
Token based Self-Stabilizing Uniform Algorithms 1

Jo�roy BeauquierLRI CNRS-UMR 8623, Bat 490, Universit�e Paris SudF-91405 Orsay Cedex, FranceE-mail: jb@lri.fr
and

J�erôme Durand-LoseI3S, CNRS UPREES-A 6070, 930 Route des Colles, BP 14506903 Sophia Antipolis Cedex, FranceE-mail: jdurand@unice.fr
and

Maria Gradinariu and Colette JohnenLRI CNRS-UMR 8623, Bat 490, Universit�e Paris SudF-91405 Orsay Cedex, FranceE-mail: mgradina@irisa.frE-mail: colette@lri.fr

Version: February 15, 2002
This work focuses on self-stabilizing algorithms formutual exclusion and leader election| two fundamental tasks for distributed systems. Self-stabilizing systems are able torecover by themselves, regaining their consistency from any initial or intermediary faultycon�guration.The proposed algorithms are designed for any directed, anonymous network and sta-bilize under any distributed scheduler. The algorithms keystone is the token managementand routing policies. In order to break the network symmetry, randomization is used. Thespace complexity is O((D++D�) � (log(snd(n))+ 2)) where n is the network size, snd(n)is the the smallest integer that does not divide n and D+ and D� are the maximal outand in degree respectively. It should be noticed that snd(n) is constant on the averageand equals 2 on odd size networks.
Key Words: self-stabilization, randomized protocol, unfair scheduler, leaderelection, mutual exclusion, directed network.

1. INTRODUCTION
In a distributed system, several processors cooperate to achieve some global task.A prerequisite for cooperation is to implement a distributed control, i.e. reaching ormaintaining a global predicate despite of partial (or local) access to the system state.Token circulation and leader election algorithms constitute well-known examples ofglobal tasks. The former manages the fair circulation of exactly one token, while the
1contact author : Colette Johnen, LRI, universit�e Paris-Sud, centre d'Orsay, 91405 OrsayCedex, France, colette@lri.fr, tel : +33 1 69 15 67 02, fax : +33 1 69 15 65 86; running head :Token Based Self-Stabilizing Uniform Algorithms

1

latter consists in distinguishing one processor called the leader. The fair circulationof exactly one token can be used to solve the mutual exclusion problem. Once aleader is elected, many other tasks can be solved using a centralized control (forinstance, resource allocation or synchronization).Self-stabilization is a framework for dealing with channel or memory transientfailures. After a failure, the system is allowed to temporarily exhibit an incorrectbehavior, but after a period of time (as short as possible) it must behave correctly,without external intervention. A self-stabilizing leader election or token circula-tion protocol starting, for example, in a symmetric con�guration requires a way tobreak the symmetry. The id-based systems (every processor has an unique identi-�er) prevent the existence of symmetric con�gurations. In anonymous systems (allprocessors are identical), the symmetry can only be broken by randomization [3].
Related works. Self-stabilization was introduced by Dijkstra in [11]; three self-stabilizing deterministic token circulation algorithms for semi-uniform systems arepresented. In a semi-uniform algorithm, some speci�c processors do not perform thesame algorithm as the other processors. In [17], Israeli and Jalfon provide a tokenmanagement policy and a graph traversal scheme (token routing scheme) yieldingself-stabilizing mutual exclusion for undirected (bidirectional) networks. In orderto break symmetry they use the random walks technique described by Aleliunaset al. in [1]. Self-stabilizing token circulation algorithms coping with anonymoussystems are presented in [16, 5]. These solutions are designed for directed (unidi-rectional) rings. In [16], Herman presents an algorithm for odd size rings. In [5],Beauquier et al. present an algorithm which ensures token circulation on directedrings of any size. To guarantee the presence of a token in the ring the smallest nondivisor of n (n being the network size), snd(n) | the \magic" number as it wasde�ned in [17] | is used. Alstein et al. present in [2] two mutual exclusion algo-rithms for directed arbitrary networks with identi�ers requiring the preprocessingof a spanning tree. Kakugawa and Yamashita present in [19] a self-stabilizing tokencirculation protocol under unfair scheduler on rings. In [15], Durand-Lose reportsan original token management solution on undirected networks which ensures theexistence of a single token in the network (the \magic number" is also used). Ran-dom walks are used for breaking symmetry. The space complexity of this protocolis O(D � log(snd(n))) where D is the maximal processor's degree. In [21], Rosazpresents a randomized mutual exclusion algorithm in the message passing model.The solution has a polynomial stabilization time. Awerbuch and Ostrovsky presentin [4], a self-stabilizing leader election protocol on undirected id-based networks.It requires log�(N) states per processor (N is the network size). A basic protocolis given, requiring N states per processor, and the result is obtained by using adata structure that stores distributively the variables. In an appendix of [18], Itkisand Levin use another data structure based on the Thue-Morse sequence, requiringO(1) bits per edge to store, in a distributed manner, variables having possibly Nvalues. These two last algorithms require undirected networks. Assuming that thedeadlock freedom property is guaranteed externally, Mayer et al. propose in [20] arandomized self-stabilizing leader election protocol in the message passing model.In [13], Dolev et al. present two leader election protocols in complete networks. Theprotocols are self-stabilizing under read/write atomicity. Using the scheduler-luckgame technique, polynomial bounds for the stabilization time are provided. In [14] adynamic leader election algorithm under read/write atomicity is reported by Dolevet al.. Randomization is used for breaking symmetry but an unbounded memory

2

space is required. Beauquier et al. propose in [6] a space optimal leader election onthe ring topology. The propose bound for the space complexity is O(log(snd(n))).
Our Contributions. We propose a self-stabilizing token circulation algorithmand a leader election algorithm under an arbitrary scheduler for any anonymousdirected network : there is no requirement on the scheduler and on the networktopology (except strong connectivity). The optimality of the result is proven in[6] for the ring topology. Protocols are based on a token management policy thatguarantees the presence of at least one token. We also provide a token routingpolicy which ensures the token circulation. The token routing policy provides anupper bound for the number of steps executed by a processor between two successivesteps of any other processor. This policy is used in the automatic construction ofAlgorithm 6.2 | self-stabilizing leader election under an arbitrary scheduler. Aprobabilistic version of token circulation (Algorithm 4.1) yields a mutual exclusionprotocol. The space complexity of our algorithms is O((D++D�)�(log(snd(n))+2))bits per processor where D+ and D� are the maximal out and in network degrees.It should be noticed that snd(n) is constant on the average and equals 2 on odd-sizenetworks.

