

Self-Stabilization

Starting from any arbitrary configuration, a self-stabilizing system converges to a legitimate configuration and then behaves properly.

- + Recovering from transient faults whitout any hypothesis on the nature and the extent of faults.
- + No initialization phase.
- + Self-organization, Self-healing in ad hoc networks.
- During the stabilization period, no property is guaranteed.

The behavior of self-stabilizing systems.

Robust Self-Stabilization

Objective:

- **Fast** convergence to a safe configuration.
- Once a safe configuration is reached, a minimum service is guaranteed.
- Convergence to a legitimate configuration preserving the minimum service.

The behavior of robust self-stabilizing systems.

Clustering in MANET

Flat architecture of MANET : All nodes are considered equal and take the same part in the routing and forwarding task.

Limitation: The flat architecture is **not scalable** on large scale network due to resource consumption (energy, and bandwidth), and communication overhead.

Solution: Providing a hierarchical organization over the network, as Internet and GSM. The organization must be dynamic to manage the mobility of nodes. \implies Clustering.

ROBUST SELF-STABILIZATING MANAGEMENT FOR MANET F. Mekhaldi, C. Johnen www.lri.fr/~mekhaldi, www.labri.fr/~johnen

Construction of weight based bounded clusters

Why building weight based clusters ?

- Clusterheads have more tasks to ensure than ordinary nodes.
- Each clusterhead must be more suitable than its ordinary nodes.
 - The higher the weight of a node, the more suitable this node is for the role of clusterhead

Why building bounded size clusters ?

- The clusterhead may not be able to handle all the traffic generated by nodes of a densely cluster.
- The power consumption of a clusterhead depends proportionally on the number of nodes of its cluster.

Controlling the number of nodes in a cluster will extend its clusterhead's lifetime (the stability of the cluster), and will ensure the load-balacing over the clusters.

Weight based bounded size clustering properties:

• Affiliation property: each ordinary node affiliates with a neighboring clusterhead, such that the weight of its clusterhead is greater than its weight.

• Size property: each cluster contains at most *SizeBound* ordinary nodes.

• Clusterheads neighboring property: if a clusterhead v has a neighboring clusterhead u such that u's weight > v's weight, then the size of u's cluster is SizeBound.

Robust Self-Stabilizing construction of bounded size weight based clusters

Convergence to a safe configuration

A safe configuration is a configuration in which the minimum service is guaranteed.

Minimum service :

- 1. Each node belongs to a cluster which has an effectual leader.
- 2. Each Cluster has less than SizeBound members.
- The system converges to a safe configuration in at most 4 rounds.

Arbitrary configuration

Convergence to a safe configuration from an arbitrary one.

Robustness under topology changes

The minimum service is preserved with respect to the following changes:

- the change on node's weight,
- the crash of an ordinary node,
- the failure of a link between (1) a clusterhead and a nearly ordinary node, (2) two clusterhead nodes,
- (3) two nearly ordinary nodes, or (4) two ordinary nodes,

• ...

Cluster

Cluster-Heads

(memory and processing capacity + battery and transmission power + bandwidth ...)

SizeBound = 3

Safe configuration

Convergence to a legitimate configuration

A legitimate configuration is a configuration in which the optimum service is guaranteed.

Optimum service : The network statisfies the **weight based bounded size clustering properties**.

• Starting from any configuration, and along any computation, a legitimate configuration is reached in at most $\frac{7*|V|}{2} + 5$ rounds.

> Clusterhead **R1:** Election rule

- A nearly ordinary node is a clusterhead, waiting to become an ordinary node.
- Its cluster members have to quit its cluster.
- It can become ordinary node only if its cluster is empty.

• The design of a **Robust Self-Stabilizing hierarchical routing protocol**.

First step : Robust self-stabilizing local routing in clustered networks that handle, in a safe manner, the events :

- Election of new clusterheads,
- Resignation of clusterheads,
- Changing of clusters.

Robust self-stabilizing construction of local routing tables.

Ordinary node Nearly ordinary node **R3:** Resignation rule **R2:** Affiliation rule

Node state transition

Futur project