Randomized Self-stabilizing and Space Optimal Leader Election
under Arbitrary Scheduler on Rings*

Joffroy Beauquier, Maria Gradinariu, Colette Johnen

L.R.I./C.N.R.S., Université de Paris-Sud,
bat 490, 91405 Orsay Cedex, France
jb,colette, mariag@Iri.fr

Abstract

We present a randomized self-stabilizing leader election protocol and a randomized self-stabilizing
token circulation protocol under an arbitrary scheduler on anonymous and unidirectional rings
of any size. These protocols are space optimal. We also give a formal and complete proof of
these protocols.

Therefore, we develop a complete model for probabilistic self-stabilizing distributed systems
which clearly separates the non deterministic behavior of the scheduler from the randomized
behavior of the protocol. This framework includes all the necessary tools for proving the self-
stabilization of a randomized distributed system: definition of a probabilistic space and definition
of the self-stabilization of a randomized protocol.

We also propose a new technique of scheduler management through a self-stabilizing protocols
composition (cross-over composition). Roughly speaking, we force all computations to have
some fairness property under any scheduler, even under an unfair one.

keywords: self-stabilization, randomized protocol, protocol composition, scheduler, leader
election.

1 Introduction

Self-stabilization is a framework for dealing with channel or memory failures. After a failure the
system is allowed to temporarily exhibit an incorrect behavior, but after a period of time as short as
possible, it must behave correctly, without external intervention. For distributed systems, the self-
stabilization feature can be viewed as an element of transparency with respect to failures, because
the user is not supposed to notice a major change in the quality of service he or she receives, or at
least not during a long time.

Another type of transparency for distributed systems is the transparency to the dynamic evolution
of the network. It is mandatory that the connection of a new sub-network to the main one does not

*contact author: Colette Johnen, LRI, Université de Paris-Sud, centre d’Orsay - bat 490, 91405 Orsay Cedex,
France. fax: +33 1 69 25 65 86, e-mail: colette@Iri.fr, web: www.Iri.fr/~colette/

interact with the configuration of a particular user. This type of transparency is not satisfied when
the system - i.e. the protocols constituting it - have to be scaled to the size of the network. That
is the reason why the study of constant space protocols has received a lot of attention in the past
recent years. A protocol uses only constant space if the memory space needed by each processor
is constant per link. Then in the case where the network is extended (or reduced) the majority of
processors have not to change neither hardware nor software.

In this paper we address a basic task for distributed systems, leader election, having in mind to
obtain solutions both self-stabilizing and using constant space memory. When a system is in a
symmetrical configuration, no deterministic protocol can break symmetry and elect a leader [2].
This impossibility results applies to self-stabilizing system, then randomization is needed. Some
results are known concerning self-stabilizing randomized leader election. In [3] a self-stabilizing
leader election protocol on bidirectional id-based networks presented, requiring lg*(N) states per
process (N being the network size). A basic protocol is given, requiring N states per process,
and the result is obtained by using a data structure that stores distributively the variables. In an
appendix, [15] uses another data structure based on the Thue-Morse sequence, requiring O(1) bits
per edge to store in a distributed manner variables having possibly IV values. These two last results
require bidirectional networks. When the deadlock freedom property is guaranteed externally, a
randomized self-stabilizing, constant space leader election protocol is given in [17] in the message
passing model. [4] presents a randomized token circulation protocol on unidirectional rings that
stabilizes with some type of scheduler. Its space complexity is my states per process, where my is
the smallest integer that does not divide N. In [11], the previous protocol is extended in order to
manage any anonymous bidirectional networks. This new protocol requires the same memory space.
In [16], the first token circulation protocol that self-stabilizes under unfair schedule is presented.
At the end, a randomized compiler that transforms a self-stabilizing protocol on bidirectional,
anonymous rings into a a protocol on synchronous unidirectional anonymous rings is presented in
[18]; it uses constant space.

In the present paper, we present a space optimal randomized self-stabilizing leader election protocol
for anonymous and unidirectional rings of any size, under any scheduler (in particular no fairness
assumption is required). Its space complexity is O(my). It should be noticed that my is constant
on average. On odd size rings, 4 bits are sufficient for leader election. The optimality of our
protocols is proven in [5].

Proving formally the protocol needs a proper model for randomized self-stabilizing protocols. An
important issue is that the model must make a clear distinction between what is non-deterministic
(the scheduler/adversary) and what is randomized (the protocol). Some papers consider that the
scheduler, when choosing a process to be activated in a given configuration, obeys some probabilistic
rule. Although it could be argued that such an hypothesis corresponds generally to the reality, we
wont here adopt this approach, mainly because a probabilistic scheduler is a very feeble adversary.
Then, in order to obtain the strongest result, we consider the strongest adversary, which is non-
deterministic. The deep difference between a probabilistic and a non-deterministic scheduler can be
pointed out by a very simple example. Consider a unidirectional ring with two tokens (no matter
how tokens are represented). If a process in the ring holds a token and is chosen by the scheduler,
with probability 1/2 it passes the token to its successor and with probability 1/2 it keeps the token.
It appears (and will be easily provable after we have developed our model) that if the scheduler
is non-deterministic, it can avoid forever (with certainty) one of the tokens to catch up with the

other, while if the scheduler is probabilistic (each process holding a token is chosen in a step with
probability 1/2), the two tokens catch up with probability 1. Another important issue for the model
is to make clear the end part of the previous sentence: What means that the two tokens catch up
with probability 1 7 The first step is to relate the probabilistic laws of the random variables that
appears in the rules of the randomized protocol, to a probability measure defined on the set of
(finite and infinite computations) of this protocol. The second step consists in proving that, for
this probability measure and for any ”behavior” of the scheduler (obviously what a "behavior” of
the scheduler is, must be defined), the set of computations in which one token catches up with
the other has probability 1 (or equivalently that the (non empty) set of computations in which the
tokens never catch up has probability 0).

At the end it should be mentioned that for the sake of clarity, we have decomposed the leader
election protocol into two sub-protocols related by a new composition, that we named cross-over
composition. An interesting point with cross-over composition is that, when protocol W is composed
with protocol S, the composite has the same properties in term of fairness than the protocol S.
In other words, if for some particular reasons, the computations of S under an unfair scheduler
are in fact fair, then the computations of the composite under this same unfair scheduler, are also
fair. We show how this property of the cross-over composition yields an automatic technique for
transforming a protocol, designed and proved for a fair scheduler, into an equivalent protocol for
an unfair scheduler, making simpler the task of the designer/prover.

1.1 Others related works

Probabilistic I/O automata were presented in [23] and [7]. This work was improved by Wu, Smolka
and Stark [25]. In [22], Lynch and Segala introduced a method including the adversary in the
probabilistic automaton which models a distributed system. They made a distinction between
the protocol which is probabilistic and the adversary which is non deterministic. In [21] Segala
considers the model from [25] with the scheduler defined in [22]. In [19], the authors apply the
model to verify formally the time properties of randomized distributed protocols. The case study
is the randomized dining philosophers protocol of Lehman and Rabin. The main restriction of
this model is that it manages only schedulers that have a probabilistic behavior as explained in
[19]. Even, if most of the schedulers have a probabilistic behaviors, this model does not always a
complete analysis of a randomized protocol. In particular, it does allow to analyze a randomized
protocol under the worst conditions: an unfair scheduler.

In the self-stabilization area, the first randomized protocols were proposed by Israeli and Jalfon
in [14] and by Anagnostou and El-Yaniv in [1]. The notion of self-stabilization for a randomized
protocol is defined without presenting any probabilistic space. Therefore, no formal proof is given.

In [10] Dolev, Moran and Israeli introduced the idea of a two players games (scheduler-luck game)
to analyze the performance of randomized self-stabilizing protocol under Read/Write atomicity.
The scheduler is an adversary of the protocol that wants to keep the protocol away from legitimate
configurations. Sometimes, the luck intervenes to influence the output of the binary randomized
variables. Their framework is not designed to establish the self-stabilization of the protocol: in fact
they assume that the protocol is self-stabilizing. In contrast, our framework is designed to prove
the self-stabilization of a protocol that uses any type of random variables (binary or not).

