherwise, dom[i] $(v) = id_u$ where id_u is the largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property OrdinaryPr(1) is verified.

PROOF. According to observation 1, dom[0](u) $\neq \perp$ if and only if u is a head $(dom[0](u) = id_u)$.

Let v be an ordinary node, in a terminal configuration. If v has no head in its neighborhood then dom[0] $(u) = \bot$, $\forall u \in N_v$. So dom[1] $(v) = \bot$. \bot is smaller than any identifier value. So, if v has a head in its neighborhood then dom[1] $(v) = max \{ id_u \mid u \in N_v \text{ and } dom[0](u) = id_u \}.$

Lemma 2. Let *i* be a positive integer strictly smaller than *k*. In a terminal configuration, if the property OrdinaryPr(i) is verified then the property OrdinaryPr(i+1) is verified.

PROOF. Let v be an ordinary node, in a terminal configuration in which the property OrdinaryPr(i) is verified. There is no path of length i + 1 from a head to v if and only if no neighbor of v has a path of length i to a head. We have dom[i] $(u) = \bot$, $\forall u \in N_v$. So dom[i+1] $(v) = \bot$.

Let w be the head having the largest identifier such that there is a path of length i + 1 from w to v. v has a neighbor, denoted by u, on its path to w. As OrdinaryPr(i) is verified, dom[i](u) = id_w , and dom[i](u') $\leq id_w$ for any node $u' \in N_v$. So dom[i+1](v) = id_w . **Theorem 1.** Let c be a terminal configuration. In c, any ordinary node u has a head in its k-neigborhood.

PROOF. We will prove that if an ordinary node has no head in its k-neighborhood then the configuration c is not terminal.

In c, for all $i \in [1, k]$, the property OrdinaryPr(i) is verified by the lemma 1 and to the lemma 2. Let u be an ordinary node without any head in its kneighborhood. So there is no path of length lesser than k + 1 between u and a head. We have dom[i] $(u) = \bot, \forall i \in [0, k]$. So the predicate $\neg resignation(u) \land$ headToUpdate(u) is verified in c. The node u can perform the rule **RE** or the rule **RU**.

The following theorem establishes that the set of heads is a distance-k independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has no head in its k-neighborhood.

PROOF. We will prove that if a head has a head in its k-neighborhood then the configuration c is not terminal.

Let wrongHeadSet be the set of heads having one or more heads are in their k-neigborhood. Assume that wrongHeadSet is not empty. Let v1 be the node of wrongHeadSet having the smallest identifier. Let v2 be the closest head to v1. Let d be the distance between v1 and v2. We have $0 < d \leq k$. According to the property OrdinaryPr(d), $dom[d](v1) \geq id_{v2}$. So, in the configuration c, the predicate $resignation(v1) \land ordinaryToUpdate(v1)$ is satisfied. The node v1 can perform the rule **RR** or the rule **RU**.

5. Termination of the protocol \mathcal{FID}

In this section, we prove that all maximal computations of \mathcal{FID} protocol under the unfair distributed scheduler are finite by *reductio ad absurdam* arguments.

Lemma 3. Let e be a computation of FID protocol under any scheduler. The computation e has a suffix, named, e' where no node changes its dom[0]'s value.

PROOF. Assume that one or more nodes infinitely often modify their value of dom[0]. Let Set^+ be the set of nodes that infinitely often modify their value of dom[0]. We denote by u^+ the node of Set^+ having the largest identifier.

Let e1 be the suffix of e in which no node having a larger identifier than u^+ 's identifier modifies its value of dom[0].

According to the definition of predicate resignation, there is an integer *i* such that dom[i] $(u^+) > id_{u^+}$ infinitely often (at these times, u^+ becomes ordinary) and dom[i] $(u^+) \le id_{u^+}$ infinitely often (at these times, u^+ becomes head). So u^+ has a neighbor named u_{i-1} such that (i) the value of dom[i-1] (u_{i-1}) is infinitely often greater than id_{u^+} and (ii) the value of dom[i-1] (u_{i-1}) is infinitely often smaller than id_{u^+} . It is possible only if there is a path of *i* nodes, $u_{i-1}, u_{i-2}, u_{i-3}, ..., u_0$, such that (i) the value of dom[i-j] (u_{i-j}) is infinitely often greater than id_{u^+} and (ii) the value of dom[i-j] (u_{i-j}) is infinitely often smaller than id_{u^+} and (ii) the value of dom[i-j] (u_{0}) is infinitely often smaller than id_{u^+} and (ii) the value dom[0] (u_0) is infinitely often smaller than id_{u^+} and (ii) the value dom[0] (u_0) is infinitely often greater than id_{u^+} ; and infinitely often smaller than id_{u^+} . dom[0] (u_0) can only take two values: \bot or id_{u_0} . As \bot is smaller than id_{u^+} . dom[0] (u_0) can only take two values: \bot or id_{u_0} . As \bot is smaller than any identifier value: u_0 has a larger identifier than u^+ , and u_0 infinitely often changes its value of dom[0] during the computation e_1 .

There is a contradiction. So, e1 has a suffix e' where no node changes its value of dom[0].

Lemma 4. Let e be a computation of FID protocol under any scheduler. The computation e has a suffix where no node changes any dom[i]'s values for $0 \le i \le k$.

