
Fault-Tolerant Implementations of Atomic Registers by
Safe Registers in Networks

Colette Johnen
LRI, Univ. Paris-Sud, CNRS

colette@lri.fr

Lisa Higham
Computer Science Dept, U. Calgary, Canada

higham@ucalgary.ca

Categories G.4[Reliability and Robustness]; D.1.3[Distri-
buted Programming]
General Terms Algorithms, Theory, Design

A distributed network can be modelled by a communication
graph G = (V;E) where V is a set of processors and an
edge hpqi 2 E if and only if processors p and q can com-
municate directly. Several variants have been de�ned de-
pending on the precise meaning of \communicate directly".
In the state network models, each processor owns a single-
writer/multi-reader shared register, writable by the owner
and readable by each neighbour. In the link network models,
for each pair of processors joined by an edge, there are two
single-writer/single-reader registers, each writable by one
and readable by the other. Lamport [5] de�ned three kinds
of registers depending on the semantics when read and
write operations overlap: safe, regular and atomic. Thus,
six di�erent network models arise by specifying two parame-
ter for the shared registers: strength in fatomic, regular, safeg
and location in flink, stateg. Our goal has been to determine
possibilities and impossibilities for transforming an algorith-
mic solution designed for one variant into a solution for a
weaker variant while retaining one or both of the fault toler-
ance properties wait-freedom and self-stabilization. In all six
models the registers are single-writer, and so this descriptor
is omitted in the following summary.
We previously reported the following algorithms and impos-
sibilities for transforming between some of these models:
1. From atomic-state to atomic-link{ a self-stabilizing com-
piler, and a proof that a wait-free one is impossible [1].
2. From atomic-state to regular-state{ a self-stabilizing com-
piler that wait-free implements each write operation and
obstruction-free implements each read operation, and a proof
that it is impossible for both to be wait-free [2].
3. From regular-state to regular-link{ there is a straightfor-
ward compiler that is wait-free and self-stabilizing [2,3].
4. From atomic-link to regular-link{ there is a straightfor-
ward interpretation of Lamport's work [5] that constitutes
a compiler that is wait-free and self-stabilizing [2,3].

PODC’08,August 18–21, 2008, Toronto, Ontario, Canada.

Our new contribution (see [4]) is a self-stabilizing and wait-
free compiler from regular-link to safe-link networks. The
relationship between these two networks is the same as that
between single-reader regular registers and single-reader safe
registers. We construct a single-reader regular register using
only single-reader safe registers, in two steps, relying on an
intermediate register type, called 1-regular, which behaves
like a regular register provided any read has at most one
overlapping write, but like a safe register otherwise.
Step 1: A write of a single-reader 1-regular register is im-
plemented by writing to each of three safe registers; a read
is implement by reading the three safe registers in the oppo-
site order. Provided at most one write overlaps any read,
at most one of the safe registers could be concurrently read
and written. So two are \uncorrupted", which is enough to
determine a correct �nal value for the read to return.
Step 2: If at most one write could overlap a read, a 1-
regular register would su�ce in place of a regular register.
This suggests that we try to avoid overlap by having more
than one (three su�ces) 1-regular register available for a
writer and arranging communication from the reader to di-
rect the writer which one to use. The writer indicates which
register it actually used, by setting two of three possible
pointers to point to it. The reader executes a loop three
times, each time examining a pointer to choose one of the
three registers, and returning the value of the chosen regis-
ter. The algorithm ensures that at most one of the chosen
values can be stale, and a trick ensures that a stale value is
never selected as the �nal value returned by the read.
By composing various compilers appropriately, we can im-
plement algorithms designed for the atomic-state or the atomic-
link (also called the Read-Write atomicity model) model on
the safe-link model, while preserving self-stabilization.

References.

[1] L Higham and C Johnen. Relationships between com-
munication models in networks using atomic registers.
In IPDPS'2006, (Report 1419, LRI), 2006.

[2] L Higham and C Johnen. Self-stabilizing implementa-
tion of atomic register by regular register in networks
framework. Report 1449, LRI, 2006.

[3] L Higham and C Johnen. Fault-Tolerant Implemen-
tations of the Atomic-State Communication Model in
Weaker Networks. DISC 2007 BA: 485-487.

[4] C Johnen and L Higham. Self-stabilizing implementa-
tion of regular register by safe registers in link model.
Report 1486, LRI, 2008. http://www.lri.fr.

[5] L Lamport. On interprocess communication. Dis-

tributed Computing, 1(2):77{101, 1986.


