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Abstract

This paper makes contributions in two areas. First, we introduce an extended approach of self-stabilization, called self-stabilization
with service guarantee. A self-stabilizing system tolerates transient faults: it automatically recovers to a correct behavior after a
stabilization period. However, during stabilization periods, no property on the system behavior is guaranteed. A self-stabilizing
protocol with service guarantee quickly provides an useful minimal service, and it maintains the minimal service during stabilization
despite the occurrence of some disruptions. To illustrate our approach, we propose a clustering protocol (called SG-BSC), that builds
1-hop, bounded size and weight based clusters. SG-BSC protocol is self-stabilizing with service guarantee: it quickly reaches, in
4 rounds, a safe configuration from any arbitrary one. In a safe configuration, the following useful minimal service is provided:
“each node belongs to a cluster, each cluster has a leader and a bounded size. All nodes of a cluster are at most at distance 1 of the
cluster-head”. The convergence to a legitimate configuration (optimum service) is done in at most 7∗N

2 + 4 rounds, where N is the
number of nodes. We prove that any self-stabilizing protocol building weight-based clusters requires O(N) rounds to stabilize. Once
the optimum service is reached, any cluster-head has the highest weight in its cluster, and the number of clusters is locally optimal.
During the stabilization period, the minimal service is preserved; so, the hierarchical organization stays available throughout the
entire network. Simulation results show the interest of self-stabilization with service guarantee compared to self-stabilization.
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1. Introduction

One of the most wanted properties of distributed systems is
the fault tolerance and adaptivity to topological changes, which
consist of the system’s ability to react to faults and disruptions
in a well-defined manner. Self-stabilization [14] is one ap-
proach to design distributed systems having such properties.
A self-stabilizing system, regardless of the initial configura-
tion, converges without any external intervention in finite time
(called stabilization period) to a legitimate configuration where
the intended behavior is exhibited. Self-stabilization is thus at-
tractive since it does not require correct initialization (any con-
figuration can be initial), it ensures recovering from any tran-
sient failure and adaptation to topology changes in dynamic
networks. It also provides foundation for self-properties as self-
healing, self-organizing and self-adaptive.

Even though self-stabilization offers some advantages, this
approach has a major drawback: during all stabilization pe-
riods, self-stabilizing protocols do not guarantee any property
(except the eventual convergence) even if perturbations could
be handled in a safe manner. Thus, the self-stabilization prop-
erty is suited for distributed systems with intermittent disrup-
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tions, where the delay between successive disruptions is large
enough so that the system can recover and then provide its ser-
vice for a while. Whereas in large scale dynamic networks,
like mobile ad-hoc networks, where disruptions and topology
changes occur very often, the paradigm of self-stabilization is
not adequate. Indeed, as the delay between successive disrup-
tions is very small, the system may be continually disrupted
causing a total loss of service. In order to overcome these draw-
backs, we study the self-stabilization with service guarantee.

A self-stabilizing with service guarantee protocol P quickly
provides a minimal service (called also a safety property). Once
the minimal service is offered, P progresses to reach a legiti-
mate configuration providing the optimum service while main-
taining the minimal service in spite of any protocol action. Fur-
thermore, the minimal service is preserved despite occurrences
of some specific disruptions, called Highly Tolerated Disrup-
tions, denoted HTD. The service guarantee is thus provided
by both: a fast recovering to an useful minimal service, and the
preservation of minimal service despite occurrences of HTD
disruptions.

Related approaches. The self-stabilization with service guar-
antee approach is related to the fault-containment [10], time-
adaptive self-stabilization [27], snap-stabilization [6], best-
effort [18], safe convergence [25] and super-stabilization [15]
approaches. The common goal of these approaches is to pro-
vide a desired safety property during stabilization after one or
several well defined events.
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The fault-containment confines the effect of a single fault to
a certain constant-distance neighborhood from the faulty node.
So, once a node v undergoes a fault, neighbors of v till a limited
distance may be affected by this fault, but the remaining part of
the system is not affected. The 1-strong self-stabilization [21],
a particular case of fault-containment, guarantees that a single
memory corruption fault cannot be propagated, and that a single
computation step leads the system to a legitimate configuration.

The time-adaptive self-stabilization [27] is an approach that
ensures recovery from faults in time which is proportional to
the number of faults. The studied problem in [27] is the bit per-
sistent (a bit value must be equal at all nodes). A time-adaptive
self-stabilizing algorithm is proposed for synchronous arbitrary
networks where the number of faults F 6 N/2. The algorithm
reaches a legitimate configuration in O(F) rounds, but reaches
a terminal configurations in O(D) rounds (D is the network di-
ameter) even for a small number of faults.

A protocol is snap-stabilizing if it always behaves according
to its specification whatever its initial configuration. The safety
property in snap-stabilization is user-centric [12] (not system-
centric as in safe convergence, super-stabilization and self-
stabilization with service guarantee approaches). This means
that the answer to a properly initiated request by the protocol
is correct. However, between the request and the answer, the
system can behave arbitrarily, except of giving an erroneous
answer. This approach is thus suited for service-oriented proto-
cols, but not to silent protocols like clustering protocols.

A best-effort protocol maintains a predicate, denoted PC , de-
spite occurrences of topological changes defined by the topo-
logical predicate PT . The best-effort property does not guaran-
tee self-stabilization; for example, a best-effort protocol cannot
start from an incorrect initial configuration. Moreover, PT in-
cludes only topological changes, whereas HTD can contain
topological changes and several other events (like memory cor-
ruption, loss or unordered reception of messages etc.). So a
self-stabilizing with service guarantee protocol also provides
the best-effort property.

The safe convergence property ensures that (1) the system
quickly converges to a safe configuration, and (2) the safety
property stays satisfied during the convergence to a legitimate
configuration under any computation step. However, external
disruptions are not handled. Let us study the self-stabilizing
with service guarantee protocol [22] computing the knowledge
of 1-hop neighbor clusters. The stabilization time of this proto-
col is 4 rounds as much as the time to reach a safe configuration.
In this case, the safe convergence approach contributes nothing
compared to self-stabilization (they become equivalents). The
main specificity of [22] is the maintain of safety property in
spite of disruptions made by the clustering protocol (i.e., recon-
struction of clusters).

A super-stabilizing protocol guarantees that (1) starting from
a legitimate configuration, a safety property is preserved after
only one topology change (of a set HTD), and (2) the safety
property is maintained during recovering to a legitimate con-
figuration assuming that no more topology change occurs dur-
ing the convergence. Self-stabilization with service guarantee
provides and maintains the safety property even before stabi-

lization, unlike super-stabilization. For example, the super-
stabilizing coloring algorithm [15] stabilizes in O(N) rounds
(N is the number of nodes), but from an illegitimate configura-
tion it does not quickly converge to a safe configuration. Fur-
thermore, a self-stabilizing with service guarantee protocol pre-
serves the safety property in spite of severalHTD disruptions
that are simultaneous or not. Whereas, a super-stabilizing pro-
tocol handles only one disruption: if disruptions occur in bursts,
a super-stabilizing protocol handles them as any self-stabilizing
protocol.

Studied problem and Related works. We are interested to the
1-hop weight-based bounded size clustering in the context of
dynamic networks. The clustering problem consists to gather
mobile nodes into non-overlapping groups called clusters.
Each cluster has a single head, called leader or cluster-head,
that acts as local coordinator of cluster, and eventually a set
of ordinary nodes located within a closed proximity. In 1-hop
clusters, ordinary nodes are neighbor (at distance 1) of their
leader.

The stability and efficiency of the clustering structure is
clearly related to the stability and efficiency of cluster-heads.
A cluster-head should have a fair threshold of battery power,
and reliable communication links. The weight of a node is an
integer value representing node’s capacity to ensure the cluster-
head functions. In weight-based cluster, the heads are selected
in regard of their weight. So, the stability of structure is im-
proved compared to not weight-based approaches.
Building bounded size clusters ensures that the number of
nodes inside each cluster is bounded by a threshold. The value
of this threshold is decided by the cluster-head. Notice that
this problem is an extension of the capacitated dominating set
problem [26], where each cluster has a bounded size to the ca-
pacity of the cluster-head, but the selection of cluster-heads is
not weight-based.

Numerous clustering protocols are proposed in the litera-
ture. A survey on clustering protocols for sensor networks
can be found in [1]. In [19], Highest-Connectivity and
Lowest-ID protocols building overlapping 1-hop clusters are
proposed. Highest-Connectivity chooses the node having
the highest degree (i.e., number of neighbors) in its neighbor-
hood as leader, whereas, Lowest-ID selects as leader the node
having the lowest identity. Protocol proposed in [28] organizes
nodes into non-overlapping 1-hop clusters, where leaders are
selected according to their identity. In [2], the protocol DMAC
builds weight-based 1-hop clusters, where each leader has the
biggest weight among nodes of its cluster, and two leaders can-
not be neighbor (the dominating set is independent). GDMAC

[3], a generalized version of DMAC, is proposed in order to re-
duce the resignation and affiliation overheads by (1) authoriz-
ing a leader to have k leaders in its neighborhood, and by (2)
allowing an ordinary node v to be in the cluster of the leader
does not having the largest weight in v’s neighborhood. The
selected leaders by GDMAC form a k-fold dominating set. Most
of protocols surveyed in [1] and those proposed in [19, 28, 2, 3]
address the 1-hop weight based clustering problem, but they are
not self-stabilizing.
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A survey on self-stabilizing protocols building dominating
sets and its variants can be found in [20]. Two self-stabilizing
clustering protocols are proposed in [4, 29]. In [4], cluster-
heads are selected according to their identity in order to form
2-hops clusters: each node is in at most two hops away from
its cluster-head. In [29], cluster-heads are selected according to
their k-density: a criteria that depends on the k-neighborhood
of the node, but the built clusters are 1-hop. In [17], two
self-stabilizing protocols building connected dominating sets
are proposed. The first protocol computes a maximal inde-
pendent set, and after that it selects some nodes so that the
set becomes connected. The second protocol is based on the
following principle: ”a node with two neighbors that do not
have the same neighborhood, it must belong to the connected
dominating set”. The first protocol may select all nodes as
dominating. The second one avoids such situation; however,
it requires that each node knows its neighborhood at distance
2. In [24], a self-stabilizing with safe convergence version of
DMAC under synchronous scheduler is presented. In [25] a self-
stabilizing protocol with safe convergence building a minimum
connected dominating set (with a certain approximation) is pro-
posed. In a safe configuration, the built set is a dominating
set (not minimal). This protocol requires a distinguished node.
Self-stabilizing k-clustering protocols, where every node is at
distance at most k from its cluster-head, are also proposed, for
instance in [13, 8, 11].