PROOF. The computation e has a suffix e' where no node changes its value of dom[0] (Lemma 3).

For $0 < i \leq k$, let us name u_i a node that infinitely often modifies its value of dom[i] during the computation e'. It is possible only if there is a path of i

nodes, u_{i-1} , u_{i-2} , u_{i-3} , ..., u_0 , such that the value of dom[i-j] (u_{i-j}) infinitely often changes, for $1 \leq j \leq i$. So, the value of dom[0] (u_0) changes infinitely often during the computation e'.

There is a contradiction.

In Lemma 4, we have established that any computation e has a suffix where all tables dom[] have their final values. Any action by any node v modifies a value of its table dom[]. So, a terminal configuration is reached.

Corollary 1. Under any scheduler, all computations are finite.

6. Convergence time

In this section, we establish that the convergence time is at most 4n + k rounds.

Lemma 5. let M bet the integer value of $max(n\lceil (k+1)/2\rceil^{-1}, 1)$. The size of a distance-k independent set is at most M.

PROOF. Let I be a k-independent set such that |I| > 1. Let v be a node of I. We denote by closest(v) the set of nodes closer to v than any other node of I. Notice that $\bigcup_{w \in I} \texttt{closest}(w) \subset V$ and $\texttt{closest}(v) \cap \texttt{closest}(u) = \emptyset, \forall (u, v) \in I^2$. Let u be the closest node to v that belongs to I. Let x be node on the path from v to u such that $0 \leq dist(v, x) \leq \lfloor k/2 \rfloor$. Let w be a node of I other than v. We have $dist(w, x) > k - dist(v, x) \geq \lfloor k/2 \rfloor$ because $k < dist(w, v) \leq dist(v, x) + dist(x, w)$. So, closest(v) contains the first $\lfloor k/2 \rfloor + 1$ nodes in the path from v to u. We conclude that $1 \leq |I| \leq n \lceil (k+1)/2 \rceil^{-1}$.

Notation 2. $Set_0 = \emptyset$; $V_i = V - Set_i$; vh_i is the node of V_i having the largest identifier; $Set_{i+1} = Set_i \cup k\text{-neighborhood}(vh_i) \cup \{vh_i\}$; $T_i = 2i(k+1)$.

For all nodes u, after the first round, the value of dom[0](u) is the identifier of a node in V; this will stay true during the computation. For all nodes u, after the second round, the value of dom[1](u) is also the identifier of a node in V; this will stay true during the computation. So, for all nodes u, after the k+1 first rounds, the table dom[](u) contains only identifiers of nodes in V; this will stay true during the computation.

After one more round, vh_0 , the node having the largest identifier, is a head. It will remain a head during the computation (because resignation(vh_0) is never verified). After k more rounds, all nodes of k-neighborhood(vh_0), are and will remain ordinary because on these nodes, the predicate resignation remains verified forever.

So after $T_1 = 2(k+1)$ rounds, the nodes of Set_1 have their final status (ordinary or head).

After $T_i + k + 1$ rounds, for all $l \in [0, k]$, we have dom[1] $(u_i) \in V_i$ for any node u_i of V_i . This will stay true during the computation. So, after one more round, vh_i is a head; and it will remain a head.

After k more rounds, all nodes of k-neighborhood (vh_i) , are and will stay ordinary (because, on these nodes, the predicate resignation remains verified forever).

So after $T_{i+1} = 2(k+1) + T_i$ rounds, the nodes of Set_{i+1} have their final status (ordinary or head).

The set $HX = \{v \mid \exists i \text{ such that } v = vh_i\}$ is a distance-k independent set. So $V_M = \emptyset$.

We conclude that after at most $2n < T_M < 4n$ rounds, all nodes have their final status (ordinary or head). After k more rounds, in any node, the table dom[] has its final values.

7. Reference

- A. K. Datta, L. L. Larmore, P. Vemula, A self-stabilizing O(k)-time kclustering algorithm, The Computer Journal 53 (3) (2010) 342–350.
- [2] E. Caron, A. K. Datta, B. Depardon, L. L. Larmore, self-stabilizing k-

clustering algorithm for weighted graphs, Journal of Parallel and Distributed Computing 70 (2010) 1159–1173.

- [3] A. Larsson, P. Tsigas, A self-stabilizing (k,r)-clustering algorithm with multiple paths for wireless ad-hoc networks, in: IEEE 31th International Conference on Distributed Computing Systems, (ICDCS'11), IEEE Computer Society, 2011, pp. 353–362.
- [4] A. Larsson, P. Tsigas, Self-stabilizing (k,r)-clustering in clock rate-limited systems, in: 19th International Colloquium Structural Information and Communication Complexity, (SIROCCO'12), Springer, LNCS 7355, 2012, pp. 219–230.
- [5] A. Datta, S. Devismes, L. Larmore, A self-stabilizing O(n)-round kclustering algorithm, in: 28th IEEE Symposium on Reliable Distributed Systems (SRDS'09), 2009, pp. 147–155.
- [6] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Selfstabilizing small k-dominating sets, International Journal of Networking and Computing 3 (1) (2013) 116–136.
- [7] A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Competitive self-stabilizing k-clustering, in: IEEE 32th International Conference on Distributed Computing (ICDCS'12), 2012, pp. 476–485.