Hierarchical composition was presented in [12], and in [9]: the (k + 1)th component stabilizes to
the desired behavior after stabilization of first £ components. In [12], a selective composition is
presented. Composition of independent components interacting with each others was presented
in [24]. In [8], the parallel composition is presented, designed to improve the convergence time.
Several protocols independently perform the same task, in parallel; a specific protocol selects one
output as the composition output (it chooses the output of the fastest protocol).

The paper is organized as follows. The formal model of a distributed system is given in section 2.
In section 3, we define the framework used to prove formally randomized self-stabilizing protocols.
The cross-over composition is defined in section 4. Space optimal, randomized self-stabilizing token
circulation and leader election protocols are presented and proven in section 5. Finally, the paper
ends with some concluding remarks.

2 Model

First, we give an abstract model of a distributed system; then, we present an interpretation in
terms of real systems.

2.1 Abstract model

A non deterministic distributed systems is represented in the abstract model of transition sys-
tems.

Definition 2.1 A distributed system is a tuple DS = (C,T,Z) where
o (s the set of all system configurations;

e T is a transition function of C to the set of C subset;

e 7T is a subset of the configuration set called the initial configurations.

In a randomized distributed system, there is a probabilistic law on the output of a transition.

Definition 2.2 A computation ¢ of a distributed system is a sequence of configurations: e =
[(co,c1), (c1,c2)...] where (1) co € I, and (2) Yi :: ¢iy1 is an output of a transition starting to c;.
The configuration cy is the initial configuration of the computation e.

Notation 2.1 Let ¢ be a initial configuration of a distributed system. The c tree is the tree
composed of all mazimal computations whose initial configuration is c. The computation forest of
a distributed system (C,T,T) is the set of all ¢ trees where ¢ € T.

2.2 Interpretation

The abstract model defined above is a mathematical representation of the reality. In fact, the
distributed system is the collection of processors (Proc) computing protocol P. A protocol has a
collection of variables (internal and/or field) and has a code part.

A processor communicates only with its neighbors (a subset of Proc). Communication among
neighbors is carried out by field variables. A processor can read the field variables of its neighbors;
but it cannot read their internal variables. A processor can read and update its own variables.

Local and global configuration versus state and configuration. The state of a processor
is the collection of values of the processor’s variables (internal or field). A configuration of a
distributed system is a vector of processor states. A local configuration is the part of a configuration
that can be “seen” by a processor (i.e. its state and the field variables of its neighbors).

Actions. The code is a finite set of guarded actions (i.e. label:: guard — statement). The guard
of an action on p is a boolean expression involving p local configuration. The statement of a P
action updates the p state. If the action is randomized, several statements are possible, and each
of them has a probability.

We assume that no processor of a distributed system satisfies the guards of two actions in the same
configuration.

A processor p is enabled at a configuration ¢, if an action guard of p is satisfied in ¢. The set of
enabled processors for ¢ is denoted by Enabled(c).

Computation step versus transition. Let ¢ be a configuration, and C'H be a subset of enabled
processors at ¢. We denote by < ¢: CH > the set of configurations that are reachable from ¢ after
that the processors of CH have performed an action. A computation step has three elements:
(1) an initial configuration: ¢, (2) a set of enabled processors: C'H, and (3) a configuration of
<c:CH >.

Clearly, the transitions in the abstract model can be interpreted in terms of computation steps.

In the case of a deterministic protocol, a computation step is totally defined by the initial configu-
rations and the set of enabled processors: there is only one final corresponding configuration. But
in the case of randomized protocol, the final configuration depends on the output of each processor
action. The output of a processor action depends on the value of the processor’s random variable.
Therefore, in the case of randomized protocols, the computation step has a fourth characteristic
element: the probabilistic value associated to the computation step. This value depends on the
probabilistic law of the random variable of each processor involved in the computation step.

A computation is maximal, if the computation is either infinite, or finite and no processor is
enabled in the final configuration. In this case, the configuration is said to be terminal. The
set of all maximal computations of the distributed protocol, P, is denoted by Ep. The set of all
computations of P that are not maximal is denoted by PAR_Ep; these computations are called
unfinished. If e is not infinite, we denoted by last(e) the final configuration of e.

2.3 Scheduler

At each step of a computation, a scheduler selects a (non-empty) subset of enabled processors which
will be activated during the next computation step. There are two ways to view a scheduler: first
as a result, subset of all possible computations of the distributed system; secondly as a dynamic
selecting process called at each step of a computation.

Definition 2.3 In a distributed system, a scheduler is a predicate over mazimal computations.

From the dynamic point of view, a scheduler chooses a subset of enabled processors. These proces-
sors will be the only ones to perform an action during the next computation step. The choice of
the scheduler is done according to the reached configuration but also according to the computation
past (the computation steps that have been performed). A scheduler is completely defined if one
knows for every sequence of computation steps, all possible scheduler choices (several subsets of
enabled processors).

Notation 2.2 Procg is the set of subsets of Proc.

Definition 2.4 Let P be a protocol. A function of Choice is a function from PAR _Ep to Procs
such that f(e) C Enabled(last(e)) and f(e) # @.

Let f be function of Choice. Let e be a maximal computation. If for any prefix of e defined as
lel, (¢, CH,)], we have CH = f(el), we said that e adheres to f.

f adheres to D if and only if all computations that adhere to f satisfy the predicate D.

The dynamic aspect of a scheduler D on P is the collection of Choice functions that adhere to D.
We call Choicepp this set of Choice functions.

Now, we define the computation forest of a distributed system under a scheduler.

Definition 2.5 Let DS be a distributed system. Let T be a tree of DS. The T tree under D is
the subtree of T that contains only the computations verifying D. The computation forest of DS
under D is the set of all ¢ trees of DS under D where c € T.

2.4 Strategy

One can imagine schedulers having no regular behavior. For instance, a scheduler that is well-
disposed to the processor p: as soon as p is enabled then it chooses p. Or a scheduler that avoids
to select g - it chooses ¢ only if ¢ is the only enabled processor -. To analyse a protocol, the
scheduler has to be considered as an adversary: the protocol must work properly in spite of the
“bad behavior” of the scheduler. The interaction between the scheduler and the protocol can be
seen as a game. In this game, the goal of the scheduler is to prevent the protocol doing its job.

In this game the scheduler has different strategies to win according to some “rules”. The figure 1
presents a strategy. Initially, the scheduler chooses some enabled processors in the initial config-
uration. This first step in the scheduler strategy gives all the computation steps that can occur
according to the scheduler choice (in a randomized protocol, the choice of the scheduler determines
several computation steps). For each obtained computation step, the scheduler makes one choice.
This second step in the scheduler strategy gives all the sequences of 2 computation steps that can
be obtained after the two first choices of the scheduler. For each of these sequences, the scheduler
makes one and only one choice, if it can (if the configuration is not terminal), and so on.

Definition 2.6 Let P be a protocol under a scheduler D. A strategy st is defined by the tuple
st = (c, f) where c is a configuration, and f is a function of Choicepp.

Let st = (c, f) be a strategy. A mazimal computation belongs to st if and only if (1) c is the initial
configuration of e; and (2) if e = [el(c, CH,')e2] then CH = f(el).

Observation 2.1 Let st be a strategy of the protocol P under the scheduler D. Let el be a prefiz of
a computation of st such that el(c, CH, ') is also a prefiz of a computation of st. If " €< c¢: CH >
then el(c, CH,c") is also a prefiz of a computation of st.

Observation 2.2 In the case of a deterministic protocol, a strategy is a mazximal computation.

Observation 2.3 Let P be a protocol under the scheduler D. Each couple (c, f) where ¢ € C and
f € Choicepp defines a strateqy of P under D. Thus the number of strategies of P under D is
|C|.|Choicepp| which is usually infinite.