Few protocols in the literature build bounded size clusters
although it is useful to ensure load balancing over heads. In
fact, if a certain network zone becomes densely populated with
nodes, the head might not be able to handle all the traffic gen-
erated by nodes of its cluster. In addition, the power consump-
tion of a cluster-head is proportional to the number of active
nodes in its cluster. Thus, the lifetime of a head is inversely pro-
portional to its cluster’s size. As consequence, controlling the
number of nodes in a cluster will extend its head’s lifetime, and
will improve the stability of the cluster. To our knowledge, the
only protocols building bounded size clusters are [30, 9, 5, 23].
In [30], the obtained clusters have a size bounded by a lower
and an upper bound. This solution cannot be applied to 1-
hop clusters, because the degree of nodes may be less than the
lower bound. Protocols [30, 9] are not self-stabilizing. The
self-stabilizing protocol [5] also builds clusters having a size
bounded by two thresholds, but they are multi-hops (no bound
on the deep of clusters), and each cluster forms a spanning tree.

The self-stabilizing protocol BSC (Bounded Size Clustering)
[23] builds 1-hop weight-based bounded size clusters. The clus-
tering structure built by our protocol is inspired from the one
produced by BSC, i.e., final clusters of both protocols satisfy
the same properties (defined in Section 3.1). However, during
the convergence phase, the behavior of two protocols is not the
same: the refinement of clusters in order to get final ones is dif-
ferent. Although BSC is self-stabilizing, it does not have any
service guarantee. In BSC, during construction of final clusters,
i.e., stabilization period, a node may not belong to a cluster
even if it was initially in a well formed cluster. This situation is
avoided in our protocol.

Motivation and Contributions. The stabilization time of
weight-based clustering protocols is proportional to the net-
work size (Theorem 4). So, in large scale networks, the con-
vergence of these protocols is very slow. Moreover, during
the convergence of a self-stabilizing clustering protocol, a node
may be outside any cluster even if it was initially in a cluster.
Nevertheless, a crucial challenge in ad-hoc networks is the fast
establishment and maintenance of clustering structure despite
occurrences of topology changes. Thus, the fast achievement
of a minimal service is necessary to avoid a long absence of
service. Hence, the interest of self-stabilization with service
guarantee.

We propose a self-stabilizing with service guarantee proto-
col building 1-hop bounded size weight-based clusters, called
SG-BSC. SG-BSC protocol overcomes the limitation of BSC by
dealing with the absence of service guarantee in the hierarchical
structure produced during stabilization.

Starting from an arbitrary configuration, SG-BSC reaches a
safe configuration in at most 4 rounds. In a safe configura-
tion, the following useful minimal service is provided: “each
node belongs to a cluster having an effectual leader, and the
size of each cluster is bounded”. Thereafter, SG-BSC proto-
col converges to a legitimate configuration in at most 7∗N

2 + 4
rounds where N is the number of network nodes. During the
convergence, the minimal service is preserved, i.e., the network
stays partitioned into bounded size clusters. SG-BSC requires
O(log N) bits per node, where N is the number of nodes.

To analyze the interest/cost of service guarantee, simula-
tion experiments are conducted to evaluate the performances
of SG-BSC and BSC (the self-stabilizing version of SG-BSC)
protocols. The comparison between protocols is based on the
number of selected leaders, availability of both minimal and
optimum services and the stabilization time. Obtained results
show that the self-stabilization with service guarantee is more
suitable than self-stabilization to large scale dynamic networks,
since it allows SG-BSC to provide a highly available hierarchical
structure (unlike BSC). However, to ensure this service guaran-
tee, the stabilization time and the average number of leaders are
slightly increased (they are higher in SG-BSC protocol than in
BSC protocol).

The rest of the paper is organized as follows. In section 2,
communication and computation models, self-stabilization and
self-stabilization with service guarantee concepts are defined.
Weight-based bounded size clustering problem and SG-BSC

protocol are presented in section 3. In sections 4 and 5, proofs
of service guarantee and stabilization are described, accompa-
nied by their time complexity measures. Simulation results
comparing the performance of SG-BSC with BSC are presented
in section 6.

2. Model and Concepts

We model a distributed system S by an undirected graph
G = (V, E) where the vertex set V is the set of (mobile) nodes
and the edge set E is the set of communication links. Every
node v in the network is assigned a unique identifier. A link
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(u, v) ∈ E exists if and only if nodes u and v can directly com-
municate (links are bidirectional); so, u and v are neighbors. We
note Nv the set of v’s neighbors, i.e., Nv = {u ∈ V | (u, v) ∈ E}.
The mobility of nodes is modeled by the creation/failure of
links, and arrival/departure of nodes. Due to mobility, the
neighborhood Nv of some nodes v may change. In this paper,
we assume that at any moment Nv contains the current neigh-
bors of v, i.e., it is always consistent with the current graph G.

We consider a weighted network, i.e., a weight wv (a real
number) is assigned to each node v. The weight value of a node
can increase or decrease during time reflecting changes in the
state of nodes. For the sake of simplicity, we assume that nodes
weight are different; the tie in node’s weight could be broken
using nodes identifier id.

Communication model. We use the local shared memory
model introduced in [14]. Each node maintains a set of local
variables. A node can read its own variables and those of its
neighbors, but it can modify only its own ones. The state of a
node is defined by the values of its local variables. The union of
states of all nodes determines the configuration of the system.
The program of each node v is a set of rules; each one has the
form: Rulei :< Guardi >→< Actioni >. The guard of a v’s rule
is a Boolean expression involving v’s state and the state of v’s
neighbors. The action of a v’s rule updates only v’s state. A rule
can be executed only if it is enabled, i.e., its guard evaluates to
true. A node is said to be enabled if at least one of its rules is
enabled. In a terminal configuration, no node is enabled.

Computation model. Nodes are not synchronized; neverthe-
less several nodes may perform their actions at the same time.
During a computation step ci → ci+1, one or several enabled
nodes perform an enabled action and the system reaches the
configuration ci+1 from the configuration ci. A computation e
is a sequence of configurations e = c0, c1, ..., ci, ..., where ci+1
is reached from ci by one computation step: ∀i > 0, ci → ci+1.
We say that a computation e is maximal if it is infinite, or if it
reaches a terminal configuration.
A computation is weakly fair, if for any node v that is always
enabled along this computation, it eventually performs an ac-
tion. In this paper, we study only weakly fair computations.

We note by C the set of all possible configurations, and by E
the set of all weakly fair computations of the system. The set
of weakly fair computations starting from a particular configu-
ration c ∈ C is denoted Ec. EA denotes the set of weakly fair
computations where the initial configuration belongs to the set
of configurations A ⊂ C.

A node v is neutralized during the computation step ci
cs
−→

ci+1, if v is enabled in ci and not enabled in ci=1, but it did not
execute any action during cs. The neutralization of a node v
happens when at least one v’s neighbor changes its state dur-
ing cs, and after this change, the guard of all v’s rules become
unsatisfied in ci+1.

2.1. Self-Stabilization

A distributed system is self-stabilizing if and only if, it con-
verges to a legitimate configuration regardless of its initial one,

and it remains in a legitimate configuration till no disturb-
ing event occurs. A configuration is legitimate if it matches
the specification of the problem. To formally define self-
stabilization, we use the attractor notion. A set of configu-
rations B is an attractor if and only if: (1) starting from any
arbitrary configuration, the system reaches a configuration of B
in a finite time and, (2) starting from a configuration of B, each
computation step maintains the system in a configuration of B.

Definition 1 (Attractor). Let B1, B2 be subsets of C. B2 is an
attractor from B1, if and only if the following conditions hold:
• Convergence: ∀c ∈ B1, If (Ec = ∅) then c ∈ B2

∀e ∈ EB1 (e = c1, c2, ...),∃i > 1, ci ∈ B2
• Closure: ∀e ∈ EB2 (e = c1, ...),∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization). A distributed system S is
self-stabilizing if and only if there exists a non-empty setL ⊆ C,
called set of legitimate configurations, such that:
• L is an attractor from C.
• Each configuration of L matches the specification of prob-

lem.

To measure the time complexity, we use the round notion
[16]. The first round of a computation e = c1, ..., c j, ... is the
minimal prefix e1 = c1, ..., c j of e, such that every enabled node
v in c1 either executes a rule or it is neutralized during a com-
putation step of e1. Let e2 be the suffix of e such that e = e1e2.
The second round of e is the first round of e2, and so on.

Stabilization time. Stabilization time of a protocol P is the
maximal number of rounds for all computations of P reaching
a legitimate configuration from any initial one.

2.2. Self-stabilization with service guarantee
A protocol P is self-stabilizing with service guarantee if and

only if:

1. P is self-stabilizing;
2. From any arbitrary configuration, P quickly reaches a safe

configuration, where a minimal service (so a safety prop-
erty) is provided;

3. The minimal service (safety property) is preserved during
progress of P towards the optimum service, i.e., during
stabilization, under any action of P;

4. The minimal service (safety property) is maintained de-
spite occurrences of some disruptions, called Highly Tol-
erated Disruptions, denotedHTD.

