
Memory space requirements for self-stabilizing leader election protocols

Jo�roy Beauquier, Maria Gradinariu, Colette Johnen

L.R.I./C.N.R.S., Universit�e de Paris-Sud,
bat 490, 91405 Orsay Cedex, France

jb,mariag,colette@lri.fr

Abstract
We study the memory requirements of self-stabilizing leader
election (SSLE) protocols. We are mainly interested in two
types of systems: anonymous systems and id-based systems.
We consider two classes of protocols: deterministic ones and
randomized ones.

We prove that a non-constant lower bound on the mem-
ory space is required by a SSLE protocol on unidirectional,
anonymous rings (even if the protocol is randomized).

We show that, if there is a deterministic protocol solving
a problem on id-based systems where the processor memory
space is constant and the id-values are not bounded then
there is a deterministic protocol on anonymous systems us-
ing constant memory space that solves the same problem.
Thus impossibility results on anonymous rings (i.e. one may
design a deterministic SSLE protocol, only on prime size
rings, under a centralized daemon) can be extended to those
kinds of id-based rings. Nevertheless, it is possible to design
a silent and deterministic SSLE protocol requiring constant
memory space on unidirectional, id-based rings where the
id-values are bounded. We present such a protocol.

We also present a randomized SSLE protocol and a token
circulation protocol under an unfair, distributed daemon on
anonymous and unidirectional rings of any size. We give
a lower bound on memory space requirement proving that
these protocols are space optimal. The memory space re-
quired is constant on average.

Keyword: self-stabilization, leader election, mutual ex-
clusion, decidability, memory space requirement.

1 Introduction
A main requirement for the design of distributed systems is
transparency. Roughly speaking, transparency means that
an users do not see the network and they interact with the
system as if it was a reliable centralized uni-processor sys-
tem. Transparency takes several forms. Here, we are inter-
ested in two of them: transparency to dynamic evolutions
and transparency to failures. The former means that the
user does not see any change when the network topology

evolves, for instance when sites are added or/and other ones
disconnected. The latter means that, if a failure appears,
the user is not supposed to notice any major change in the
quality of service he receives.

The two particular failures that we consider, in this pa-
per, are memory and channel corruptions. The framework
that deals with these types of failures is known as self-
stabilization [9]. The self-stabilization approach is basically
non-masking: after a failure, the system is allowed to tem-
porarily exhibit bad behavior, but it must behave correctly
within a short period of time without external intervention.

A protocol needs only constant space if the memory space
needed at each processor is constant per link. A constant
space protocol is transparent to dynamic evolutions: the
local protocol implementation on a processor never has to
be modi�ed. Assuming that link and processors contains
memory space, when links or processors are added to the
network, they will bring enough memory space to the pro-
tocol. Thus the protocol will work properly for all network
sizes. A self-stabilizing protocol that uses constant memory
space per link can be implemented by processors, and links
that are uniformly manufactured. On the other hand, a pro-
tocol whose required memory space depends on the network
size is not transparent: more memory will eventually have
to be allocated to every network processor if the network
keeps growing. This has to be done no matter how much
memory space was initially allocated to a processor.

In this paper, we study the possibility of designing self-
stabilizing leader election (SSLE) protocols on rings requir-
ing constant space. We are mainly interested in two types
of systems: anonymous systems (where processors do not
have identi�er) and id-based systems. In the latter type of
systems, processors have distinct hardware identities that
cannot be corrupted. We consider two classes of protocols:
deterministic ones and randomized ones.

Deterministic SSLE protocols on anonymous rings. A cen-
tralized daemon is a scheduler which determines the single
processor that will perform an action when several proces-
sors are enabled. A more powerful daemon is a distributed
one: it can choose one or more processors at each computa-
tion step. On an anonymous ring, a SSLE protocol can be
designed only (1) if the ring size is a prime number and if
(2) the daemon is centralized. In [16], Itkis, Lin, and Simon
presented a deterministic SSLE protocol under a centralized
daemon on bidirectional prime-size rings requiring constant
memory space. We prove that such a protocol on unidirec-
tional rings requires at least N states per processor (where

N is the ring size).

Deterministic SSLE protocols on id-based networks. In
an id-based system, each processor has a distinct hardware
identity. The processor ids are stored in a non-volatile read-
only memory and thus they cannot be corrupted, unlike pro-
cessor states which are stored in a regular memory. The
arguments used in the case of anonymous rings to prove
the impossibility of SSLE protocols do not hold. In fact,
there are several deterministic SSLE protocols on id-based
systems where the memory space requirement is not con-
stant (i.e. at least N states per processor) [1], [2], [11], and
[3]. Roughly, the general idea of these protocols is that each
processor keeps in its regular memory the id-value of its can-
didate for the leadership. Processors exchange id-values of
their candidates and they will eventually get an agreement
on the leader.

On id-based systems, in case of a constant space protocol,
a processor cannot \store" the id-value of its leader candi-
date. The regular memory cannot contain an id-value. We
show that if a deterministic protocol using constant mem-
ory space can solve a problem on id-based systems without
a bound on the identi�er values, then there is a determin-
istic protocol using constant memory space that solves the
same problem, on anonymous systems. That is a surpris-
ing result: an id-based system is not more powerful than an
anonymous system. The main idea of our proof is that on
such a system, each processor is a state machine. Di�erent
processors can be represented by di�erent state machines,
but the number of di�erent machines is bounded

Therefore, we prove that impossibility results for SSLE
protocols on anonymous systems using constant memory
space can be applied to id-based systems without a bound
on the identi�er values. Thus, we have shown that, even on
id-based networks, in most cases, it is not possible to design
an algorithm requiring constant memory space.