In the case of a randomized protocol, we will define a probabilistic space for every strategy of a
scheduler D.

The abstract side of the strategy is given by the following definition:

Definition 2.7 Let DS be a distributed system. Let T be a tree of DS under the scheduler D. A
strategy is a subtree of T where at a node, there is only one transition outgoing.

2.5 Self-stabilizing distributed systems.

A self-stabilizing distributed system is a particular case of distributed systems where any configu-
ration is an initial configuration.

Notation 2.3 Let X be a set. = + Pred means that the element x of X satisfies the predicate
Pred defined on the set X.

Definition 2.8 A protocol P is self-stabilizing for a specification SP (predicate over the computa-
tions) if and only if there exists a predicate L defined on configurations such that:
e convergence All computations reach a configuration that satisfies L. Formally, Ve € Ep :
e = [(co,CHy,c1)(c1,CHyyc9)...] :3In>1,¢, - L.
e correctness All computations starting in configurations satisfying the predicate L are
satisfying the problem specification SP. Formally, Ve € Ep : e = [(co, CHy, c1)(c1, CHy,c2)
]t L=elk SP.

The predicate L is called the legitimate predicate.

The attractor technique defined in [13] is a very useful technique to prove the self-stabilization of
the distributed systems.

Definition 2.9 (Attractor) Let P be a protocol. Let X and Y be two predicates defined on
configurations. The predicate Y is an attractor for the predicate X (X ©Y) if and only if the
following condition is true:

e convergence Vg - X :Ve € Ep i e = [(co, CHp,c1)...]:: Ji >0,¢, F Y.

Informally, X >Y means that in any computation of £p starting in a configuration satisfying the
predicate X, the system is guaranteed to reach a configuration satisfying the predicate Y.

Definition 2.10 Let P be a protocol under a scheduler D. Let Pr be a predicate on configurations.
Pr is closed if and only if on any computation step (¢, CH,c') such that ¢+ Pr, we have ¢ - Pr.

Observation 2.4 Let L12 be the predicate on configurations LIAL2. If L1> L2 and if L1 is closed
then L1v> L12.

Theorem 2.1 (Self-stabilization) A protocol P is self-stabilizing for a specification SP, if there
exists a sequence of predicates (true = Ly, Lo, ..., Ly) (where Ly, is the legitimate predicate) such
that the following conditions hold:

e convergence Vi € [1,n — 1] :: Lj> Ljtq.

e correctness Vcy - L, : Ve € Ep : e = [(cp, CHp,c1)...] e SP.

3 Probabilistic model

In a probabilistic distributed system, each processor has a random variable. The fundamental
problems solved in this section is the definition of a probability on the system computations related
to the random variables (thus to define a probabilistic space). Once this probability defined, we
will be able to give a definition of the self-stabilization of a randomized protocol.

3.1 Field on a strategy

The basic notion that we will use to define a probabilistic space on the computations of a given
strategy is the cone. Cones have been introduced in [21]. We mention here some properties of
the union of cones, intersection of cones, and complementary of a cone in a strategy. Finally, we
construct a field (a class of subsets of strategy’s cones closed by finite unions and by complementary)
on strategy computations.

In the sequel of this section, we will always refer to a protocol P under a scheduler D.

Definition 3.1 Let st be a strategy. A cone C}, of st is the set of all st’s computations with the
common prefix h. h is called the history of the cone.

Notation 3.1 Let st be a strategy. Let Cy be a cone of st. last(h) denotes the last configuration
of h. The number of computation steps in the history h is denoted by |h|.

Example: See the figure 1, h = [(¢o, CHy, c1)(cl, CHy,cq)], the |h| = 2. last(h) is the configuration
4.

Remark 3.1 Let st be a strategy. st is a particular cone with an empty history. This cone is
denoted by C*L.

Definition 3.2 Let st be a strategy and let Cp, be a cone of st. The subcone Cp of the cone Cy, is
the set of all computations of C}, having h' as a prefiz.

Let st be a strategy. Let Cp, be a cone of st. C} is a singular cone, if last(h) is a terminal
configuration (i.e. no processor is enabled at last(h)).

Remark 3.2 Let Cy be a subcone of the cone Cy, then we have h' = hx. A singular cone contains
only one computation.

We begin by a sequence of lemma; the three first being straightforward.

Lemma 3.1 Let st be a strategy. Let Cp1 and Cho be two cones of st. The intersection of these
cones is equal to (i) Chi, (ii) Che or (i) is empty.

Lemma 3.2 Let st be a strategy. Let A be a countable union of cones of st. There is a countable
set of pairwise independent cones of st so that their union is A.

Lemma 3.3 Let st be a strategy. Let n > 1 be an integer. Let M be the set containing all cones
of st whose history length is n and all singular cones of st whose history length is m where m < n.
We have Ugep C = st.

Lemma 3.4 Let st be a strategy and let Cy, be a cone of st. Let C, be the complementary of C,
in st. Cp, is a finite union of pairwise independent cones.

Proof: Let M1 be the set of pairwise independent singular cones whose history length is lesser
than |h|. Let M2 be the set of cones whose history length is equal to |h|. Let M2' = {C :: C € M2
and CNCy = @}. Let M be M1U M?2'.

From the construction of the set M and from the lemma 3.3, we have C}, = Ucenr €. Then, C), is
a finite union of cones. From lemma 3.2, C}, is a finite union of pairwise independent cones. O

Lemma 3.5 In a strategy, the intersection of two finite unions of pairwise independent cones is a
finite union of pairwise independent cones.

Proof: Let A =U<;<, Cph; and B = ;< <, C; be two finite unions of cones.

We have ANB = UISZSTL(O’M N B) = UISZSTL(UISJSM(Chz N Otj)).

As the intersection of two cones is a cone or the empty set, AN B is a finite union of cones. Then
AN B is a finite union of pairwise independent cones (lemma 3.2). 0

Corollary 3.1 In a strategy, the finite intersection of finite unions of pairwise independent cones
of a strategy is a finite union of pairwise independent cones.

Lemma 3.6 In a strategy, the complementary of a finite union of pairwise independent cones is a
finite union of pairwise independent cones.

Proof: The complementary of a finite union of pairwise independent cones is the finite intersection
of the union’s complementaries. O

Notation 3.2 Let st be a strategy. We note Fg the set of all finite unions of pairwise independent
cones of the strategy st.

A field of a strategy is a class of subsets of strategy’s cones closed by finite unions and by comple-
mentary. Formally:

Definition 3.3 Let st be a strategy. Let S be a class of subsets of st. S is a field of st if and only
if (1) ste S, (2) Ac S implies Ac S, and (3) Vi € [1,n] :: A; € S implies Uy<;<p Ai €S.

Theorem 3.1 Let st be a strategy. Fg; is a field.

Proof: As C*' = st, st is an element of F;, The finite union of finite unions of pairwise independent
cones is a finite union of cones of st. This union can be expressed as a finite union of pairwise
independent cones of st (lemma 3.2). Fy, is closed by finite unions. Fy; is closed by complementary
(lemma 3.6). O

3.2 Strategy - probabilistic space

A probabilistic space is by definition a triple (Q2,F, P) where Q is a set, F is a o-field of)
and P is a probabilistic measure. A o-field is a class of subsets of 1 containing 2, closed by
complementary and by countable unions. A probabilistic measure is defined from F to [0,1] and
verifies the following properties: P(Q)=1 and if A, As, ..., is a disjoint sequence of F sets then
P(UrZ; 4i) = > 521 P(Ag). According to the properties of P, if A is an element of F, then we

have P(A) =1— P(A).

3.2.1 Probability of a computation step

In a randomized protocol, each processor has a random variable. The output of an action of a
processor p depends on the value of p random variable. The random variables are independent,
thus the output of a p action is independent of the output of an action of another processor. The
probability of a computation step is the product of probability of every output of actions that have
been performed during the computation step.

