
Maintaining a Spanning Forest in Highly
Dynamic Networks: The Synchronous Case

Matthieu Barjon, Arnaud Casteigts, Serge Chaumette,

Colette Johnen, and Yessin M. Neggaz

LaBRI, University of Bordeaux

Abstract. Highly dynamic networks are characterized by frequent changes
in the availability of communication links. Many of these networks are
in general partitioned into several components that keep splitting and
merging continuously and unpredictably. We present an algorithm that
strives to maintain a forest of spanning trees in such networks, without
any kind of assumption on the rate of changes. Our algorithm is the adap-
tation of a coarse-grain interaction algorithm (Casteigts et al., 2013) to
the synchronous message passing model (for dynamic networks). While
the high-level principles of the coarse-grain variant are preserved, the
new algorithm turns out to be significantly more complex. In particular,
it involves a new technique that consists of maintaining a distributed
permutation of the set of all nodes ids throughout the execution. The
algorithm also inherits the properties of its original variant: It relies on
purely localized decisions, for which no global information is ever col-
lected at the nodes, and yet it maintains a number of critical properties
whatever the frequency and scale of the changes are. In particular, the
network remains always covered by a spanning forest in which 1) no cycle
can ever appear, 2) every node belongs to a tree, and 3) after an arbitrary
number of edge disappearance, all maximal subtrees immediately restore
exactly one token (the root). These properties are ensured whatever the
dynamics, even if it is sustained for an arbitrary long period of time.
Optimality is not the focus here, however convergence to a single tree
per component eventually occurs if the network stops changing (which is
never expected to happen, though). The algorithm correctness is proven
and its behavior is tested in real world scenario through experimenta-
tions.

1 Introduction

The current development of mobile and wireless technologies enables direct ad
hoc communication between various kinds of mobile entities, such as vehicles,
smartphones, terrestrian robots, flying robots, or satellites. In all these contexts,
the set of communication links depends on distances between entities, thus the
network topology changes continuously as the entities move. Not only changes
are frequent, but in general they even make the network partitionned. Clearly,
the usual assumption of connectivity does not hold here, although another form

2

of connectivity is often available over time and space (temporal connectivity).
Also, the classical view of a network whose dynamics corresponds to failures is
no longer suitable in these scenarios, where dynamics is the norm rather than
the exception.

This induces a shift in paradigm that strongly impacts algorithms. In fact, it
even impacts the problems themselves. What does it mean, for instance, to elect
a leader in such a network? Is the objective to distinguish a unique leader network
wide, whose leadership then takes place over time and space, or is it to maintain
a leader in each connected component, so that the decisions concerning each
component are taken quickly and locally. The same remark holds for spanning
trees. Should an algorithm construct a unique, global tree whose logical edges
survive intermittence, or should it build and maintain a forest of trees that
strive to cover collectively all components in each instant? Both viewpoints make
sense, and so far, were little studied in distributed computing (see e.g. [4,11] for
temporal trees, [3,10] for maintained trees).

We focus on the second interpretation, which reflects a variety of scenarios
where the expected output of the algorithm should relate to the immediate con-
figuration (e.g. direct social networking, swarming of flying robots, vehicles pla-
tooning on the road). A particular feature of this type of algorithms is that they
never terminate. More significantly, in highly dynamic networks, they are not
even expected to stabilize to an optimal state (say, a single tree per component),
unless the changes stop, which never happens. This precludes, in particular, all
approaches whereby the computation of a new solution requires the previous
computation to have completed.

This paper is an attempt to understand what can still be computed (and
guaranteed) when no assumptions are made on the network dynamics: neither on
the rate of change, nor on their simultaneity, nor on global connectivity. In other
words, the topology is controlled by an almighty adversary. In this seemingly
chaotic context, we present an algorithm that strives to maintain as few trees
per components as possible, while always guaranteeing some properties.

1.1 Related work

Several works have addressed the spanning tree problem in dynamic networks,
with different goals and assumptions. Burman and Kutten [8] and Kravchik
and Kutten [13] consider a self-stabilizing approach where the legal state corre-
sponds to having a (single) minimum spanning tree and the faults are topological
changes. The strategy consists in recomputing the entire tree whenever changes
occur. This general approach, sometimes called the “blast away” approach, is
meaningful if stable periods of time exist, which is not assumed here.

Many spanning tree algorithms rely on random walks for their elegance and
simplicity, as well as for the inherent localized paradigm they offer. In particu-
lar, approaches that involve multiple coalescing random walks allow for uniform
initialization (each node starts with the same state) and topology independence
(same strategy whatever the graph). Pionneering studies involving such pro-
cesses include Bar-Ilan and Zernik [6] (for the problem of election and spanning

3

tree), Israeli and Jalfon [12] (mutual exclusion), and Chapter 14 of Aldous and
Fill [2] (for general analysis).

The principle of using coalescing random walks to build spanning trees in
mildly dynamic networks was used by Baala et al. [1] and Abbas et al. [5], where
tokens are annexing territories gradually by capturing each other. Regarding
dynamicity, both algorithms require the nodes to know an upper bound on the
cover time of the random walk, in order to regenerate a token if they are not vis-
ited during a long-enough period of time. Besides the strength of this assumption
(akin to knowing the number of nodes n, or the size of components in our case),
the efficiency of the timeout approach decreases dramatically with the rate of
topological changes. In particular, if they are more frequent than the cover time
(itself in O(n3)), then the tree is constantly fragmented into “dead” pieces that
lack a root, and thus a leader.

Another algorithm based on random walks is proposed by Bernard et al. [7].
Here, the tree is constantly redefined as the token moves (in a way that reminds
the snake game). Since the token moves only over present edges, those edges
that have disappeared are naturally cleaned out of the tree as the walk proceeds.
Hence, the algorithm can tolerate failure of the tree edges. However it still suffers
from detecting the disappearance of tokens using timeouts based on the cover
time, which as we have seen, suits only slow dynamics.

A recent work by Awerbuch et al. [3] addresses the maintenance of minimum
spanning trees in dynamic networks. The paper shows that a solution to the
problem can be updated after a topological change using O(n) messages (and
same time), while the O(m) messages of the “blast away” approach was thought
to be optimal. (This demonstrates, incidentally, the revelance of updating a so-
lution rather than recomputing it from scratch in the case of minimum spanning
trees.) The algorithm has good properties for highly dynamic networks. For in-
stance, it considers as natural the fact that components may split or merge
perpetually. Furthermore, it tolerates new topological events while an ongoing
update operation is executing. In this case, update operations are enqueued and
consistently executed one after the other. While this mechanism allows for an
arbitrary number of topological events at times, it still requires that such burst
of changes are only episodical and that the network remains eventually stable
for (at least) a linear amount of time in the number of nodes, in order for the
update operations to complete and thus the logical tree to be consistent with
physical reality.