In general case, the set of HTD disruptions may include
events like: memory corruption, loss or unordered reception
of messages, link creation/failure, node departure/arrival and
nodes crashes. In spite of occurrences ofHTD disruptions, the
useful minimal service is preserved. However, the occurrence
of other disruptions is handled by self-stabilization mechanism,
i.e., after their occurrences, the system may behave arbitrar-
ily, but it will quickly provide its minimal service. The service
guarantee in our approach is thus provided through: the fast re-
covering to an useful minimal service, and its preservation dur-
ing progress towards the optimum service despite occurrences
ofHTD disruptions.
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Definition 3 (Stabilization with service guarantee). A self-
stabilizing system S has service guarantee despite occurrences
of HTD disruptions if and only if the set of configurations
satisfying the safety predicate SP (that stipulates the safety
property) of S is:
• An attractor from C.
• Closed under any disruption ofHTD.

SP and HTD fulfilled by our protocol are defined respec-
tively in Definitions 6 and 7.

3. The proposed protocol SG-BSC

3.1. Specification of weight-based bounded size clustering

The studied problem consists to build non-overlapping 1-hop
clusters having bounded size (called capacitated dominating set
problem) where the selection criteria of leaders is weight-based.
In the capacitated dominating set problem (without weight-
based selection criteria), any node may be leader. However, in
studied problem, leaders are selected according to their weight
value: this will ensure a best choice of suitable leaders.

Note that both problems of finding the minimum number of
1-hop clusters (i.e., a minimum dominating set), and the mini-
mum number of bounded clusters (i.e., a minimum capacitated
dominating set) are NP-hard [26]. For the studied problem,
our goal is not to give a distributed solution finding the mini-
mum number of clusters, but to propose a self-stabilizing with
service guarantee construction of 1-hop weight-based bounded
size clusters, satisfying some desired properties like: a best
choice of leaders, a limited number of ordinary nodes per clus-
ter, and a limited number of neighbor leaders.

For the weight-based clustering, we consider that each node
v has an input value, its weight named wv, representing its ca-
pacity to be leader. The higher the weight of a node, the more
adequate this node is for the leader task. A significant node’s
weight can be obtained by a sum of different normalized pa-
rameters like: node mobility, memory and processing capacity,
bandwidth, battery power, and so on. The computation of the
weight value is out the scope of this paper. Nevertheless, we
consider that the weight value of a node can increase or de-
crease during time, reflecting changes in the state of the node.

In order to build bounded size clusters, each node v is as-
signed a constant integer SizeBoundv that indicates the max-
imum number of ordinary nodes that can belong to v’s cluster
if v is a leader. This upper-bound is imposed by the leader of
cluster, and it may be different from a leader to another one,
but it still constant for every one (its value does not change dur-
ing time). This limitation on the number of nodes that a leader
handles, ensures the load balancing: no leader is overloaded.

Final clusters provided by our protocol SG-BSC satisfy the
well-balanced clustering properties, defined below.

Definition 4 (well-balanced clustering). The well-balanced
clustering consists to partition V into clusters C1,C2...Cn such
that the following properties, called well-balanced clustering
properties, are verified:

• 1-hop clustering: Each cluster Ci is headed by a node
named Headi and the ordinary nodes of the cluster Ci are
at distance 1 from Ci’s head, i.e.,

⋂
i=1...n

Ci = ∅,
⋃

i=1...n
Ci =

V, ∀1 6 i 6 n, Headi ∈ Ci, and Ci ⊆ NHeadi ∪ {Headi}

• Affiliation property: The head of v’scluster has a weight
greater than v’s weight, i.e., ∀1 6 i 6 n, wHeadi =

Max {wv|∀v ∈ Ci}.
• Size property: The cluster C headed by u contains at most
SizeBoundu ordinary nodes, i.e., ∀1 6 i 6 n, |Ci| 6
SizeBoundHeadi + 1.

• Cluster-heads neighbor property: If head j is in the
neighborhood of headi, and if the weight of head j is
smaller than the weight of headi then head j cannot be-
longing to the Ci cluster because the cluster Ci is full, i.e.
∀i, j ∈ [1, n], Headi < NHead j ∨ wHeadi ≤ wHead j ∨ |Ci| =

SizeBoundHeadi + 1.

Definition 5 (Legitimate configuration). A configuration of
SG-BSC protocol is legitimate if and only if well-balanced clus-
tering properties are satisfied.

The goal of Affiliation property is to ensure that each cluster-
head is more suitable than ordinary nodes inside its cluster,
and the goal of Size property is to provide bounded size clus-
ters. Since clusters have bounded size, several cluster-heads
may be neighbors. The cluster-heads neighbor property lim-
its locally the number of cluster-heads by requiring a node v to
stay cluster-head only if it cannot join any neighbor cluster: the
weight of u, a cluster-head neighbor of v, is smaller than v’s
weight or u’s cluster contains S izeBoundu + 1 nodes.

Notice that cluster-head neighbor property ensures that the
set of cluster-heads S selected by SG-BSC protocol is minimal:
there is not clustering architecture satisfying the Affiliation and
Size properties where the cluster-heads set S ′ is a proper sub-
set of S (i.e., S ′ ⊂ S ). Notice also that when at least a node
v has SizeBoundv > 0, the trivial configuration in which each
node of the network is a cluster-head, does not satisfy the spec-
ification of the problem. Because, this configuration does not
satisfy the cluster-heads neighbor property: some cluster-heads
can become ordinary (by affiliating with v) without violating the
Affiliation and Size properties.

3.2. Overall presentation of SG-BSC protocol

To meet the well-balanced clustering properties, each node v
maintains a set of local variables (cf Protocol 1); for instance,
its hierarchical status (HS v), the identity of its head (Headv),
and the weight of its head (whv).

An important feature of SG-BSC protocol is the service guar-
antee; so, during construction of well-balanced clusters, leaders
must avoid generating orphan nodes (ordinary nodes without
leaders) when resigning their leadership. This is why, SG-BSC
protocol use three possible hierarchical status per node v: v can
be cluster-head (HS v = CH), ordinary (HS v = O) or nearly
ordinary (HS v = NO). The status transition diagram is shown
in Figure 1, where transitions are the Election, Resignation, Af-
filiation and Correction actions defined in Protocol 2.

5



HS = CH

HS = NO

HS = O

Resignation

Corr-CH

Corr-NO

Affiliation

Election

Corr-O/Affiliation

Figure 1: Status transition diagram

The nearly ordinary status is taken by a cluster-head wanting
to resign its leadership. A nearly ordinary node is the head of
its cluster; so, it behaves like a cluster-head but it is waiting to
become ordinary. No node joins a cluster whose the head has
the nearly ordinary status. Moreover, a nearly ordinary may
become ordinary only once its cluster is empty.

Since, clusters have bounded size, a node u cannot freely
join a cluster: u needs the permission of its future cluster-head
to prevent the violation of the Size property. So, each leader
sermine the neighbor nodes that are allowed to join its cluster.
For this reason, each node v maintains CDv, the list of nodes
which may join v’s cluster. For a node v that is not cluster-head,
CDv = ∅, and for a cluster-head v, CDv is set to CD2v (for more
details about the macro CD2v, see Section 3.3).

Protocol 1 : Variables and macros on node v.
Parameters

S izeBoundv ∈ N; /* A constant that indicates the maximum number
of ordinary nodes can be in v’s cluster */

Input variables
wv ∈ R; /* Weight of node v */

Local variables
HS v ∈ {CH,O,NO} ; /* Hierarchical status of node v */

Headv ∈ {IDs} ; /* Identity of v’s cluster-head */

whv ∈ R; /* Weight of the head of v */

CDv ⊆ {IDs}; /* List of nodes that can join v’s cluster */

S v ∈ N; /* Local value about the size of v’s cluster */

Macros
Clusterv = {z ∈ Nv : Headz = v}; /* The v’s cluster members (i.e., set
of nodes having chosen v as cluster-head) */

S izev = |Clusterv|; /* Size of v’s cluster */

N+
v =

{
z ∈ Nv, v ∈ CDz ∧ HS z = CH ∧ wz > wHeadv ∧ wz > wv

}
;

/* The v’s neighbors could be cluster-head of v */

BestHeadv = z ∈ N+
v where wz = Max

{
wu | ∀u ∈ N+

v
}
;

/* The most suitable leader of N+
v */;

CD2v /* Nodes authorized by v to join v’s cluster */

Begin
CD0v := {z ∈ Nv : whz < wv ∧ wz < wv};
If |CD0v| 6 S izeBoundv − S izev then CD1v := CD0v;
Else CD1v contains the S izeBoundv − S izev smallest

members of CD0v;
If CDv ⊆ {CD1v ∪Clusterv} then CD2v := CD1v;
Else CD2v := ∅;

End

The set N+
v contains v’s neighbors (u) that could be v’s future

head: they have cluster-head status, they authorize v to join their
cluster (i.e., v ∈ CDu), and they are suitable (i.e., they have a
bigger weight than both v and v’s current head). For a cluster-
head v, N+

v , ∅ means that v does not satisfy the cluster-heads
neighbor property. Whereas, for an ordinary node v, it means
that v does not satisfy the affiliation property. In both cases, v
must leave its cluster to affiliate with the most suitable cluster-
head among N+

v (i.e., node of N+
v having the highest weight).

SG-BSC protocol consists of four kind of rules (cf Protocol
2). Election rule allows a node to become cluster-head. Res-
ignation rule allows a cluster-head to become nearly ordinary.
Affiliation rule allows an ordinary or a nearly ordinary node to
leave its cluster and to join another one as ordinary. Correction
rules update if necessary the value of v’s local variables without
changing v’s status.