Definition 3.4 The probabilistic value associated to a computation step, pr(c, CH,d') is defined
by: pr(c, CH,c') = [,ecn pr(Xp = valy), where X, is the random variable of the processor p, val,,
is a value of Xp, and ¢ is the obtained configuration after that all processors of CH have set their
X, variable to val, and have performed an action.

Observation 3.1 It is easy to prove that Y. .c..op> pric, CH,d') = 1.

3.2.2 Probabilistic space on a strategy

In this section, we equip a strategy st with a probability space. The construction of the probability
measure will be made hierarchically using results of the classical theory of probabilities. We will
define a probabilistic measure on Fy; (a field of st). Well-known results of probabilistic theory
establish that a field can be extended by closure to a o-field. The probabilistic measure defined on
the field can be also extended to the o-field. Also, we will construct a probabilistic space on top of
st.

Let st be a strategy. We associate to the cone C}, a value, function of its history, by extending the
probability pr defined on computation steps. The value of (Y}, is the product of the probabilities
of each computation step of h (the computation step probabilities are independent). From these
values, we will build a probability measure on Fj;.

10

Definition 3.5 Let st be a strategy. The value attached to the cone Cy, in st is:
Py (Ch) = Hizopr(ck, CHy, cy1), where h = [(co, CHy,c1)(c1,CHy,c) ... (cj, CHj,cji1)].

c0o

c1 CHL P4 2
012
| c13 o
pl
oClA
/ 1-p12
S oc CH2 c74L.

(]
1-p5-p6
N. 1-p13
o cl16

o cl7
1-pl-p2 /pm/
C9%1/0 c18
/ p 0 ClO
c3 CH3 CH10

1-p15 ™o c20

® terminal configuration

Figure 1: A strategy with the probabilities of the computation steps

Example: See the figure 1, hl = [(co, CHy,c1)(c1,CHy,c5)], Pst(Chi) = pl.(1 —pd). Ch is a
singular cone. h2 = [(¢o, CHy, c2)(c2, CHa,c7)(c7, CH7,c16)], Pst(Cha) = p2.p6.(1 — p13).

Lemma 3.7 Let st be a strategy. Let Cy, be a non singular cone of st. Let M be the set of subcones
of Cp, whose history length is |h| + 1. We have Py (Ch) = > cenr Pst(C)

Proof: Let h' be a computation step defined as (¢, CH,c'). Cppr € M if and only if (1) ¢ =
last(h), (2) CH is the choice of st at h (fst(h) = CH), and (3) ¢, €< ¢: CH >. By definition
of Py, if k' = (¢,CH,c) then Py (Chp) = Pg(Ch).pr(c, CH,cp). We have ZChh/EM Py (Chpy) =
Zch€<c:CH> (PSt(Ch)'pT(Cv CH, ch)) = Pst(ch)' O

Corollary 3.2 Let st be a strategy. We have Py (C!) = 1

Proof: Let M be the set containing all distinct cones of st whose history length is 1. We have
Ucen C = st = C* (lemma 3.3). According to 3.7, we have Py (Uccp C) =1 0

Lemma 3.8 Let st be a strategy. Let Cy be a cone of st. Let Chi,Cha,... be a series of pairwise
independent cones of st such that Cp, = Uy<;<,, Chi- We have Py (Ch) = 321 <;<p, Pst(Chi)-

11

Proof: We prove this lemma by induction on the length of the series Cj1,Cha,... . If the series
has one element, the lemma is verified. Assume that the lemma is verified when the series contains
less than n cones.

Let Ch1, Cha, ... be a series of n pairwise independent cones of st such that Cy = U;<;<p Chi- Ch
is not singular. Let M1 be the set of independent subcones of C}, whose history length is |h| + 1.
We have Py (Ch) = > ceni Pst(C) (lemma 3.7).

Let Cj be a cone of M1. We define My as My = {Cp1 N Cpr,Cpa N Chy, ...}, According to the
property of cone intersection we have Vi € [1,n], Cp N Cp; = @ or Cp; C Cpr; thus, My = {Ch; =
Chi C Chl}. As C), = Ulgign Chi, we have Cy = UChiEMhI Ch; and UCh/EMl My = Ulgign Chi-
M}, contains at most n — 1 cones; thus Py (C}) = ZChith, Py (Chi).

Pst(Ch) = ZCh/EMl Pst(Ch’) = ZCh/EMl(Zchith/ Pst(Chi)) = Z1§i§n Pst(Chi)- O

Lemma 3.9 Let st be a strategy. Let A = U,<;<,, Ci' be a finite union of pairwise independent
cones of st. Let B = Uy<ij<p, C’b be a finite union of pairwise independent cones of st. If A= B

then 31 <<y Pst(CF) = Xi<i<m Py (CY).

Proof: We split the cones of A into three sets: (1) a cone of Al is a subcone of a cone of B;
(2) a cone of A2 contains a cone of B; and (3) a cone of A3 is also a cone of B. Formally, we
have A1 = {Cf :: 3C% : Cf € CY and C} # C§}; A2 = {Cf = 3CY : C} C CF and C} # C};
A3 = {C¢ = EIC;-’ : CF = C;} These three sets are disjoint because the cones C;-’ are disjoint.
Similarly, we split the cone of B into three disjoint sets. For each cone of A2, C}, we build M/ the
set of B1 cones that are subcones of C'. Formally, we have: M = {C”-’ € Bl: C”-’ C Cf}.

Let C{" be a cone of A2. Let C;-’ be a cone of B2 U B3. We have C}' N C” @; because the cone
of A and B are pairwise independent. Moreover A = B; thus we have UC’?e Ma C’j = C7. We also
J i

have (lemma 3.8) 3" cocpsa Pst(C’J’-’) = Py (Cf).
J i

A cone of Bl cannot be included in a cone of Al or A3 because the cones of B are pairwise
independent; thus UCQGAQ M} = B1.

ane/m(zcbeMa PSt(OJ)) ZC”EBl Pst() ZC“eA2 Pst(C)
Similarly, we prove that Zcb€B2 Pst() Ylcaeal Py (CF).

Clearly, we have ZC”EB3 Pst() aneA3 Py (CF). 2i<i<n Py(CY) = 2i<i<m Pst(Cb) U

Definition 3.6 Let st be a strategy. Let Pg be the function defined as follow:

Py (Ch) = Hizopr(ck, CHy, cy1), where h = [(co, CHy,c1)(c1,CHy,cg) ... (cj, CHj, cji1)].
Py (A) = X1, Pst(Cy) where A = Jj—, C; and the cones C; are pairwise independent.

Observation 3.2 Py is effectively a function, because the image of an element of Fg by Py is
unique (lemma 3.9).

Lemma 3.10 Let st be a strategy. Let A be an element of Fg. We have Py (A) + Py (A) =

12

Proof: Let M be the set of of pairwise independent cones whose history length is equal to 1.
According to the corollary 3.2, we prove that Py (Ucecps C) = 1. We have Ugep C = st = AU A.
As A and A are pairwise independent, 1 = Py (AU A) = Py (A) + Py (A). O

Theorem 3.2 Let st be a strategy. The function Py is a probabilistic measure defined on the field
Fist.

Proof: Py is a probabilistic measure because the following properties are verified:
e According to the corollary 3.2, Py/(st) = 1.

e Let A be an element of Fg. we have Pg(A) + Py

(A) =1 (lemma 3.10). By definition of
Py, Py(A) > 0 and Pyy(A) > 0. Thus Py(4) € [0,1].

a

Definition 3.7 Let st be a strategy. Let S be a class of subsets of st. S is a o-field of st if and
only if (1) C* € S, (2) A€ S implies A€ S, and (3) Vi :: A; € S implies U2, A; € S.

Notation 3.3 Let o(Fy) be the o-field generated by Fy.
Theorem 3.3 There is a unique extension, P, of the probabilistic measure Py to o(Fst).