All the aforementioned algorithms either assume that global update opera-
tions (e.g. wave mechanisms) can instantly or eventually be performed, or that
some node can collect global information about the tree structure. As far as dy-
namics is concerned, this forbids arbitrary and ever going changes to occur in
the network.

1.2 The spanning forest principle.

A purely localized scheme was proposed by Casteigts et al. [10] for the mainte-
nance of a (non-minimum) spanning forest in unrestricted dynamic networks, us-

4

ing a coarse grain interaction model inspired from graph relabeling systems [15].
It can be described informally as follows. Initially every node hosts a token and
is the root of its own individual tree. Whenever two roots arrive at the endpoints
of a same edge (see merging rule on Figure 1), one of them destroys its tokens
and select the other as parent (i.e. the trees are merged). The rest of the time,
each token executes a random walk within its own tree in the search for other
merging opportunities (circulation rule). Tree relations are flipped accordingly.
The fact that the random walk is confined to the underlying tree is crucial and
different from all algorithms discussed above, in which they were free to roam
everywhere without restriction. This simple feature induces very attractive prop-
erties for highly dynamic networks. In particular, whenever an edge of the tree
disappears, the child side of that edge knows instantly that no token remains on
its whole subtree. It can thus regenerate a token (i.e. become root) instantly,
without global concertation nor further information collection. As a result, both
merging and splitting of trees are managed in a purely localized fashion.

(a) Merging rule (b) Circulation rule

×

(c) Regeneration rule

Fig. 1. Spanning forest principle (high-level representation). Black nodes are those
having a token. Black directed edges denote child-to-parent relationships. Gray vertical
arrows represent transitions.

At an abstract graph level, this very simple scheme guarantees that the net-
work remains covered by a spanning forest at any time, in which 1) no cycle
can ever appear, 2) maximal subtrees are always directed rooted trees (with a
token at the root), and 3) every node always belongs to such a tree, whatever
the chaos of topological changes are. On the other hand, it is not expected to
reach an optimal state where a single tree covers each connected component.
Even if the network were to stabilize, convergence to the optimum (though easy
to be made certain) would not be expected to occur fast. Whether this general
principle could be implemented in a message passing model remained an open
question.

1.3 Our contribution.

This paper provides an implementation of the spanning forest principle in the
synchronous message-passing model. Due to the loss of atomicity and exclusivity
in the interaction, the algorithm turns out to be much more sophisticated than
its original counterpart, while still reflecting the very same high-level principle.
In particular, it involves the use of an original technique (which we refer to as
the unique score technique) that consists of maintaining, network-wide, a set of

5

score variables (one for each node) that remain a permutation of the set of all
ids. This mechanism allows us to break symmetry and avoid the formation of
cycle in a context where ids alone could not. The paper is organized as follows. In
Section 2, we present the model and notations that we use throughout the paper.
Then Section 3 presents the algorithm and Section 4 establishes its correctness.
Section 5 presents the validation of our algorithm experimentally.

2 Model and notations

The network is represented by an untimed evolving graph G = (G1, G2, . . .),
such that Gi = (V,Ei), where V is a static set of vertices and Ei is a dynam-
ically changing set of undirected edges. Following Kuhn et al. [14], we consider
a synchronous (thus rounded) computational model, where in each round i, the
adversary chooses the set of edges Ei that are present. In our case, this set is
arbitrary (i.e. the adversary is unrestricted). At the beginning of each round,
each node sends a message that it has prepared at the end of the previous round.
This message is sent to all its neighbors in Ei, although the list of these neigh-
bors is not know by the node. Then it receives all messages sent by its neighbors
(in the same round), and finally computes its new state and the next message.
Hence, each round corresponds to three phases (send, receive, compute),
which corresponds to a rotation of the original model of [14] where the phases
are (compute, send, receive). This adaptation is not necessary, but it allows
us to formulate correctness of our algorithm in terms of the state of the nodes
after each round rather than in the middle of rounds.

We assume that the nodes have a unique identifier taken from a totally
ordered set, that is, for any two nodes u and v, it either holds that id(u) > id(v)
or id(v) < id(u). A node can specify what neighbor its message is intended
to (although all neighbors will receive it) by setting the target field of that
message. Symmetrically, the id of the emitter of a message can be read in the
sender field of that message. Since the edges are undirected, if u receives a
message from v at round i, then v also receives a message from u at that round.
We call this property the reciprocity principle and it is an important ingredient
for the correctness of our algorithm.

Using synchronous rounds allows us to represent the progress of the execution
as a sequence of configurations (C0, C1, C2, ..., Ci), where each Ci corresponds to
the state of the system after round i (except for C0, the initial state). Each
configuration consists of the union of all nodes variables, defined next.

3 The Spanning Forest Algorithm

3.1 State variables

Besides the id variable, which we assume is externally initialized, each node has
a set of variable that reflects its situation in the tree: status accounts for the
possession of a token (T if it has a token, N if it does not); parent contains the id

6

of this node’s parent (⊥ if it has none); children contains the set of this node’s
children (∅ if it has none). Observe that both variables status and parent are
somewhat redundant, since in the spanning forest principle (see Section 1.2)
the possession of a token is equivalent to being a root. Our algorithm enforces
this equivalence, yet, keeping both variables separated simplifies the description
of the algorithm and our ability to think of it intuitively. Variable neighbors

contains the set of nodes from which a message was received in the last reception.
These neighbors may or may not belong to the same tree as the current node.
Variable contender contains the id of a neighbor that the current node considers
selecting as parent in the next round (or ⊥ if there is no such node). Finally, the
variable score is the main ingredient of our cycle-avoidance mechanism, whose
role is described below.

Initial values: All the nodes are uniformly initialized. They are initially the
root of their own individual tree (i.e. status = T , parent = ⊥, and children =
∅). They know none of their neighbors (neighbors = ∅), have no contenders
(contenders = ⊥), and their score is set to their own id.

3.2 Structure of a message (and associated variables)

Messages are composed of a number of fields: sender is the id of the sending
node; senderStatus its status (either T or N); and score its score when the
message was prepared. The field action is one of {FLIP, SELECT,HELLO}.
Informally, SELECT messages are sent by a root node to another root node
to signify that it “adopts” it as a parent (merging operation); FLIP messages
are sent by a root node to circulate the token to one of its children (circulation
operation); HELLO messages are sent by a node by default, when none of the
other messages are sent, to make its presence and status known by its neighbors.
Finally, target is the id of the neighbor to which a FLIP or a SELECT message
are intended (⊥ for HELLO messages).

Received messages are stored in a variable mailbox, which is a map collection
whose keys are the senders id (i.e., a message whose sender id is u can be accessed
as mailbox[u]). In each round, the algorithm makes use of a RECEIVE() function
that clears the mailbox and fill it with all the messages received in that round
(one for each physical neighbor). A node can thus update the set of its neighbors
by fetching the keys of its mailbox. Similarly, it can eliminate from its list of
children those nodes which are no more neighbor.

