
Memory efficient Self-Stabilizing distance-k
Independent Dominating Set Construction?

Colette Johnen

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. We propose a memory efficient self-stabilizing protocol build-
ing distance-k independent dominating sets1. A distance-k independent
dominating set is a distance-k independent set and a distance-k domi-
nating set.
Our algorithm, named SID, is silent; it converges under the unfair dis-
tributed scheduler (the weakest scheduling assumption).
The protocol SID is memory efficient : it requires only log(2((n+1)(k+
1))2) bits per node.
The correctness and the termination of the protocol SID is proven.
The computation of the convergence time of the protocol SID is an
opened question.

keywords distributed algorithm, fault tolerance, self-stabilization, dis-
tance-k dominating set, distance-k independent set, distance-k indepen-
dent dominating set, memory efficient

1 Introduction

The clustering of networks consists of partitioning network nodes into
non-overlapping groups called clusters. Each cluster has a single head,
called leader, that acts as local coordinator of the cluster, and eventu-
ally a set of standard nodes. leader. Clustering is found very attractive
in infrastructure-less networks, like ad-hoc networks, since it limits the
responsibility of network management only to leaders, and it allows the
use of hierarchical routing.

Silent self-stabilizing protocols building k-hops clustering set are proposed
[1,2,3,4]. In k-hop clusters, the distance between a standard node and its
leader is at most k; the set of cluster heads can be not a distance-k
independent set. The protocol of [1] is designed for k = 2. Routing tables
are maintained by the cluster heads to store routing information to nodes

? Partially supported by the anr project displexity (anr-11-bs02-014). This study
has been carried out in the frame of “the Investments for the future” Programme
IdEx Bordeaux cpu (anr-10-idex-03-02)

1 The protocol SID was presented in a brief announcement at SSS’13.



both within and outside the cluster. The goal of the protocol in [2] is
to build bounded size clusters (each cluster has at most Cluster Max
nodes). The protocol of [3] is designed for weighted edges networks; it
requires O(log(k4.∆2.D2.n6)) bits per node, where ∆ is a bound on node
degree and D is the network diameter. The protocol of [4] requires at
least log(2.k.n2.nk+1)) bits per node.

In [5,6], Larsson and Tsigas propose self-stabilizing (l,k)-clustering proto-
cols under various assumptions. These protocols ensure, if possible, that
each node has l cluster-heads at distance at most k.

In [7], a silent self-stabilizing protocol extracting a minimal distance-k
dominating set from any distance-k dominating set is proposed. A mini-
mal distance-k dominating set has no proper subset which also a distance-
k dominating set. The protocol requires at least O(log(nk)) bits per node.

The paper [8] presents a silent self-stabilizing protocol building a small
distance-k dominating set : the obtained dominating set contains at most
dn/(k + 1)e nodes. The protocol of [8] requires log(2.n2.(n/k)k) bits per
node. The protocol of [9] builds competitive distance-k dominating sets :
the obtained dominating set contains at most 1+b(n−1)/(k+1)c nodes.
The protocol of [9] requires O(log(2.k.(∆+ 1)3.n3)) bits per node.

Contribution. In this paper, we consider the problem of computing a
distance-k independent dominating set in a self-stabilizing manner in case
where k > 1. A nodes set is distance-k independent dominating set (also
called maximal distance-k independent set) if and only if this set is a
distance-k independent set and a distance-k dominating set. A set of
nodes, I is distance-k independent if the distance between any pair of I’s
nodes is at least k+ 1. A set of nodes D is distance-k dominating if every
node is within distance k of a node of D.

The protocol SID is simple : no use of the hierachical collateral composi-
tion, no need of leader election process, neither the building of spanning
tree. It converges under the unfair distributed scheduler (the weakest
scheduling assumption); and it is silent.

