Fast, silent self-stabilizing distance-\(k\) independent dominating set construction\(^\star\)

Colette Johnen

Univ. Bordeaux, LaBRI UMR 5800, F-3340 Talence, France

Abstract

We propose a fast, silent self-stabilizing protocol building a distance-\(k\) independent dominating set, named \(\mathcal{FID}\). The convergence of the protocol \(\mathcal{FID}\) is established for any computation under the unfair distributed scheduler. The protocol \(\mathcal{FID}\) reaches a terminal (also legitimate) configuration in at most \(4n+k\) rounds, where \(n\) is the network size; it requires \((k+1)\log(n+1)\) bits per node.

keywords: distributed computing, fault tolerance, self-stabilization, distance-\(k\) independent dominating set, distance-\(k\) dominating set, distance-\(k\) independent set

1. Introduction

In this paper, we consider the problem of computing a distance-\(k\) independent dominating set in a self-stabilizing manner in the case where \(k > 1\). A set of nodes is a distance-\(k\) independent dominating set if and only if this set is a distance-\(k\) independent set and a distance-\(k\) dominating set. A set \(I\) of nodes is distance-\(k\) independent if every node in \(I\) is at distance at least \(k + 1\) to any other node of \(I\). A set of nodes \(D\) is distance-\(k\) dominating if every node not belonging to \(D\) is at distance at most \(k\) of a node in \(D\). We propose a very simple and fast protocol, called \(\mathcal{FID}\). The protocol \(\mathcal{FID}\) reaches a terminal

\(^\star\)This work was partially supported by the ANR project Displexity.

Email address: johnen@labri.fr (Colette Johnen)
URL: www.labri.fr/~johnen (Colette Johnen)
configuration in at most $4n + k$ rounds, where n is the network size. \textit{FID} requires $(k + 1)\log(n + 1)$ bits per node. The obtained distance-k independent dominating set contains at most $\lfloor 2n/(k + 2) \rfloor$ nodes.

Related Works. Silent self-stabilizing protocols building distance-k dominating set are proposed in \cite{1,2}. These protocols do not build a k-independent set.

In \cite{3,4}, Larsson and Tsigas propose self-stabilizing (l,k)-clustering protocols under various assumptions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

In \cite{5}, a silent self-stabilizing protocol extracting a minimal distance-k dominating set from any distance-k dominating set is proposed. A minimal distance-k dominating set has no proper subset being a distance-k dominating set. The protocol converges in $O(n)$ rounds, it requires at least $O(k \log(n))$ bits per node.

The paper \cite{6} presents a silent self-stabilizing protocol building a small distance-k dominating set: the obtained dominating set contains at most $\lceil n/(k + 1) \rceil$. The protocol of \cite{6} converges in $O(n)$ rounds, it requires $O(\log(n) + k \log(n/k))$ bits per node. The protocol of \cite{7} builds competitive k-dominating sets: the obtained dominating set contains at most $1 + \lfloor (n - 1)/(k + 1) \rfloor$ nodes. The protocol of \cite{7} converges in $O(n)$ rounds; and it requires $O(\log(2k(2\Delta + 1).2n.D))$ bits per node, where D is the network diameter, and Δ is a bound on node degree.

The protocols of \cite{7,6} use the hierarchical collateral composition of several silent self-stabilizing protocols including a leader election protocol and a spanning tree construction rooted to the elected leader. So their convergence time are larger than $4n + k$ rounds.

The presented protocol is simple: no use of the hierarchical collateral composition, no need for a leader election process, neither for a spanning tree building. Therefore, the protocol \textit{FID} is fast.
2. Model and Concepts

A distributed system S is an undirected graph $G = (V, E)$ where the vertex set, V, is the set of nodes and the edge set, E, is the set of communication links. A link $(u, v) \in E$ if and only if u and v can directly communicate (links are bidirectional); so, the node u and v are neighbors. N_v denotes the set of v’s neighbors: $N_v = \{ u \in V \mid (u, v) \in E \}$. The distance between the nodes u and v is denoted by $\text{dist}(u, v)$. The set of nodes at distance at most k to a node v is denoted by k-neighborhood$(v) = \{ u \in V \mid \text{dist}(u, v) \in [1, k] \}$.