2. MODEL
Transition System. A distributed system is a collection of intercommunicatingstate machines. We formally specify a distributed system by a transition systemTS = (�; C; T; I) where � is an alphabet, C is the set of system con�gurations,T � C�C is the set of transitions and I � C is the set of initial con�gurations. Eachtransition of T is labeled with a symbol from �. A probabilistic distributed systemis a distributed system where a probabilistic distribution is de�ned on transitions.A computation e of TS starting in a con�guration c1 2 I is a maximal sequenceof transitions e = ((c1; c2); (c2; c3) : : :) such that (ci; ci+1) 2 T , 8i � 1. The lengthof a �nite pre�x h of a computation is denoted by length(h), the last con�guration inh is represented by last(h), and the �rst con�guration in h is first(h) (first can bealso used for an in�nite computation). A computation factor is a �nite sequence ofcomputation steps. If h and x are computation factors such that first(x) = last(h)then hx denotes the factor corresponding to the sequence h followed by x.Let c be a system con�guration. A TS-tree rooted in c, T ree(c), is the tree-representation of all computations starting from c. Let nd1 be a node in T ree(c),the �-branch rooted in nd1 is the set of all T ree(c) computations starting in nd1having the �rst transitions labeled with � (a letter of �). The degree of nd1 isthe number of branches rooted in nd1. A sub-TS-tree of degree 1 rooted in c is arestriction of T ree(c) in which any node has the degree 0 (i.e. there is a deadlock)or 1. On a sub-tree of degree 1 of a probabilistic distributed system, the set of�rst transitions of a branch is the base set for a discrete probabilistic space. Anytransition in this set has a positive probability and the sum of probabilities is 1 forevery node.
Scheduler and strategy. A scheduler is usually presented in the literature (see[12], [13], [22]) as an adversary for a distributed system which \chooses" at eachcon�guration the next transition. Classically, a scheduler is de�ned as a functionover the distributed system executions which, for a given con�guration, returns the

3

p1p3
p1,p3

1/41/4

p1p4p2p4 p1p3p2p3

1/41/4

p4 p2 p3 p1p3 p2p1p4

p1p4

p1p4

p1p3

p3 p1

p2p3

p3 p2

p1p3

p3 p1

p1,p4 p1,p3 p2,p3 p1,p3

p1

1/2 1/2 1/2 1/2

p3

p1,p4 p2,p3 p1,p3p2,p4

FIG. 1 The beginning of T ree(c) of the Algorithm 4.1

next transition. In the process of choosing a transition, a scheduler may have accessto partial or total information on the system history. Note that some importantscheduler types cannot be speci�ed as functions over the �nite history of systemexecutions, like for instance the fair scheduler.In the model that we use, a scheduler is a predicate over the system computa-tions. This de�nition copes up with any type of scheduler even with those havinga dynamical behavior, according to the system evolution. In the sequel, we usethe k-bounded scheduler (during a system computation, while a processor is en-abled another processor can perform at most k actions) and the distributed unfairscheduler (during a computation, some enabled processors may starve | they neverperform an action).The interaction between a scheduler and the distributed system generates whatwe call here strategies, de�ned as follows :
Definition 1 (Strategy). Let TS be a transition system and let c be a TScon�guration. A strategy rooted in c is a sub-TS-tree of degree 1 of T ree(c).Let st be a TS strategy, and A be a scheduler (i.e. a predicate over the compu-tations). st is a strategy under A i� all computations of st verify A.
In Figure 1, we present the beginning of the T ree(c) of the Algorithm 4.1 onthe 4-ring (p1, p2, p3 and p4). The Algorithm 4.1 provides a self-stabilizing tokencirculation. c is the con�guration where both processor p1 and p3 have a token.Figure 2 presents the beginning of a speci�c strategy of T ree(c) : at each step, allprocessors having a token perform their action.Note that a T S tree can be decomposed in a in�nity of strategies.Let st be a strategy. An st-cone Ch corresponding to a pre�x h is the set ofall possible computations in st with the same pre�x h. The measure of an st-coneCh is the measure of the pre�x h (i.e., the product of the probabilities of all thetransitions occurring in h). An st-cone Ch0 is called a sub-cone of Ch if and only ifh0 = hx, where x is a computation factor.In [7] it is proven, following the classical theory of probabilistic automata (see[22]), that for any strategy, it can be built a probabilistic space having the strategyas a base set.
Distributed system topology. Throughout this paper we consider distributedsystems of n intercommunicating computing devices mapped as a strongly con-nected directed graph DG = (V;E) where V is the set of graph nodes and E the

4

p1,p4

1/4

1/4 1/4
p1p2p4p1p2 p1p4

1/4 1/4

1/4 1/4
p3p4 p3 p2p4 p2p3

1/4

1/4 1/4
p1p3 p3p4 p1p2 p2p4

1/4

p1p3

p1,p3

p1p3p2p3p1p4p2p4

p2,p4 p2,p3 p1,p3

1/4

1/4 1/4

1/4

p1p3p1p4p2p3p2p4

1/4 1/4
1/41/4

1/4

FIG. 2 The beginning of a strategy from c of the Algorithm 4.1

set of directed edges. Each node represents a computing device, also called pro-cessor. If (p; q) 2 E then p is an in-neighbor of q and q is an out-neighbor of p(p may send some data to q on (p; q), but q cannot). In the sequel, the set ofnode p in-neighbors is denoted by In(p) and their number is denoted by D�(p).Similarly the set of out-neighbors is denoted by Out(p) and the number of thoseneighbors by D+(p). Any node p in the network shares registers with its in andout neighbors. The node p reads the shared registers with its in-neighbors (denotedRpin[q]; q 2 In(p)) and is allowed to freely perform write and read operations on theshared registers with the out-neighbors (denoted Rpout[z]; z 2 Out(p)). For a nodep all the edges oriented to its out-neighbors are called outgoing edges and all theedges oriented towards p are called incoming edges.
Distributed algorithm. Any processor in a distributed system executes an al-gorithm which has two parts : a declarative part and a �nite set of guarded actionspart (i.e. label :: hguardi �! hstatementi). The values of local variables and out-registers of a processor de�ne the processor current state. The guard of a processorp is a boolean expression involving the state of p and the values of p's in-neighborsregisters. A guarded action (also called rule) is enabled if its guard is true. Weassume that for any processor there is at most one enabled action at a time. Aprocessor having an enabled action is also called enabled processor.Our model deals with all kinds of atomic step. For instance, our model dealwith the read/write atomicity ([12]) where a processor atomic step consists of aninternal operation followed by either a read or a write operation (into a processor'sout-register) but not both. The presented algorithms are designed for the model ofcomposite atomicity where a processor atomic step contains both read and writeoperations : in one atomic step, a processor evaluates its guards and executes thestatement of one enabled rule.When an algorithm contains guarded actions with random outputs the algorithmis probabilistic (randomized) otherwise it is deterministic. The processors executingprobabilistic algorithms are called randomized processors.

5

Distributed system versus transition system. Let S be a distributed system. Wespecify the distributed system S by the transition system TS. A con�guration ofTS is a vector containing the states of all processors from S. Let c be a con�gurationof TS, a transition from c is determined by the execution of one atomic step fromc by one or several processors. A local con�guration is the part of a con�gurationthat can be \seen" by a processor (i.e. its state and the state of its neighbors). Acon�guration is symmetrical if all processors have the same local con�guration.
Probabilistic Self-Stabilizing Systems A probabilistic self-stabilizing system is aprobabilistic distributed system satisfying two properties : probabilistic convergence(the system converges to con�gurations satisfying a legitimacy predicate) and cor-rectness (all the computations starting from con�gurations satisfying a legitimacypredicate satis�es the system speci�cation).A predicate P is closed for the computations of a distributed system if and onlyif when P holds in a con�guration c, P also holds in any con�guration reachablefrom c.
Notation 1. Let S be a system, A be a scheduler and st be a strategy underA. Let CP be the set of all system con�gurations satisfying a closed predicate P(formally 8c 2 CP; c ` P). The set of computations of st that reach con�gurationsin CP is denoted by EPst and its probability by Prst(EPst).
Definition 2 (Probabilistic Stabilization). A system S is self-stabilizing undera scheduler A for a speci�cation SP if and only if there exists a closed legitimacypredicate L on con�gurations such that in any strategy st of S under A, the twofollowing conditions hold :
1. The probability of the set of computations of st, starting from c, reachingin a �nite number of steps a con�guration c0, such that c0 satis�es L is 1(probabilistic convergence). Formally, 8st; Prst(ELst) = 1
2. All computations, starting from a con�guration c0 such that c0 satis�es L,satisfy SP (strong correctness). Formally, 8st;8e 2 st : e = e0e00 withlast(e0) ` L then e00 ` SP .
Note that this de�nition is stronger than the one used in [5, 16] where the systemcorrectness is probabilistic : for all strategies the probability of the set of compu-tations reaching legitimate con�gurations and satisfying the system speci�cation is1. The probabilistic correctness will be called in the sequel weak correctness andsystems satisfying a weak correctness will be called weak self-stabilizing systems.
Convergence of Probabilistic Stabilizing Systems Based on previous works onthe probabilistic automata (see [22], [23], [24]) [7] presents a detailed frameworkfor proving self-stabilization of probabilistic distributed systems. A key notionis local convergence denoted LC. The LC property is a progress statement asthose presented in [9] (for the deterministic systems) and [22] (for the probabilisticsystems). Informally, the LC property for a probabilistic self-stabilizing systemand two predicates P1 and P2 means that starting in a con�guration satisfying P1,the system will reach a con�guration which satis�es a particular predicate P2, in abounded number of computation steps with positive probability. Formally the localconvergence property is de�ned as follows :