Protocol 2 : SG-BSC Clustering Protocol.
Predicates
/* Change(v) is verified if a node has to change its cluster-head */

Change(v) ≡ (Headv < Nv ∪ {v}) ∨ (wv > wHeadv ) ∨
(HS Headv , CH) ∨ (S Headv > S izeBoundHeadv )

/* The guard of Election rule */

MustBecomeHead(v) ≡
(
HS v = O ∧ N+

v = ∅ ∧ Change(v)
)
∨(

HS v = NO ∧ N+
v = ∅

)
/* The guard of Affiliation rule */

MustAffiliate(v) ≡
(
HS v = O ∧ N+

v , ∅
)
∨(

HS v = NO ∧ S izev = 0 ∧ N+
v , ∅

)
/* The guard of Resignation rule */

MustResign(v) ≡ (HS v = CH) ∧ (N+
v , ∅)

/* The guards of Correction rules */

Corr-CH-g(v) ≡ (HS v = CH) ∧(
Headv , v ∨CDv , CD2v ∨ S v , S izev ∨ whv , wv

)
Corr-NO-g(v) ≡ (HS v = NO) ∧(

Headv , v ∨CDv , ∅ ∨ S v , 0 ∨ whv , wv
)

Corr-O-g(v) ≡ (HS v = O) ∧
(
CDv , ∅ ∨ S v , 0 ∨whv , wHeadv

)
Rules
/* Clustering Construction rules */

Election : MustBecomeHead(v) −→ HS v := CH; Headv := v;
CDv := CD2v; S v := S izev; whv := wv;

Affiliation : MustAffiliate(v)→ HS v := O; Headv := BestHeadv;
CDv := ∅; S v := 0; whv := wHeadv ;

Resignation : MustResign(v) −→ HS v := NO; Headv := v;
CDv := ∅; S v := 0; whv := wv;

/* Correction rules */

Corr-CH : ¬MustResign(v) ∧ Corr-CH-g(v) −→
Headv := v; CDv := CD2v; S v := S izev; whv := wv;

Corr-NO : ¬MustBecomeHead(v) ∧ ¬MustAffiliate(v) ∧
Corr-NO-g(v) −→ Headv := v; CDv := ∅; S v := 0; whv := wv;

Corr-O : ¬MustBecomeHead(v) ∧ ¬MustAffiliate(v) ∧
Corr-O-g(v) −→ CDv := ∅; S v := 0; whv := wHeadv ;

Election and Affiliation of ordinary nodes. An ordinary
node v has to change its cluster, i.e., it has to join another clus-
ter or to become cluster-head, if it does not satisfy the Affil-
iation or Size properties, i.e., when it satisfies the predicate
Change(v). In this case, one of the guards MustBecomeHead(v)
and MustAffiliate(v) is satisfied. The rule executed by v de-
pends on N+

v value. If N+
v = ∅, then no v’s neighbor can be the
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cluster-head of v. So, v must become cluster-head (Election
rule). Otherwise (i.e., N+

v , ∅), v has a neighbor that could be
its new cluster-head. So, v affiliates to the node of N+

v having
the largest weight (Affiliation rule).

Resignation. A cluster-head v has to resign its leadership
when it does not satisfy the Cluster-heads neighbor property,
i.e. N+

v , ∅. In this case, v verifies the guard MustResign(v).
However, if a cluster-head v by resigning its leadership takes the
ordinary status, then ordinary nodes of its cluster become or-
phan (their head is now ordinary), and they are outside all clus-
ters. In order to maintain the hierarchical structure, a cluster-
head executing Resignation rule does not take directly the
ordinary status: it takes the nearly ordinary status where it still
behaves as a cluster-head.

Election and Affiliation of nearly ordinary nodes. After
that a cluster-head v has performed Resignation rule and be-
came nearly ordinary, we have CDv = ∅. Thus, no node can
longer join v’s cluster; because ∀u ∈ Nv, v < N+

u . Furthermore,
all members of v’s cluster verify the predicate Change; so, they
will leave v’s cluster. Therefore, v’s cluster will eventually be
empty (S izev = 0). When S izev = 0 and N+

v , ∅, v can become
ordinary by performing Affiliation rule.

The mechanism employed by our protocol guarantees that
during reconstruction of clusters caused by topology changes
or the change of node’s weight, no cluster-head abandons its
leadership, and generates orphan nodes. Therefore, the hierar-
chical structure of the network is continuously available even
during reorganization of clusters.

Correction. Due to an incorrect initialization, memory cor-
ruption or topology changes, a node v may need to change
the value of its local variables (S v, CDv, whv or Headv) with-
out changing its status. This is the role of correction rules
Corr-CH(v), Corr-NO(v) and Corr-O(v). These rules have less
priority than Election, Resignation and Affiliation rules, i.e., if
v has one of these last rules enabled, all correction rules are
disabled on v.

Observation 1 (Memory space complexity). Each cluster-
head v in SG-BSC protocol (so, every node) maintains a list
of nodes authorized to join v’s cluster. Thus, SG-BSC protocol
requires O(δ log N) bits per node, where δ is the maximal
degree of nodes. However, this bound can be reduced to
O(log N) bits per node. In this case, each cluster-head v
maintains only the identity of node having the biggest identifier
among nodes of CDv. All nodes having an identifier bigger
than this identifier are not allowed to join v’s cluster.

3.3. Minimal service of SG-BSC protocol

During construction of clusters satisfying the well balanced
clustering properties, our protocol provides the following use-
ful minimal service (safety property):
• Each node v belongs to one cluster having an effectual

leader (no condition on leader’s weight, but it is v’s neigh-
bor and its hierarchical status is not ordinary);

• The Size property of clusters is satisfied.

In other words, once a safe configuration is reached, the en-
tire network is partitioned into bounded size clusters.

Definition 6 (Safety predicate). The safety predicate SP is
defined as follow:
• Ps(v) ≡ |Clusterv ∪CDv| 6 S izeBoundv

• SP(v) ≡ (Headv ∈ Nv ∪ {v}) ∧ (HS Headv , O) ∧ Ps(v)
• SP ≡ ∀v, SP(v) = True

Preservation of the Size property. The affiliation and resigna-
tion mechanisms used by our protocol ensure that once a node
is in a cluster, it always belong to a cluster whatever reorgani-
zation of clusters that can happen. However, to maintain the
minimal service, how the Size property is preserved after any
computation step ?

A cluster whose cluster-head v satisfies the predicate Ps(v),
verifies the Size property in the current configuration and af-
ter any computation step. On the contrary, a cluster whose
cluster-head v satisfies the Size property but it does not satisfy
the predicate Ps(v), may no longer verify the size property af-
ter the specific computation step where all nodes of CDv join
v’s cluster. This feature is illustrated in Figure 2. In the initial
configuration, Cluster6 = {1}, and CD6 = {2, 3, 4}. Thus, the
Size property is satisfied, but the Ps(6) predicate is not satisfied:
|CD6∪Cluster6| = | {1, 2, 3, 4} | > 3. After the computation step
where all nodes of CD6 join 6’s cluster, the Size property is no
more satisfied.

Affiliation(4)

Clusterhead Ordinary SizeBound = 3

Initial configuration

Nearly ordinary

1

2

3
4

5

CD6 = {2, 3, 4}

Head6 = 6

Head5 = 5

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 4

Affiliation(3)
Affiliation(2)

3
4

5

CD6 = {2, 3, 4}
Head6 = 6

Head5 = 5

Head3 = 6

Head1 = 6

6

Head4 = 6

2

1

Head2 = 6

Figure 2: Violation of the Size property from a configuration not satisfying
Ps(v)

The variable CDv is computed and updated in such a way that
the predicate Ps(v) stays verified after any computation step.
For each cluster-head v, the macro CD2v is used to compute
CDv value. CD2v is computed in 3 steps. CD0v is the set of v’s
neighbors that want to enter into v’s cluster, i.e., their weight
and their head’s weight are smaller than v’s weight. The size
of CD0v can be greater than S izeBoundv − S izev: CD1v is a
subset of CD0v, containing at most S izeBoundv − S izev nodes
(having the smallest identifier). The set CD2v is a subset of
CD1v ensuring that the predicate Ps(v) stays verified by v after
any computation step from the current configuration (assuming
that Ps(v) is verified in the current configuration).

Notation 1. We note by CDv(c) and Clusterv(c) respectively
the value of CDv variable and the value of Clusterv in the con-
figuration c.

Figure 3 illustrates why sometimes CD2v is set to ∅ whereas
CD1v , ∅. In the initial configuration c1, there are 5 clusters
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Affiliation(4)

SizeBound = 3

Initial configuration:c1.

1

2

3
4

5

CD6 = {}

Head6 = 6

Head5 = 6

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 6

1

2

3
4

5

CD6 = {4, 5}

Head6 = 6

Head5 = 5

Head3 = 3

Head2 = 2

Head1 = 6

6

Head4 = 4

Affiliation(5)
Corr-CH(6)

Configurationc2.

Clusterhead OrdinaryNearly ordinary

Figure 3: Example of CD value computation

satisfying the Size property, and CD6 = {4, 5}. For simplicity,
we assume the weight of a node is its identity. Thus, cluster-
head 6 has the highest weight in its neighborhood. Nodes 2, 3, 4
and 5 want to belong to Cluster6 (node 1 already belongs to
Cluster6); so, CD06 = N6 − Cluster6 = {2, 3, 4, 5}. CD16 con-
tains only two nodes, because S izeBound = 3 (for every node)
and |Cluster6| = 1; so, CD16 = {2, 3}. In the reached configu-
ration c2, CD6(c2) must be set to ∅ (so, CD26(c1) = ∅) because
CD6(c1) * {CD16(c1) ∪Cluster6(c1)}. This will ensure that
whatever the action done by nodes 4 and 5 -initially in CD6-
during the computation step c1 → c2, Ps(6) is still verified in
c2: |CD6(c2) ∪Cluster6(c2)| 6 S izeBound6.

4. Service guarantee of SG-BSC protocol

In this section, we prove that SG-BSC protocol quickly (in
at most 4 rounds) reaches a safe configuration. Moreover, the
safety property is preserved under any protocol action and also
despite occurrences ofHTD disruptions.

The convergence from an unsafe to a safe configuration is
straightforward: once an ordinary node v locally detects an un-
safe situation (i.e., its cluster has more than S izeBoundHeadv

members, its head has ordinary status or it is not v’s neighbor),
v becomes cluster-head if it cannot join a neighbor cluster with-
out violating Affiliation and Size properties.