Proof: The extension is made according to the classical theory of probabilities. This function is a
probabilistic measure on the o(Fy). For more details see chapter 1 of [6]. O

Let st be a strategy. The triple (st,o(Fs;), Py;) defines a probabilistic space on st.

In the following sections we denote by Pg: Pj; -the extension of Py to o(Fs)-.

3.3 Self-Stabilization of a randomized protocol

The self-stabilization for the deterministic protocols was defined in the section 1. In this section
we are interested in defining the self-stabilization for the probabilistic protocols with respect to
the probabilistic model defined in the previous section. This section introduces also the probabilis-
tic version of the attractor and the definition of probabilistic self-stabilization using probabilistic
attractors.

Notation 3.4 Let st be a strategy of a protocol under a scheduler D. Let PR be a predicate over
configurations. We note by EPRg; the set of st computations reaching a configuration that satisfies
the predicate PR.

Lemma 3.11 Let st be a strategy. Let PR be a predicate over configurations. There is a countable
union of pairwise independent cones (A = ;cn Ci) so that EPRy = A.

Proof: Let M, be defined as M,, = {C}:: |h| =n and last(h) - PR}. The number of the cones in
the set M,, is finite.

Let M be defined as M = ;e M;. By definition of PRy, EPRy = Ugen C-

M is the countable union of finite sets, thus M is a countable set. Then EPR, is a countable
union of pairwise independent cones (lemma 3.2). O

In the following we will define the self-stabilization for a probabilistic protocol under a scheduler
D.

13

Definition 3.8 (Probabilistic self-stabilization) A probabilistic distributed protocol P is self-
stabilizing under a scheduler D for a specification SP if and only if there is a predicate L on
configurations (defining the legitimate configurations) such that:
e probabilistic convergence In any strategy st of P under D the probability of the set of
computations reaching a legitimate configuration is equal to 1. Formally, Vst, Psy(ELs) = 1.

e correctness In any strategy st, the probability for the set of computations reaching a legit-
imate configuration and then from this legitimate configuration verifying SP is 1. Formally,
Vst, Pst({e € st : e = [el,e2], last(el) - L, and e2 - SP}) = 1.

Definition 3.9 (Probabilistic Attractor) Let L1 and L2 be two predicates defined on configu-
rations. L2 is a probabilistic attractor for L1 on a protocol P under a scheduler D (L1 >y, L2) if
and only if the following condition holds:
e probabilistic convergence for all strategies st of P under D such that Py (EL1) = 1,
we have: Py (EL2) = 1, Formally, Vst, P4 (EL1) =1 = Py (ELy) = 1.

Theorem 3.4 (Probabilistic Self-stabilization) A randomized protocol P is self-stabilizing for
a specification SP, if there exists a sequence of predicates (true = Ly, Lo, ..., Ly) (where Ly, is the
legitimate predicate) such that the following conditions hold:
e probabilistic convergence Vi € [1,n — 1] :: Ljbprop Liy1-
e probabilistic correctness Vst, Py ({e € st :: e = [el, e2], last(el) - Ly, and e2 - SP}) =
1.

Observation 3.3 We note L12 the following predicate on configurations L1 N L2. If L1 >y L2
and if L1 is closed then L1, L12.

3.4 Proving the convergence of self-stabilizing protocols

In this section, we present a theorem that helps to build convergence proofs of randomized protocols.
This theorem can be used in case of a proof via attractors, but also in case of a direct proof.

Informally the next definition is introduced for dealing with such a statement: “in a cone where the
predicate PRI is satisfied, the probability to reach a configuration satisfying the predicate PR2 in
less than n steps is greater than §”.

Definition 3.10 (Local convergence) Let st be a strategy. Let Cy, be a cone in the strategy st. The
cone C}, holds the property Local_Convergence(PR1, PR2,6,n) if and only if:
e last(h) - PR1;

e M is the set of pairwise independent subcones of Cj, (Cppr) such that (1) |h'| <n, and (2)
last(hh’) = PR2;
i st(UCeM C) > 6.Pst(Ch)-

On a strategy st, if it exists 05 > 0 and ng > 1 such that any cone of st satisfies Local _Convergence
(PR1, PR2, 64, ng) then we said that st verifies the Convergence (PR1, PR2, s ,n4) property
or Convergence (PR1, PR2) property.

14

Theorem 3.5 Let st be a strategy of the protocol P under a scheduler D. Let PR1 be a closed
predicate on configurations such that Py (EPR1) = 1. Let PR2 be a closed predicate on configura-
tions. Let us note PR12 the predicate PRI A PR2. If 4 65 > 0 and 4 ng > 1 such that st verifies
the Convergence(PR1, PR2, §5,n4) property then Py (EPRI12) = 1.

Proof: Let FLj be the set of computations reaching a configuration satisfying PR1 and, after
that, in at most k.ng steps they reach a configuration satisfying the predicate PR2. We prove that
Py (ELy) > 1—(1—6)* and EL,NEPRI is a countable union of pairwise independent cones where
Py(ELy NEPRL) =1 — Py(ELy).

Let Cj, be a cone of st. We define M2} as M2j = {Cpp :: |h'| < ng, and last(hh’) - PR2}. We
define M1} as M1}, = {Chp :: |W'| < ng, last(hh’) does not verify PR2, and either last(hh’) is a
terminal configuration or |h'| = ng}. M2, (M1),) being a set of cones, according to lemma 3.2,
there is a set of pairwise independent cones M2, (M1,) such that M2, = M2, (M1, = M1}).
The cones of M2, contain all computations of C}, that reach PR2 in less than ng steps. The cones
of M1, contain the other computations. By hypothesis Ps;(Uccnrz, C) = Pst(Ch)-dst-

e Basic step (n=1). £PR1 is a countable union of pairwise independent cones (lemma 3.11).
EPR1 = Ucen, € where My is a countable set of pairwise independent cones. From the

hypothesis, Psy(Ucenr, C) = X cem, Pst(C) = 1.

We have EL; = UChGMl(UCEMQh C); thus Py (ELy) > . 2 Chem Py (Ch).

So, Pst(EL1) > 0s5t-Pst(EPRL) > dst = 1 — (1 — 0st)-

All computations of a cone of M1; belongs to ELy, all computations of C} that belongs to
EL, are in a cone of M1;,. Thus, EL1 NEPRL = Ue, enr, (Ucem,C). Then EL; NEPRI

is a countable union of pairwise independent cones (lemma 3.2). As Py (EPRI1) = 0, we have
Py(EL; NEPRL) = 1 — Py(ELy)

e Induction step. We suppose the hypothesis are true for k-1.
By hypothesis, EL,_;NEPRI is a countable union of pairwise independent cones. We call M},
the set of independent cones whose the union is equal to EL,_1NEPRIL. Thus, EL;,_1NEPRI1
= Ucenm, €, and Py(ELy 1 NEPRIL) = Y cepy, Pst(C).
We name Dif fj, the computations set such that (1) ELy = ELy_1 U Dif f, and (2) dif fr 0
EL, 1 =0. Diffr, = UCEDk C where Dy = {Cppr:: Cp, € My, and Cppy € M2}
We have Dif fr, = Uc, em, (Ucema, O); thus Ps(Dif f) > 6st- 3¢, enn, Pst(Ch)-
So Py(Dif fr) > 6s1.(1 — Psy(ELyj_1)). Pa(ELy) > 1 — (1 — dg)F.
We have (EL; N EPR1) C (ELk_1 N EPRI), thus, we prove as in the basic step that
ELyNEPRL = Ug, enm, (Ucem,C). Then, EL;NEPRI is a countable union of pairwise in-
dependent cones (lemma 3.2). As Py (EPR1) =0, we have Py (EL,NEPRL) = 1— Py (ELy).

Py(ELy) > 1— (1 — 6)". Therefore, P(EPR12) = limy_s0 P(ELy) = 1. O

Corollary 3.3 Let PR1 and PR2 be two closed predicate on configurations. If each strategy st of
a protocol P under a scheduler D, verifies Convergence(PR1, PR2) then (PR1>,.0, PR2).