6

Definition 3 (Local Convergence). Let st be a strategy, P1 and P2 be twopredicates on con�gurations, where P1 is a closed predicate. Let � be a positiveprobability and N a positive integer. Let Ch be a st-cone with last(h) ` P1 andlet M be the set of sub-cones Ch0 of the cone Ch such that for every sub-coneCh0 : last(h0) ` P2 and length(h0) � length(h) � N . The cone Ch satis�es LC(P1; P2; �;N) if and only if Prst(SCh02M Ch0) � �.
Now, if in strategy st, there exist �st > 0 and Nst � 1 such that any st-cone,Ch with last(h) ` P1, satis�es LC(P1; P2; �st; Nst), then the main theorem of theframework presented in [7] states that the probability of the set of computations ofst reaching con�gurations satisfying both P1 and P2 is 1. Formally :
Theorem 1. [7] Let st be a strategy. Let P1 and P2 be closed predicates oncon�gurations such that Prst(EP1) = 1. If 9�st > 0 and 9Nst � 1 such thatany st-cone Ch with last(h) ` P1, satis�es the LC (P1; P2; �st; Nst) property, thenPrst(EP) = 1, where P = P1 ^ P2.
Remark 1. If any strategy, st, of a distributed system satis�es LC(PR1; PR2;�st; Nst) with PR1 the true predicate (veri�ed by any con�guration) and PR2 beingthe legitimacy predicate then the system satis�es the probabilistic convergence asde�ned in De�nition 2.

3. TOKEN MANAGEMENT AND TOKEN ROUTING POLICY
The notions of token management and token routing policies were introducedfor self-stabilizing systems in [17]. In order to implement a token management, oneneeds to design a pattern that (i) allows a processor to decide if it has a tokenthrough its local information (its state, and the out-registers of its out-neighbors).But also, the pattern should ensure that there is always at least one token in thenetwork. In [17] it is suggested to use \the magic" number (the smallest nondivisor of the network size) for solving this problem. [17] deals with undirectedgeneral graphs and directed rings. In this section, we present a token managementand token routing policies for general directed graphs.

3.1. Token management policy
A \token" is represented by a predicate. A processor with the \token" predi-cate true is said to be \privileged". The self-stabilizing systems achieving mutualexclusion or leader election needs to guarantee that in the system there is alwaysa privileged processor. Descriptions of such predicates can be found in [5] for di-rected rings and [15] for undirected networks. In the following, we de�ne the tokenpredicate for directed networks.

3.1.1. Token de�nition
We de�ne tokens for directed networks and then, prove that there is at leastone token in any system con�guration.
Notation 2. Let snd(n) be the smallest non divisor of n (the number of pro-cessors). Let �Tp be the di�erence (modulo snd(n)) between the sum of in-register

7

values and the sum of out-register values of a processor p. Formally :

�Tp =
0
@ X
q2In(p)

Rpin[q]� X
q2Out(p)

Rpout[q]
1
A mod snd(n) : (1)

Definition 4. A processor p holds a token if and only if �Tp 6= 1 . A processorholding a token is a privileged processor.
Using the same reasoning as in [5] or [15], we �nd out that this convention issu�cient to guarantee the presence of at least one token in any con�guration.
Lemma 1. Let DS be a distributed system. In any DS con�guration there is atleast one privileged processor.
Proof. Suppose that there is no privileged processor, hence �Tp = 1 for anyprocessor p in the network. By summing the �Tp for all p, we get :

X
p2V

0
@ X
q2In(p)

Rpin[q]� X
q2Out(p)

Rpout[q]
1
A = 0 = n mod snd(n) : (2)

Equation (2) means that snd(n) divides n which is impossible from the de�nitionof snd(n).
3.1.2. Switch technique

Passing a token from a processor p to one of its out-neighbors is made accordingto the switch technique ([8]). Suppose without loss of generality, that the outgoingedges of a processor are labeled 0; 1; : : : D+(p) � 1. A processor passes the tokensthat it receives according to this labeling : if the last token has been passed on theedge i then the next one will be passed on the edge (i+ 1) mod D+(p).
Token passing. A processor p passes a token to an adjacent processor q 2Out(p) by modifying the value of Rout[q] in the following way : Rpout[q] = Rpout[q]+�Tp � 1. Hence the new value of �Tq is increased by �Tp � 1 and the new valueof �Tp is set to 1 : the token is passed from p to q.
Tokens meeting. When two tokens are passed to the same processor q, then�Tq is increased twice. Either the tokens annihilate each other, or they merge intoa single token. The same phenomenon happens when a processor q having a tokenreceives another token.
Remark 2. The number of tokens in a network does not increase.

3.2. Fair token routing policy
The fair token routing policy is provided by Algorithm 3.1 which performs tokencirculation in deterministic networks. Due to the particular encoding of a tokenone or more tokens are always present. A processor holding a token sends it deter-ministically to one of its out-neighbors. The interesting property of the algorithmis that, even if the scheduler is unfair, in any computation each processor receivesin�nitely many often a token. Algorithm 3.1 will be used later, in a hierarchicalcomposition for ensure fairness from an unfair scheduler.

8

Algorithm 3.1 Fair token routing algorithm for processor p
Shared registers with the in-neighbors :RFTin [1::D�(p)] where RFTin [i]2 [0; snd(n)� 1]
Shared registers with out neighbors :RFTout[1::D+(p)] where RFTout[j] 2 [0; snd(n)� 1]
Variables on p :directionFT 2 [0; D+(p)� 1] (the outgoing direction of the last sent fair token)
Functions :�FT = �Pq2In(p)RFTin [q]�Pq2Out(p)RFTout[q]

� mod snd(n)
Macros :New Dir Fair Token :: directionFT := (directionFT + 1) mod D+

Pass Fair Token :: RFTout[directionFT] := (RFTout[directionFT] +�FT � 1) mod snd(n)
Predicates :Fair Token � [�FT 6= 1]
Action :FA:: Fair Token �! New Dir Fair Token; Pass Fair Token