Definition 1 (distance-k independent dominating set). Let D be a subset of V; D is a **distance-k dominating set** if and only if $\forall v \in V/D$ we have k-neighborhood$(v) \cap D \neq \emptyset$. Let I be a subset of V; I is a **distance-k independent set** if and only if $\forall u \in I$ we have k-neighborhood$(u) \cap I = \emptyset$. A subset of V is a distance-k independent dominating set if this subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by id_v. Two distinct nodes have distinct identifiers. It is possible to order the identifier values. The symbol \perp denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The **state** of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the **configuration** of the system. The **program** of each node is a set of **rules**. Each rule has the form: $\text{Rule}_i : \langle \text{Guard}_i \rangle \rightarrow \langle \text{Action}_i \rangle$. The **guard** of a v’s rule is a boolean expression involving the state of the node v, and those of its neighbors. The **action** of a v’s rule updates v’s state. A rule can be executed by a node v only if it is **enabled**, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled. A configuration is **terminal** if and only if no node can execute a rule.
During a computation step from a configuration one or more enabled nodes simultaneously perform an action to reach another configuration. A computation e is a sequence of configurations $e = c_0, c_1, ..., c_i, ...$, where c_{i+1} is reached from c_i by a single computation step, $\forall i \geq 0$. A computation e is maximum if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let \mathcal{L} be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to \mathcal{L} if and only if (1) all terminal configurations satisfy \mathcal{L}; (2) all computations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation $e = c_1, ..., c_j, ...$ is the minimal prefix $e_1 = c_1, ..., c_j$, such that every enabled node in c_1 either executes a rule or is neutralized during a computation step of e_1. A node v is neutralized during a computation step if v is disabled in the reached configuration.

Let e' be the suffix of e such that $e = e_1 e'$. The second round of e is the first round of e', and so on. The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

3. The protocol FID

Notation 1. A node v is a head if $\text{dom}[0](v) = id_v$; otherwise it is an ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neighborhood a head having an identifier larger than its own identifier. And, the set of heads is a distance-k independent set.
Protocol 1: FID: Fast distance-k independent dominating set construction

Shared variables

- \(\text{dom[]}_i(v) \) is a table of \(k + 1 \) members. A member is an identifier or \(\perp \).

Predicates

- \(\text{resignation}(v) \equiv \text{id}_v < \max \{ \text{dom}[i](v) \mid 0 < i \leq k \} \)
- \(\text{toUpdate}(v) \equiv \exists i \in [1, k] \text{ such that} \)
 \[\text{dom}[i](v) \neq \max \{ \text{dom}[i-1](u) \mid u \in N_v \} \]
- \(\text{ordinaryToUpdate}(v) \) : \(\text{dom}[0](v) \neq \perp \)
- \(\text{headToUpdate}(v) \) : \(\text{dom}[0](v) \neq \text{id}_v \)

Rules

\(\text{RU}(v) : \text{toUpdate}(v) \rightarrow \)

for \(i \in [1, k] \) do \(\text{dom}[i](v) := \max \{ \text{dom}[i-1](u) \mid u \in N_v \} \); \n if \(\text{resignation}(v) \) then \(\text{dom}[0](v) := \perp \); else \(\text{dom}[0](v) := \text{id}_v \);

\(\text{RE}(v) : \neg\text{toUpdate}(v) \land \neg\text{resignation}(v) \land \text{headToUpdate}(v) \rightarrow \)

\(\text{dom}[0](v) := \text{id}_v \);

\(\text{RR}(v) : \neg\text{toUpdate}(v) \land \text{resignation}(v) \land \text{ordinaryToUpdate}(v) ; \rightarrow \)

\(\text{dom}[0](v) := \perp ; \)

The value of \(\text{dom}[i](v) \) is \(\perp \) if there is no path of length \(i \) from a head to \(v \). Otherwise, the value of \(\text{dom}[i](v) \) is the largest head identifier such that there is a path of length \(i \) from this head to \(v \).