A self-stabilizing protocol is silent if, once the system
is stabilized, processors do not change their state. Proces-
sors only check that neighbors' states have not been cor-
rupted. The silence property of self-stabilizing protocols is
a desirable property in terms of simplicity and communica-
tion overhead. In [12], Dolev, Gouda and Schneider have
shown that the memory requirement of a silent SSLE leader
election protocol is O(lgN) in the general case. We exhibit
a particular case where it is possible to design a silent algo-
rithm requiring constant memory space: id-based rings with
bounded id-values. We present an algorithm performing this
task. We conjecture that it is the only case where a silent
protocol using constant memory space can be designed.

Randomized SSLE protocols on anonymous networks. Fi-
nally, we present a space optimal randomized SSLE proto-
col under an unfair and distributed daemon for anonymous
and unidirectional rings of any size. A daemon is fair if a
processor that is continuously enabled starting some point
in a computation will be eventually chosen by the daemon.
There is no restriction on the scheduling in the case of an un-
fair daemon except that it has to choose processors that can
perform an action. To design our protocol, we have shown a
protocol-compiler that transforms any self-stabilizing proto-
col on rings under fair daemons into a self-stabilizing proto-
col under unfair daemons. Our compiler allows us to obtain
a space optimal randomized token circulation protocol under
unfair daemons. Only one token circulation protocol that
self-stabilizes under unfair daemons was previously known

[18]. This protocol requires O(lgN) bits per processor. The
space complexity of our token circulation and leader election
protocols are O(lgmN) bits per processor where mN is the
smallest integer not dividing N . Notice that the value of
mN is constant on average. For example, on odd size rings,
4 (resp. 2) bits per processor are necessary and su�cient
for leader election (resp. token circulation). We prove the
optimality of our algorithms.

Israeli and Jalfon [14] proved a logarithmic lower bound
on space for self-stabilizing mutual exclusion algorithms in
the case of a restrictive model: a processor has a token if
and only if it may perform an action. In [4], Awerbuch
and Ostrovsky presented a SSLE randomized algorithm on
bidirectional networks requiring (lg�N) states. Their ini-
tial algorithm requires N states, but they proposed a data
structure to store distributively the N -size variables. Itlis
and Levin presented in the appendix of [15] another data-
structure based on a Thue-Morse sequence requiring O(1)
bits per edge to store in a distributed manner variable hav-
ing N possible values. The two last algorithms require bidi-
rectional networks.

If the \deadlock freedom" property (there is no dead-
lock) is guaranteed externally, a randomized SSLE constant
space protocol on rings in the message passing model was
presented by Mayer, Ofek, Ostrovsky, and Yung, in [20]. In
[6], Beauquier, Cordier and Dela�et have presented a token
circulation protocol on anonymous and unidirectional rings
that self-stabilizes under a particular class of daemons (the
memory space required is also O(lgmN) bits). A random-
ized protocol-compiler that transforms a self-stabilizing pro-
tocol on bidirectional anonymous rings to a protocol on syn-
chronous unidirectional and anonymous rings, is presented
in [21]; the memory space required by the compiler is con-
stant.

The paper is organized as follows. The formal model
is described in section 2. We study the SSLE problem on
anonymous rings in section 3 and on id-based systems in
section 4. In section 5, we consider randomized protocols.

2 Model
Distributed System. A distributed system is a connected
graph Sys = (V;E) where V is the set of processors (jV j =
N) and E is the set of communication links. A communi-
cation link connects two processors. The links are directed.
Processor p can know the state of p0 if and only if p0 is a
neighbor of p. The degree of p (denoted by dp) is the number
of neighbors of p.

System topology. In a general system, there is no restric-
tion on the topology of the distributed system and this topol-
ogy is unknown. In this paper, we are mostly interested in
systems having a ring topology. On a bidirectional ring, pro-
cessors can receive information from two processors. On a
unidirectional ring, a processor can receive information only
from one processor, called its predecessor. A processor sends
information only to one processor, called its successor.

States and Con�gurations. A con�guration of a distributed
system Sys = (V;E) is a vector of the states of all proces-
sors of Sys. We denote by S the set of processor states.
A local con�guration is the part of a con�guration that can
be \seen" by a processor (i.e. its state and the state of its
neighbors). A con�guration is symmetrical if all processors

have the same local con�guration. The set of con�gurations
of Sys is denoted by C.

Actions. Each processor executes a protocol. The proto-
col consists of a set of variables and a �nite set of guarded
actions (i.e. guard ! statement). The guard of an action
on p is a boolean expression involving the state of p and
the state of its neighbors. The statement of an action up-
dates the state of the processor that performs the action.
A processor that has a true guard in a con�guration c, is
said enabled at c. We assume that the actions are executed
atomically.

On unidirectional rings, an action is denoted by s0s1 !
s0s2 (s0 is the required state on the predecessor of p, s1 is
the required state on p and s2 is the new state of p after
performing the action.