Algorithm 3.1 description. Description is very simple. In any system con�g-uration there is a processor holding a token according to the De�nition 4. It canpass this token according to the switch technique. The switch technique in encodedin the macro New Dir Fair Token(p) where the new destination for the token iscomputed.
Algorithm 3.1 analysis. The switch technique guarantees that in any compu-tation, any processor holds a token in�nitely many times (fairness of the tokencirculation). Moreover, the number of steps taken by the other processors betweentwo successive actions of a given processor is bounded.
Lemma 2. Let e be an arbitrary computation of Algorithm 3.1 starting in acon�guration c with m tokens (1 � m � n). Let p be a processor holding a tokenin c. Any in-neighbor pj of p, pj 2 In(p), executes at most m � D+(pj) actionsbetween two consecutive actions of p in e.
Proof. Let us consider a factor f of computation e such that f starts by a paction, �nishes by a p action too, and along the factor f the processor p does notexecute any action. Let us determine the maximal number of actions which canbe done by pj in f . Every execution of a pj action produces a token passage toone of the pj out-neighbors chosen according to the switch technique (directionFTis incremented). Therefore after at most D+(pj) actions of pj a token will besent to the processor p. Processor p keeps the token until the end of f since p isnot activated. Assume that the processor pj executes again D+(pj) actions henceanother token is sent to the processor p. The processor p may or not execute it

9

action | in the �rst case the factor f ends and the number of actions executed bypj in f is 2 �D+(pj). In the second case p keeps another token; thus, there are atmost m� 2 tokens that can freely move.After at most m �D+(pj) actions of pj in f the processor p holds the only tokenin the network. Thus p is the only processor which can execute an action; the factorf has to end. The maximal number of actions executed by pj in f is m �D+(pj).
Let us consider two processors p and q. The distance between p and q (the lengthof a shortest directed path between p and q) is denoted dist(p; q). Shortest path(p;q) denotes the set of processors on a shortest directed path from p to q.
Lemma 3. Let e be an arbitrary computation of Algorithm 3.1 starting in acon�guration with m tokens. For any two distinct processors, p and q, betweentwo actions of p the processor q computes at most Qdi=1m � D+(qi) where qi 2Shortest path(q; p) and dist(q; p) = d.
Proof. We call the i-th processor on the shortest past between q and p is qi,with q = q1. From Lemma 2, we know that between two actions of p the processorqd executes at most m � D+(qd) actions; and between two actions of qd, the pro-cessor qd�1 executes at most m � D+(qd�1). Therefore between two actions of pthe processor at distance 2 of p executes its actions m2 �D+(qd) �D+(qd�1) times.Repeating the reasoning, between two actions of p the processor q executes at mostQdi=1m �D+(qi) actions where qi 2 Shortest path(q; p).
Let us denote by D+ the maximal out degree of the network processors and byDiam the network diameter (Diam = maxp;qdist(p; q)).
Corollary 1. In any computation of Algorithm 3.1 starting in a con�gurationwith 1 � m � n tokens, where n is the network size, between two actions of a

processor any other processor executes at most (m �D+)Diam actions under anyscheduler.
Lemma 4. Let e be a computation of Algorithm 3.1 starting in a con�gurationwith 1 � m � n tokens, where n is the network size. In e, any processor executes

it action within (n� 1) (m �D+)Diam + 1 computation steps.
Proof. Let p be an arbitrary processor. From the Lemma 3 and the Corollary 1,

between two actions of p another processor executes at most (m �D+)Diam actions.The system size is n hence the processor p executes it action after at most (n �
1) (m �D+)Diam computation steps.

Corollary 2. A processor computes the actions of Algorithm 3.1 in�nitelyoften.
The following Corollary provides the bound for Algorithm 3.1 k-fairness de�nedas follows :
Definition 5. A distributed algorithm is k-fair if and only if on every com-putation, the two following properties hold : (i) every processor executes an actionin�nitely often and (ii) between any two actions of a processor, at most k actionsare executed by any other processor.
Corollary 3. Algorithm 3.1 is an (n �D+)Diam-fair algorithm.

10

Proof. The proof results from the direct application of the Corollaries 1 and2.
The lemmas 4 provide also the bound for the length of a round in an arbitrarycomputation e of Algorithm 3.1, de�ned as follows :
Definition 6. Let e be a computation of Algorithm 3.1. A round in e is afactor of e in which any processor holds a token at least once.
Corollary 4. In any computation of Algorithm 3.1 the maximal bound for a

round length is B = (n� 1) � (n �D+)Diam + 1
4. MUTUAL EXCLUSION UNDER A K-BOUNDED SCHEDULER

In the sequel, we present a self-stabilizing mutual exclusion algorithm under ak-bounded scheduler (Algorithm 4.1). A scheduler is k-bounded i� while a givenprocessor is enabled, another processor can perform at most k times its actions.This algorithm uses the routing policy previously presented but the token movesdepend on a coin tossing.
4.1. Algorithm 4.1 description

The main di�erence with the random walks presented by Israeli and Jalfon in[17] is the fact that randomization is used here to decide whether or not the tokenwill be sent (it is not used to decide to which of the neighbors it will be sent). Thedestination out-neighbor is still determined by the switch technique. The randomwalks method copes only with the undirected networks. Our method also copeswith directed, strongly connected networks.
4.2. Algorithm 4.1 analysis

We prove Algorithm 4.1 weak self-stabilizing under a k-bounded scheduler forthe mutual exclusion speci�cation de�ned as follows :
Definition 7 (Token circulation speci�cation - STC). In the network \there isonly one token" and any processor in the network holds the token in�nitely often.
Let us denote by LTC the following predicate over con�gurations : there isexactly one token. All the con�gurations of Algorithm 4.1 which satisfy PredicateLTC are called legitimate con�gurations.According to Remark 2, we have :
Lemma 5. The predicate LTC is closed for Algorithm 4.1.
Convergence proof. In the following we prove Algorithm 4.1 convergence forLTC under a k-bounded scheduler. In order to show the system convergence weprove that any system strategy st under a k-bounded scheduler veri�es the localconvergence property of De�nition 3 for LTC .
Definition 8. Let e be a computation of Algorithm 4.1. A round in e is afactor in which a token visits all processors.

11

Algorithm 4.1 Routing protocol for the probabilistic token for processor p
Shared registers with the in-neighbors :RPTin [1::D�(p)] where RPTin [i] 2 [0; snd(n)� 1]
Shared registers with the out neighbors :RPTout [1::D+(p)] where RPTout [j] 2 [0; snd(n)� 1]
Variables :directionPT 2 [0; D+(p)� 1] (the previous direction of the probabilistic token)
Functions :�PT = �Pq2In(p)RPTin [q]�Pq2Out(p)RPTout [q]

� mod snd(n)
Macros :New Dir Probabilistic Token :: directionPT := (directionPT + 1) mod D+(p)Pass Probabilistic Token :: RPTout [directionPT] := (RPTout [directionPT] +�PT � 1) mod snd(n)
Predicates :Probabilistic Token � [�PT 6= 1]
Actions :A:: Probabilistic Token �!if (random(0, 1) = 0) then f New Dir Probabilistic Token;Pass Probabilistic Token g

Lemma 6. Let st be a strategy of Algorithm 4.1 under a k-bounded sched-uler. There exist � > 0 and N � 1 such that any st-cone veri�es the propertyLC(true;LTC ; �; N).
Proof. Let Ch1 be an arbitrary st-cone with last(h1) = c1. Assume that thenumber of tokens in c1 is m. Denote by (pi)i=1;:::;m the processors holding thesetokens. Consider the following scenario : the token held by processor p1 (calledtoken t1) merges with the token held by the processor p2 (called token t2). Weprove that : (i) the scenario holds with positive probability and (ii) the scenariois repeated until there is only one token in the network.
� We call h2 the computation from last(h1) having the following properties :(1) when the scheduler chooses the processor holding the token t1 the result ofcoin tossing is 1 (hence the token circulates); (2) when the scheduler choosesanother token the result of coin tossing is 0 (the token is frozen) (3) themoving token reaches p2 in the last con�guration of h2. In last(h1h2) thenumber of tokens is lesser than m� 1.
The t1 token circulates \pseudo-deterministically" : when a process holdingthe t1 token, performs an action it releases the token. Therefore within Bcomputation steps of t1, the t1 token has reached all processors.
In the worst case, the scheduler chooses t1 when it cannot do another choice :the other privileged processors have performed k actions (the scheduler is k-

12

bounded). Therefore, within k � (m � 1) + 1) � B computation steps, the t1token reached all processors (i.e. has merged with another token). We have :Prst(Ch1h2) � Prst(Ch1)�(12)(k�(m�1)+1)�B and length(h2) � (k�(m�1)+1)�B.
� By successive applications of the previous scenario we built some sub-cone
Chm . In last(hm), the number of tokens is 1, Prst(hm) � Prst(h1)�(12)[(m�1)+ k�m�(m�1)

2]�B
and length(hm) � [(m� 1) + k�m�(m�1)2] �B

Therefore the property LC(true;LTC ; �;N) where � � (12) (k�n
2+2�n)�B
2 and N �(k�n2+2n)�B2 is veri�ed.