In follows, we prove that the set of configurations Ai is an
attractor from Ai−1 for 1 6 i 6 4 (Let A0 be C), where:
Pt(v) ≡ CDv = ∅;
A1 = {c ∈ C | ∀v ∈ V : Ps(v) ∨ Pt(v) is satisfied }.
A2 = A1 ∩ {c ∈ C | ∀v ∈ V : Ps(v) is satisfied }.
A3 = A2 ∩ {c ∈ C | ∀v ∈ V : |Clusterv| 6 S izeBoundv}.
A4 = A3 ∩ { c ∈ C | ∀v ∈ V :

(HS v = O ∧ Headv ∈ Nv ∧ HS Headv , O) ∨
(HS v , O ∧ S v 6 S izeBoundv ∧ Headv = v) }.

Observation 2. Let v be a node, and cs be a computation step:
c1

cs
−→ c2.

• According to the macro N+ and Affiliation rule:

Clusterv(c2) ⊆ {Clusterv(c1) ∪CDv(c1)} (1)

• According to the macro CD2v:

CD1v(c1) ∩Clusterv(c1) = ∅ (2)

CD2v(c1) = ∅ ∨
(
CD2v(c1) = CD1v(c1) ∧

CDv(c1) ⊆ {CD2v(c1) ∪Clusterv(c1)}
)

(3)

Lemma 1. Let a computation step: c1
cs
−→ c2 in which a node

v performs an action. Ps(v) ∨ Pt(v) is satisfied in c2.

Proof: Any rule performed by v during cs updates CDv (see
rule actions). If CDv(c2) = ∅ then Ps(v) ∨ Pt(v) is satis-
fied in c2. Assume that CDv(c2) , ∅. During cs, CDv

is set to CD2v(c1) and CD2v(c1) , ∅. From Equation (3),
we have: CDv(c2) = CD1v(c1) ∧ CD1v(c1) , ∅. Since
CD1v(c1) contains at most S izeBoundv − |Clusterv(c1)| ele-
ments, then |CD1v(c1) ∪ Clusterv(c1)| 6 S izeBoundv. Thus,
|CDv(c2) ∪ Clusterv(c1)| 6 S izeBoundv.
Now, according to Equation (1), |CDv(c2) ∪ Clusterv(c2)| 6
|CDv(c2)∪CDv(c1)∪Clusterv(c1)|. From Equation (3) and our
assumptions, we have: |CDv(c2) ∪ CDv(c1) ∪ Clusterv(c1)| 6
|CDv(c2) ∪ Clusterv(c1)| (because CDv(c2) = CD2v(c1)). Fi-
nally, we conclude that |CDv(c2) ∪Clusterv(c2)| 6
|CDv(c2)∪Clusterv(c1)| 6 S izeBoundv. Therefore, Ps(v)∨Pt(v)
is satisfied in c2 when CDv(c2) , ∅. �

Lemma 2. A2 is closed under any computation step.

Proof: Let v be a node, and c1 be a configuration in which
Ps(v) is satisfied. Assume that a computation step c1

cs
→ c2 ex-

ists, such that Ps(v) is not satisfied in c2.
In c1, |CDv(c1) ∪ Clusterv(c1)| 6 S izeBoundv, and in c2,
|CDv(c2) ∪ Clusterv(c2)| > S izeBoundv. So, there exists
a node z such that z < {CDv(c1) ∪Clusterv(c1)} but z ∈
{CDv(c2) ∪Clusterv(c2)}. According to Equation (1), z <
Clusterv(c2). Thus, v has changed the value of CDv during
cs to include z: CDv(c2) , ∅. By Lemma 1, we have:
|CDv(c2) ∪ Clusterv(c2)| 6 S izeBoundv. There is a contradic-
tion: cs does not exist and A2 is closed. �

Corollary 1. A1 is closed under any computation step.

Proof: Let v be a node, c1 be a configuration satisfying Ps(v)∨
Pt(v), and cs be a computation step c1

cs
→ c2.

If v performs an action during cs then Ps(v)∨Pt(v) is satisfied in
c2 (Lemma 1). If Ps(v) is satisfied in c1, then Ps(v) is satisfied
in c2 (A2 is closed, Lemma 2).
Last case, v does not perform any action during cs and Pt(v) is
satisfied in c1; Pt(v) is still satisfied in c2. �

Lemma 3. If Ps(v) ∨ Pt(v) is not satisfied in a configuration c,
the node v is enabled in c.

Proof: Let c be a configuration in which Ps(v)∨Pt(v) is not sat-
isfied, i.e., CDv(c) , ∅ ∧ |CDv(c) ∪Clusterv(c)| > S izeBoundv.
According to v’s hierarchical status in c, two cases are possible:
• Case 1 (v is ordinary or nearly ordinary): v is enabled
in c, because Corr-O-g(v) or Corr-NO-g(v) is satisfied in c
(CDv(c) , ∅).
• Case 2 (v is cluster-head): According to the macros CD2v,
we have: CD2v(c) = ∅ or CD2v(c) = CD1v(c).
If CD2v(c) = ∅ then CDv(c) , CD2v(c), Corr-CH-g(v) is
satisfied in c. Otherwise CD2v(c) = CD1v(c) , ∅. We have
0 < |CD1v(c)| 6 S izeBoundv − |Clusterv(c)| (by Equation
2). As |CDv(c)| > S izeBoundv − |Clusterv(c)| (by assumption),
CDv(c) , CD1v(c). Corr-CH-g(v) is satisfied in c.
Whatever the status of v, v is enabled in c. �
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Corollary 2. A1 is an attractor from C in one round.

Proof: A node v that never satisfy Ps(v) ∨ Pt(v) during a com-
putation e, is always enabled (Lemma 3). By fairness, v will
perform an action. After v’s move, Ps(v) ∨ Pt(v) is satisfied in
c2 (Lemma 1). �

Lemma 4. A2 is an attractor from A1.

Proof: Let c1 be a configuration of A1 but not of A2. In c1,
there exists a node v verifying Pt(v) ∧ ¬Ps(v), i.e., CDv(c1) =

∅ ∧ |Clusterv(c1)| > S izeBoundv. While Ps(v) is not satisfied,
Pt(v) is verified (A1 is closed, Lemma 1). So, in c1, no node can
join v’s cluster (CDv(c1) = ∅).
Let u be a node of Clusterv(c1) (u , v∧Headu = v); so, v < N+

u
is forever satisfied (by definition of N+

v ). In c1, the node u is
enabled whatever its status:
• u is cluster-head: The guard Corr-CH-g(u) is satisfied
(Headu , u). Thus, u is enabled: Resignation(u) or
Corr-CH(u) rule is enabled.
• u is nearly ordinary: The guard Corr-NO-g(u) is sat-
isfied (Headu , u). Thus, u is enabled: Election(u),
Affiliation(u) or Corr-NO(u) rule is enabled.
• u is ordinary: If S Headu 6 S izeBoundv, then S v , S izev,
and v is enabled (the guard Corr-CH-g(v) is verified). Af-
ter v’s action, we have S Headu = S izev > S izeBoundv; so,
Change(u) is satisfied. Therefore, MustBecomeHead(u) or
MustAffiliate(u) is satisfied, and the rule Election(u) or
Affiliation(u) is enabled.
The node u stays enabled unless it performs an action. By fair-
ness, u eventually performs a rule, and gets Headu ∈ N+

u ∪ {u}
(see rules action), i.e., Headu , v. This means that u leaves
Clusterv. Thus, eventually a configuration of A2 in which
|Clusterv| 6 S izeBoundv is reached.
A2 is closed under any computation step (Lemma 2). Therefore,
A2 is an attractor from A1. �

Corollary 3. A configuration of A2 is reached from A1 in at
most two rounds.

Proof: In the first round, all cluster-heads v having S v ≤

S izeBoundv and S izev > S izeBoundv update their variable S v

to set S v = S izev > S izeBoundv. Thereafter, each node u of
Clusterv is enabled because it verifies the predicate Change(u).
Thus, at the end of the second round, node u has done an action
(to quit the v’s cluster) or it is neutralized. The only action that
neutralizes this node is setting the variable S v to a value inferior
than S izeBoundv; this action occurs when Ps(v) is satisfied. �

Lemma 5. A3 is an attractor from A2.

Proof: In A2, each node v satisfies: |Clusterv| 6
|CDv ∪ Clusterv| 6 S izeBoundv. So, A3 = A2. Therefore, A3 is
an attractor from A2. �

Lemma 6. A4 is closed under any computation step.

Proof: Let c1 be a configuration of A4. Assume that a compu-
tation step c1

cs
→ c2 exists where c2 < A4. Let P4a(v) be the

predicate (HS v , O ∨ Headv ∈ Nv). Let P4b(v) be the predi-
cate

(
HS v = O∨ (S v 6 S izeBoundv ∧Headv = v)

)
. P4a(v) and

P4b(v) are verified by v in c1. The value of P4a(v) and P4b(v)
can be modified only by a v’s rule; and, after any v’s action from
c1, the predicates P4a(v) and P4b(v) still verified. So, P4a(v)
and P4b(v) are also verified in c2.
Thus, according to our assumption, there exists a node v such
that in c1, (HS v = O ∧ HS Headv , O) but in c2, (HS Headv =

O ∧ HS v = O). Let u be the v’s head in c1 (u , v). Only two
actions require study: the execution of Affiliation rule by v
or by u during cs (to change Headv or to set HS = O).
The node u cannot perform Affiliation rule during cs, be-
cause in c1, S izeu , 0 (v ∈ Clusteru). Assume that v executes
Affiliation rule during cs. Let z be the cluster-head chosen
by v during cs. In c1, HS z = CH (z ∈ N+

v ). During cs, z cannot
perform Affiliation rule (it can only do Resignation). In
c2, we have HS Headv , O. �

Lemma 7. A4 is an attractor from A3 in one round.