According to our knowledge, [10] is the only previous work proposing a
silent self-stabilizing protocol building a maximal distance-k independent
set assuming that k > 1. The protocol of [10] converges in 4n+ k rounds;
the computation of the convergence time of the protocol SID is an open
question. The protocol in [10], requires log((n+1)k+1) bits per node. The
protocol SID, requires less memory space - only log(2.((n+ 1).(k+ 1))2)
bits per node. To achieve this result, the technique uses is quite different

2



and new; for instance two distincts total order relations on the same
objects are used.

2 Specification of Problem and Computation Model

A distributed system S is an undirected graph G = (V,E) where the
vertex set, V , is the set of nodes and the edge set, E, is the set of com-
munication links. A link (u, v) ∈ E if and only if u and v can directly
communicate (links are bidirectional); so, the node u and v are neighbors.
Nv denotes the set of v’s neighbors: Nv = {u ∈ V | (u, v) ∈ E}. The dis-
tance between the nodes u and v is denoted by dist(u, v). The set of nodes
at distance at most k to a node v is denoted by k-neigborhood(v) =
{u ∈ V | dist(u, v) ∈ [1, k]}.

Definition 1 (distance-k independent dominating set).
Let D be a subset of V ; D is a distance-k dominating set if and only
if ∀v ∈ V/D we have k-neigborhood(v) ∩D 6= ∅.
Let I be a subset of V ; I is a distance-k independent set if and only
if ∀u ∈ I we have k-neigborhood(u) ∩ I = ∅.
A subset of V is a distance-k independent dominating set if this subset is
a distance-k dominating set and a distance-k independent set.

At every node v in the network is assigned an identifier, denoted by idv.
Two distinct nodes have different identifier. It is possible to order the
identifier values.

Each node maintains a set of shared variables. A node can read its own
variables and those of its neighbors, but it can modify only its variables.
The state of a node is defined by the values of its local variables. The
cartesian product of states of all nodes determines the configuration of
the system. Let var be a shared variable, var(v)c denotes the value of
var for the node v in the configuration c. The program of each node is a
set of rules. Each rule has the form: Rulei :< Guardi >−→< Actioni >.
The guard of a v’s rule is a boolean expression involving the state of the
node v, and those of its neighbors. The action of a v’s rule updates v’s
state. A rule can be executed by a node v only if it is enabled, i.e., its
guard is satisfied by the node v. A node is said to be enabled if at least
one of its rules is enabled. A configuration is terminal if and only if no
node can execute a rule.

During a computation step from a configuration one or more enabled
nodes simultaneously perform an action to reach another configuration.

3



A computation e is a sequence of configurations e = c0, c1, ..., ci, ..., where
ci+1 is reached from ci by a single computation step, ∀i > 0. A computa-
tion e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let L be a predicate on the
configuration. A distributed system S is a silent self-stabilizing system to
L if and only if (1) all terminal configurations satisfy L; (2) all compu-
tations reach a terminal configuration.

3 The protocol SID

In the following subsection, we gives the notation used by the protocol
SID.

3.1 k-augmentedID type

Definition 3. k-augmentedID type An k-augmentedID value, a, is ⊥
or an n-tuple (d, x) such that d is integer with 0 ≤ d ≤ k, and x is a node
identifier. Let a = (d, x) be k-augmentedID value. We use the following
notation a.dist = d and a.id = x.
Let v be a node of V , id+v is the following k-augmentedID value: (0, idv).

Definition 4. The total order relation dom on k-augmentedID

– dom(a, b) = a if b =⊥, a.id < b.id or a.id = b.id ∧ a.dist < b.dist,
otherwise dom(a, b) = b.

– The k-augmentedID value a1 dominates the k-augmentedID value a2
if and only if dom(a1, a2) = a1.

– Let X be a finite set of k-augmentedID values. dom(X) is the k-
augmentedID value, denoted dX, belonging to X such that any value
of X is dominated by dX (i.e. ∀y ∈ X we have dom(dX, y) = dX).

Definition 5. The total order relation min on k-augmentedID

– min(a, b) = a if b =⊥, a.dist < b.dist or a.dist = b.dist ∧ a.id < b.id
otherwise min(a, b) = b.