As mentioned above, every node prepares at the end of a round the message
to be sent at the beginning of the next round. This message is stored in a variable
outMessage. We allow the short hand m← (a, b, c, d, e) to define a new message
m whose emitter is node a (with status b and score e); target is node d; and
action is c.

Initial values: The mailbox is initially empty (mailbox = ∅) and outMessage

is initialized to (id, T,HELLO,⊥, id).

7

3.3 Informal description of the algorithm

The algorithm implements the general scheme presented in Section 1.2. In this
Section we explain how each of the three core operations (merging, circulation,
regeneration) is implemented. Then we discuss the specificities of the merging
operation in more detail and the problems that arise due to its entanglement
with the circulation operation, a fact due to the loss of atomicity in the message
passing model. The resulting solution is substantially more sophisticated than its
original scheme, and yet it faithfully reflects the same high-level principle. Let us
start with some generalities. In each round, each node broadcasts to its neighbors
a message containing, among others, its status (T or N) and an action (SELECT,
FLIP, or HELLO). Whether or not the message is intended to a specific target
(which is the case for SELECT and FLIP messages), all the nodes who receive it
can possibly use this information for their own decisions. More generally, based
on the received information and the local state, each node computes at the end
of the round its new status and the local structure of its tree (variables children
and parent), then it prepares the next message to be sent. We know describe
the three operations. Throughout the explanations, the reader is invited to refer
to Figure 2, where an example of execution involving all of them is shown. All
details are also given in the listings of Algorithm 1 and 2.

Merging: If a root (i.e. a node having a token), say v, detects the existence
of a neighbor root with higher score than its own, then it considers that node
as a possible contender, i.e. as a node that it might select as a parent in the
next round. If several such roots exist, then the one with highest score, say u,
is chosen. At the beginning of the next round, v sends a SELECT message
to u to inform it that it is its new parent. Two cases are possible: either the
considered edge is still present in that round, or it disappeared in-between both
rounds. If it is still present, then u receives the message and adds v to its children
list, among others (Line 16). As for v, it sets its parent variable to u and its
status to N (Lines 8 and 9). It the edge disappeared, then u does not receive
the message, which is lost. However, due to the reciprocity of message exchange,
v does not receive a message from u either and thus simply does not executes the
corresponding changes. By the end of the round, either the trees are properly
merged, or they are properly separated.

Circulation: If a root v does not detect another root with higher score, then
it selects one of its children at random, if it has any (see Line 27), otherwise it
simply remains root. Randomness is not a strict requirement of our algorithm
and replacing it with any deterministic strategy would not affect correctness of
the algorithm. Once the child is chosen, say u, the root prepares a FLIP message
intended to u, and sends it at the beginning of the next round. Two cases are
again possible, whether or not the edge {u, v} is still present in that round. If it
is still present, then u receives the message, it updates its status and adds v to
its children list, among others (Lines 15 and Line 16). As for v, it sets its parent

8

41

2
3

8

5

6
7

s→
s→

s→
s
→

← s

←
s

(a) round 1

41

2
3

8

5

6
7

← f

f
→

(b) round 2

41

8
3

2

7

6
5

f →

s
→

(c) round 3

4
1

2
3

8

7

6
5

←
f

× ←

(d) round 4

4
1

2
3

7

8

6
5

← f

←
f

(e) round 5

1
4

2
3

7

8

6
5

f →

f
→

(f) round 6

Fig. 2. Example of execution of the algorithm which illustrates all types of operations:
parent selection (s →), token circulation (f →), and tree disconnection (× ←). The
first two symbols represent FLIP or SELECT messages to be sent in the next round.
Black (resp. white) nodes are those (not) having a token at the beginning of the round.
Tree edges are represented by bold directed edges. Dash edges have just disappeared.

variable to u and its status to N (Lines 8 and 9). If the edge disappeared, then
v can detect it as before simply does not executes the corresponding changes.
Node u, on the other hand, detects that the edge leading to its current parent
disappeared, thus it regenerates a token (discussed next). Notice that in the
absence of a merging opportunity, a node receiving the token in round i will
immediately prepare a FLIP message to circulate the token in the next round.
Unless the tree is composed of a single node, the tokens are thus moved in each
round. In order for them to remain detectable in this case, the status announced
in FLIP messages is T (whereas it is N for SELECT messages).

Regeneration: The first thing a non-root node does after receiving the mes-
sages of the current round is to check whether the edge leading to its current
parent is still present. If the edge disappeared, then the node regenerates a root

9

directly (Line 7). A nice property of the spanning forest principle is that this
cannot happen twice in the same tree. And if a tree is broken into several pieces
simultaneously, then each of the broken subtree will have exactly one node per-
forming this operation.

The unique score technique: Unlike the high-level graph model from [10],
in which the merging operation involved two nodes in an exclusive way, the
non-atomic nature of message passing allows for a chain of selection that may
involve an arbitrary long sequence of nodes (e.g. a selects b, b selects c, and
so on). This has both advantages and drawbacks. On the good side, it makes
the initial merging process very fast (see rounds 1 and 2 in Figure 2 to get an
example). On the bad side, it is the reason why scores need to be introduced to
avoid cycles. Indeed, relying only on a mere comparison of id to avoid cycles is
not sufficient. Consider a chain of selection in round i that ends up at some root
node u. Nothing prevents u to have passed the token to a lower-id child, say v,
in the previous round i− 1 (that same round when u’s status T was overheard
by the next-to-last root in the chain). Now, nothing again prevents v to have
selected one of the nodes in the selection chain in round i, thereby creating a
cycle. The score mechanism prevents such a situation by enforcing that after
each FLIP, the new root has a larger score than its predecessor (see Lines 9
and 13 in Algorithm 2). The score mechanism also guarantees that the current
set of scores (network-wide) is always a permutation of the initial set of scores.
Hence, scores are always unique. All of these elements are crucial ingredients in
the proofs of correctness of Section 4.

A note about convergence: Each token performs a random walk in its un-
derlying tree. Hence, unless some of the trees are bipartite, the configuration will
eventually (and with high probability) stabilize into a single tree per connected
component if the network stops changing. Although convergence is not the main
focus here, we believe that pathetic scenarios where some trees are bipartite can
easily be avoided, by making the tokens stop for a random additional round
at the nodes (lasy walk). This way, the symmetry of bipartiteness is eventually
broken w.h.p.