Proof: Let v be a node, and c be a configuration of A3. In c,
S izev 6 S izeBoundv (Lemma 5). So, in c if S v > S izeBoundv

then S v , S izev. Assume that c does not belong to A4. In c, v
has one of the following states:
• HS v = CH and, Headv , v or S v > S izeBoundv: The
guard Corr-CH-g(v) is satisfied. By fairness, v will perform
the Resignation or Corr-CH rule, and after that HS v ,
O ∧ Headv = v ∧ S v 6 S izeBoundv holds.
• HS v = O and, Headv < Nv or HS Headv = O:
Change(v) is satisfied; so, the guard MustBecomeHead(v) or
MustAffiliate(v) is verified. As all computations are fair, v
eventually performs Election or Affiliation rule, and af-
ter that (HS v = CH ∧ Headv = v ∧ S v 6 S izeBoundv) ∨
(HS v = O ∧ Headv ∈ Nv ∧ HS Headv , O) is verified.
• HS v = NO and, Headv , v or S v > S izeBoundv: The
guard Corr-NO-g(v) is satisfied. By fairness, v will perform
Election, Affiliation or Corr-NO rule. Upon performing
Election or Corr-NO rule, HS v , O ∧ Headv = v ∧ S v 6
S izeBoundv holds. The execution of Affiliation rule makes
HS v = O ∧ Headv ∈ Nv ∧ HS Headv = CH satisfied.
A configuration of A4 is thus reached from a configuration of
A3. As A4 is closed under any computation step (Lemma 6), A4
is an attractor from A3. �

Observation 3. In a configuration of A4, for every node v, we
have: Headv , v if and only if HS v = O.

Corollary 4. The set of configurations satisfying the predicate
SP is an attractor.

Proof: A4 is attractor (Lemma 7), and once a configuration of
A4 is reached, the predicate SP is satisfied. �

Definition 7 (Highly tolerated disruptions). The set of highly
tolerated disruptionsHTD handled by our protocol is:
• Change of node’s weight,
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• Crash of ordinary nodes,
• Creation of new links between existing nodes (without emer-
gence of new nodes),
• Failure of links between two ordinary nodes, or two nodes be-
having as leaders (cluster-head or nearly ordinary),
• Emergence of sub-networks verifying the predicate SP.

Lemma 8. SPv is closed under the set of highly tolerated dis-
ruptionsHTD.

Proof: Let z be the head of a node v (z is a cluster-head or nearly
ordinary). The safety predicate SPv ensures that the leader z is
neighbor of v, z does not have the ordinary status, and the size
of z’s cluster is less than S izeBoundz.
SPv is falsified only following the occurrence of: z’s depar-

ture or crash, or failure of the link between z and v. Therefore,
the safety predicate SP is preserved under any disruption of
HTD. �

Theorem 1. The protocol SG-BSC has a service guarantee de-
spite the occurrence ofHTD disruptions.

Proof: The proof follows directly from corollary 4 and Lemma
8. �

Time to reach a safe configuration. The convergence time to
a safe configuration is the maximum number of rounds needed
to reach a safe configuration from any arbitrary initial one. In
A4, the safety predicate SP is satisfied; so, any configuration of
A4 is safe. Therefore, according to Lemma 7, and Corollaries 2
and 3, the convergence time to a safe configuration is at most 4
rounds.

5. Stabilization of SG-BSC protocol

Once a safe configuration is reached, the minimal service is
provided. Thereafter, our protocol progresses to reach a legit-
imate configuration, i.e., to provide the optimum service, pre-
serving the minimal service. The convergence to a legitimate
configuration is done in phases. During the phase i, the node of
Vi = V − S eti having the highest weight, named vhi, becomes
cluster-head. The cluster of vhi is filled out, and members of
vhi’s cluster get their final state. At the end of the ith phase, the
set of configurations L

′′

i is reached: all nodes of S eti have cho-
sen their cluster-head and, they reached their final state (they
have stabilized). The system is stabilized when S eti = V . We
define sets L

′′

i and S eti as follows:

Notation 2. S et0 = ∅; L
′′

0 = A4;
Vi = V − S eti; Set of nodes that do not belong to S eti.
Let vhi be the node having the highest weight in Vi;
Li+1 = L

′′

i ∩
{
c ∈ C| HS vhi = CH

}
;

Boundi = Min(S izeBoundvhi , |Nvhi ∩ Vi|);
L
′

i+1 = Li+1 ∩
{
c ∈ C| |Clustervhi | = Boundi

}
;

S eti+1 = S eti ∪ {vhi} ∪Clustervhi ;
L
′′

i+1 = L
′

i+1 ∩ {c ∈ C| ∀ v ∈ S eti+1 : (CDv = ∅) ∧(
(HS v , O ∧ S v = S izev) ∨ (HS v = O ∧ S v = 0)

)}
;

5.1. Illustration of the stabilization process

Figure 4 illustrates the convergence process from a safe con-
figuration to a legitimate one. For simplicity in this example,
the weight of a node is its identifier.
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6

579

SizeBound = 3

CD5 = ∅

CD5 = ∅

CD5 = ∅

Figure 4: Illustration of convergence to a legitimate configuration.

• S et0 is the set of nodes having initially their terminal state.
Usually, S et0 = ∅.

• We name vh0, the node having the highest weight in V0 =

V − S et0. In Figure 4, vh0 = 9. In configuration (a), node
9 has to be cluster-head (it verifies MustBecomeHead(6)).
Once node 9 performs Election rule, the system reaches
a configuration of L1 = A4 ∩

{
c ∈ C | HS vh0 = CH

}
where

node 9 will never change its status. Configuration (b) be-
longs to L1.

• Now, cluster-heads 6 and 7 have to resign their leadership
because they satisfy the guard MustResign. These nodes
eventually perform the Resignation rule, and configura-
tion (c) is reached.

• Node 5 has to leave its cluster because it satisfies the guard
Change(5). As node 5 cannot join another cluster, then it
becomes cluster-head, and configuration (d) is reached.

• Let L
′

1 = L1 ∩
{
c ∈ C | Min(S izeBoundvh0 , |Nvh0 ∩ V0|)

= |Clustervh0 |
}

be the set of configurations where vh0’s
cluster is stable (no node will quit or join this cluster).
Configuration (e) belongs to L

′

1.
• In the last step of phase 1, all nodes of vh0’s clus-

ter reach their terminal state (a configuration of L
′′

1 ).
The configuration (f) belongs to L

′′

1 , where L
′′

1 = L
′

1 ∩{
c ∈ C| ∀ v ∈ S et0 ∪ {vh0} ∪

{
Clustervh0

}
,CDv = ∅

}
.

At the end of first phase, set of nodes having their final state
is S et1 = S et0 ∪ {vh0} ∪

{
Clustervh0

}
. Each phase i is similar

to the first one: the node of Vi = V − S eti having the highest
weight, named vhi, becomes cluster-head. The cluster of vhi is
filled out, and members of vhi’s cluster get their final state. At
the end of ith phase, the set of nodes having their final state is
S eti = S eti−1 ∪ {vhi} ∪

{
Clustervhi

}
.
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5.2. Proof of stabilization
We will prove that configurations set L

′′

j is an attractor from
C such that at the jth phase S et j = V .

Observation 4. In each phase i, the set S eti increases up to
contain all nodes.

I f (S eti , V) then S eti ⊂ S eti+1 ∧ S eti , S eti+1 (4)

I f (v ∈ S eti) then Headv ∈ S eti (5)

I f (v ∈ Vi) then Headv < S eti (6)

For any value of i, any configuration of Li, L
′

i or L
′′

i belongs to
A4, because Li, L

′

i and L
′′

i are subsets of L
′′

0 = A4.

Lemma 9. For any value of i, Li+1 is an attractor from C as-
suming that L

′′

i is an attractor from C.

Proof: Assume that L
′′

i is an attractor from C. Let c be a con-
figuration of L

′′

i but not of Li+1. In c we have: ∀u ∈ Nvhi , if
u ∈ Vi then wvhi > wu (by definition of vhi); else (i.e., u ∈ S eti)
CDu = ∅. So, N+

vhi
is empty forever. In c, there are two possi-

bilities:
• vhi is nearly ordinary: the guard MustBecomeHead(vhi)
is forever satisfied. By fairness, vhi eventually performs the
Election rule. After that we get: HS vhi = CH.
• vhi is ordinary: from Observation 3, Headvhi , vhi. Ac-
cording to Equation 6 and to the definition of vhi, we have:
wvhi > wHeadvhi

. So, MustBecomeHead(vhi) is forever satisfied.
By fairness, vhi eventually performs the Election rule. After
that we get: HS vhi = CH.

In both cases Li+1 is reached from L
′′

i . Furthermore,
the value of HS vhi is never modified, because the rule
Resignation(vhi) is never enabled (N+

vhi
= ∅ forever). Thus,

Li+1 is an attractor from L
′′

i . �

Corollary 5. The set of configurations Li+1 is reached from L
′′

i
in at most one round.

Lemma 10. Let c1 be a configuration of Li+1. Assuming that
Li+1 is an attractor from C. For any computation step c1

cs
→ c2,

we have: Clustervhi (c1) ⊆ Clustervhi (c2).

Proof: Let u be a node of Clustervhi (Headu = vhi).
In c1, HS u = O (Observations 3); and ∀z ∈ Nu, if z ∈ Vi then
wHeadu > wz; else (i.e., z ∈ S eti) CDz = ∅. We conclude that
z < N+

u , so N+
u is empty forever.

The predicate MustAffiliate(u) is never verified, so the node
u cannot change its cluster-head.
The guard Change(u) is never verified, because in Li+1 we have:
S Headu 6 S izeBoundHeadu (Lemma 7), vhi ∈ Nu (Lemma 7),
wvhi > wu (by definition of vhi), and HS vhi = CH (Lemma 9).
Thus, the guard MustBecomeHead(u) is also never verified and
u cannot become a cluster-head.
According to that, once Li+1 is reached, no node can leave
Clustervhi . �

Lemma 11. For any value of i, L
′

i+1 is an attractor from C as-
suming that Li+1 is an attractor from C.