– The k-augmentedID value a1 is larger than the k-augmentedID value
a2 if and only if min(a1, a2) = a2.

– Let X be a finite set of k-augmentedID values. min(X) is the k-
augmentedID value, denoted mX, belonging to X such that any value
of X is larger than mX (i.e. ∀y ∈ X we have min(mX, y) = mX).

4



The node u1 is closer to the node v than the node u2 iff d1 = dist(u1, v)) <
dist(u2, v) = d2 or idu1 < idu2. Notice that (d2, idu2)) is larger than
min((d1, idu1).

Definition 6. The operation +1 on k-augmentedID is defined as fol-
low : a+1 = a if a =⊥ or if a.dist = k otherwise a+1 = (a.dist+1, a.id)

3.2 Code of the protocol SID

The variables, the function and procedure specifications, the predicates
and the rules of SID are presented in protocol 1. By lack of space, the
code of the functions and the procedures are omitted in the paper, they
can found in the technical report of LaBRI [11]).

The variable firstH(v) contains the identifier of the closest head to v
(with its distance to v).
The variable secondH(v) contains the identifier of the second closest head
to v (with its distance to v) inside its k-neighborhood. If a node v does
not have two heads in its k-neighborhood then secondH(v) is set to ⊥.

90

70

80

fH = (0,80)

fH = (0,70)

fH = (0,90)

fH = (2,80)

sH = (3,70)

sH = (3,80)

fH = (2,90)

sH = (3,80)
fH = (2,70)

fH = (3,80)
sH = (4,70)

83

87

fH = (3,90)
sH = (4,80)

sH = (4,80)
fH = (3,70)

77

fH = (1,90)

89

sH = (4,80)

79

sH = (4,80)

fH = (1,80)

85

sH = (4,70)

fH = (3,70)

78

fH = (4,70) fH = (4,70)

67

fH = (4,90)

76

82 66

fH = (4,70)

fH = (4,80)

86

84

88

69

sH = ⊥ sH = ⊥sH = ⊥

fH = (1,70)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

Fig. 1. A legitimate configuration of SID with k = 4

5



A node v is said to be a head if firstH(v) = id+v = (0, idv); otherwise v
is an ordinary node. We will prove that in any terminal configuration the
Head set built by the protocol SID is a distance-k independent dominat-
ing set. We will also establish that all computations are finite.

In the figure 1 is presented a terminal configuration of SID in the case
where k = 4. In each node, it is indicated the value of firstH, denoted by
fH, and the value of secondH denoted by sH. The legitimate configuration
has three heads. On the same network with the same value for k, is
presented another terminal configuration having a single head in the figure
2.

82

fH =(0,82)

sH = ⊥

83

87

77

89

79

85

78 67

76

66

86

84

88

69

sH = ⊥sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

70

sH = ⊥

sH = ⊥ sH = ⊥

sH = ⊥sH = ⊥sH = ⊥

sH = ⊥ sH = ⊥ sH = ⊥

80

90

fH = (1,82)fH = (2,82)

fH = (1,82)fH = (2,82) fH = (2,82)

fH = (1,82)

fH = (1,82)

fH = (2,82)

fH = (2,82)

fH = (2,82)

fH = (2,82) fH = (3,82)

fH = (3,82)fH = (3,82)

fH = (3,82)

fH = (4,82)fH = (4,82)

sH = ⊥

Fig. 2. A terminal configuration of SID having a single head

The function isDefended(v) returns true if the set FirstS(v) is not empty
otherwise the function returns false.

The function isDominated(v) returns true if a value x of FirstS(v) dom-
inates the value id+v = (0, idv); otherwise the function returns false.

The function correctFirstH(v) returns true if the value of firstH(v)
is min(FirstS(v)); otherwise or if the set FirstS(v) is empty then the
function returns false.

6



Algorithm 1: : code of SID on the node v

Shared variables

• firstH(v) and secondH(v). They take value in k-augmentedID.