4 Proofs of correctness

This section summarizes the correctness analysis of our algorithm. (Note: com-
plete proofs are given in Appendix.) We first define a handful of instrumental
concepts that help minimize the number of properties to be proven. Then, as
we start formulating lemmas and theorems, we adopt more precise notations
regarding the state of the system. Precisely, we denote by (i−)u.varname (resp.
(i+)u.varname) the value of variable varname at node u before (resp. after)
round i. Notice that for any node u, round i, and variable varname, we have
(i+)u.varname = ((i + 1)−)u.varname. We use whichever notation is the most
convenient in the given context.

10

1 repeat
2 SEND(outMessage);

3 mailbox ← RECEIVE(); // Received messages, indexed by sender id

4 neighbors ← mailbox.keys(); // All the senders ids

5 children ← children ∩ neighbors

// Regenerates a token if parent link is lost

6 if status=N ∧ parent 6∈ neighbors then
7 BECOME ROOT();

// Checks if the outgoing FLIP or SELECT (if any) was successful

8 if outMessage.action ∈ {FLIP,SELECT} ∧ outMessage.target ∈
neighbors then

9 ADOPT PARENT(outMessage)

// Processes the received messages

10 contender ← ⊥;
11 contenderScore ← 0;
12 forall message ∈ mailbox do
13 if message.target = id then
14 if message.action = FLIP then
15 BECOME ROOT();

16 ADOPT CHILD(message); // called for both FLIP or SELECT

17 else
18 if message.status = T ∧ message.score > contenderScore then
19 contender ← message.id;

20 contenderScore ← message.score;

// Prepares the message to be sent

21 outMessage ← ⊥
22 if status = T then
23 if contenderScore > score then
24 PREPARE MESSAGE(SELECT, contender);
25 else
26 if children 6= ∅ then
27 PREPARE MESSAGE(FLIP, random(children));

28 if outMessage = ⊥ then
29 PREPARE MESSAGE(HELLO, ⊥);

30 ;

Algorithm 1: Main Algorithm

11

1 procedure BECOME ROOT

2 status ← T;
3 parent ← ⊥;

4 procedure ADOPT PARENT(outMessage)

5 status ← N;
6 parent ← outMessage.target;
7 if outMessage.action = FLIP then
8 children ← childrenrparent;
9 score ← min(score, mailbox[parent].score);

10 procedure ADOPT CHILD(message)

11 children.add(message.id);

12 if message.action = FLIP then
13 score ← max(score, message.score);

14 procedure PREPARE MESSAGE(action, target)

15 switch action do
16 case SELECT

17 outMessage ← (id, N, SELECT, target, score);
18 case FLIP

19 outMessage ← (id, T, FLIP, target, score);
20 case HELLO

21 outMessage ← (id, status, ⊥, ⊥, score);

Algorithm 2: Functions called in Algorithm 1.

12

4.1 Helping definitions

These definitions are not specific to our algorithm, they are general graph con-
cepts that make the rest easier.

Definition 1 (Pseudotree and pseudoforest). A directed graph whose ver-
tices have outdegree at most 1 is a pseudoforest. A vertex whose outdegree is 0
is called a root. The weakly connected components of a pseudoforest are called
pseudotrees.

Lemma 1. A pseudotree has at most one root.

Proof. By definition, a pseudotree T = (VT , ET) is connected, thus |ET | ≥
|VT | − 1. If T has several roots, then at least two nodes in VT have no outgoing
edge. Since the others have at most one, we must have |ET | ≤ |VT | − 2, which
is a contradiction. ut

Lemma 2. If a pseudotree T contains a root r, then it has no cycle.

Proof. Let V1 ⊂ T be the set of nodes at distance 1 from V0 = {r}. Since r has
outdegree 0, there is an edge from each node in V1 to r. Since T is a pseudotree,
these nodes have no other outgoing edge than those ending up in V0. The same
argument can be applied inductively, all nodes at distance i having no other
outgoing edges than those ending up in Vi−1. ut

Definition 2 (Correct tree and correct forest). At the light of Lemma 1
and 2, we define a correct tree (or simply a tree) as a pseudotree in which a
root can be found. We logically define a correct forest (or simply a forest) as a
pseudoforest whose pseudotrees are all trees.

Finally, because forests are considered in a spanning context, we say that a
pseudoforest F is a correct forest on graph G iff F is a correct forest and F is
a subgraph of G. Note that defining correct trees as pseudotree in which a root
can be found is very instrumental. When the moment arrives, this will allow us
to prove our algorithm correct simply based on the presence of a root.

4.2 Consistency

Forest consistency: At the end of a round, each node must have the same
local view of its tree as its tree neighbors:

Definition 3 (forest consistency). The configuration Ci is forest consistent
if and only if for all nodes u, (i+)u.parent = v ⇔ u ∈ (i+)v.children.

The proof of forest consistency is established by Theorem 1 (in Appendix),
based on consistency of the initial configuration (Lemma 3) and an induction
on the round number (Lemma 18). Forest consistency allows us to define the
output of the algorithm after each round i as the mere content of the parent

variable.

13

Graph consistency: At the end of round i, the values of parent variable
should be consistent with the underling graph Gi.

Definition 4 (graph consistency). The configuration Ci is graph consistent
if and only if for all nodes u, (i+)u.parent = v ⇒ {u, v} ∈ Ei.

This property is established by Corollary 1 (Appendix). Graph consistency
allows us to say that the output of the algorithm forms a pseudoforest on Gi.

Definition 5 (Resulting forest). Given a round i ≥ 1, occurring on graph Gi,
the graph Fi = (V,EFi) such that EFi = {(u, v) : {u, v} ∈ Ei, (i

+)u.parent = v}
is called the pseudoforest resulting from round i.

State consistency: As explained in Section 3.1, the variables parent and
status are somewhat redundant, since the possession of a token is synonymous
with being a root. The equivalence between both variables after each round is
established in Lemma 4. The main advantage of this equivalence is that it allows
us to formulate and prove a large number of lemmas based on whichever is the
most intuitive to manipulate for the considered property.

4.3 Correctness of the forest

In this section, we prove that the resulting forest is always correct (Definition
2). To achieve that goal, we first define a validity criterion at the node level,
which recursively ensures the correctness of the tree this node belongs to thanks
to Definition 2 (i.e. the existence of a root implies correctness).

Definition 6. A node u is said to be valid at the beginning of round i if either
(i−)u.status = T or (i−)u.parent is valid.

The correctness of the whole forest can thus be established through showing
that 1) it is initially correct (Lemma 3 and 2) if it is correct after round i, then
it is correct after round i + 1 (Theorem 2). The latter is difficult to prove, and
it involves a number of intermediate steps that corresponds to a case analysis
based on every action a node can perform (sending of FLIP messages, SELECT
messages, etc.).

We first prove that a node u that sends a successful FLIP to v in a round,
is valid at the end of that round (lemma 23) because at the end of that round v
is a root. The proof relies on the fact that during a given round, a node cannot
receive a FLIP and send a SELECT or a FLIP (lemma 20).