Corollary 3.4 Let PR2 be a closed predicate on configurations. If each strategy st of a protocol
P under a scheduler D verifies Convergence(true, PR2) then Vst, Py (EPR2) = 1.

15

4 Cross-over composition

This composition is designed as a tool for scheduler management. An incipient form of this compo-
sition was presented in [5]. Here a formal definition of this composition is provided and an example
of scheduler controlling through this quite particular composition is given. In a cross-over compo-
sition, the actions of an initial protocol W are synchronized with the actions of a second protocol
S: the W actions are performed only when a S action is performed too. Thus, the computations
of the composite protocol under any scheduler have the same properties as the computations of S
in term of fairness.

Definition 4.1 Let W and S be two arbitrary protocols having no common variable. The cross-
over composition between W and S (denoted by WS) is the protocol defined as:
o For every action of W: <I.W >u< g W > — < s.W >, and for every action of S
<8 >u<g. 8> — <s.8>, the composite protocol contains the following action:
<lw,lg > <gW>AN<g. 5> — <sW><s.5>

e For every action of S <1.8 >:< g .8 > — < s.8 >, the composite protocol contains
the following action:
<I.§8>u:<no W guard holds > N <g.8> — <s.5>

In WS, W s called the "weaker” protocol and S is called the ”stronger” .

WS has the following properties:
e the actions of composite protocol are constructed according to the actions of its parents;
e an action of W is performed, if an action guard of S is satisfied and if the W’s action guard
is also satisfied (simultaneously the both actions are performed);

e an action of S is performed even if no action guard of W is satisfied (but the guard action
of S is satisfied).

For example, the protocol SSCTC (protocol 5.3) is the cross-over composition of the protocol CTC
(protocol 5.2) and the protocol DTC (protocol 5.1).

4.1 Projection

The influence of each parent on the child can be seen by projecting the child computation on its
parents.

Let ¢ be a configuration of W<S. The protocols W and S have no common variable; so ¢ is the
product of a configuration of W and a configuration of S. The projection of ¢ = cyyeg on W (S) is
the product of the values of W’s variable (S’s variable) on each processor in ¢ and is equal to cy

(cs).

Let (¢, CH,c') be a computation step of WS, The projection of (¢, CH,c') on S is (cg, CH,cY)
(all processors of CH perform an S’s action in this computation step). We call CHyy the set of
CH’s processors that perform an W’s action in the computation step (¢, CH,). If CHyy is not
empty, then the projection of (¢, CH,c') on W is (cw, C Hyy, ¢}y,); otherwise the projection is empty.

Let w be a computation of WS, We call wg (wy) the projections of w on the protocol S (W).
These projections are obtained by projecting every computation step of w on the selected protocol.

16

Example: Let e be the computation WS defined as [(¢0,c05, CHO, c6,ycls) (cbycls, CHG,
6y 25) (6425, CH4,cbypcds) (cbycds, CH3,cl4,,chs)] (see the figure 2). The projection of e on
W is [(c0y, CHOy, cby) (b, CH3,y, c14y,)]. The projection of e on S is [(c05, CHO, cl5)(cl,, CHG,
c25) (25, CH4, c4s)(c4s,CH3, cby)].

Observation 4.1 Fvery mazimal no-empty computation of WS under the scheduler D has a
mazximal, non empty projection on S under the scheduler D.

Definition 4.2 (Total fairness property) Let P be a protocol. P is total fair if all P mazimal
computations under any scheduler contains an infinity of actions of each processor.

The following theorem introduces a general feature of the cross-over composition - preservation of
the stronger properties.

Theorem 4.1 Let W and S be two protocols. Let P be a property of maximal computation of S.
WS holds the property P.

Proof: Let w be a maximal computation of W <{S. From the observation 4.1 any maximal com-
putation of WS has a maximal projection on S. Hence, wg (projection w on S) is a maximal
computation of S§. wg holds the property P. O

Corollary 4.1 Let W and S be two protocols. If S is total fair then WS is total fair.

The properties of the projection of WS on W depend on the properties of S. We give a necessary
condition on S to ensure that the maximality of the projection on W of any computation of WS.

Lemma 4.1 Let W and S be two protocols. If S is total fair then every maximal computation of
WS has a mazimal projection on W.

Proof: Let w be a maximal computation of WS, Let wy be the projection of w on W. Suppose
that wy is finite and its final configuration is not terminal. We call ¢y the final configuration
of wy. cw is the projection of a configuration of w that we call ¢. In w, from ¢ no action of W
is performed. In ¢, there is at least one processor having a W guard verified. Let p be such a
processor. The processor p, due to the total fairness property of the composite (corollary 4.1), will
perform an action in w. According to the cross-over composition definition, when p performs an
action of S, if p holds an action guard of W then p performs in the same computation step the W
action. In this case, w contains an action of W after reaching c. When p performs an action of S,
it is possible that the processor p does not hold any action guard of W. But in this case, one of p’s
neighbors has performed an action of W. Therefore, w contains an action of W after reaching c. O

4.2 Scheduler managing by cross-over composition

Some protocols are self-stabilizing under some specific schedulers. For instance, under a k-bounded
scheduler (i.e. selecting computations verifying the following property “until a processor p is enabled
another processor can perform at most k actions”). In this section, we study the necessary and

17

sufficient conditions to transform a self-stabilizing protocol under a k-bounded scheduler in a self-
stabilizing protocol under an arbitrary scheduler. The idea of the transformation is the cross-over
composition between the initial protocol, playing the “weaker” role and a specific protocol. In this
paper, we only present this type of transformation but the power of cross-over composition is not
limited to this particular case.

Before presenting this transformation in the case of deterministic and probabilistic protocols; we
give some basic notations.

Definition 4.3 A computation w is k-fair if and only if (1) any processor p infinity often performs
an action, and (2) between two actions of p, a processor performs at most k actions.

An arbitrary protocol is k-fair, if all its computations under any scheduler are k-fair.
Remark 4.1 A k-fair protocol is a total fair protocol but the reverse is not true.
Lemma 4.2 Let W and S be two protocols. If S is k-fair then WS is k-fair.

Proof: This lemma is a corollary for the theorem 4.1. O

In the following, we consider a special type of scheduler called k-bounded scheduler. The scheduler
considered in [4] is a k-bounded scheduler.

Definition 4.4 Let w be a computation. w is k-bounded if and only if along w, till a processor
p is enabled another processor can perform at most k actions.

A scheduler is called k-bounded if and only if it selects only k-bounded computations.
Remark 4.2 A k-fair computationis k-bounded; but the converse is not true.

Lemma 4.3 Let W and S be two protocols. Let w be a mazimal computation of WS under
any scheduler. wy is the projection of w on W. If S is k-fair then ww is a mazimal k-bounded
computation of W.

Proof: wy is maximal because S is total fair (lemma 4.1).

Suppose that wy does not satisfy the k-bounded predicate. Hence, there is a fragment Fy of wyy
such that the processor ¢ performs k£ + 1 actions, p performs no action and p is always enabled.
Fyy is the projection of a fragment of w called F. According to the definition of WS, F has the
following property (i) p performs no action in F' (ii) ¢ performs at least k + 1 actions in F. F is
part of an fragment of p called F), verifying the following properties: (1) Fp, begins and ends by
an action of p; (2) Fp, contains only two actions of p; and (3) in Fpp, ¢ performs at least k£ + 1
actions. F}, cannot exist because WS is k-fair (lemma 4.2). O

We prove that WS is self-stabilizing to SP, if S is k-fair and W is self-stabilizing to SP under a
k-bounded scheduler.

Theorem 4.2 Let S be a deterministic and k-fair protocol. Let W be a deterministic protocol
self-stabilizing to SP under a k-bounded scheduler. WS is self-stabilizing for the specification SP
under any scheduler.