Internal variable

• beReal is a boolean variable used by some funtions.

Notation

• FirstS(v) = {a + 1 ∈ k-augmentedID | a = firstH(u) ∨ a = secondH(u)
with u ∈ Nv ∧ a.dist < k ∧ a.id 6= idv}

• secondS(v) = {a ∈ FirstS |a.id 6= firstH(v).id}

Boolean function specifications

• isDefended(v) returns true iff FirstS(v) 6= ∅.
• isDominated(v) returns true iff id+v 6= dom(FirstS(v) ∪ id+v ).

• correctFirstH(v) returns true iff firstH(v) = min(FirstS(v)).

• correctSecondH(v) returns true iff secondH(v) = min(secondS(v)∪ ⊥).

Procedure specifications

• computingFirstH(v) sets firstH(v) to min(FirstS(v)).

• computingsSecondH(v) sets secondH(v) to min(secondS(v) ∪ ⊥).

Predicates

• Head(v) ≡ firstH(v) = (0, idv)

• toResign(v) ≡ isDominated(v)

• toElect(v) ≡ ¬isDefended(v)

• headToUpdate(v) ≡ secondH(v) 6=⊥
• ordinaryToUpdate(v) ≡ ¬correctFirstH(v) ∨ ¬correctSecondH(v)

Rules

RE(v) : ¬Head(v) ∧ toElect(v) −→ firstH(v) := (0, idv); secondH(v) :=⊥
RU(v) : ¬Head(v) ∧ ¬toElect(v) ∧ ordinaryToUpdate(v) −→

computingFirstH(v); computingSecondH(v)

RR(v) : Head(v) ∧ toResign(v) −→
computingFirstH(v); computingSecondH(v)

RC(v) : Head(v) ∧ ¬toResign(v) ∧ headToUpdate(v) −→ secondH(v) :=⊥

7



The procedure computingFirstH(v) sets firstH(v) to min(FirstS(v))
if the set FirstS(v) is not empty; otherwise the value of firstH(v) is
⊥. In the latter case, v verifies the predicate toElect(v) and it does not
verify the predicate toResign(v). So the procedure computingFirstH(v)
is never preformed when set FirstS(v) is empty.

The function correctSecondH(v) returns true if the value of secondH(v)
is min(secondS(v)∪⊥); otherwise the function returns false. The proce-
dure computingSecondH(v) sets secondH(v) to min(secondS(v)∪ ⊥).

Once the system is stabilized, the set FirstS(v) contains some heads in
k-neighborhood of v. More precisely, this set contains the closest and sec-
ond closest head to v if there are at least one Head in the k-neighborhood
of v.

If the k’s neighborhood of a node v does not contain any head then the
set FirstS(v)) is empty. So the predicate toElect(v) is verified. If v is
an ordinary node then v is enabled (the rule RE is enabled). Therefore,
the heads set is a distance-k dominating set, in a terminal configuration.

If one or several Heads have in their k-neighborhood another Head then
at least one of these Heads is enabled. Let us name, v, the Head hav-
ing the largest identifier among the Heads that have Heads in their k-
neighborhood. Once the system is stabilized, the FirstS(v) contains a
value (d, idu) such that idv > idu and d < k. The node v is enabled :
it verifies the predicate toResign. So, the set of heads is a distance-k
independent set, in any terminal configuration.