We then prove some necessary properties on the score variable at each node.
For instance, a node changes its score at most once during a round (Lemma 25
and 26). Also, the set of all scores are a permutation of the node identifiers after
each round (Lemma 27).

Then we prove that a node that sends a successful SELECT in a round i, is
valid at the end of that round (Lemma 36). This part is the most technical and

14

is the one that proves that chains of selection can not create cycles thanks to
properties on the score variables.

Finally, we prove that all roots at the beginning of a round are still valid
at the end of the round (lemma 37). Therefore, if all nodes are valid at the
beginning of round, then they are also valid at the end of the round (theorem
2). Since they are initially valid (Lemma 3), they are thus always valid, which
completes the proofs.

5 Simulation on real world traces (Infocomm 2006)

We verified the applicability of our algorithm to real world situations. The al-
gorithm was implemented in the JBotSim simulator [9] and tested upon the
Infocomm06 dataset. This dataset is a record of the possible interactions be-
tween people during the Infocomm’06 conference. The resulting graph has the
following characteristics: the number of nodes is 78 and the average node degree
is 1.3. It should also be noted that an edge can appear at any time but the fact
that it is still present is thereafter only tested every 120 seconds; this means
that the presence time of an edge is a multiple of 120 seconds. We assumed
that 10 rounds can be performed per seconds (Figure 3), which seems a reason-
able assumption. The results show the average number of trees per connected
component, averaged over 100 runs.

Fig. 3. Results of the simulation on Infocomm06 traces when assuming ten messages
per second

15

These results show that the algorithm achieves an optimal configuration of
a single spanning tree per connected component about 47% of the time, which
is encouraging. It also demonstrates, incidentally, that the algorithm works cor-
rectly in such a real scenario.

References

1. S. Abbas, M. Mosbah, and A. Zemmari. Distributed computation of a spanning
tree in a dynamic graph by mobile agents. In Proc. of IEEE Int. Conference on
Engineering of Intelligent Systems (ICEIS), pages 1–6, 2006.

2. David Aldous and Jim Fill. Reversible markov chains and random walks on graphs,
2002.

3. Baruch Awerbuch, Israel Cidon, and Shay Kutten. Optimal maintenance of a
spanning tree. J. ACM, 55(4):18:1–18:45, September 2008.

4. Baruch Awerbuch and Shimon Even. Efficient and reliable broadcast is achievable
in an eventually connected network. In Proceedings of the third annual ACM
symposium on Principles of distributed computing, pages 278–281. ACM, 1984.

5. H. Baala, O. Flauzac, J. Gaber, M. Bui, and T. El-Ghazawi. A self-stabilizing
distributed algorithm for spanning tree construction in wireless ad hoc networks.
Journal of Parallel and Distributed Computing, 63:97–104, 2003.

6. Judit Bar-Ilan and Dror Zernik. Random leaders and random spanning trees.
In Jean-Claude Bermond and Michel Raynal, editors, Workshop on Distributed
Algorithms (WDAG), volume 392 of Lecture Notes in Computer Science, pages
1–12. Springer Berlin Heidelberg, 1989.

7. Thibault Bernard, Alain Bui, and Devan Sohier. Universal adaptive self-stabilizing
traversal scheme: Random walk and reloading wave. J. Parallel Distrib. Comput.,
73(2):137–149, 2013.

8. Janna Burman and Shay Kutten. Time optimal asynchronous self-stabilizing span-
ning tree. In Andrzej Pelc, editor, Distributed Computing, volume 4731 of Lecture
Notes in Computer Science, pages 92–107. Springer Berlin Heidelberg, 2007.

9. Arnaud Casteigts. The JBotSim library. CoRR, abs/1001.1435, 2013.
10. Arnaud Casteigts, Serge Chaumette, Frédéric Guinand, and Yoann Pigné. Dis-

tributed maintenance of anytime available spanning trees in dynamic networks.
In Proceedings of the 12th conference on Adhoc, Mobile, and Wireless Networks
(ADHOC-NOW), volume 7960 of Lecture Notes in Computer Science, pages 99–
110, Wroclaw, Poland, July 2013.

11. Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro. Shortest,
fastest, and foremost broadcast in dynamic networks. CoRR, abs/1210.3277, 2014.

12. Amos Israeli and Marc Jalfon. Token management schemes and random walks
yield self-stabilizing mutual exclusion. In Proceedings of the ninth annual ACM
symposium on Principles of distributed computing, pages 119–131. ACM, 1990.

13. Alex Kravchik and Shay Kutten. Time optimal synchronous self stabilizing span-
ning tree. In Yehuda Afek, editor, Distributed Computing, volume 8205 of Lecture
Notes in Computer Science, pages 91–105. Springer Berlin Heidelberg, 2013.

14. Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in
dynamic networks. In Proceedings of the 42nd ACM symposium on Theory of
computing (STOC), pages 513–522. ACM, 2010.

15. Igor Litovsky, Yves Metivier, and Eric Sopena. Graph relabelling systems and
distributed algorithms. In Handbook of graph grammars and computing by graph
transformation. Citeseer, 2001.

16

A Detailed proofs

A.1 Consistency

Lemma 3. The configuration C0 is forest consistent and graph consistent. In
C0, the resulting pseudoforest is correct.

Proof. The parent variable is initialized to ⊥. So, the configuration C0 is forest
consistent and graph consistent. Any node u belonging to the pseudotree Tu =
({u}, ∅). Each of these pseudotrees contains a root (u itself) and is therefore a
correct tree. ut

We say that u sends a FLIP (resp. SELECT) in round i if and only if
(i−)u.outMessage.action = FLIP (resp. SELECT). We say that it sends it
to node v if and only if (i−)u.outMessage.target = v. Finally the FLIP or
SELECT is said to be successful (resp. failed) if {u, v} ∈ Ei (resp. {u, v} /∈ Ei).

Lemma 4 (state consistency). For all round i ≥ 0, and for all node u,
(i+)u.status = T ⇔ (i+)u.parent = ⊥

Proof. Initially, at any node u, u.status = T and u.parent = ⊥. The change
of u.status to N always comes with the assignment of a non-null identifier
(outMessage.target) to u.parent (procedure ADOPT PARENT()), and assigning
the value T to u.status is always followed by the change of u.parent to ⊥ (pro-
cedure BECOME ROOT()). So at any configuration, v.parent = ⊥ if and only if
v.status = T . ut

Lemma 5. If u does not send a FLIP or SELECT in round i, then u does not
execute the procedure ADOPT PARENT() during round i.

Proof. The execution of the procedure ADOPT PARENT() by u is conditioned by
the sending of a SELECT or a FLIP by u during the current round (line 8). ut

Observation 1. At time where a node u prepares its message to be sent during
the round i, we have u.parent = ((i− 1)+)u.parent (resp. children, status).