Remark 3. The previous result holds only under a k-bounded scheduler. Underan unfair scheduler, the Algorithm 5.1 does not converge to LTC . For example,on a directional ring, an unfair scheduler may have the following strategy : selectsthe same privileged processor till it passes its token; then selects another privilegedprocessor till it passes its token, and so on. With this strategy, all the tokens moveat the same speed in the ring; they will never merge.
Lemma 7. Algorithm 4.1 has a �nite expected stabilization time.
Proof. In order to establish the expected stabilisation time we use the technique

presented in [14] and the � value showed in Lemma 6, � � (12) (k�n
2+2�n)�B
2 (B provided

by Corollary 4). The expected stabilisation times is bounded by 1� � 2 (k�n2+2�n)�B
2 .

Remark 4. Note that majorations used in proving Lemma 6 are brutal, hencethe provided exponential bound for the stabilisation time.
Lemma 8. Let st be a strategy of Algorithm 4.1 under a k-bounded scheduler.There exist RT > 0 and � > 0 such that any st-cone Ch with last(h) is a legitimatecon�guration has a sub-cone Chh0 with lenght(h0) � RT such that h0 is a round andPrst(Chh0) � Prst(Ch) � �.
Proof. Let h0 be the computation from last(h) where the only token moves ateach computation step until the token has visited all processors. The probabilityof Chh0 is �1 � Prst(Ch)(12)B . As this scenario is \pseudo-deterministic" the tokenreaches all processors in at most B computations steps, The length(h0) � B.
From Lemmas 8 and Theorem 1, we get :
Corollary 5. In any strategy of Algorithm 4.1 under a k-bounded schedulerthe probability of the set of computations satisfying : (1) a legitimate con�gurationis reached and (2) after reaching a legitimate con�guration there are an in�nitenumber of rounds, is 1.
Corollary 6 (Correctness proof). In any strategy of Algorithm 4.1 the prob-ability of the set of computations reaching a legitimate con�guration and satisfyingSTC is 1.
Theorem 2. Algorithm 4.1 is weak self-stabilizing for the speci�cation STC .
Proof. The weak correctness is provided by the Corollary 6, the convergence isprovided by the Lemma 6 and the Theorem 1.
Remark 5. Algorithm 4.1 satis�es only the weak correctness. It could be easilytransformed in a strong self-stabilizing algorithm using the technique reported in[10]. Clearly, the expected steps of stabilisation is exponential.

13

5. LEADER ELECTION UNDER A K-BOUNDED SCHEDULER
Informally, a self-stabilizing distributed system which solves the leader electionproblem must satisfy the property that once the system is stabilized there is onlyone, unchanged leader. Formally, this speci�cation is de�ned as follows :
Definition 9 (Leader election speci�cation - SLE). Let Leader Mark be a pred-icate over the local con�gurations. Any computation, e, of a self-stabilizing systemveri�es the leader election speci�cation if and only if the two following propertiesholds : (1) e reaches a con�guration, where the Leader Mark predicate is truefor one and only one processor, p (also called leader), and (2) in any con�gurationoccurring afterward in e, p is always the unique leader.
In the following, we present an algorithm for leader election which stabilizesunder a k-bounded scheduler.

5.1. Algorithm 5.1 description
Algorithm 5.1 has two distinct layers of tokens. The �rst (respectively second)layer ensures the circulation of Leader Mark (respectively Colored Token) tokensfollowing the routing policy of Section 4. Once the algorithm is stabilized, theLeader Mark is frozen and the Colored Token keeps circulating.Colored Token and Leader Mark have a virtual \color" attribute. Each tokenhas a di�erent role and then colors are managed independently.A processor holding a Leader Mark token is considered as a leader. The colorof the Leader Mark token is the color of the processor holding it.A Colored Token is used in order to detect the presence of some other leaders.The value of the color attribute for Colored Token is the color of the processorhaving passed the token (an in-neighbor of the processor holding the colored token).A processor, p, keeps a copy of the previous values of its in-registers (in the variableOldCTin), in order to �nd the sender of the colored token (only the sender changedthe value of the corresponding out-register). When several colored tokens meet onthe same processor, the color of the resulting colored token is the color of the �rstprocessor (according to the local switching order) that has sent a color token.During its circulation a Colored Token colors all the non leader processors withits color (A3). A leader which has sent a Colored Token waits until it returns. Atthat time, if the color of Colored Token is the same as its color, then it stays aleader but goes on checking by randomly selecting a new color and starting a newcirculation of the colored token (Action A2). In this case, it has no informationtelling it that it is not the single leader.Since color is randomly selected, if there are several leaders in the network, aleader will eventually get a colored token that does not have its color. In this case,the leader passes its leadership and Colored Token with a new randomly chosencolor (Action A1). In this case it supposes that there are several leaders.Once the algorithm is stabilized, there remains only one frozen leader and onlyone colored token which may circulate.

5.2. Algorithm 5.1 analysis
Let us de�ne the following predicates over con�gurations :
� LCT � there is exactly one colored token;

14

Declaration 1 Registers, variables, predicates and macros for p executing Algo-rithm 5.1
Shared registers with the in-neighbors :RLMin [1::D�(p)] where RLMin [i] 2 [0; snd(n)� 1] (for leader mark)RCTin [1::D�(p)] where RCTin [i] 2 [0; snd(n)� 1] (for colored token)Rcolorin [1::D�(p)] where Rcolorin [i] 2 f0; 1g (for the color)
Shared registers with out-neighbors :RLMout [1::D+(p)] where RLMout [j] 2 [0; snd(n)� 1] (for leader mark)RCTout [1::D+(p)] where RCTout [j] 2 [0; snd(n)� 1] (for color token)Rcolorout [1::D+(p)] where Rcolorout [j] 2 f0; 1g (for the color)
Variables :directionPT 2 [0; D+(p)� 1] (the previous direction of a probabilistic token)OldCTin [1::D�(p)] (the old values from the registers RCTin)color is a boolean : 0 = red and 1 = green (the color of the processor p)
Functions :�LM = �Pq2In(p)RLMin [q]�Pq2Out(p)RLMout [q]

� mod snd(n)
�CT = �Pq2In(p)RCTin [q]�Pq2Out(p)RCTout [q]