3.3 Illustration of SID behavior

In the figure 3, an execution with k = 2 under the synchronous sched-
ule is presented. During the first computation step, the node having the
identifier 8 detectes that its neighbor having the identifier 7 is a Head,
so it becomes ordinary by executing the rule RE (it sets its firstH vari-
able to (1, 7)). Also during the first step, the node at distance 1 of the
Head 4 updates its shared variables (i.e. it executes the rule RU). Dur-
ing the 2th step (starting at the configuration b), two Heads detect that
there are at distance 2 of the Head 4, as their identifier are larger than
4, they execute the rule RR (i.e. they become ordinary). During the 3rd
step (starting at the configuration c), two ordinary nodes (the node of
identifier 8 and the node of identifier 9) detect that they have no Head
in their 2-neighborhood so they become Head (i.e. they execute the rule

8



fH = (0,8)

fH = (0,4)

configuration g

fH = (0,6)

fH = (0,9)

fH = (0,7)

configuration b

configuration d

configuration f

fH = (0,8)

fH = (0,4)

configuration a

fH = (0,4)

fH = (0,8)

fH = (0,4)

configuration c

configuration e

fH = (0,7)

fH = (0,6)

fH = (0,9)

fH = (0,4)

fH = (0,8)

fH = (0,4)

fH = (0,4)

fH = (0,8)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥
fH = (1,4)

fH = (2,8)

fH = (2,4)

fH = (1,8)

sH = (2,4)

sH = (2,8)

sH = ⊥

sH = ⊥
fH = (1,7)

sH = ⊥

fH = (2,4)
sH = ⊥

sH = ⊥

sH = ⊥
fH = (2,4)

fH = (2,8)

sH = ⊥

fH = (1,4)
sH = (1,6)

sH = ⊥
fH = (1,4)

fH = (2,4)

sH = (2,6)

fH = (1,8)

sH = (1,9)

fH = (1,4)
sH = (2,8)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

fH = (1,7)

sH = ⊥

sH = ⊥

sH = ⊥

fH = (1,4)

fH = (2,4)

sH = (2,6)

sH = (1,6)

sH = ⊥
fH = (1,4)

fH = (1,8)

sH = (1,9)

sH = ⊥

sH = ⊥
fH = ⊥

sH = ⊥
fH = (1,7)

sH = ⊥
fH = (2,4)

sH = ⊥

sH = ⊥
fH = (2,4)

sH = ⊥

sH = ⊥

fH = (1,7)

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥

sH = ⊥
fH = (1,1)

Fig. 3. An execution of SID with k = 2

9



RE). During the 5th step, the node 9 detects that it is at distance 2 of
the Head 8; so it resigns. during the last computations step, the only rule
executed is RU to update the variable secondH. So, no node will change
its status (i.e. to become a Head or Ordinary). The configuration g is
terminal and also legitimate.

4 Correctness of the protocol SID

In this section, we prove that all terminal configurations of SID protocol
are legitimate: the set of heads is a distance-k independent dominating
set.

Definition 7. The property OrdinaryPr(i) defined for all i ∈ [1, k] is
verified if the two following statements are satisfied:

– OrdinaryPrFirst(i): for all ordinary node v, firstH(v) = (i, idu) if
and only if u is the closest head to v and i is the distance between u
and v.

– OrdinaryPrSecond(i): for all node v, secondH(v) = (i, idw) if and
only if w is the second closest head to v and i is the distance between
w and v.

Observation 1 In a terminal configuration,

1. An ordinary node v does not verify OrdinaryToUpdate(v);
so firstH(v) = min(firstS(v)) and
secondH(v) = min(secondtSet(v) ∪ ⊥).

2. A head u does not verify HeadToUpdate(u);
3. Let w be a node (head or ordinary), firstH(w) 6=⊥;
4. if v is an ordinary node then firstH(v).dist > 0 ;
5. if secondH(v) 6=⊥ then secondH(v).dist > 0 ;
6. if secondH(v) 6=⊥ then secondH(v).dist ≥ firstH(v).dist because

secondS(v) ⊂ firstS(v), firsthead(v) = min(firstS(v))
and secondhead(v) = min(secondS(v))

Lemma 1. In a terminal configuration of protocol SID, the property
OrdinaryPr(1) is verified.

Proof.
Let v be an ordinary node, in a terminal configuration of protocol SID,
named c. Assume that (1, x) ∈ firstS(v). So v has a neighbor u such
that firstH(u) = (0, x) or secondH(u) = (0, x).