Proof: In a configuration c of Li+1, HS vhi = CH. Let u
be a node of

{
Nvhi ∩ S eti

}
. Thus, there exists an integer j,

(0 < j < i), such that: (u = vh j) ∨ (u ∈ Clustervh j ).
In L j+1, u can never leave Clustervh j (see Lemma 10). Every
configuration of Li+1 belongs to L j+1 ( j < i). So, once a config-
uration of Li+1 is reached, u can never join the Clustervhi , i.e.,
Clustervhi ⊆

{
Nvhi ∩ Vi

}
.

In Li+1, |Clustervhi | 6 S izeBoundvhi (Observation 4), thus
|Clustervhi | 6 Boundi is forever verified.
Once |Clustervhi | = Boundi, Clustervhi is never modified (no
node leaves Clustervhi , see Lemma 10).
Assume that |Clustervhi | < Boundi. CD1vhi , ∅ because
CD1vhi contains Boundi − |Clustervhi | elements of

{
Nvhi ∩ Vi

}
−

Clustervhi .
While CDvhi , CD2vhi , the node vhi is enabled
(Corr-CH-g(vhi) is verified). By fairness, vhi performs
Corr-CH rule, and gets CDvhi = CD1vhi or CDvhi = ∅

(now, CDvhi ⊆
{
CD1vhi ∪Clustervhi

}
). In the last case,

Corr-CH-g(vhi) is still verified till vhi performs again the
Corr-CH rule. After that we have: CDvhi = CD1vhi , ∅.
Let v be a node of CDvhi . We have vhi ∈ N+

v : N+
v , ∅. v is

enabled whatever its status:
• v is ordinary: MustAffiliate(v) is always verified.
• v is nearly ordinary: All nodes z of Clusterv sat-
isfy Change(z) (HS Headz , CH), and are enabled because
MustBecomeHead(z) or MustAffiliate(z) is satisfied. After
z’s action, Headz , v holds; so, the size of Clusterv decreases.
Eventually a configuration where S izev = 0 is reached, and
MustAffiliate(v) becomes satisfied.
• v is cluster-head: MustResign(v) is always verified. Af-
ter performing the Resignation rule, v becomes nearly or-
dinary node. Eventually it will reach a configuration where
MustAffiliate(v) is satisfied (see previous case).
The node vhi has a higher weight than nodes of N+

v , because
∀z ∈ Nv, if wz > wvhi then z ∈ S eti and z < N+

v (CDz = ∅). By
fairness v performs the Affiliation rule, and it chooses vhi as
cluster-head. Eventually, when each node v of CDvhi performs
Affiliation rule, a configuration where |Clustervhi | = Boundi

is reached. �

Corollary 6. The configurations set L
′

i+1 is reached from Li+1
in at most five rounds.

Proof: During the first and second rounds, vhi sets CDvhi to
CD2vhi . During the third round, every cluster-head v ∈ CDvhi

is enabled and it performs the Resignation rule to become
nearly ordinary. At the end of this round, each node v of CDvhi

is either nearly ordinary or ordinary.
During the fourth round, every ordinary node u member of
Clusterv, where v is nearly ordinary, leaves its cluster. So, at
the end of this round, S izev = 0. During the fifth (last) round,
all nodes v of CDvhi perform the Affiliation rule to join the
cluster of vhi. �

Lemma 12. In L
′

i+1, for any node v of S eti+1, HS v ,
NO and the Election, Affiliation, Resignation and
Corr-NO rules are disabled.
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Proof: Let v be a node of S eti+1. There exists an integer
j, 0 < j 6 i, such that (v ∈ S et j+1) ∧ (v < S et j). So,
(v = vh j) ∨ (v ∈ Clustervh j ).
In a configuration of L

′

j+1, if (v = vh j) then v is cluster-head (by
definition of L

′

j+1 and Lemma 9); else (i.e. v ∈ Clustervh j ) v is
ordinary node (Observation 3).
Thus, in L

′

j+1 the node v is either cluster-head or ordinary
(HS v , NO), and Corr-NO rule is disabled for v.
• v is cluster-head (v = vh j): According to definition of L

′

j+1
and Lemma 9, v can never execute the Resignation rule.
Election and Affiliation rules are also disabled for v (see
protocol rules).
• v is ordinary (v ∈ Clustervh j ): According to definition of
L
′

j+1 and Lemma 10, v can never execute the Election or
Affiliation rule to leave the cluster. Resignation rule is
also disabled for v (see protocol rules).

According to that, in L
′

j+1 a node of S et j+1 can never perform
the Election, Affiliation, Resignation and Corr-NO

rules. This is also verified in L
′

i+1, because L
′

i+1 ⊆ L
′

j+1 ( j 6 i).
�

Lemma 13. In L
′

i+1, CD2vhi = ∅.

Proof: In L
′

i+1, we have |Clustervhi | = Boundi (Lemma 11).
If |Clustervhi | = S izeBoundvhi , then CD1vhi = ∅. Else (i.e.,
|Clustervhi | = |Nvhi ∩ Vi|), no node u of Nvhi can join Clustervhi ,
because wHeadu > wvhi . So, CD0vhi = ∅. Therefore, in L

′

i+1,
CD2vhi = ∅. �

Lemma 14. For any value of i, L
′′

i+1 is an attractor from C as-
suming that L

′

i+1 is an attractor from C.

Proof: Let v be a node of S eti+1 but not of S eti. From Lemma
12, HS v , NO; thus two cases are possible:
• v is ordinary: If CDv , ∅ or S v , 0, then v is enabled
(Corr-O-g(v) is verified). By fairness, the node v eventually
performs Corr-O rule. After that, CDv = ∅ ∧ S v = 0 holds
forever.
• v is cluster-head: By definition, v is vhi. In L

′

i+1, we have
CD2vhi = ∅ (Lemma 13). If CDvhi , ∅ (i.e., CDvhi , CD2vhi ) or
S v , S izev, then Corr-CH-g(vhi) is verified. By fairness, vhi

will perform Corr-CH rule. After that, CDvhi = ∅ ∧ S v = S izev

holds forever. �

Corollary 7. The configurations set L
′′

i+1 is reached from L
′

i+1
in at most one round.

Theorem 2. The system eventually reaches a configuration of
L
′′

j , where S et j = V, and any configuration of L
′′

j is a terminal
configuration.

Proof: According to Observation 4, there exists j such that
S et j = V . Since L

′′

0 = A4 is an attractor from C (Lemma 7),
then for any value of i, the sets Li, L

′

i , L
′′

i are attractors from C
(Observation 4, and Lemmas 9, 11, 14). Therefore, we con-
clude that L

′′

j is an attractor from C.
In a configuration of L

′′

j , we have:
• A node v cannot perform Election, Resignation,

Affiliation and Corr-NO rules (Lemma 12).
• CDv = ∅ for any node v (By definition of L

′′

j ).
• If v is a cluster-head then Headv = v (Observation 3),
CD2v = ∅ (see lemma 13), and S v = S izev. Thus, v cannot
perform the rule Corr-CH.
• If v is an ordinary node then S v = 0. Thus, v cannot perform
the rule Corr-O.
In a configuration of L

′′

j , v can never perform an action. Thus, a
terminal configuration is reached. �

5.3. Proof of correctness

In this section, we will prove that any terminal configuration
is legitimate, i.e. the well balanced clustering properties are
satisfied in this configuration.

Theorem 3. In a terminal configuration, the well-balanced
clustering properties are satisfied.

Proof: Let j be an integer where S et j = V . According to Theo-
rem 2, L

′′

j is an attractor from C, and any terminal configuration
belongs to L

′′

j . Let c be a terminal configuration of L
′′

j . In c,
CDv = ∅ for any node v; and v is not a nearly ordinary node
(L
′′

j ⊆ L
′

j and Lemma 12). In c, two cases are possible:
• v is ordinary: The guard MustAffiliate(v) is unsatisfied in
c. Thus, Headv ∈ Nv ∧ HS Headv = CH ∧ wHeadv > wv. There-
fore, the Affiliation property is fulfilled in c.
• v is cluster-head: In A3, |Clusterv| 6 S izeBoundv. As A3 is
an attractor from C (Lemma 5). Thus, in c the Size property is
satisfied.
Assume now that there exists a node z ∈ Nv such that: HS z =

CH ∧ wz > wv ∧ S izez < S izeBoundz, i.e., the Cluster-
heads neighbor property is not satisfied. The node v belongs to
CD0z because wHeadv = wv < wz. Moreover, CD1z , ∅ because
S izez < S izeBoundz. Since, in the configuration c CDz =

∅; then according to the macro CD2, CD2z , ∅ in c. Thus,
Corr-CH-g(z) is satisfied (CDz , CD2z). The configuration c
is not terminal; there is a contradiction. We conclude that, in c,
for any cluster-head z ∈ Nv: (wv > wz) ∨ (S izez = S izeBoundz).
Thus, the Cluster-heads neighbor property is verified in c. �

5.4. Stabilization time

The set Li+1 is reached from L
′′

i in at most one round (Corol-
lary 5). Five more rounds are needed to reach L

′

i+1 from Li+1
(Corollary 6). The set L

′′

i+1 is reached from L
′

i+1 in at most one
round (Corollary 7).

Note that when the vhi’s cluster is empty, i.e., no ordinary
node belongs to vhi’s cluster, configuration sets L

′

i+1 and L
′′

i+1
are reached upon Li+1 is reached (no additional rounds are re-
quired). Thus, L

′′

i+1 is reached from L
′′

i in at most one round.
So, in the worst case: (1) no cluster is empty: seven rounds are
necessary to reach L

′′

i+1 from L
′′

i , for 0 < i 6 j, and (2) each
cluster contains exactly one ordinary node ( |V |2 clusters).
We conclude that, in the worst case, the configurations set L

′′

i+1
is reached from L

′′

i after seven rounds, and L
′′

j is reached from
L
′′

0 after 7 ∗ j rounds, where j is the number of built clusters
j =

|V |
2 .
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The time to reach L
′′

0 (A4) is 4 rounds (see Section 4). Therefore,
along any computation and from any initial configuration, the
legitimate configuration is reached in at most 7∗|V |

2 + 4 rounds.
Note that any self-stabilizing weight-based clustering proto-

col requires O(N) rounds to stabilize (Theorem 4).