� mod snd(n)
Macros :New Dir Probabilistic Token :: directionPT := (directionPT + 1) mod D+(p)Pass Leader Mark :: RLMout [directionPT] := (RLMout [directionPT] +�LM � 1) mod snd(n)Pass Colored Token :: RCTout [directionPT] := (RCTout [directionPT] +�CT � 1) mod snd(n)Update Old :: 8i 2 [1::D�(p)]OldCTin [i] := RCTin [i]Randomly Change Color :: color := random(red; green);8j 2 [1::D+(p)]; Rcolorout [j] := color;Change Color :: color := Rcolorin [i], where i 2 [1::D�(p)] such thatOldCTin [i] 6= RCTin [i]; 8j 2 [1::D+(p)]; Rcolorout [j] := color;
Predicates :Leader Mark � [�LM 6= 1]Colored Token � [�CT 6= 1]Same Color � [color = Rcolorin [j] where j 2 [1::D�(p)] such thatOldCTin [j] 6= RCTin [j]]

15

Algorithm 5.1 Randomized leader election algorithm under a k-bounded scheduler
Actions :A1:: Leader Mark ^ Colored Token ^ :Same Color �!if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilistic Token; Pass Leader Mark;Pass Colored Token g
A2:: Leader Mark ^ Colored Token ^ Same Color �!if (random(0,1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilistic Token; Pass Colored Token g
A3:: Colored Token ^ :Leader Mark �!if (random(0; 1) = 0) thenf Change Color; Update(Old);New Dir Probabilistic Token; Pass Colored Token g

� LColor � (i) on any processor, for any value j 2 [1::D+(p)], we have :Rcolorout [j] = color and (ii) on any processor, except the processor having thecolored token p, we haveOldCTin = RCTin ; and on p, for any value j 2 [1::D�(p)],except one, we have : OldCTin [j] = RCTin [j].
� LLM � there is exactly one leader mark;
� Same Color � the unique leader mark and the unique colored token have thesame color.
Definition 10. Let us denote by LLE the predicate which is true when thefollowing four predicates hold : (1) LCT , (2) LColor, (3) LLM , and (4) Same Color.A legitimate con�guration for Algorithm 5.1 is a con�guration satisfying thepredicate LLE .
Remark 6. Predicates LCT and LLM are closed.
Lemma 9. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.We have Prst(LCT) = 1.
Proof. The colored token follows the routing policy as it was de�ned in thesection 4. According to the Lemma 6 : 9�st > 0 and 9nst � 1 such that any st-conesatis�es the LC (true;LCT ; �st; nst) property. We get Prst(LCT) = 1 by Theorem1.
Lemma 10. Let st be a strategy of Algorithm 5.1; Prst(LCT ^ Lcolor) = 1.
Proof. Let Ch be an arbitrary cone of the strategy st such as last(h) satis�esthe predicate LCT . Let Chh0 be an arbitrary sub-cone of Ch. Let p be a processorthat has performed an action in h0. After the p's action, p satis�es (i) for any valuei 2 [1::D+(p)], we have : Rcolorout [j] = color and (ii) OldCTin = RCTin until one of its in-neighbor gives it the colored token. In this case, on p, for any index j 2 [1::D+(p)],but one (called l), OldCTin [j] = RCTin [j]. RCTin [l] is the in-register of p correspondingto the processor that has given the colored token to p.

16

We call h00 the computation from last(h) where the colored token moves at eachcomputation step until all processors have got the colored token. The con�gurationlast(xh00) veri�es the predicate LCT ^ LColor. The probability to obtain the coneChh00 is �1 � Prst(Ch)(12)B . The length(h00) � B.
Lemma 11. Predicates LCT ^ LColor ^ LLM and LCT ^ LColor are closed forAlgorithm 5.1.
Proof. Let e be an arbitrary execution of Algorithm 5.1. Let c be a con�gurationsatisfying the predicate LCT ^ LColor in e. In c, only the processor p that has thecolored token has an index l such that OldCTin [l] 6= RCTin [l]. Only p may perform anaction. In all cases, after the action of p, the color out-register of p has the samevalue as its color variable. After this action, either no variable value is changed :the predicate LCT ^ LColor is still veri�ed. Or p updates the variable Old andgives the colored token to a neighbor q : now only the processor q has an index l0such that OldCTin [l0] 6= RCTin [l0] (RCTin [l0] being the out-register of p shared with q).Therefore, the next con�guration in e is a con�guration verifying LCT and LLM .
Remark 7. On a con�guration c verifying the predicate LCT ^LColor, only Ac-tion A1 or A2 may change the color of the colored token.
Notation 3. Let us denote by NLead(c) the number of leader marks in thecon�guration c.
Lemma 12. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.There exist � > 0 and N � 1 such that any cone of st, Ch with last(h) ` LCT ^LColor, satis�es Local Convergence (LCT ^LColor; LLM ; �;N).
Proof. Assume that last(h) does not satisfy the predicate LLM . NLead(last(h))= m with m > 1 and there is only one colored token in last(h). The proof has thefollowing informal steps : (1) we prove that with positive probability the coloredtoken meets for the �rst time a processor holding a leader mark, let us denote thisleader mark by lm1, (2) with positive probability the leader mark, lm1 circulatesin the network until it merges with another leader mark. And we repeat the steps(1) and (2) until there is exactly one leader mark in the network.Assume that in last(h) the colored token is not on a leader. We call h0 thecomputation from last(h) where the colored token moves at each computation stepuntil it reaches a leader (Action A3). According to this scenario, the colored to-ken is \pseudo-deterministic" : it moves at each computation step. The stepsnumber to reach a leader is at most the length of a round of Algorithm 3.1. Theprobability of each computation step is (12)B . The probability of the cone Chh0 is�1 � Prst(Ch)(12)B . The length(h0) � B where B is the bound stated in Corollary4. Once the colored token and the leader mark are on the same processor, thereare two cases : (a) the colored token and the leader token have the same color, or(b) they have di�erent colors (hh0 is now called H).
� a case - Only Action A2 can be performed (by the leader having the colortoken - p). Let us called q the next leader that the colored token will meet. Westudy the history h00 where (1) p does not \choose" the color of q and (2) thecolored token moves at each computation step until it reaches q. At the end,of this history, the case b is reached : the colored token and the leader markare on the same processor, and they have di�erent colors. The probability ofthe cone CHh00 is �2 � Prst(Ch)(12)2B+1. The length(h0h00) � 2B. Now, Hh00is called H.

17

� b case - Only Action A1 can be performed (by the processor having the colortoken - p). The probability that the processor p passes the both tokens toan out-neighbor q (having the color col) and colors the colored token witha color di�erent of col is 14 . q is the same state as the p state before themove. q has the both tokens, but the color of the leader mark is not thecolor of the colored token. We call h1 the computation from last(H) wherethe colored token and the leader mark move together until they meet anotherleader mark. The probability of the sub-cone CHh1 of the cone CH whereNLead(last(Hh1)) = m� 1 is �3 � Prst(CH)(12)2B and length(h1) � B.
The probability of the cone ChH1 where NLead(last(hH1)) = m � 1 is �01 �Prst(Ch)(12)4B+1. The length(H1) � 3B. The probability of the cone ChHm�1where NLead(last(hHm�1)) = 1 is �0m�1 � Prst(Ch)(12)(m�1)(4B+1). Nm�1 =length(Hm�1) � 3(m � 1)B. Therefore, the property Local Convergence(LCT ^LColor; LLM ; �m�1; Nm�1) is satis�ed.
According to the Theorem 1, we have :
Corollary 7. Let st be a strategy of Algorithm 5.1 under a k-bounded sched-uler. We have Prst(LCT ^ LColor ^ LLM) = 1.
Lemma 13. The predicate LCT ^LColor ^LLM ^Same Color is a closed pred-icate for Algorithm 5.1.
Proof. Let c be a con�guration satisfying the predicate LCT ^ LColor ^ LLM ^Same Color. In c, there is a unique leader mark and only one colored token. Bothhave the same color. Only Action A2 may change the color of the colored token.After that action, the both tokens have the same color.
Lemma 14. Let st be a strategy of Algorithm 5.1 under a k-bounded scheduler.There exist � > 0 and N � 1 such that any cone of st, Ch such that last(h) ` LCT^LColor ^LLM , satis�es Local Convergence(LCT ^LColor ^LLM ; Same Color; �;N).
Proof. Assume that last(h) does not satis�es the predicate Same Color. Thereare two cases; in the �rst case the leader mark and the colored token are on di�erentprocessors, while in the second one the colored token and the leader mark are onthe same processor.In the �rst case, let h0 be the computation from last(h) where the coloredtoken circulates until it reaches the leader. The probability of the cone Chh0 is � �Prst(Ch)(12)B . The length(h0) � B. Now both tokens are on the same processor.Assume now that the processors have di�erent colors. The probability that p givesthe both tokens to an out-neighbor q and colors the colored token with the q's coloris 14 . After that, q is a leader, q has the colored token; and the colored token hasthe q's color.Therefore the probability of cone Chh00 with last(hh00) `LCT ^ LColor ^ LLM ^Same Color is � � Prst(Ch)(12)B+2 and length(h00) � B + 1.
Lemma 15. Algorithm 5.1 has a �nite stabilisation time.
Proof. Using Lemmas 6, 10, 12 and 14 the expected stabilisation time is bounded