10



According to Observation 1.5 secondH(u).dist > 0 or secondH(u) = ⊥.
So v has a neighbor u such that firstH(u) = (0, x). According to Obser-
vation 1.4 u is a head; so x = idu. Notice that ∀a ∈ firstS(v), we have
a.dist > 0, in c.

Proof of OrdinaryPrFirst(1). If v has a head at distance 1 then v has
a neighbor u such that firstH(u) = (0, idu). So, we have firstH(v) =
(1, idu) with u being the head in v’s neighborhood having the smallest
identifier.
If v has not a head at distance 1 then for any u neighbor, we have
firstH(u).dist > 0. and secondH(u).dist > 0 or secondH(u) =⊥ (ac-
cording to Observation 1.5). In this case, firstH(v).dist > 1.

Proof of OrdinaryPrSecond(1). If v has several heads at distance 1 then v
has a neighbor w such that firstH(w) = (0, idw) with idw 6= firstH(v).id.
So, secondH(v) = (1, idw) with w being the head in v’s neighborhood hav-
ing the second smallest identifier.
If v has at most one head at distance 1 then v has not a neighbor w
such that firstH(w) = (0, idw) with idw 6= firstH(v).id. In this case,
secondH(v).dist is larger than 1 or secondH(v) =⊥. �

Lemma 2. Let i be a positive integer smaller than k. In a terminal con-
figuration of protocol SID, if the properties OrdinaryPr(j) are verified
for all j ∈ [1, i] then the property OrdinaryPr(i+ 1) is verified.

Proof. Let us assume that the properties OrdinaryPr(j) are verified for
all j ∈ [1, i] in any terminal configuration of protocol SID.
In a terminal configuration c, (j, x) ∈ firstS(v) iff v has a neighbor u
such that firstH(u) = (j − 1, x), or secondH(u) = (j − 1, x). If j = 1
then u is a head in c, according to Observation 1. If 1 < j ≤ i + 1 then
x is the identifier of a head in c at distance j − 1 of u, according to the
property OrdinaryPr(j − 1). So x is the identifier of a head at distance
at most j of v, in c.

Proof of OrdinaryPrFirst(i+1). Let v′ be the closest head to v and d′

the distance from v′ to v in the terminal configuration c. Assume that
0 < d′ ≤ i+ 1. v has a neighbor u at distance d′ − 1 to v′. In c, the node
v′ is the closest head of u; so firstH(u) = (d′ − 1, idv′), according to the
properties OrdinaryPr(d′−1). According to the properties OrdinaryPr(j)
∀ j ∈ [1, i], in c, we have the following properties,

• if (l, id) ∈ firstS(v) then l ≥ d′; and
• if (d′, id) ∈ firstS(v) then id ≥ idv′ . In c,

11



We conclude that firstH(v) = (d′, idv′), in c.

Proof of OrdinaryPrSecond(i+1). Assume that the network has several
heads. Let v” be the second closest head to v and d” the distance from v”
to v, in a terminal configuration c. v has a neighbor u at distance d”− 1
to v” in c. (we have d” > 0). v” is the first or second closest head to u, in
c. Assume that d” ≤ i+1. According to the property OrdinaryPr(d”−1),
firstH(u) = (d”− 1, idv”)∨ secondH(u) = (d”− 1, idv”), in c. According
to the properties OrdinaryPr(j) ∀ j ∈ [1, i), in c, we have the following
properties,

• if (l, id) ∈ secondS(v) then l ≥ d”;
• if (d”, id) ∈ secondS(v) then id ≥ idv”.

We conclude that secondH(v) = (d”, idv”). �

The following corollary is a direct result of lemmas 1 and 2. It establishes
that the set of heads is a distance-k dominating set.

Corollary 1. Let v be a ordinary node, in a terminal configuration of
protocol SID. firstH(v).id is the closest head to v; their distance is
firstH(v).dist ≤ k. If secondH(v) =⊥ then v has a single head in its
k-neigborhood; otherwise secondH(v).id is the second closest head to v;
their distance is secondH(v).dist.