Computations. During a computation step, one or more
processors execute one action. A computation e of a protocol
P is a sequence of con�gurations c1; c2; : : : such that for
i = 1; 2; : : : , the con�guration ci+1 is reached from ci by
one computation step. c1 is called the initial con�guration
of e. A computation is said to be maximal if the sequence
is either in�nite or it is �nite and no processor is enabled in
the �nal con�guration. The set of maximal computations of
P in a system Sys whose initial con�gurations are elements
of B � C is denoted EB . E is the set of all possible maximal
computations (i.e. E = EC). A problem is a predicate de�ned
on computations.

Daemons. The central daemon is a scheduler which de-
termines what single processor makes a step when several
processors are enabled. By extension, the distributed dae-
mon [7] is a scheduler which chooses an arbitrary subset of
the enabled processors. A daemon is fair if if a processor
that is continuously enabled starting some point in a com-
putation will be eventually chosen by the daemon. There
is no restriction on the scheduling in the case of an unfair
distributed daemon except that it has to choose enabled
processors. A synchronous daemon [13] is a scheduler which
\chooses" all enabled processors. In this case, the scheduler
has no choice. A daemon is k-bounded if and only if when a
processor p is continuously enabled, any other processor p0
performs at most k actions before p performs an action. A
bounded daemon is fair, but the converse is not true.

Self-Stabilization. The protocol P is self-stabilizing for the
problem PR if and only if there exists a predicate L de�ned
on con�gurations such that:
� convergence All computations reach a con�guration
that satis�es L. Formally:

8e = (c1; c2; : : :) 2 E ; 9n � 1; cn ` L
� correctness All computations, from L, satisfy the pro-
blem PR. Formally: 8e 2 EL; e ` PR
Here x ` P means that x satis�es the predicate P.

3 Deterministic SSLE protocols on anonymous rings
In this section, we study the problem of deterministic SSLE
on anonymous rings. It is known that there is no determin-
istic leader election protocol under a distributed daemon;
therefore we study systems under a centralized daemon. Di-
jkstra [10] has pointed out, and Burns and Pachl [8] have
proven that there is no self-stabilizing protocol that provides

token circulation under a centralized daemon on anonymous
and composite rings. A composite ring is a ring whose size is
not a prime number. Their arguments allow us to show that
there is no SSLE on composite size rings. Only on prime-size
rings, under a centralized daemon, one may design a SSLE
protocol.

On unidirectional rings, processors have less information
about the con�guration than on bidirectional rings. Thus it
is more di�cult to design a protocol for unidirectional rings.
Nevertheless, in [8], Burns and Pachl have designed a de-
terministic self-stabilizing protocol on anonymous and uni-
directional prime-size rings requiring O(N2= logN) states
per processor. This protocol can be easily transformed to a
leader election protocol.

The question addressed here is to determine the min-
imal amount of memory space needed by a deterministic
SSLE leader election protocol on unidirectional prime size
rings. We are not claiming that this particular question is
important because of applications (a prime-size ring is not
a realistic assumption). Rather we seek better insight into
the nature of self-stabilization on unidirectional networks.
Notation 1 N-ring is a ring of size N .
Lemma 1 Let P be a deterministic SSLE protocol requir-
ing only BN processor states on an anonymous and unidi-
rectional N-ring. There is an integer k � BN and a �nite
sequence of processor states s0; s1; : : : ; sk�1 satisfying the
following property: for all 0 � i < k, each processor has the
action: sisi ! sisi�1 where i� 1 = (i+ 1) mod k.
Proof: Consider any con�guration of an N -ring where all
processors have the same state s. There is no leader, because
the con�guration is symmetrical. Thus, there is an action
de�ned as ss ! ss0 where s 6= s0.

Starting from any state s0, there is an in�nite sequence
of processor states s0; s1; s2; : : : such that, for all i, there
is an action of type sisi ! sisi+1. As the number of states
is bounded by BN , there are j; l such that j < l, sj = sl,
and l � j � BN . Rename the processor states as follows:
8j � i < l; si is called �i�j . Let k = l � j � BN . The
�nite sequence of processor states �0; �1; : : : ; �k�1 has the
required property. 2

Theorem 1 The number of states per processor required by
a deterministic SSLE protocol under a centralized daemon
on unidirectional, prime size and anonymous rings is greater
than or equal to the ring size.
Proof: Let us assume there is a SSLE protocol under a
centralized daemon on unidirectional, prime size and anony-
mous rings that uses j S j< N states per processor where N
is the ring size.

By lemma 1, there is an integer k �j S j< N and a �nite
sequence of processor states s0; : : : ; sk�1 such that, for all
0 � i < k, each processor has the following action: sisi !
sisi�1.

Let c0 be the con�guration de�ned by (sN�k�1
0 , s0, s0,

s1, s2, : : : , sk�1) on the anonymous N -ring. Such a con-
�guration can be built because N � k + 1. Study the com-
putation step (called cs1) where the daemon picks the last
processor in state s0. The con�guration obtained after this
step is: �1 = (sN�k�1

0 ; s0; s1; s1; s2; : : : , sk�1). For all
i � k, we call �i the con�guration de�ned as (sN�k�1

0 , s0,
s1, s2, s3, : : : , si, si, : : : , sk�1). Study the compu-
tation step, csi (2 � i � k), where from �i�1, the daemon
chooses the second processor in state si�1, the con�guration

obtained after csi is �i. From c0, after the computation steps
cs1; cs2; : : : , and csk, the con�guration obtained is c1 =
(sN�k�1

0 ; s0; s1; s2; : : : ; sk�1; s0). Note that c1 is the same
con�guration as c0 after applying a right-shift of processor
states.