When an ordinary node \(v \) has no head in its \(k \)-neighborhood then the table \(\text{dom}[] \) in \(v \) does not contain any identifier. Notice that in this case, the predicates \(\neg\text{resignation}(v) \) and \(\text{headToUpdate}(v) \) are verified. So, the node \(v \) can perform the rule \(\text{RE} \) or the rule \(\text{RU} \). Hence, the set of heads is a distance-\(k \) dominating set in a terminal configuration.
The predicate \textit{resignation}(v) is verified when the node \(v\) has in its \(k\)-neighborhood a head \(u\) having an identifier larger than \(v\)'s identifier (i.e. \(id_v < id_u\)). If the node \(v\) is a head then the predicate \textit{ordinaryToUpdate}(v) is also verified. In this case, \(v\) can perform the rule \textit{RR} or the rule \textit{RU}. Therefore, the set of heads is a distance-\(k\) independent set in any terminal configuration.

The figure presents a terminal configuration of \(FID\) with \(k = 4\). The color of a node is the color of the head in its \(k\)-neighborhood having the largest identifier; the head identifiers are underlined. On each node, for \(0 \leq i \leq k\), the value of \(\text{dom}[i]\) is indicated unless it is \(\perp\). So, the table \(\text{dom[]}\) of node 82 contains the values (\(\perp, \perp, 70, 80, 90\)). Therefore, the node 78 has \(\text{dom}[3] \geq 70\) and \(\text{dom}[4] \geq 80\). As \(\text{dom}[4] \geq 80\), in the node 78; this node cannot become a head. The piece of information \(\text{dom}[3] \geq 70\), in the node 78 allows to the node 67 to be aware of the existence of the single head in its 4-neighborhood having an identifier larger than its own identifier.
4. Correctness of the protocol \(\text{FID}\)

In this section, we prove that the set of heads is a distance-\(k\) independent dominating set, in every terminal configuration of the \(\text{FID}\) protocol.

Observation 1. Let \(v\) be a node. In a terminal configuration, \(\text{dom}[0](v) = id_v \lor \text{dom}[0](v) = \perp\)

Definition 3. (\(\text{OrdinaryPr}(i)\)). For all \(i \in [1, k]\), the property \(\text{OrdinaryPr}(i)\) is defined as follow: if there is no path of length \(i\) from a head to the node \(v\) then \(\text{dom}[i](v) = \perp\); otherwise, \(\text{dom}[i](v) = id_u\) where \(id_u\) is the largest head identifier having a path to \(v\) of length \(i\).

Lemma 1. In a terminal configuration, the property \(\text{OrdinaryPr}(1)\) is verified.

Proof. According to observation [1] \(\text{dom}[0](u) \neq \perp\) if and only if \(u\) is a head \((\text{dom}[0](u) = id_u)\).

Let \(v\) be an ordinary node, in a terminal configuration. If \(v\) has no head in its neighborhood then \(\text{dom}[0](u) = \perp, \forall u \in N_v\). So \(\text{dom}[1](v) = \perp\). \(\perp\) is smaller than any identifier value. So, if \(v\) has a head in its neighborhood then \(\text{dom}[1](v) = \max \{id_u \mid u \in N_v \text{ and } \text{dom}[0](u) = id_u\}\).

Lemma 2. Let \(i\) be a positive integer strictly smaller than \(k\). In a terminal configuration, if the property \(\text{OrdinaryPr}(i)\) is verified then the property \(\text{OrdinaryPr}(i+1)\) is verified.

Proof. Let \(v\) be an ordinary node, in a terminal configuration in which the property \(\text{OrdinaryPr}(i)\) is verified. There is no path of length \(i+1\) from a head to \(v\) if and only if no neighbor of \(v\) has a path of length \(i\) to a head. We have \(\text{dom}[i](u) = \perp, \forall u \in N_v\). So \(\text{dom}[i+1](v) = \perp\).

Let \(w\) be the head having the largest identifier such that there is a path of length \(i+1\) from \(w\) to \(v\). \(v\) has a neighbor, denoted by \(u\), on its path to \(w\). As \(\text{OrdinaryPr}(i)\) is verified, \(\text{dom}[i](u) = id_w\), and \(\text{dom}[i](u') \leq id_w\) for any node \(u' \in N_v\). So \(\text{dom}[i+1](v) = id_w\).
Theorem 1. Let c be a terminal configuration. In c, any ordinary node u has a head in its k-neighborhood.

Proof. We will prove that if an ordinary node has no head in its k-neighborhood then the configuration c is not terminal.