The following theorem establishes that the set of heads is a distance-k
independent set in any terminal configuration.

Theorem 1. Let v be a head, in a terminal configuration of protocol
SID. v has not head in its k-neigborhood.

Proof. We will prove that if a head has another head in its k-neigborhood
then the configuration c is not terminal.

Let wrongHeadSet the set of heads having one or several heads in their
k-neigborhood. Assume that wrongHeadSet is not empty. We denote by
v1 the node of wrongHeadSet having the largest identifier. We denote
by v2, the closest head to v1 and by d the distance between v1 and v2.
We have 0 < d ≤ k and idv2 < idv1.

The node v1 has a neighbor u at distance d − 1 of v2. The node v2
is the first or the second closest head to u. According to corollary 1,
(d − 1, idv2) = firstH(u) or (d − 1, idv2) = secondH(u). v1 is enabled
because v1 satisfied the predicate toResign(v1). �

12



5 Termination of the protocol SID

In this section, we prove that all maximal computations of protocol SID
under any unfair distributed scheduler are finite by reductio ad absurdam
arguments.

Lemma 3. Let e be a maximal computation.
The values taken by firstH and seconHead along e by any node belong
to the same set containing 3nk k-augmentedID values.

Proof. Let e be a maximal computation starting from a configuration,
named c0. In a configuration c reached by e, for any node v, firstH(v)c.
id is either the identifier of an node or this value appears in the initial con-
figuration (i.e. there is a node u, such that firstH(v)c.id = firstH(u)c0.id
∨ firstH(v)c.id = secondH(u)c0.id). So, the value taken by a variable
firstH in e belongs to a set having 3nk values. Similary we prove that the
value taken by a variable secondH along e belongs to the same bounded
set. �

Observation 2 Along any computation, a node performs at most one
time the rule RC.

Lemma 4. Let e be a maximal computation. e has a suffix in which the
only rule performed is RU.

Proof. Assume that a or several nodes perform infinitely often the action
RE or the action RR along e. Between two consecutive actions RE by
a node u, this node has performed on time the action RR. So a node u
that infinitely often performs the action RE or the action RR changes its
status infinitely often. We name u+ the node having the smallest identifier
among the nodes that change their status infinitely often. e has a suffix
e1 where only nodes having a identifier larger than idu+ changes their
status (i.e. they perform the action RE or the action RR).

As the set of value taken by firstH(u+) is bounded (lemma 3) along e1,
infinitely often after the action RR(u+), firstH(u+) has the same value,
denoted by (l + 1, id). Notice that id < idu+ and 0 < l < k. So u+ has
a neighbor ul such that, infinitely often before the action RR(u+), ul
verifies firstH(ul) = (l, id) or secondH(ul) = (l, id).
At time, where u+ becomes head, we have firstS(u+) = ∅. So, the val-
ues of ul variables are infinitely often larger than (l, id). Thus, ul gives
infinitely often to one of its variables the value (l, id), but also gives a

13



larger value to the same variable.

Assume that l > 0. At time where ul gives the value (l, id) to one of its
variable : ul has a neigbor ul−1, having the value (l−1, id). At time where
ul gives a larger value than (l, id) to the same variable : ul−1 has a larger
value than (l − 1, id). We conclude that there is a series of l + 1 nodes
: ul, ul−1, ..u0 such that ui has infinitely often has the value (i, id) and
infinitely often does not have this value along e1.

Along e1, u0 performs infinitely often the action RR and the action RE.
We have id = idu0 < idu+ : there is a contradiction. �

Lemma 5. Let e be a maximal computation. e has a suffix in which no
rule is performed.