Let ch be the con�guration (sN�k�h+1
0 , s1, s2, s3, : : : ,

sk�1, sh0) where h < N � k + 1. Let cN�k+1 be the con�g-
uration (s1; s2; : : : ; sk�1; sN�k+1

0). Let ch be the con�gu-
ration (sh�N+k; sh�N+k+1, : : : , sk�1, sN�k+1

0 , s1, : : : ,
sh�N+k�1) where N � k + 1 < h < N . De�ne cN = c0.
For example: c2 = (sN�k�1

0 , s1, s2, : : : , sk�1, s20), cN�k+2 =
(s2, s3, : : : , sk�1, sN�k+1

0 , s1), and cN�1 = (sk�1, sN�k+1
0 ,

s1, : : : , sk�2).
We have built a computation that reaches c1 from c0;

in the same way, we build a computation that reaches ch+1
from ch where h < N . Thus a cyclic and in�nite computa-
tion, e, is built that goes through the following con�gura-
tions (c0; c1; : : : ; cN�1)�.

Along e, all processors have the same behavior: they get
the same states and they execute the same actions. We have
built a maximal computation where no processor is elected.
2

Remark 1 The following deterministic and silent identity
assignment protocol on the unidirectional, anonymous 3-ring
under a centralized daemon is self-stabilizing. Each proces-
sor has one variable v, taking values in f0; 1; 2g, and one
action: v; v �! v; (v + 1) mod 3. This protocol elects a
leader (speci�cally, the processor whose the variable value is
0). The protocol is space optimal using 3 states per proces-
sor.
Remark 2 Subsequently, Jaap-Henk Hoepman (private com-
munication) has applied this proof technique to self-stabilizing
token circulation on anonymous and unidirectional rings.
He has obtained a lower bound of (N � 1)=2 states per pro-
cessor.

4 Deterministic SSLE protocols on id-based systems
In this section, we study the possibility of designing deter-
ministic SSLE protocols on id-based systems using constant
memory
De�nition 1 An id-based system is said to have a constant
bound on its identi�ers if and only if there exists an integer
k such that id-values are in the set f 0, 1, 2, : : : , N + k g.

In the �rst sub-section, we prove that the results on
deterministic protocol on anonymous systems can be ap-
plied to deterministic protocol on id-based systems without
a bound on the identi�er values. In the second sub-section,
we present a deterministic SSLE protocol that elects a leader
on id-based rings (with a constant bound on its identi�er)
using constant memory space. The protocol is silent.

4.1 Id-based system versus anonymous system
Theorem 2 If there is a deterministic protocol on id-based
systems using constant space to solve a problem PR (without
a bound on the identi�er values), then there is a determin-
istic protocol on anonymous systems using constant space to
solve the problem PR.
Proof: The idea of the proof is to build a protocol, named
Pu, on anonymous systems from a protocol, named Pid, on
id-based systems

In Pid, processors are deterministic. With the same local
con�guration, a processor has always the same \behavior",
it always gets the same state, if it is chosen by the daemon.
For a processor p with k neighbors, there is a determinis-
tic behavior function. The deterministic behavior function
(bf(p;k): Sk+1 �! S [f?g), given p's local con�guration
(p state and neighbors' states), says whether p can perform
an action and, if so, gives the new state of p that results
from the action. ? means that p cannot perform any action
in that local con�guration. A processor p uses the same de-
terministic behavior function, whatever the current system
topology, as long as it keeps the same degree value (k).

As the memory space required by Pid is bounded; the
number of processor states is also bounded. Thus, the num-
ber of distinct behavior functions for processor having k
neighbors is bounded by (j S j +1)jSjk+1 .

There is at least one behavior function for processor hav-
ing k neighbors that is executed by an in�nite number of
processors, because the number of identi�ers is unbounded
and the number of behavior functions is bounded. Let us
call BFk one of these behavior functions.

The protocol Pu is built as follows: each processor hav-
ing k neighbors executes the deterministic behavior function
BFk.

Whatever the anonymous system Sysu is, one may build
an id-based system (processors having distinct identi�ers)
Sysid having the same topology as Sysu and such that all
processors in Sysid that have k neighbors execute the de-
terministic behavior function BFk. This construction may
be done because there is no bound on the identi�er values
in Sysid.The set of maximal computations of Pid in Sysid is equalto the set of maximal computations of Pu in Sysu. If the
protocol Pid is able to solve the problem PR from the initial
con�guration c, in Sysu then Pu is also able to solve the
problem PR from c, in Sysu. 2

Corollary 1 If there is a deterministic self-stabilizing pro-
tocol on id-based systems using constant space to solve a
problem PR (without a bound on the identi�er values) then
there is a deterministic self-stabilizing protocol on anony-
mous systems using constant space to solve the problem PR.

Remark 3 On id-based rings (without a bound on the iden-
ti�er values), a deterministic SSLE protocol requiring con-
stant memory space can be designed only if (i) the ring size
is a prime number, (ii) the daemon is centralized, and (iii)
the ring is bidirectional.