Theorem 4. The convergence time of a self-stabilizing weight-
based clustering protocol is intrinsically proportional to the
network size.

Proof: Let us study the example of network presented in Figure
5. In initial configuration, there are (N − 1)/2 clusters where
N is the number of nodes (network size). For any value of i
that is old, Xi is a cluster-head, Xi+1 is affiliated with Xi, and
X0 is member of X1’s cluster. Weights of nodes are ordered as
follows: wXi > wXi+1 .
The legitimate configuration is defined as: for any value of i
that is even, Xi is a cluster-head, and Xi+1 affiliates with Xi. To
reach such legitimate configuration, each node has to change
its role. Xi+1 detects that it has to change its role only after a
change on Xi’s role. Clearly, Xi can change its role only after i
rounds. Therefore, the convergence time is O(N) rounds. �

X0 X2 X4X1 X3

X0 X1 X2 X3 X4

(b) Legitimate configuration

(a) Initial configuration

Cluster-head Ordinary node

Figure 5: Convergence time

6. Simulation results

In this section, we present an experimental study based on a
comparison between BSC and SG-BSC protocols. Simulation
experiments are carried out thanks to the NS2.34 simulator.
Protocols are evaluated in the context of mobile ad-hoc net-
works. So to achieve this study, protocols were adapted to the
message passing model. Each node v broadcasts periodically
(once per 0.4 second) to its direct neighbors a message contain-
ing its state. Based on this message, v’s neighbors decide to
update their states or not. After a change in its state, a node
broadcasts its new state to its neighbors. If during a certain pe-
riod (in our simulations, 0.85 second), no message is received
from a neighbor node, it is assumed to be out of the neighbor-
hood.

The default parameters value used during simulation are pre-
sented in Table 1. Our network is composed of mobile nodes,
with a propagation radio range of 250m, randomly placed
within a 1200m ∗ 1200m area.

Parameter Value
Simulation time 100s

Number of nodes 70
Transmission range 250m

Network area 1200m*1200m
Speed 0m/s - 12m/s

Pause time 0.5s
Wmin 50
Wmax 80

∆ 2
SizeBound 10

freq 2c/s

Table 1: Default value of simulation parameters.

Mobility model. Each node moves randomly according to the
Random Waypoint model [7]. Initially, network nodes are ran-
domly placed in the network area. Each node selects a random
destination and moves to it with a randomly chosen speed (be-
tween 0 m/s and 12 m/s). Upon reaching this destination, an-
other random speed and destination are targeted after a pause
time. The process is repeated until the end of simulation.

Weight variation model. Each node randomly chooses its ini-
tial weight between two values Wmin and Wmax. The node’s
weight changes according to a frequency freq, which is the
number of changes per second. Based on the frequency value,
the time when a node undergoes the weight change is chosen
randomly. We limit the variation of weight to a parameter ∆.
Thus, the new weight of a node is randomly chosen between
w − ∆ and w + ∆, where w is the current weight of node.

Observed metrics. To evaluate the interest of the service guar-
antee, and to analyze its cost, four metrics are studied:
• The average number of leaders. It is the number of nodes
having either cluster-head or nearly ordinary status.
• The availability of minimal service. It represents the percent-
age of time where the minimal service is available.
• The availability of optimum service. It represents the percent-
age of time where the optimum service is available.
• The average stabilization time. It is the time (in seconds) re-
quired to reach a legitimate configuration for the first time (i.e.,
from the initial configuration) whatever the occurrence of per-
turbations during this period.
Simulation scenarios. Three types of simulation scenarios are
conducted:
• Network size variation: nodes are not mobile, their number
varies between 10 and 70, and freq = 2 c/s.
• Weight variation: the considered frequency values are: 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4 and 5 c/s. The network contains
70 static nodes.
• Mobility variation: the network contains 70 nodes where
freq = 2c/s, and speed of nodes is varied from 0m/s to 12m/s.

For both protocols, identical mobility and weight variation
scenarios are used in order to gather fair results. During each
simulation, measurements are collected every 0.02 second to
obtain the average values. Furthermore, to get accurate results,
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each simulation is driven with thirty different runs. The ob-
served metrics are then averaged on these different runs. In
order to show how these average values are confident, a confi-
dence interval is computed using the confidence level 95%.

6.1. Availability of optimum service
The Availability of optimum service as a function of the net-

work size, weight change frequency and nodes speed are pre-
sented in Figures 6(a), 6(b) and 6(c).
In both BSC and SG-BSC protocols, reconstruction of clusters
by chain reaction may occur after a single event (election or
motion of a cluster-head). In fact, when two cluster-heads be-
come neighbor, one of them must defer to the other (to satisfy
Cluster-heads neighbor property). This situation may trigger
Election/Resignation of leaders that propagates throughout the
entire network, generating a complete reconstruction of clus-
ters. Such effect is called chain reaction (an example is given
in Figure 5). Due to chain reaction caused by weight changes
or motion of nodes, the hierarchical structure is continuously
reconstructed in order to achieve the well-balanced clustering
properties. As a result, the optimum service is often broken, so
it is not highly available.
We observe also that the optimum service is slightly less avail-
able in SG-BSC protocol compared to BSC protocol. The largest
margin observed is 6% in large and dynamic networks. This is
caused by the convergence time towards the optimum service
(i.e., the stabilization time). In fact, Figure 7 shows that the
time required by SG-BSC protocol to reach the optimum service
is larger than the one required by BSC protocol. This feature
is due to the resignation process used by SG-BSC protocol that
consists to slowdown the stabilization process in order to main-
tain the minimal service.
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Figure 7: Stabilization time in function of the network size

6.2. Average number of leaders
The number of selected leaders is proportional to the network

size (shown in Figure 8).
In a large scale network, SG-BSC protocol generates a slightly

higher number of leaders than BSC (about 1 additional leader in
a network of 70 nodes). Recall that in SG-BSC protocol, a node
cannot freely resign its leadership: it becomes a nearly ordinary
node and so it still behaves as leader. A nearly ordinary node
may become ordinary only once its cluster is empty; and dur-
ing all this period it rank among the leaders. The slowdown of
during resignation process explains why the average number of
leaders is sightly higher in SG-BSC protocol than BSC protocol.
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Figure 8: Average number of Leaders

6.3. Availability of minimal service

The availability of minimal service according to the network
size and the frequency of weight variation are illustrated respec-
tively in Figures 9(a) and 9(b).
In SG-BSC protocol, the minimal service is highly available
(about 99% of time) whatever the network size and the weight
variation frequency. Whereas, in BSC, the minimal service is
often broken: unavailable during almost 20% of time when
f req = 5 c/s. This difference on protocol’s performance re-
flects the interest of self-stabilization with service guarantee in
large scale networks compared to classical self-stabilization.

The rupture of minimal service in BSC protocol happens dur-
ing reconstruction of clusters (due to weight variation or leaders
motion). In particular, when reconstruction of clusters by chain
reaction occurs, it generates a continuous disruption of minimal
service (by creating orphan nodes).
The performance of SG-BSC shows that using the service guar-
antee property improves the availability of minimal service de-
spite the occurrence of chain reaction.

It is proved in section 4 that SG-BSC protocol maintains the
minimal service whatever the network size and frequency of
weight variation. The rupture observed (less than 1%), in large
scale network or when the frequency is very high, is due to
the occurrence of disruptions other than HTD (loss and un-
ordered message reception). In fact, in SG-BSC protocol (resp.
in BSC protocol), when a node undergoes a weight change, it
broadcasts a message to its neighbors indicating its new state.
When frequency of weight variation is very high, the number
of exchanged messages is important, and events like message
loss and unordered message reception happen more frequently.
Owing to these disruptions, an ordinary node can affiliate with
a node (by considering it as cluster-head) which is no more
cluster-head (it already resigned its leadership). This situation
falsifies the minimal service.

Increasing the speed of nodes has a negative impact on the
availability of minimal service (see Figure 9(c)). In a dynamic
network, due to nodes motion, an ordinary node and its cluster-
head may be outside the transmission range one of the other,
i.e., they are no longer neighbors. This situation breaks the
minimal service. However, even in dynamic networks, the min-
imal service is more preserved by the SG-BSC protocol than by
the BSC protocol.
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Figure 6: Availability of optimum service
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Figure 9: Availability of minimal service

7. Conclusion

We introduced the self-stabilization with service guarantee
approach, it extends self-stabilization, safe convergence and
super-stabilization approaches, by improving their service guar-
antee. As an application, we propose SG-BSC protocol building
1-hop bounded size weight based clusters. Proofs of stabiliza-
tion, service guarantee, correctness, time complexity as well as
simulation results are provided.
SG-BSC protocol requires O(log N) bits per node.

Compared to BSC, SG-BSC is scalable, and it is more suitable
for large-scale modern distributed systems such as mobile ad-
hoc networks. This is due firstly to the constant time (4 rounds
at most) required to provide an useful minimal service, and sec-
ondly to the maintain of minimal service during progress of the
protocol towards the optimum service.

Providing the service guarantee have a price in terms of num-
ber of leaders and stabilization time. In fact, theoretically, the
service guarantee slowdown the stabilization process by a mul-
tiplicative factor of 7

2 rounds in the case of our protocol (stabi-
lization time of BSC is N rounds, whereas the one of SG-BSC
is 7∗N

2 + 5 rounds). Simulation results pointed out that the ser-
vice guarantee induces also an increase in the average number
of leaders, however really negligible (about 1 additional leader
in a network of 70 nodes).

The minimal service offered by SG-BSC protocol guarantees
that the entire network is partitioned into bounded clusters. By
simulation, we show that when the minimal service is deterio-
rated in BSC, it stays highly available in SG-BSC whatever the
network size and reconstruction of clusters frequency. Thus,
using SG-BSC (or any self-stabilizing with service guarantee)
protocol as a clustering protocol ensures the continuity of op-

eration of upper-layer hierarchical protocols, like hierarchical
routing protocols.
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