Proof: Let w be a maximal computation of W<S. wyy is the projection on W of w. From the
lemma 4.3, the computation wyy is maximal and it satisfies the k-bounded predicate. The weaker
protocol is self-stabilizing under k-bounded scheduler, then a suffix of wy satisfies SP. Thus, the
computation w has a suffix satisfying the predicate SP. O

18

4.2.1 Projection of a strategy

In this section, we present the properties of the projection of a strategy of WS on W when S is
deterministic and k-fair. The figure 2 displays an example of such a projection.

Let S be a deterministic and k-fair protocol. Let W be a randomized protocol. Let st be a strategy
of WS, sty is the projection of st on W. Formally, sty = {e € Ew :: e’ € st such that the
projection of €' on W is e}. As S is k-fair, the computations of sty are maximal and k-bounded
(lemma 4.3). In what follows, we prove that sty is a strategy of W under a k-bounded scheduler.

Lemma 4.4 Let ely and €2y be two computations of stw. If el = [ew (clw, CHlw,c3w)
el2y] and e2yw = [ew (2w, CH2y, cAw)e22y] then cly = cly and CHly = CH2y .

Proof: el, (e2,) is the projection of a computation of st that we call el (e2). If el = e2 then by
definition of a projection el,, = €2,,.

If el # €2 then it exists e such that el = [e(cl, CH1,c3)el2] and €2 = [e(c2, CH2, c4)e22] where
(cl,CH1,c3) # (2,CH2,c4). According to the computation definition, ¢l = ¢2. According to the
strategy definition, CH1 = CH2. Thus ¢3 # c4, as S is deterministic, we have c3w # ¢4y . Thus
elw = [ew(cw, CHw, 3w)el2y] and e2yw = [ew (cw, CHw, cdw)e22y | where c3y # cdwy. O

Lemma 4.5 Let fy be the function defined by: if ew € stw and if ew = [elw (cw, CHw,2w)
e2y | then fw(elw) = CHw. fw is a function of Choice

Proof: fiy is effectively a Choice function: (1) fw is a function from PAR_Ew to Procs; (2) the
lemma 4.4 proves that fy is a function; we have (3) Ve € PAR Ew:: f(e) € Enabled(last(e)) and

(4) fle) # @. O

Lemma 4.6 Let stlyy = (cw, fw) be a strategy of W where (1) ew is the projection on W of
the initial configuration of st; and (2) fw is the Choice function defined by if ew € stw and if
ew = lelw (cw, CHw, 2w)e2w] then fw(elw) = CHy. Then, we have stly = sty and stly is
a strategy.

Proof: According to the lemma 4.5, stly is a strategy of W. By construction, all computations
of sty belongs to stlyy.

We prove that all computations of sty belongs to stly by contradiction. Let ey € stly and
ew & stw. It exists ely such that (1) ey = [elw (clw, CHlw, c3w)edw], (2) el is the projection
of a prefix of e, a computation of WS, and (3) ely (cly, CHly, 3y) is not the projection of
any prefix of any computation of st.

The projection of e on W is ely (2w, CH2y,cdw)edy . We have cly = 2y and CHly =
CH2y = fw(ely). Call el’ the prefix of e such that (1) its projection on W is ely,, (2)
el’(c2,CH2, c4) is a prefix of e, and (3) elw (2w, CH2yw,cdy) is the projection of el’(c2, CH2,
c4) on W. There is a configuration ¢3 (¢3 = ¢3wcdg) such that (1) ¢3 €< ¢2: CH2 >, and (2) the
projection of ¢3 on W is ¢3y. By the observation 2.1, el(¢2, CH2, ¢3) is the prefix of a computation
of st. Thus ely (cly, CHly,c3y) is the projection of a prefix of a st’s computation. O

19

Theorem 4.3 Let S be a deterministic and k-fair protocol. Let W be a randomized protocol. Let
st be a strategy of WS, We name sty the projection of st on W. Let Aw be a predicate on
computations of W. sty is a strategy of W and we have Py ({e € st :: ew F Aw}) = Py, ({€' €
sty e Aw}).

Proof: The lemma 4.6 proves that sty is a strategy of W. Let Cj,, be a cone of styy. As S is
deterministic, hy is the projection of only one computation of st, called h. Therefore, C},, is the
projection of only one cone of st called Cj,. And, we have Py (C},) = Py, (Ch,,,). By extension, we
have Py ({e € st :: ey F A}) = Py, ({€ € sty 2 € F A}). O

CH6 1 CH4 1 CH3
cé\sN c% o CGWC% c6Wcésl oi5 ® cl4 ch

p

- 5
e, CHO 1-p15 c1565
WS

/CSWC%
p5
R 16 c6
1Pl \ o CH2 P o cac3 C1RF%%
WS WS
pl
1- p5 'p6 c CH5 o C17WC65 fffffffffffffff

1-p12

E\‘
ol

A strategy of W <> S

CH3,,

B, o15® 4,
p ® terminal configuration
CHO 1- p15 C15W
%
p5
1-pt CH2 p6 c16,
1-p5-p6 - CH5, o€l7, TTTTTTTTTT
w

1-p12

Projection on W of the strategy

Figure 2: The projection of a strategy of W { S on W (S being deterministic and k-fair)

Theorem 4.4 Let S be a deterministic and k-fair protocol. Let W be a probabilistic protocol self-
stabilizing for the specification SP under a k-bounded scheduler. WS is self-stabilizing for the
specification SP under any scheduler.

Proof: Let st be a strategy of W{S. Let sty be the projection of this strategy on W. sty
is a strategy of W (see theorem 4.3). As S is k-fair, the computations of sty are k-bounded
(lemma 4.3). The probability of the set of computations of sty that will eventually satisfy SP is
1. According to theorem 4.3, the probability of the set of computations of st that will eventually
satisfy SP is 1. O

The cross-over composition is used in this paper to transform a protocol self-stabilizing under
a quite particular scheduler (the k-bounded scheduler) into a protocol self-stabilizing under an

20

arbitrary scheduler. This technique can be also used to transform a protocol self-stabilizing under
a central scheduler into a protocol self-stabilizing under an arbitrary scheduler. We can imagine
other applications for our technique in the field of scheduler management but the result depends
always on the properties of the stronger protocol.

5 Randomized self-stabilizing token circulation and leader elec-
tion

In section 5.1, we present a protocol that is (N-I)-fair (N being the size of the ring) on anony-
mous, unidirectional rings. In section 5.2, we present a space optimal randomized token circulation
protocol under any scheduler on anonymous and unidirectional rings. The protocol is obtained by
cross-over composition. Finally, in section 5.3, a space optimal randomized self-stabilizing leader
election protocol under any scheduler for anonymous and unidirectional rings of any size is pre-
sented.

The space complexity of our token circulation and leader election protocols are O(lgmy) bits per
processor where my is the smallest integer not dividing N (N being the ring size). Notice that the
value of my is constant on average. For example, on odd size rings, 4 (2) bits per processor are
necessary and sufficient for leader election (token circulation). The optimality of our protocols was
proven in [5].

These protocols are self-stabilizing under any scheduler. There is no restriction on the scheduler
except that it has to choose enabled processors. But the scheduler may be unfair by avoiding to
choose some specific processors.

5.1 Deterministic token circulation

Remark 5.1 All operations are made modulo my.

Notation 5.1 We said that a processor has a token if and only if it satisfies the Deterministic_to-
ken predicate (defined in the protocol 5.1).

Lemma 5.1 In a ring, there is always a token.

Proof: Assume there is a terminal configuration. Call ¢ such a configuration where no processor
has a token. Let pg,p1,p2...pn—1 be the processors of the ring. On ¢, Vi € [0,N — 1] dt;1; =
(dt; + 1) mod my On ¢, dtny—1 = (dto + N — 1) mod my or dty = (dty—1 + 1) mod my = (dty +
N) mod my. It is not possible because N mod my # 0. O

When a processor performs an action, it loses its token. It will perform again an action only after
receiving a token (after that its left neighbor has performed an action).