4.2 Deterministic SSLE protocol on Id-based rings with a
bound on identi�er values

Theorem 3 There is a deterministic, silent SSLE proto-
col using constant memory space on unidirectional, id-based
rings with a constant bound on its identi�er values.
Proof: LetN+k be the bound on the id-values (N being the
ring size and k being a constant). We present a determinis-
tic, silent and self-stabilizing protocol electing the processor
having the smallest id-value. Notice that the smallest id-
value in any ring is less than k + 2. Thus, only a processor
whose id-value is less than k + 2 may have the smallest id-
value in the ring. We call these processors potential-leaders.
There are at most k+2 potential-leaders in a ring. The goal
of the protocol is that each processor knows the id-values

of the potential-leaders that are in the ring. In that way,
processors will agree on the smallest id-value.

A very basic protocol would be that each potential-leader
broadcasts its id-value and each processor keeps these id-
values in a set (or keeps the smallest id it has seen). In the
case of an initial con�guration where all sets are empty, all
processors will eventually store the id-values of potential-
leaders that are actually in the ring. Unfortunately, this
basic protocol is not a self-stabilizing protocol. In the initial
con�guration where all processor sets contain the id-value 0,
all processors will agree on the value 0, although it is possible
that no processor in the ring has the id-value 0.

In our algorithm, a processor p stores id-values of poten-
tial-leaders in a array of k + 2 elements (denoted Fp). A
potential-leader copies the F array of its predecessor after
(i) left-shifts the F array elements (the �rst value is with-
drawn), (ii) adds its own id-value at the end of the array.
Eventually, by this action (B1), all initial values in the F
arrays are removed, and the order of id-values in Fp have a
speci�c meaning: Fp[k + 2 � i] contains the id-value of the
i-th previous potential-leader of p in the ring.

A processor that is not a potential-leader only copies the
F array of its predecessor (A1) and decides that is not the
leader (A2)

The protocol is silent: once each processor has a correct
F array (according to the F array of its predecessor), no one
will change its F array. Then, each potential-leader decides
if it is the leader or not (B2 or B3).

When a processor that is not a potential-leader is re-
moved or added to the ring, no F array is changed. When
a processor p that is a potential-leader is added to the ring,
it adds its id-value in its F array. Then, its successor will
update its F array, and eventually every processor will up-
date its F array. When a processor p (a potential-leader) is
removed from the ring, its previous successor updates its F
array (the F array of its predecessor has changed). Eventu-
ally all processors will update their F array and the id-value
of p will be removed from all F arrays.

We prove the algorithm by induction (the complete proof
of the protocol can be found in [17]). First, we prove that
the last value of the Fp array will eventually be correct (i.e.
on each potential-leader p, Fp[k+2] contains the id-value of
the previous potential-leader of p in the ring) and then will
stay correct on every processor.

We �nish the proof by showing that if on any processor
p, the l last values of Fp array are and stay correct (i.e. if
p is a potential-leader then 8 0 � i � l � 1, Fp[k + 2 � i]
contains the id-value of the i-th previous potential-leader of
p in the ring) then the l + 1 last values of Fp array will be
eventually correct and will stay correct.

By induction, any potential-leader p, Fp array will even-
tually be correct and will stay correct. Once the F arrays
are stabilized, the election is easily completed.

2

5 Randomized SSLE protocols on anonymous rings
The question addressed now, is to determine the minimal
memory space needed by a randomized SSLE protocol on
unidirectional rings. The proofs about memory space re-
quirement for deterministic SSLE protocols obviously do not
hold for randomized SSLE protocols. Exhibiting a particu-
lar incorrect behavior does not imply that the set of incor-
rect behaviors has a non-zero probability. Correctly proving

Leader election algorithm on rings with a constant
bound: k

Variables on p:
Fp is an array of k+2 elements taking values in [0; k+2].
Ldp is a boolean.

Notation on p:
lp is the predecessor of p.
Flp is the value of F on lp.
idp is the value of the p identi�er.

Predicates on p:
Next(p, p0) � (0 � i < k + 1 : Fp[i] = Fp0 [i+ 1]) ^

(Fp[k + 1] = idp).
Following(p) � Next(p; lp).

Macro on p:
Update(p) : 0 � i < k + 1 : Fp[i] := Flp[i+ 1] ;

Fp[k + 1] := idp.
Actions on p :
A1: (idp > k + 1) ^ (Fp 6= Flp) �! Fp := Flp.
A2: (idp > k + 1) ^ (Ldp = 1) �! Ldp := 0.

B1: (idp � k + 1) ^ :Following(p) �! Update(p)
B2: (idp � k + 1) ^ Following(p) ^ idp is not the

smallest value in Fp ^ Ldp = 1 �! Ldp := 0
B3: (idp � k + 1) ^ Following(p) ^ idp is the

smallest value in Fp ^ Ldp = 0 �! Ldp := 1

a randomized impossibility result requires the development
of a model where a probability distribution on subsets of
behaviors has been de�ned. This is not so simple, because
this model has to consider the daemon as an adversary, and
clearly separate what is not deterministic (the daemon) and
what is randomized (the protocol). There is no place here
to develop such a model; that is left to the complete paper.
Some useful elements appear in [22] and [5]. Let us just sum-
marize here what is needed for proving such an impossibility
result: for an in�nite sequence of allowed choices of the dae-
mon, the subset of incorrect computations (according to the
speci�cation of the problem) has a strictly positive measure.
First, we need some speci�c de�nitions:
De�nition 2 Let s and s0 be two processor states. (s, s0) is
a local deadlock if and only if p cannot perform any action
when the state of a processor p is s0 and the state of its
predecessor is s.
Notation 2 Let mN be the smallest integer that does not
divide the ring size N .
Theorem 4 The number of states per processor required by
a randomized SSLE protocol under an unfair daemon on
anonymous and unidirectional rings is greater than (mN �
2)=2.
Proof: Let P be a randomized SSLE protocol on anony-
mous and unidirectional rings. Assume that P requires
l < (mN � 2)=2 processor states on an anonymous and uni-
directional N -ring, and that P can elect a leader under an
unfair daemon. Let S =f�1; �2; : : : ; �lg be the set of pro-
cessors states. Two cases are possibles:

1. 8� 2 S, 9�0 2 S such that (�, �0) is a local deadlock.
Then, there is a in�nite sequence s1, s2, s3, : : : , such
that, 8i > 0, (si, si+1) is a local deadlock. As the size
of S is l, there are two integers such that si = sj and
0 < j � i � l < (mN � 2)=2. 9 x 2 N : x:(j � i) = N
because j � i < mN . Let us call seq the sequence of
processor states: si, si+1, si+2, : : : , sj�1. Study the
deadlock con�guration where seq is repeated x times.
This con�guration is denoted by seqx.
There is no leader in the deadlock con�guration: for
any processor, there is at least another processor that
has exactly the same local con�guration. Thus P is
not a SSLE protocol.

2. 9s 2 S, 8s0 2 S, (s, s0) is not a local deadlock.
As 2 � (l + 1) < mN , 9 x 2 N : x � 2(l + 1) = N . Let
us call seq0 the sequence of processor states s, �1, s,
�2, s, �3, s, �4, : : : s, �l. Consider the con�guration
(s; �1; seq0)x. Notice that x � 2.
From this con�guration, consider the maximal com-
putations in which the unfair demon always selects
the second processor in the ring. This is possible be-
cause 8s0 2 S (s, s0) is not a local deadlock. During
these computations, the reached con�gurations have
this pattern: s, s0, seq0, (s, �1, seq0)x�1

In any reachable con�guration, for any processor there
is at least one other processor that has exactly the
same local con�guration. From a given con�guration,
for a sequence of choices of the unfair daemon, the
measure of the set of computations which do not elect
an unique leader is 1. Thus P is not a SSLE protocol
under an unfair daemon.

2

Remark 4 The number of states per processor required by a
randomized self-stabilizing token circulation protocol under
an unfair daemon on anonymous and unidirectional N-rings
is greater than (mN �2)=2. The proof is similar to the proof
of theorem 4.
Remark 5 In [19], Lin and Simon have found a similar
bound (pmN) to the self-stabilization of a phase clock on
uniform unidirectional rings under a synchronous deamon.
Remark 6 There is no randomized SSLE protocol under
an unfair daemon (distributed or centralized) that requires
constant memory space.

The number of bits required by a randomized SSLE pro-
tocol under an unfair daemon on anonymous and unidirec-
tional rings of any size N is
(lgmN) bits. In the next
section, we will present a space optimal SSLE protocol.

5.1 A randomized protocol for anonymous rings
In section 5.1.1, we present a protocol-compiler that trans-
forms any self-stabilizing protocol on unidirectional rings
under a fair daemon into a self-stabilizing protocol under an
unfair daemon. This compiler allows us to obtain a space
optimal randomized token circulation protocol under an un-
fair daemon on anonymous and unidirectional rings which
we present in section 5.1.2. Finally, in section 5.1.3, a space
optimal randomized SSLE protocol under an unfair daemon
for anonymous and unidirectional rings of any size is pre-
sented.

In this extended abstract, the proof of correctness will
be omitted.

Deterministe Token circulation on anonymous rings

Variable on p:
dtp is a variable taking values in [0, mN].

(the deterministic token)

Notation on p:
lp is the predecessor of p.

Predicate on p:
Deterministic token(p) � dtp � dtlp 6= 1 mod mN

Macro on p:
Pass Deterministic token(p) : dtp := (dtlp+1) mod mN

Action on p:
A1: Deterministic token(p) �!

Pass Deterministic token(p)

5.1.1 Protocols under a fair versus an unfair daemon
Deterministic token circulation The basic protocol per-
forms deterministic token circulations. The token circula-
tions verify the following properties:

1. There is always at least one deterministic token in a
con�guration.
2. a processor has a deterministic token if and only if the
processor is enabled (on the processor, an action guard
is satis�ed).
3. When a processor performs an action, it passes its
token to its successor.
4. When a deterministic token catches up with another
token, one of them disappears.
We present a deterministic token circulation algorithm

that veri�es the required properties. The deterministic to-
kens circulation requires a variable with value less than mN
(at �rst, the convention to represent a token was proposed
in [6]).

Note that the daemon can prevent the disappearance of
any of the initial tokens. We call these tokens \deterministic
tokens", because they are ruled by a deterministic protocol.
Along any computation, the di�erence between the number
of p's actions with the number of p0's actions is bounded by
the number of deterministic tokens between p and p0 (this
number is bounded by the distance between p and p0). Thus,
this di�erence is bounded by N .

Protocol-compiler Let P be a self-stabilizing protocol un-
der a bounded (resp. fair) daemon on anonymous and uni-
directional rings to solve a problem PR.