Lemma 6. If u sends a FLIP or SELECT in round i, then (i−)u.status = T .

Proof. u sends in round i the message prepared in round i−1. If u sends a FLIP
or a SELECT in round i then in round i− 1 PREPARE MESSAGE() is called with
FLIP or SELECT as action (lines 24 or 27). Both instructions are conditioned
by status = T . ut

Lemma 7. If v sends a message containing T in round i, then (i−)v.status =
T .

Proof. The procedure PREPARE MESSAGE() is executed by a node u in round i−1
to construct the message m to be sent in round i. In all cases PREPARE MESSAGE()

sets m.senderStatus to T only if u.status = T . ut

17

Lemma 8. If u sends a SELECT to v in round i, then (i−)u.score < ((i −
1)−)v.score.

Proof. The value of the score field in the message sent by a node v in round
i− 1 is ((i− 1)−)v.score.

Assumes that the node u sends a SELECT to v in a round i. So, during the
round i − 1, u sets its contender variable to v and its contenderScore variable
to message.score message being the message sent by v at the begining of round
i− 1. From that time to the end of round i− 1, u.score is not modified.

So (i−)u.score < ((i − 1)−)v.score, if u sends a SELECT to v in a round
i. ut

Lemma 9. If at the beginning of round i, the configuration is forest consistent
then only (i−)u.parent can send a FLIP at destination of u during the round i.

Proof. A node v can prepare a FLIP message to the node u at then end of
round i − 1 only if u ∈ (i−)v.children. We have (i−)u.parent = v according to
the hypothesis (forest consistency at the beginning of round). Therefore, only
the node (i−)u.parent can prepare a FLIP message at destination of u, at the
end of round i− 1. ut

Graph consistency:

Lemma 10. Let u be a node such that (i−)u.parent 6= v ∧ (i+)u.parent = v.
Then u sends a successful FLIP or SELECT to v during the round i.

Proof. The only change of parent by u to a non-null identifier v in a round i
is at the execution of the procedure ADOPT PARENT() which is conditioned by
the reception of a message from v (line 9). If u receives the message of v during
round i then v effectively receives the message sent by v (reciprocal reception
property). ut

Lemma 11. Let u be a node such that (i−)u.parent = v ∧ (i+)u.parent = v.
We have {u, v} ∈ Ei.

Proof. By Lemma 4, we have (i−)u.status = N . So, u does not send a FLIP or
SELECT during the round i (Lemma 6). Then, u does not execute ADOPT PARENT()

during the round i according to Lemma 5. Since (i+)u.parent = v we conclude
that u does not execute the procedure BECOME ROOT() during the round i. So u
did receive a message from (i−)u.parent in round i. We have {u, v} ∈ Ei. ut

Corollary 1 (graph consistency). Every configuration is graph consistent.

Proof. The configuration reached after any round is graph consistent (Lemmas
10 and 11). ut

18

Forest consistency:

Lemma 12. If (i−)u.parent = v then (i+)u.parent = v or (i+)u.parent = ⊥.

Proof. According to Lemma 4, we have (i−)u.status = N , so u cannot send a
FLIP or a SELECT in round i (by Lemma 6). Therefore, u does not execute
ADOPT PARENT() in round i (Lemma 5). We conclude that (i+)u.parent = v or
(i+)u.parent = ⊥. ut

Lemma 13. Assume that at the beginning of round i, the configuration is forest
consistent. If u receives a FLIP in round i, then it does not send a FLIP nor a
SELECT in round i.

Proof. We will establish the contraposition of the lemma statement: if u sends
a FLIP or a SELECT in round i, then it does not receive a FLIP in round i. By
Lemma 6, we have (i−)u.status = T . According to Lemma 4, (i−)u.parent = ⊥.
Thus according to the hypothesis (forest consistency at the beginning of round),
for any node v, u /∈ (i−)v.children. Therefore no node has prepared a FLIP
message at destination of u, in round i− 1. So u cannot receive a FLIP in round
i. ut

Lemma 14. Assume that at the beginning of round i, the configuration is forest
consistent. If in round i, u changes u.parent to v then u ∈ (i+)v.children :
(i−)u.parent 6= v ∧ (i+)u.parent = v ⇒ u ∈ (i+)v.children.

Proof. u sets u.parent to v only if the FLIP or SELECT was successful (Lemma
10). Therefore v has received the FLIP or SELECT message sent by u.

The addition of a node u to v.children by v is done during the excution of
the procedure ADOPT CHILD() which is conditioned by the reception of a FLIP
or a SELECT message mu from u (mu.target = v, line 16). The procedure
ADOPT CHILD() is executed after line 5 which is the only instruction that could
remove u from v.children. So, u ∈ (i+)v.children. We have (i−)u.parent 6=
v ∧ (i+)u.parent = v ⇒ u ∈ (i+)v.children. ut

Lemma 15. Assume that at the beginning of round i, the configuration is forest
consistent. If in round i, v adds u to v.children then (i+)u.parent = v : u 6∈
(i−)v.children ∧ u ∈ (i+)v.children⇒ (i+)u.parent = v.

Proof. v adds u to v.children only if it excutes the procedure ADOPT CHILD()

which is conditioned by the reception of a FLIP or a SELECT sent by u. As
the reception of messages is reciprocal, u also receives in round i a message from
v. This satisfies the condition for u to execute the procedure ADOPT PARENT()

which sets u.parent to v.
Only the execution of BECOME ROOT() (at line 15) could modify the value

of u.parent. This procedure would be executed only if u has received a FLIP
during round i which cannot be the case. Notice that u does not receive a FLIP
during the round i (Lemma 13). ut

19

Lemma 16. Assume that at the beginning of round i, the configuration is forest
consistent. If in round i, u changes u.parent from v to another value then u 6∈
(i+)v.children : (i−)u.parent = v ∧ (i+)u.parent 6= v ⇒ u 6∈ (i+)v.children.

Proof. If u changes (i+)u.parent then we have (i+)u.parent = ⊥ (Lemma 12).
Only the execution of BECOME ROOT() by u sets u.parent to ⊥. The procedure
BECOME ROOT() is executed in two cases: at the detection of a disconnection (line
7), and at the reception of a FLIP message (line 15).

In the first case, the reciprocal reception property ensures that v does not
receive the message sent by u. So, v removes u from children (line 5).

In the second case, u receives a FLIP from (i−)u.parent (Lemma 9). Accord-
ing to the reciprocal reception property, v receives the message sent by u during
the round i. So, v executes ADOPT PARENT((i−)v.outMessage) which removes u
(i.e. (i−)v.outMessage.target) from v.children (line 9). ut

Lemma 17. Assume that at the beginning of round i, the configuration is forest
consistent. If in round i, v removes u from v.children then (i+)u.parent 6= v :
u ∈ (i−)v.children ∧ u 6∈ (i+)v.children⇒ (i+)u.parent 6= v.