In c, for all $i \in [1, k]$, the property $\text{OrdinaryPr}(i)$ is verified by the lemma 1 and to the lemma 2. Let u be an ordinary node without any head in its k-neighborhood. So there is no path of length lesser than $k + 1$ between u and a head. We have $\text{dom}[i](u) = \bot, \forall i \in [0, k]$. So the predicate $\neg \text{resignation}(u) \land \text{headToUpdate}(u)$ is verified in c. The node u can perform the rule RE or the rule RU. ■

The following theorem establishes that the set of heads is a distance-k independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has no head in its k-neighborhood.

Proof. We will prove that if a head has a head in its k-neighborhood then the configuration c is not terminal.

Let wrongHeadSet be the set of heads having one or more heads are in their k-neighborhood. Assume that wrongHeadSet is not empty. Let $v1$ be the node of wrongHeadSet having the smallest identifier. Let $v2$ be the closest head to $v1$. Let d be the distance between $v1$ and $v2$. We have $0 < d \leq k$. According to the property $\text{OrdinaryPr}(d)$, $\text{dom}[d](v1) \geq id_{v2}$. So, in the configuration c, the predicate $\text{resignation}(v1) \land \text{ordinaryToUpdate}(v1)$ is satisfied. The node $v1$ can perform the rule RR or the rule RU. ■

5. Termination of the protocol \mathcal{FID}

In this section, we prove that all maximal computations of \mathcal{FID} protocol under the unfair distributed scheduler are finite by reductio ad absurdam arguments.

Lemma 3. Let e be a computation of \mathcal{FID} protocol under any scheduler. The computation e has a suffix, named, e' where no node changes its $\text{dom}[0]$’s value.
Proof. Assume that one or more nodes infinitely often modify their value of \(\text{dom}[0] \). Let \(\text{Set}^+ \) be the set of nodes that infinitely often modify their value of \(\text{dom}[0] \). We denote by \(u^+ \) the node of \(\text{Set}^+ \) having the largest identifier.

Let \(e_1 \) be the suffix of \(e \) in which no node having a larger identifier than \(u^+ \)'s identifier modifies its value of \(\text{dom}[0] \).

According to the definition of predicate \textit{resignation}, there is an integer \(i \) such that \(\text{dom}[i](u^+) > id_{u^+} \) infinitely often (at these times, \(u^+ \) becomes ordinary) and \(\text{dom}[i](u^+) \leq id_{u^+} \) infinitely often (at these times, \(u^+ \) becomes head). So \(u^+ \) has a neighbor named \(u_{i-1} \) such that (i) the value of \(\text{dom}[i-1](u_{i-1}) \) is infinitely often greater than \(id_{u^+} \) and (ii) the value of \(\text{dom}[i-1](u_{i-1}) \) is infinitely often smaller than \(id_{u^+} \). It is possible only if there is a path of \(i \) nodes, \(u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_0 \), such that (i) the value of \(\text{dom}[i-j](u_{i-j}) \) is infinitely often greater than \(id_{u^+} \) and (ii) the value of \(\text{dom}[i-j](u_{i-j}) \) is infinitely often smaller than \(id_{u^+} \) with \(1 \leq j \leq i \). So, the value \(\text{dom}[0](u_0) \) is infinitely often greater than \(id_{u^+} \); and infinitely often smaller than \(id_{u^+} \). \(\text{dom}[0](u_0) \) can only take two values: \(\bot \) or \(id_{u_0} \). As \(\bot \) is smaller than any identifier value: \(u_0 \) has a larger identifier than \(u^+ \), and \(u_0 \) infinitely often changes its value of \(\text{dom}[0] \) during the computation \(e_1 \).

There is a contradiction. So, \(e_1 \) has a suffix \(e' \) where no node changes its value of \(\text{dom}[0] \).

Lemma 4. Let \(e \) be a computation of \(\mathcal{FID} \) protocol under any scheduler. The computation \(e \) has a suffix where no node changes any \(\text{dom}[i] \)’s values for \(0 \leq i \leq k \).

Proof. The computation \(e \) has a suffix \(e' \) where no node changes its value of \(\text{dom}[0] \) (Lemma [3]).

For \(0 < i \leq k \), let us name \(u_i \) a node that infinitely often modifies its value of \(\text{dom}[i] \) during the computation \(e' \). It is possible only if there is a path of \(i \)
nodes, \(u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_0 \), such that the value of \(\text{dom}[i-j](u_{i-j}) \) infinitely often changes, for \(1 \leq j \leq i \). So, the value of \(\text{dom}[0](u_0) \) changes infinitely often during the computation \(e' \).