by 1� where � � (12) kn2+10nB+2n+4B+42 (B provided by Corollary 4). Therefore theexpected stabilization time of Algorithme 5.1 is �nite.

18

Lemma 16. Any computation of Algorithm 5.1 starting in a legitimate con�g-uration satis�es the speci�cation SLE.
Proof. Let e be a computation starting in a legitimate con�guration c | thepredicate LLE is satis�ed by c. The only applicable rules are those where the leadermark is not moved (A2 and A3), hence the problem speci�cation is satis�ed.
Theorem 3. Algorithm 5.1 is self-stabilizing for the speci�cation SLE.
Proof. The convergence is given by Corollary 7, Lemmas 13 and 14 and Theorem1. The correctness is given by Lemma 16.
6. TOKEN BASED ALGORITHMS UNDER AN UNFAIR SCHEDULER
In this section, we extend Algorithms 4.1 and 5.1 to cope up with unfair sched-uler. For this purpose, the idea of cross-over composition (introduced in [7]) isused to compose Algorithms 4.1 and 6.2 with a k-fair algorithm (see De�nition 5).Algorithm 3.1 is an (n � D+)Diam-fair algorithm under any unfair scheduler. Thecross-over composition guarantees that a stabilizing algorithm for speci�cation SP,that works under the k-bounded scheduler composed with a k-fair algorithm underan arbitrary scheduler, is stabilizing under any unfair scheduler for speci�cationSP.The cross-over composition combines two algorithms |the weaker and thestronger| to get a new algorithm. The algorithms are considered stronger orweaker according to their properties toward the scheduler. When an algorithmneeds a special scheduler then it is considered \weaker". By contrary, when thealgorithm is preserving its properties even under an unfair scheduler then it playsthe \stronger" role.In this paper, the stronger (Algorithm 3.1) supports the stronger adversary(unfair scheduler), while the weaker (Algorithms 4.1 or 5.1) provides its speci�cation(token circulation or leader election) under a weaker adversary (the k-boundedscheduler).Algorithm 6.1, the result of cross-over composition between Algorithm 3.1 andAlgorithm 4.1, has the following actions [A is the label of Algorithm 4.1 rule andFA is the label of Algorithm 3.1 rule] :
� B1 :: hguard Ai ^ hguard FAi �! hstatement Ai; hstatement FAi
� B2 :: :hguard Ai ^ hguard FAi �! hstatement FAi

Algorithm 6.1 Randomized token circulation algorithm under unfair scheduler
Actions :B1:: Fair Token ^ Probabilistic Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) then f New Dir Probabilistic Token;Pass Probabilistic Token g
B2:: Fair Token ^ :Probabilistic Token �!New Dir Fair Token; Pass Fair Token;
Algorithm 6.2, the result of cross-over composition between Algorithm 3.1 andAlgorithm 5.1, has the following actions [(Ai)i=1;4 are the labels of the rules ofAlgorithm 5.1] :

19

� C1 :: hguard A1i ^ hguard FAi �! hstatement A1i; hstatement FAi
� C2 :: hguard A2i ^ hguard FAi �! hstatement A2i; hstatement FAi
� C3 :: hguard A3i ^ hguard FAi �! hstatement A3i; hstatement FAi
� C4 :: :hguard A1i ^ :hguard A2i ^ :hguard A3i ^ hguard FAi�! hstatement FAi

Algorithm 6.2 Randomized leader election algorithm under unfair scheduler
Actions :C1:: Fair Token ^ Leader Mark ^ Colored Token ^ :Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilistic Token; Pass Leader Mark;Pass Colored Token g
C2:: Fair Token ^ Leader Mark ^ Colored Token ^ Same Color �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Randomly Change Color; Update(Old);New Dir Probabilistic Token; Pass Colored Token g
C3:: Fair Token ^ :Leader Mark ^ Colored Token �!New Dir Fair Token; Pass Fair Token;if (random(0, 1) = 0) thenf Change Color; Update(Old); New Dir Probabilistic Token;Pass Colored Token g
C4:: Fair Token ^ :Colored Token ^ :Leader Mark �!New Dir Fair Token; Pass Fair Token;

Algorithms 6.1 and 6.2 description. Algorithms 6.1 and 6.2 are the result ofcross-over composition between Algorithms 5.1 (the weaker) and 3.1 (the stronger).The composed algorithm contains an extra layer which ensures the algorithm con-vergence under any unfair scheduler.
Algorithm 6.1 and 6.2 analysis. In [7], it is proven that the cross-over composi-tion between a probabilistic algorithm self-stabilizing for a speci�cation SP under ak-bounded scheduler, playing the weaker role, and a deterministic algorithm satisfy-ing the k-fairness property, playing the stronger role, is a self-stabilizing algorithmfor SP under any unfair scheduler.
Theorem 4. Algorithms 6.1 and 6.2 are self-stabilizing for the speci�cationsSTC and SLE respectively under an unfair scheduler.
Lemma 17. The stabilization time for Algorithms 6.1 and 6.2 is �nite.
Proof. The expected stabilization time for Algorithms 6.1 and 6.2 is bounded

by the values provided by Lemmas 7 and 15 with k = (n �D+)Diam and B =
(n� 1) � (n �D+)Diam + 1 (corollaries 3 and 4).

20

7. CONCLUSION
This work focuses on token based self-stabilizing algorithms. The considerednetworks are anonymous and directed. For this type of networks, we present atoken management and routing policy as solutions to the open problem proposedby Israeli and Jalfon in [17]. Note that the current paper proposes the �rst gen-eral solution for this problem. Moreover, we present self-stabilizing algorithms formutual exclusion and leader election on anonymous, directed networks based onthis policies. In order to break the symmetry we use randomization. One of theproposed algorithms is weak self-stabilizing for the mutual exclusion speci�cation,the other one is self-stabilizing for the leader election speci�cation. The both al-gorithms function correctly under any unfair distributed scheduler. Finally, wepresent a probabilistic analysis for the proposed algorithms.All the results are summarized in the following table (F.T.C. : fair token circu-lation, L.E. : leader election, M.E. : mutual exclusion) where the space complexityis given in number of states per processor.