Proof. v removes u from v.children in two cases: at the detection of a discon-
nection (v does not receive a message from u, line 5), and when v executes
(ADOPT PARENT((i).v.outMessage), line 9)

In the first case, the reciprocal reception property ensures that u does not
receive the message sent by v during the round i. So, u becomes a root : it
executes the procedure BECOME ROOT() (line 7).

In the second case, v executes ADOPT PARENT((i).v.outMessage). So v did
send a successful FLIP or SELECT (Lemma 5). As v removes u from v.children
during the execution of ADOPT PARENT((i).v.outMessage), we have (i−).v.outMessage.target =
u and (i−).v.outMessage.action = FLIP (see the procedure ADOPT PARENT(outMessage)).
So v sends a successful FLIP to u during round i. Therefore, in round i, u exe-
cutes the procedure BECOME ROOT() (line 15): u sets u.parent to ⊥. ut

Lemma 18 (Forest Consistency). Let i be a round starting from a forest
consistent configuration. The configuration reached at the end of round i is forest
consistent

Proof. The configuration after the round i is forest consistent according to Lem-
mas 14, 15, 16, 17. Notice that in the case where u does not change the value
of its parent variable (resp. u stays in v.children) during round i, at the end of
round i the forest consistency property is preserved according to the contrapo-
sition of Lemma 17 (resp. contraposition of Lemma 16) and the hypothesis. ut

Theorem 1 (Consistency). Every configuration is forest consistent.

Proof. C0 is forest consistent (Lemma 3). The configuration reached after any
round is forest consistent (Lemma 18). ut

20

A.2 Correctness of the forest

Correctness of the resulting forest after token circulation:

Lemma 19. Let v be a node. Only (i−)v.parent can send a FLIP at destination
of v during the round i.

Proof. At the beginning of round i, the configuration is forest consistent (The-
orem 1). Therefore, only the node (i−)v.parent can prepare a FLIP message at
destination of v, at the end of round i− 1 (Lemma 9). ut

Lemma 20. If u receives a FLIP in round i, then it does not send a FLIP nor
a SELECT in round i.

Proof. At the beginning of round i, the configuration is forest consistent (Theo-
rem 1). Therefore no node has prepared a FLIP message at destination of u, in
round i− 1 (Lemma 13). ut

Lemma 21 (Adoption). If u sends a successful FLIP or SELECT to v in
round i, then (i+)u.status = N and (i+)u.parent = v.

Proof. In round i, u.outMessage.action = FLIP or SELECT and v ∈ (i+)u.neighbors.
During the round i, u executes the procedure ADOPT PARENT() (line 9) which sets
(i+)u.parent to v. According to Lemma 20, u did not receive any FLIP message
during the round i. Only an execution of BECOME ROOT() by u at line 15 can
change the value of u.parent during the round i. This line is not executed dur-
ing round i. ut

Lemma 22. If u sends a successful FLIP to v, then (i+)v.status = T .

Proof. v received mu in round i, so {u, v} ∈ Ei. v executes the procedure
BECOME ROOT() that changes v.status to T . After the execution of line 9, no
instruction can set v.status to N until the end of round i. So (i+)v.status = T .

ut

Lemma 23. If u sends a successful FLIP in round i, then u is valid after round
i.

Proof. By Lemmas 21 and 22 u’s parent has a status T after round i. ut

Proofs on score permutations:

Lemma 24. If u sends a successful FLIP to v, then (i−)u.score ≤ (i+)v.score.

Proof. u sent a message mu to v at the beginning of round i such that mu.action =
FLIP, mu.target = v.id and mu.score = (i−)u.score. v received mu in round
i, so {u, v} ∈ Ei. v executes the procedure ADOPT CHILD(mu) at line 16 in
round i. This procedure sets the current score of v to max(v.score,mu.score),
as mu.score = (i−)u.score. After the execution of this instruction, we have
mu.score = (i−)u.score ≤ v.score. We notice that after this operation, no in-
struction can change the value of v.score (Lemma 19. ut

21

Lemma 25. (i−)u.score = (i+)u.score unless u sends or receives a successful
FLIP in round i.

Proof. u changes its score value only by executing ADOPT PARENT(mu) or ADOPT CHILD(mu).
Both instructions that changes u.score value in these procedures (Algorithm 2,
line 9, 16) are conditioned by mu.action = FLIP . ut

Lemma 26. A node u changes u.score at most once during a round.

Proof. A node sends at most one FLIP message during a round. A node receives
at most one FLIP message during a round (Lemma 19). Either a node receives a
FLIP, sends one, or it does not receive and does not send a FLIP during a given
round (Lemma 20). So, according to Lemma 25, a node changes u.score at most
once during a round. ut

Lemma 27. Before each round, the set of scores is a permutation of the set of
identifiers.

Proof. After the initialization in each node u, u.score = u.id. A node u changes
its score only by executing ADOPT PARENT() or ADOPT CHILD(). We will do a
proof by induction. We assume at the beginning of round i, the set of scores is
a a permutation of the set of indentifiers. We have for any node u, mu.score =
(i−)u.score.

According to Lemma 25, only a node sending or receiving a successful FLIP
may change its score value. Assume that the node u changes its score value
during round i. Without lost of generality, we assume u sends the successful
FLIP to a node v in round i.

By hypothesis, u changes its score to (i−)v.score during the execution of
ADOPT PARENT() in round i. We have (i−)u.score geq(i−)v.score. v executes
the procedure ADOPT CHILD(mu) at line 16 in round i. This procedure sets the
current score of v to max(v.score,mu.score), as mu.score = (i−)u.score. After
the execution of this instruction, we have v.score = (i−)u.score.

According lemma 26, we have (i+)v.score = (i−)u.score and (i+)u.score =
(i−)v.score. ut

Correctness of the resulting forest after mergings: In lemmas 31 and
32, we establish that if u sends a successful SELECT to v in round i either
(i−)v.status = T or (i−)v.parent.status = T . In the first case, we have (i−)u.score <
(i−)v.score, and in the second case, we have (i−)u.score < (i−)v.parent.score.
Let ch be a series of nodes u0, u1, u2 such that (i+)uj .parent = uj+1 and such
that u0 sends a successful SELECT to u1 during the round i. As a ch’s subchain
of nodes having strictly increasing scores at the beginning of round i may be
built: ch has not loop. So ch ends by a node having a token : all nodes on that
chain are valid.

Lemma 28. If v sends a message containing T in round i and (i+)v.status =
N , let w = (i+)v.parent, then (i+)w.status = T .