The compiler modi�es the actions of P in such a way
that holding a deterministic token is necessary to perform an
action of P. After an action of P, the processor has passed
the deterministic token to its neighbor. If a processor holds
a deterministic token and it does not satisfy any guard of P
it must pass its deterministic token when it is chosen by the
daemon. When a processor passes a deterministic token, if
it can perform an action of P, it performs this action. A
processor, has to wait at most N � (N � 1)=2 computation
steps before performing an action: another processor can
perform at most N actions during the waiting. Let us call

T C : Randomized token circulation protocol on
anonymous rings under unfair daemon

Variables on p:
dtp is a variable taking values in [0, mN].

(the deterministic token)
tp is a variable taking values in [0, mN].

(the circulating token)

Notation on p:
vlp is the value of the variable v on lp.

Predicates on p:
Deterministic token(p) � dtp � dtlp 6= 1 mod mN
token(p) � tp � tlp 6= 1 mod mN

Macro on p:
Pass Deterministic token(p) : dtp := (dtlp+1) mod mN
Pass token(p) : tp := (tlp + 1) mod mN

Actions on p:
A1: Deterministic token(p) ^ :token(p) �!

Pass Deterministic token(p)

A2: Deterministic token(p) ^ token(p) �!
Pass Deterministic token(p);
if (random(0, 1) = 0) then Pass token(p)

BP the obtained protocol by combining the deterministic
token circulation protocol with P, as we have explained.

During any computation of BP - under an unfair daemon
-, when a processor p satis�es a guard of P another processor
performs at mostN actions of P, before p performs an action
of P. Therefore, all computations of BP under an unfair
daemon are N -bounded in regard to the P protocol.

The following theorem is a direct consequence of our
protocol-compiler.
Theorem 5 If there is a self-stabilizing protocol on anony-
mous and unidirectional rings to solve a problem PR under
a centralized (resp. distributed) fair or bounded daemon,
then there is a self-stabilizing protocol on anonymous and
unidirectional rings to solve the problem PR under a cen-
tralized (resp. distributed) unfair daemon.

5.1.2 Randomized token circulation under an unfair dae-
mon

In [6], Beauquier, Cordier and Dela�et have presented a ran-
domized self-stabilizing token circulation protocol on anony-
mous and unidirectional rings. If the daemon is synchronous,
as in [13] or bounded as in [6], this protocol converges toward
con�gurations where a single token fairly circulates in the
ring. With our protocol-compiler, we get a randomized self-
stabilizing token circulation protocol without making any
assumption on the daemon. This protocol requires m2N pro-
cessor states. We called this protocol T C.

5.1.3 Randomized SSLE under an unfair daemon
The same coding technique as in [6] is used to code leader
marks: each processor p has a variable lmp (having a value

Randomized leader election protocol on anonymous rings
under unfair daemon

Variables on p:
dtp is a variable taking values in [0, mN].

(the deterministic token)
lmp is a variable taking values in [0, mN].

(the leader mark)
tp is a variable taking values in [0, mN].

(the colored token)
cp is the color variable taking values in fblue, greeng

Notation on p:
vlp is the value of the variable v on lp.

Predicates on p:
Det tok(p) � dtp � dtlp 6= 1 mod mN
Leader(p) � lmp � lmlp 6= 1 mod mN
Col tok(p) � tp � tlp 6= 1 mod mN

Macro on p:
Pass Det tok(p) : dtp := (dtlp + 1) mod mN
Pass Leader(p) : lmp := (lmlp + 1) mod mN
Pass Col tok(p) : tp := (tlp + 1) mod mN

Actions on p:
A1: Det tok(p) ^ :Col tok(p) �!

Pass Det tok(p)

A2: Det tok(p) ^ :Leader(p) ^ Col tok(p) �!
Pass Det tok(p);
if (random(0, 1) = 0) then
f cp := clp; Pass Col tok(p) g

A3: Det tok(p) ^ Leader(p) ^ Col tok(p) ^
(cp 6= clp) �!

Pass Det tok(p);
if (random(0, 1) = 0) then f
cp := clp; Pass Col tok(p); Pass Leader(p);g

A4: Det tok(p) ^ Leader(p) ^ Col tok(p) ^
(cp = clp) �!

Pass Det tok(p);
if (random(0, 1) = 0) then f
cp := random(blue, green); Pass Col tok(p);g

less than mN) a processor has a leader mark if and only if
lmp � lmlp 6= mN . There is always a leader mark in the
ring. Initially, the ring may have several leader marks.

We use blue or green colored tokens that circulate on
the ring to destroy all leader marks except one. The colored
token circulation is provided by the self-stabilizing protocol
T C. Thus, only one colored token will eventually circulate
on the ring for any initial con�guration and for any daemon.

The goal of the colored token is to freeze the leader mark
when there is only one, but also to ensure the circulation of
leader marks when the ring contains several ones.

A processor waits for the colored token to check whether
or not it holds the single leader mark. When it has the col-
ored token (and a deterministic token), it randomly selects
a color and uses the colored token to communicate the color
to every processor of the ring. It waits, until receiving a
colored token. If the color of the token is the same as the
color of the token which it last sent, then it keeps the leader
mark and starts the checking again by randomly selecting a
color (action A4).