There is a contradiction.

In Lemma 4 we have established that any computation \(e \) has a suffix where all tables \(\text{dom}[\cdot] \) have their final values. Any action by any node \(v \) modifies a value of its table \(\text{dom}[\cdot] \). So, a terminal configuration is reached.

Corollary 1. Under any scheduler, all computations are finite.

6. Convergence time

In this section, we establish that the convergence time is at most \(4n + k \) rounds.

Lemma 5. Let \(M \) bet the integer value of \(\max(n\lceil (k + 1)/2 \rceil^{-1}, 1) \). The size of a distance-\(k \) independent set is at most \(M \).

Proof. Let \(I \) be a \(k \)-independent set such that \(|I| > 1 \). Let \(v \) be a node of \(I \). We denote by \(\text{closest}(v) \) the set of nodes closer to \(v \) than any other node of \(I \). Notice that \(\bigcup_{w \in I} \text{closest}(w) \subset V \) and \(\text{closest}(v) \cap \text{closest}(u) = \emptyset, \forall (u, v) \in I^2 \). Let \(u \) be the closest node to \(v \) that belongs to \(I \). Let \(x \) be node on the path from \(v \) to \(u \) such that \(0 \leq \text{dist}(v, x) \leq \lfloor k/2 \rfloor \). Let \(w \) be a node of \(I \) other than \(v \). We have \(\text{dist}(w, x) > k - \text{dist}(v, x) \geq \lfloor k/2 \rfloor \) because \(k < \text{dist}(w, v) \leq \text{dist}(v, x) + \text{dist}(x, w) \). So, \(\text{closest}(v) \) contains the first \(\lfloor k/2 \rfloor + 1 \) nodes in the path from \(v \) to \(u \). We conclude that \(1 \leq |I| \leq n\lceil (k + 1)/2 \rceil^{-1} \). \(\blacksquare \)

Notation 2. Set \(0 = \emptyset; V_i = V - S_{i-1}; \text{vh}_i \) is the node of \(V_i \) having the largest identifier; \(S_{i+1} = S_i \cup k\text{-neighborhood}(\text{vh}_i) \cup \{\text{vh}_i\}; T_i = 2i(k+1) \).

For all nodes \(u \), after the first round, the value of \(\text{dom}[0](u) \) is the identifier of a node in \(V \); this will stay true during the computation. For all nodes \(u \), after the second round, the value of \(\text{dom}[1](u) \) is also the identifier of a node in \(V \); this will stay true during the computation.
So, for all nodes \(u \), after the \(k + 1 \) first rounds, the table \(\text{dom}\[\] (u) \) contains only identifiers of nodes in \(V \); this will stay true during the computation.

After one more round, \(vh_0 \), the node having the largest identifier, is a head. It will remain a head during the computation (because \(\text{resignation}(vh_0) \) is never verified). After \(k \) more rounds, all nodes of \(k\text{-neighborhood}(vh_0) \), are and will remain ordinary because on these nodes, the predicate \(\text{resignation} \) remains verified forever.

So after \(T_1 = 2(k + 1) \) rounds, the nodes of \(\text{Set}_1 \) have their final status (ordinary or head).

After \(T_i + k + 1 \) rounds, for all \(l \in [0, k] \), we have \(\text{dom}[1](u_i) \in V_i \) for any node \(u_i \) of \(V_i \). This will stay true during the computation. So, after one more round, \(vh_i \) is a head; and it will remain a head.

After \(k \) more rounds, all nodes of \(k\text{-neighborhood}(vh_i) \), are and will stay ordinary (because, on these nodes, the predicate \(\text{resignation} \) remains verified forever).

So after \(T_{i+1} = 2(k + 1) + T_i \) rounds, the nodes of \(\text{Set}_{i+1} \) have their final status (ordinary or head).

The set \(HX = \{ v \mid \exists i \text{ such that } v = vh_i \} \) is a distance-\(k \) independent set. So \(V_M = \emptyset \).

We conclude that after at most \(2n < T_M < 4n \) rounds, all nodes have their final status (ordinary or head). After \(k \) more rounds, in any node, the table \(\text{dom}[\] \) has its final values.

7. Reference