Algorithm Scheduler Correctness Space Complexity

F.T.C. (3.1) unfair deterministic n � D+ � sndD+

M.E. (4.1) k-bounded weak prob. n � D+ � sndD+

L.E. (5.1) k-bounded strong prob. n � D+ � 2D++1 � snd2�D++D�
M.E. (6.1) dist. unfair weak prob. n � D+2 � snd2�D+

L.E. (6.2) dist. unfair strong prob. n � D+2 � 2D++1 � snd3�D++D�
The space complexity of our algorithms is O((D++D�) � (log(snd(n))+2)) bitsper processor. Note that snd(n) (the smallest non divisor of n) is constant in theaverage and equals 2 for odd size networks.Our algorithms are space optimal for the ring topology as it was proven in [6].

REFERENCES
[1] R. Aleliunas, R.M.Karp, R. Lipton, L. Lovasz, and C. Racko�, Random walks,universal traversal sequences and the complexity of the maze problem, in\FOCS'79, Proceedings of the 20st Annual IEEE Symp. on Foundation ofComputer Science," pp. 218{223, 1979.
[2] D. Alstein, J.H. Hoepman, B. Olivier, and P. Put, Self-stabilizing mutualexclusion on directed graphs, Technical Report 9513, CWI Amsterdam, 1995.
[3] D. Angluin, Local and global properties in networks of processors, in\STOC'80, Proceedings of the 12th Annual ACM Symp. on Theory of Com-puting," pp. 82{93, 1980.
[4] B. Awerbuch and R. Ostrovsky, Memory-e�cient and self-stabilizing networkreset, in \PODC'94, Proceedings of the 13th Annual ACM Symp. on Principlesof Distributed Computing," pp. 254{263, 1994.
[5] J. Beauquier, S. Cordier, and S. Dela�et, Optimum probabilistic self-stabilization on uniform rings, in \WSS'95, Proceedings of the Second Work-shop on Self-Stabilizing Systems", pp. 15.1{15.15, 1995.

21

[6] J. Beauquier, M. Gradinariu, and C. Johnen, Memory space requirements forself-stabilizing leader election protocols, in \PODC'99, Proceedings of the 18thAnnual ACM Symp. on Principles of Distributed Computing," pp. 199{208,1999.
[7] J. Beauquier, M. Gradinariu, and C. Johnen, Randomized self-stabilizing opti-mal leader election under arbitrary scheduler on rings, Technical Report 1225,Laboratoire de Recherche en Informatique, September 1999.
[8] J. Beauquier, S. Kutten, and S. Tixeuil, Self-stabilization in eulerian net-works with cut-through constraints, Technical Report 1200, Laboratoire deRecherche en Informatique, January 1999.
[9] K. Chandy and J. Misra, \Parallel Programs Design: A Foundation," Addison-Wesley, New York, 1988.
[10] A.K. Datta, M. Gradinariu, and S. Tixeuil, Self-stabilizing mutual exclusionusing unfair distributed scheduler, in \IPDPS'00, Proceedings of the 14th Int.Parallel and Distributed Processing Symp.," pp. 465{470, 2000.
[11] E. Dijkstra, Self stabilizing systems in spite of distributed control, Communi-cations of the ACM, 17, 11 (Nov. 1974), 643{644.
[12] S. Dolev, A. Israeli, and S. Moran, Self-stabilizing of dynamic systems assum-ing only read/write atomicity, Distributed Computing, 7, 1 (1993), 3{16.
[13] S. Dolev, A. Israeli, and S. Moran, Analyzing expected time by scheduler-luckgames, IEEE Trans. on Software Engineering, 21, 5 (May 1995), 429{439.
[14] S. Dolev, A. Israeli, and S. Moran, Uniform dynamic self-stabilizing leaderelection, IEEE Trans. Parallel Distrib. Systems, 8, 4 (April 1997), 424{440.
[15] J. Durand-Lose, Randomized uniform self-stabilizing mutual exclusion Inform.Process. Lett., 74, 5-6 (June 2000), 203{207.
[16] T. Herman, Probabilistic self-stabilization, Inform. Process. Lett., 35, 2 (June1990), 63{67.
[17] A. Israeli and M. Jalfon, Token management schemes and random walks yieldself-stabilizing mutual exclusion, in "PODC'90, Proceedings of the 9th AnnualACM Symp. on Principles of Distributed Computing," pp. 119{131, 1990.
[18] G. Itkis and L. Levin, Fast and lean self-stabilizing asynchronous protocols,in \FOCS'94, Proceedings of the 35th Annual IEEE Symp. on Foundations ofComputer Science," pp. 226{239, 1994.
[19] H. Kakugawa and M. Yamashita, Uniform and self-stabilizing token ringsallowing unfair daemon, IEEE Trans. Parallel Distrib. Systems, 8, 2 (Feb.1997), 154{162.
[20] A. Mayer, Y. Ofek, R. Ostrovsky, and M Yung, Self-stabilizing symmetrybreaking in constant-space, in \STOC'92, Proceedings of the 24th AnnualACM Symp. on Theory of Computing," pp. 667{678, 1992.

22

[21] L. Rosaz, Self-stabilizing token circulation on an asynchronous unidirectionalring, in \PODC'00, Proceedings of the 19th Annual ACM Symp. on Principlesof Distributed Computing," pp. 249{258, 2000.
[22] R. Segala, Modeling and veri�cation of randomized distributed real-time Sys-tems, Ph.D. thesis, MIT, Department of Electrical Engineering and ComputerScience, 1995.
[23] R. Segala and N. Lynch, Probabilistic simulations for probabilistic processes,in \CONCUR'94, Concurrency Theory, 5th International Conference," LectureNotes in Computer Science, Vol 836, Springer-Verlag, 1994.
[24] S. H. Wu, S. A. Smolka, and E. W. Stark, Composition and behaviors ofprobabilistic I/O automata, in \CONCUR'94, Concurrency Theory, 5th Inter-national Conference," Lecture Notes in Computer Science, Vol 836, Springer-Verlag, 1994.

JOFFROY BEAUQUIER is a professor at Paris-Sud university, where he teachesOperating System and Distributed Algorithms. Former student of Maurice Nivat,he �rst published in formal language theory. For the last ten years, he has beenstudying distributed algorithms, particularly self-stabilization. Every spring, heruns Paris marathon.J�ERÔME DURAND-LOSE received its Master's degree from the �Ecole NormaleSup�erieure de Lyon, France, in 1992 and presented his Ph.D. at the University ofBordeaux in 1996, and is, from 1998 on, assistant professor at the University of Nice-Sophia Antipolis. His researches deal with distributed computing and theoreticalmodels of parallel and distributed computing.MARIA GRADINARIU received her Master's degree in computer science fromthe "Al. I Cuza" University, Iasi, Romania in 1997 and her Ph.D. from the Uni-versity Paris-Sud, France in 2000. She is currently assistant professor of computerscience at University of Rennes, France. Her research focuses on the deterministicand probabilistic distributed protocols.COLETTE JOHNEN is an assistant professor in computer science at Paris-SudUniversity, France since 1987. She received her PH.D. in computer science fromthe Paris-Sud University in 1987, her M.S. in applied mathematics from the Paris-Sud University in 1984. Until 1990, her main research areas were analysis of PetriNet, and protocol veri�cation. Currently, her research interests include theoreticalmodels of distributed system, distributed algorithms, and routing in communicationnetwork.JOFFROY BEAUQUIER is a professor at Paris-Sud university, where he teachesOperating System and Distributed Algorithms. Former student of Maurice Nivat,he �rst published in formal language theory. For the last ten years, he has beenstudying distributed algorithms, particularly self-stabilization. Every spring, heruns Paris marathon.

23