Since the color of token is randomly selected, when there
are several leader marks in the ring, a processor having a
leader mark will eventually received a colored token that
does not have the right color (i.e. its color). In this case,
the processor randomly passes its leader mark (action A3).

As the leader mark speeds are not identical (they depend
on a random value); leader marks will catch up other leader
marks. Eventually, only one leader mark will stay in the
ring.

Once the ring is stabilized, there is one frozen leader
mark and one colored token that circulates.

The actions A1 and A2 ensure circulation of the deter-
ministic tokens and the colored token on processors that do
not have a leader mark.

The randomized SSLE protocol uses 2 � m3N states per
processor; each processor needs O(lgmN) bits. Note that
the value of mN is constant on average.

References
[1] Y. Afek, S. Kutten, and M. Yung. Memory-e�cient

self-stabilization on general networks. In WDAG90
Distributed Algorithms 4th International Workshop
Proceedings, Springer-Verlag LNCS:486, pages 15{28,
1990.

[2] S. Aggarwal and S. Kutten. Time optimal self-
stabilizing spanning tree algorithm. In FSTTCS93 Pro-
ceedings of the 13th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science,
Springer-Verlag LNCS:761, pages 400{410, 1993.

[3] A. Arora and M.G. Gouda. Distributed reset. IEEE
Transactions on Computers, 43:1026{1038, 1994.

[4] B. Awerbuch and R. Ostrovsky. Memory-e�cient and
self-stabilizing network reset. In PODC94 Proceedings
of the Thirteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 254{263, 1994.

[5] J. Beauquier. Proving self-stabilizing randomized pro-
tocols. In Hermes, editor, OPODIS97 Proceedings of
the �rst international conference On Principles Of DIs-
tributed Systems, pages 279{284, 1997.

[6] J. Beauquier, S. Cordier, and S. Dela�et. Optimum prob-
abilistic self-stabilization on uniform rings. In Proceed-
ings of the Second Workshop on Self-Stabilizing Sys-
tems, pages 15.1{15.15, 1995.

[7] J.E. Burns, M.G. Gouda, and R.E. Miller. On relaxing
interleaving assumptions. In Proceedings of the MCC
Workshop on Self-Stabilizing Systems, MCC Technical
Report No. STP-379-89, 1989.

[8] J.E. Burns and J. Pachl. Uniform self-stabilizing rings.
ACM Transactions on Programming Languages and
Systems, 11:330{344, 1989.

[9] E.W. Dijkstra. Self stabilizing systems in spite of dis-
tributed control. Communications of the Association of
the Computing Machinery, 17:643{644, 1974.

[10] E.W. Dijkstra. Self-stabilization in spite of distributed
control. In Selected Writings on Computing: A Per-
sonal Perspective, pages 41{46. Springer-Verlag, 1982.
(paper's original date is 1973).

[11] S. Dolev. Optimal time self-stabilization in dynamic
systems. In WDAG93 Distributed Algorithms 7th
International Workshop Proceedings, Springer-Verlag
LNCS:725, pages 160{173, 1993.

[12] S. Dolev, M.G. Gouda, and M. Schneider. Memory re-
quirements for silent stabilization. In PODC96 Proceed-
ings of the Fifteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, pages 27{34, 1996.

[13] T. Herman. Probabilistic self-stabilization. Information
Processing Letters, 35:63{67, 1990.

[14] A. Israeli and M. Jalfon. Token management schemes
and random walks yield self-stabilizing mutual exclu-
sion. In PODC90 Proceedings of the Ninth Annual
ACM Symposium on Principles of Distributed Comput-
ing, pages 119{131, 1990.

[15] G. Itkis and L. Levin. Fast and lean self-stabilizing
asynchronous protocols. In FOCS94 Proceedings of the
35th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 226{239, 1994.

[16] G. Itkis, C. Lin, and J. Simon. Deterministic, con-
stant space, self-stabilizing leader election on uni-
form rings. In WDAG95 Distributed Algorithms 9th
International Workshop Proceedings, Springer-Verlag
LNCS:972, pages 288{302, 1995.

[17] C. Johnen. Deterministic, silent and self-stabilizing
leader election algorithm on id-based rings. Techni-
cal report, Laboratoire de Recherche en Informatique,
Universit�e de Paris-Sud, 1998.

[18] H. Kakugawa and M. Yamashita. Uniform and
self-stabilizing token rings allowing unfair daemon.
IEEE Transactions on Parallel and Distributed Sys-
tems, 8:154{162, 1997.

[19] C. Lin and J. Simon. Possibility and impossibility re-
sults for self-stabilizing phase clocks on synchronous
rings. In Proceedings of the Second Workshop on Self-
Stabilizing Systems, pages 10.1{10.15, 1995.

[20] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-
stabilizing symmetry breaking in constant-space. In
STOC92 Proceedings of the 24th Annual ACM Sym-
posium on Theory of Computing, pages 667{678, 1992.

[21] A. Mayer, R. Ostrovsky, and M. Yung. Self-stabilizing
algorithms for synchronous unidirectional rings. In
Proceedings of the Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA96), pages 564{
573, 1996.

[22] A. Pogosyants, R. Segala, and N. Lynch. Veri�ca-
tion of the randomized consensus algorithm of Aspnes
and Herlihy: a case study. In WDAG97 Distributed
Algorithms 11th International Workshop Proceedings,
Springer-Verlag LNCS:1320, pages 22{36, 1997.