22

Proof. If v sends a message containing T in round i, then (i+)v.status = T .
If (i+)v.status = N , then v has executed ADOPT PARENT() in round i, because
it is the only procedure that sets v.status to N . v executes ADOPT PARENT()

only if it has sent a FLIP message mv to a node w (mv.action 6= SELECT
because mv.senderStatus = T), and if w has received the message mv (reciprocal
reception property). At the reception of mv by w, w executes BECOME ROOT() (line
16) which sets w.status to T and from this line until the end of the round no
instruction can change w.status to N . So (i+)w.status = T .

At the execution of ADOPT PARENT() by v, v sets v.parent to w. After this in-
struction there is only BECOMES ROOT() that can modifie the value of v.parent,
and which is conditioned by the reception of a FLIP message. According to
lemma 20 v cannot call BECOMES ROOT() because it cannot receive a FLIP mes-
sage. So w = (i+)v.parent.

So, if v sends a message containing T in round i and (i+)v.status = N , and
w = (i+)v.parent, then (i+)w.status = T . ut

Lemma 29. If v sends a message containing T in round i and (i+)v.status =
N , let w = (i+)v.parent, then (i+)w.score ≥ (i−)v.score.

Proof. We have (i−)v.status = T because in round i − 1, v.status cannot be
modified after the execution of PREPARE MESSAGE(). If (i−)v.children 6= ∅ then v
sends a FLIP message to one of its children, named u, in round i. Either {u, v} ∈
Ei, then (i+)u.parent = v, (i+)v.status = T and (i+)u.score ≤ (i−)v.score (see
Lemmas 22 and 24). Otherwise (i+)v.status = T . ut

Lemma 30. If u sends a successful SELECT to v in round i then ((i−1)−)v.status =
T .

Proof. Node u prepared a SELECT message to v in round i − 1, thus it had
u.contender = v, which implies it received from v a message containing T . We
have then ((i−1)−)v.status = T because after the execution of PREPERE MESSAGE()

by v in round i− 2, v.status cannot be changed. ut

Lemma 31. If u sends a successful SELECT to v in round i and (i−)v.status =
T , then (i−)u.score < (i−)v.score.

Proof. By Lemma 30 ((i−1)−)v.status = T . Then Lemmas 8 and 25 respectively
imply that (i−)u.score < ((i− 1)−)v.score and ((i− 1)−)v.score = (i−)v.score.

ut

Lemma 32. If u sends a successful SELECT to v in round i and (i−)v.status =
N , then let w = (i−)v.parent. It holds that (i−)w.status = T and (i−)u.score <
(i−)w.score.

Proof. By Lemma 30 we have ((i − 1)−)v.status = T . Then Lemmas 8 and 29
respectively imply that (i−)u.score < ((i− 1)−)v.score and ((i− 1)−)v.score ≤
(i−)w.score. Lemma 28 implies that (i−)w.status = T . ut

23

Lemma 33 (Cancellation). If u sends a failed FLIP or SELECT in round i,
then (i+)u.status = T .

Proof. By lemma 6, we have (i−)u.status = T . v did not receive the message
from u implies that {u, v} /∈ Ei. So, in round i, v /∈ u.neighbors (u did not receive
the message from v). Only during the execution of ADOPT PARENT(), called in
line 9, u can change its status to N . This procedure is not executed during the
round i. ut
Lemma 34 (Conservation). If (i−)u.status = T and u does not send a FLIP
or SELECT in round i, then (i+)u.status = T .

Proof. By lemma 5, u does not execute the procedure ADOPT PARENT() during
the round i. u can set status variable to N only if it executes ADOPT PARENT().

ut
Lemma 35. If (i−)u.status = T and u does not send a successful SELECT in
round i, then u is valid after the round i.

Proof. According to Lemma 23, after the successful sending of a FLIP message
in round i, u is valid at the end of round i. If u sends a failed SELECT or a
failed FLIP then u is valid after the round i by Lemma 33. otherwise, u did not
send a SELECT or a FLIP during the round : it is also valid at the end of the
round by Lemma 34. ut
Lemma 36. If a node sends a successful SELECT in round i, then it is valid
at the end of round i.

Proof. Let S be the set of nodes that send a successful SELECT in round i and
are not valid at the end of round i. We will prove, by contradiction, that S is
empty. Assume S is non-empty and consider the node in S that had the largest
score at the beginning of round (say, node u). Such a node exists by Lemma 27.
We will prove that u is valid after the round, which is a contradiction. Let v be
the recipient of u’s successful SELECT. By Lemma 21 (i+)u.parent = v, thus
is enough to show that v is valid after round i to get our contradiction. Let us
examine both cases whether (i−)v.state = T or N .

If (i−)v.status = T , then either v also sends a successful SELECT in round
i, or it does not. If it does not, then it is valid after round i (Lemma 35). If it
does, then it must be valid otherwise u is not maximal in S (Lemma 31).

If (i−)v.status = N , then let w = (i−)v.parent. Two cases are considered,
whether {v, w} ∈ Ei or not. If {v, w} /∈ Ei then (i+)v.status = T because the
condition forces u to call the procedure BECOME ROOT() in line 7 which makes
it take the status T . After, u can takes the status N , only during the execution
of the procedure ADOPT PARENT() in line 9. This procedure is called by u only
if u did send a FLIP or a SELECT at the beginning of round i by lemma 5. By
Lemma 6, this cannot happen. Thus v is valid after round i. If {v, w} ∈ Ei, we
use the fact that (i−)w.status = T (Lemma 28) to apply the same idea as we
did above: either w also sends a successful SELECT in round i, or it does not.
If it does not, then it is valid after round i (Lemma 35). If it does, then it must
be valid otherwise u is not maximal in S (Lemma 32). ut

24

Correctness of resulting forest:

Lemma 37. If (i−)u.status = T then u is valid after round i.

Proof. According to Lemma 36, after the successful sending of a SELECT mes-
sage in round i, u is valid at the end of round i. According to Lemma 23, after
the successful sending of a FLIP message in round i, u is valid at the end of
round i. If u sends a failed SELECT or a failed FLIP then u is valid after the
round by Lemma 33. In otherwise, u is also valid the round by Lemma 34.

ut

Theorem 2 (Resulting forest correctness). If all nodes are valid at the
beginning of the the round i, then all nodes are valid after round i.

Proof. Assume that a node v is invalid after round i. According to Lemma 37,
(i−)v.status = N .

Let u0, u1, u2, ..., uk be the finite series of nodes such that for j ∈ [0, k − 1],
(i−)uj .parent = uj+1, (i−)uk.status = T , and u0 = v. This series exists because
u is valid at the beginning of round i.

Let u′1, u
′
2, ..., be the infinite series of nodes such that for all j ≥ 1 (i+)u′j .parent =

uj+1, and (i+)v.parent = u′1. This series exists because v is invalid (by hypoth-
esis).

According to Lemma 12, j ∈ [1, k], uj = u′j . According to Lemma 37, uk is
valid. So all nodes of the series u0, u1, u2, ..., uk are valid. There is a contradiction.

ut