Proof. According to lemma 4, e has a suffix, named e2, in which the only
rule performed is RU. Assume that a node or several nodes changing
infinitely often their value firstH or their value secondH along e2. We
named min+ the smallest value infinitely often allocated to the variable
firstH or to the variable secondH of one of these nodes. Let e3 be the
suffix of e2 in which no variable firstH and no variable secondH gets a
value smaller than min+. Along e3, infinitely often, a node, named u+,
performs RU action to set the value min+ to its variable firstH or its
variable secondH; and infinitely often, u+ performs RU action to set to
the same variable a value larger than min+.

Let c → c′ be a computation step of e3 where u+ performs RU action
to set a value larger than min+ to its variable firstH or to its variable
secondH. In c, min+ is smaller than min(firstS(u+)) or min+ is smaller
than min(secondS(u+)) . This property stays verified after this computa-
tion step along e3. So u+ never sets the value min+ to its variable firstH
(resp. to its variable secondH). There is a contradiction. �

As no computation can be infinite, any maximal computation reaches a
terminal configuration.

Corollary 2. under the unfair distribued scheduler, Any maximal com-
putation reaches a terminal configuration.

6 Conclusion

A simple and silent self-stabilizing protocol building distance-k indepen-
dent dominating sets is presented. The protocol converges under the un-
fair distributed scheduler (the weakest scheduling assumption). The com-
putation of the convergence time of the protocol is an open question. In

14



[10], we establish that any distance-k independent sets contain at most
b(2n)/(k+2)c nodes, n being the network size. So the protocol of [10] and
the presented protocol have the same upper bound on the size of built k
independent dominating sets : b(2n)/(k + 2)c nodes.
The protocol SID is memory efficient : it requires only log(2.((n+1).(k+
1))2) bits per node.

References

1. Bein, D., Datta, A.K., Jagganagari, C.R., Villain, V.: A self-stabilizing link-cluster
algorithm in mobile ad hoc networks. In: International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN’05). (2005) 436–441

2. Bui, A., Clavière, S., Datta, A.K., Larmore, L.L., Sohier, D.: Self-stabilizing hier-
archical construction of bounded size clusters. In: 18th International Colloquium
Structural Information and Communication Complexity (SIROCCO’11), Springer
LNCS 6796. (2011) 54–65

3. Caron, E., Datta, A.K., Depardon, B., Larmore, L.L.: self-stabilizing k-clustering
algorithm for weighted graphs. Journal of Parallel and Distributed Computing 70
(2010) 1159–1173

4. Datta, A.K., Larmore, L.L., Vemula, P.: A self-stabilizing o(k)-time k-clustering
algorithm. The Computer Journal 53(3) (2010) 342–350

5. Larsson, A., Tsigas, P.: A self-stabilizing (k,r)-clustering algorithm with multiple
paths for wireless ad-hoc networks. In: IEEE 31th International Conference on
Distributed Computing Systems, (ICDCS’11), IEEE Computer Society (2011) 353–
362

6. Larsson, A., Tsigas, P.: Self-stabilizing (k,r)-clustering in clock rate-limited sys-
tems. In: 19th International Colloquium Structural Information and Communica-
tion Complexity, (SIROCCO’12), Springer, LNCS 7355. (2012) 219–230

7. Datta, A., Devismes, S., Larmore, L.: A self-stabilizing o(n)-round k-clustering
algorithm. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS’09).
(2009) 147–155

8. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Self-
stabilizing small k-dominating sets. International Journal of Networking and Com-
puting 3(1) (2013) 116–136

9. Datta, A.K., Larmore, L.L., Devismes, S., Heurtefeux, K., Rivierre, Y.: Com-
petitive self-stabilizing k-clustering. In: IEEE 32th International Conference on
Distributed Computing (ICDCS’12). (2012) 476–485

10. Johnen, C.: Fast, silent self-stabilizing distance-k independent dominating set
construction. Information Processing Letters 114(10) (2014) 551–555

11. Johnen, C.: Memory efficient self-stabilizing k-independent dominating set con-
struction. Technical Report RR-1473-13, Univ. Bordeaux, LaBRI, UMR 3800,
F-33400 Talence, France (June 2013)

15