Corollary 5.1 The protocol DT C' is without termination under any type of scheduler.

Notation 5.2 The distance between two processors i and j is denoted by dist(i, j). We have
dist(j,i) = N — dist(i, 7).

Theorem 5.1 The protocol DTC is (N-1)-fair.

21

Protocol 5.1 Deterministic token circulation on anonymous and unidirectional rings: DTC
Field variables on p:
dt, is a variable taking value in [0, my - 1]. (the variable represents the deterministic token)

Predicate:
Deterministic_token(p) = dt, — dty, # 1 mod my

Macro:
Pass_Deterministic_token(p) : dt, = (dt;, + 1) mod my

Action on p:
A:: Deterministic_token(p) — Pass_Deterministic_token(p)

Proof: Let p be a processor. We name pj the processor such that dist(p,pr) = k. We prove
by induction that the processor py (k € [1, N — 1]) will perform at most k actions before that p
performs an action.

Basic step. The processor p; may perform only one action. After losing its token, it cannot
perform any action before an action of p.

Induction step. Suppose that the processor pi 1 performs at most k£ — 1 actions before an
action of p. pr will get at most £ — 1 tokens from pi_1. The processor p; will perform at most &
actions (k — 1 actions, if it gets k — 1 tokens; plus one action, if it has initially a token).

Between two actions of p, another processor can perform at most N-I actions. Therefore p performs
an infinite of actions along a maximal computation (each maximal computation is infinite). O

5.2 Token circulation under an arbitrary scheduler

The randomized token circulation protocol (CTC) presented by Beauquier, Cordier and Delaét
in [4] is self-stabilizing under a k-bounded scheduler on unidirectional and anonymous rings. We
compose this protocol with DT'C', the obtained protocol is self-stabilizing token circulation protocol
under an arbitrary scheduler.

A processor is privileged, if its verifies the privilege predicate (defined in the protocol. 5.2). A
round for a privilege in the protocol C'T'C is a fragment computation starting in a configuration
¢ and ending in a configuration ¢, having the following properties: (1) in ¢ and ¢’ , only p holds
a privilege; and (2) in the fragment each processors holds the privilege one and only one time.
Let SPyrg be the following predicate over computations: “in each configuration, there is only one
privileged processor and the computation contains an infinity of rounds”. Let Ljsr be the following
predicate over configurations: “ there is only one privileged processor in the system”. A legitimate
configuration for the protocol C'T'C is a configuration which satisfies the predicate L.

Lemma 5.2 In the protocol CTC under any scheduler the predicate Lysg is closed.
Proof: During a computation step, either the processor holding the privilege does not pass the

privilege, hence it stays the only privileged processor. Or this processor passes its privilege; then
its neighbor becomes the new privileged processor. O

22

Protocol 5.2 token circulation on anonymous and unidirectional rings: CTC
Field variables on p:
tp is a variable taking value in [0, my -1]. (the variable represents the privilege)

Random Variables on p:
rand_bool, taking value in {1, 0}. Each value has a probability 1/2.

Predicate:
Privilege(p) = t, — t;, # 1 mod my

Macro:
Pass_privilege(p) : t, := (¢, + 1) mod my

Action on p:
A:: Privilege(p) — if (rand_bool, = 0) then Pass_privilege(p);

For proving the convergence of the protocol CT'C' we use the direct verification of the self-
stabilization definition.

Lemma 5.3 Let k be an integer. Let st be a strategy of the protocol C'T'C under a k-bounded sched-
uler. There exist €s; > 0 and Ng > 1 such that any cone of st satisfies Local_Convergence(true,
LME; 5st7 nst)-

Proof: Let C}, be a cone of st. Assume that in last(h), there are several privileged processors. Let
P1,D2, - - - Pm be the privileged processors in last(h). Let d; be the distance between p; and ps.

We exhibit a history where (1) the privileged processors (ps, ..., pm) stay privileged; and (2) other
processors are not privileged (except may be py). At that point, at least one privilege has disap-
peared. By extension, we present a history, where all privileges except one are similarly removed.
Let Cpp be a subcone of Cy where b’ verifies the following properties: (1) A’ ends with an action
of p; where it passes its privilege; (2) h' contains one action of p;; and (3) no other processor
has passed its privilege. As the scheduler is k-bounded, h’ exists and other privileged processors
perform at most k actions in h’. Each time that a privileged processor performs an action in b’ its
rand_bool variable takes the value 1, when p; performs its action, its rand_bool variable takes the

value 0. We have |h'| < k(m — 1) + 1 and Ps(Cppr) > Pst(Ch).%k(m_l)H.
According to the definition of A, in last(hh’), the right neighbor of p; (p’) is privileged and p; is
no more privileged (the privilege of p; has reached p').

Step by step, we build a subcone of C},, Cpj, where h; verifies the following properties: (1) hy
ends with an action of the left neighbor of ps where it passes its privilege to po (after this action,
p2 may or may not be privileged); (2) po, ps3, ..., pm have kept their privilege; (3) in last(hhq),
the privilege of pl has reached po. In last(hi), there are at most m — 1 privileges. We have
|h1] < dy(k(m —1)+1) <kN%+ N, and

Py (Chpy) > Pst(Ch)-%dl(k(m71)+l) > Pst(Ch)-%kN2+N-

Finally, we build a subcone of Cj, Cpy where in last(hH), there is only one privileged proces-

sor. We have [H| < (m — 1)(kN? + N) < kN® + N2, and Py(Chpr) > Pu(Cp) 4™ DENTN

23

Protocol 5.3 Randomized token circulation protocol under any scheduler: SSCTC

Field variables on p:
dty is a variable taking value in [0, my -1]. (the variable represents the deterministic token)
tp is a variable taking value in [0, my-1]. (the variable represents the privilege)

Random Variables on p:
rand_bool, taking value in {1, 0}. Each value has a probability 1/2.

Predicate:
Deterministic_token(p) = dt, — dt;, # 1 mod my
Privilege(p) = t, — t;, # 1 mod my

Macro:
Pass_Deterministic_token(p) : dt, := (dt;, + 1) mod my
Pass_privilege(p) : t, := (t, + 1) mod my

Action on p:
Aj:: Deterministic_token(p) A —Privilege(p) —
Pass_Deterministic_token(p)
Ag:: Deterministic_token(p) A Privilege(p) —
Pass_Deterministic_token(p); if (rand_bool, = 0) then Pass_Privilege(p)

1kN34+N?2 1kN34+N?2
Pst(Oh)-§ . Est:§ ,Nst:kN3+N2. O

Lemma 5.4 Let st be a strategy of the protocol CTC. Let Cp, be a cone of st so that in last(h),
there is only one privilege. The probability of the subcone Cpp1 of the cone Cp where hl is a round
and |hl| = N is Py(Cp).1".

Proof: Let p be the processor holding the privilege in the configuration last(h). There is a
probability 1/2 that the privilege passes to the p’s right neighbor, in one computation step. The
previous reasoning is repeated until the privilege goes back to p. Let Cpp1 be the subcone of Cp,
where in last(hh1), p holds again the privilege after that all other processors have held the privilege

in h1. The probability of this cone is P(Cpp1) = P(Ch).%N and |hl| = N.
Lemma 5.5 The protocol CTC is correct.

Proof: Let st be a strategy. Let Cj, be a cone of st ending by a legitimate configuration. We call €},
the probability of the subcones of Cj,, Cpjr, where |h'| < kN and during the history A’ the privilege

completes at least one round. Applying the lemma 5.4, we found that €} > Py (Cp).(1 — (1 — %N))
Set e =1—(1— %N)k Suppose that €, > Py (C},).€x. In the same way as the proof of theorem 3.5,
we prove that €, > Py (Ch).(ex+(1 —ek).%N). Hence, €} | > Py(C}).€x11. The probability of the
set of computations of C, in which the privilege completes at least one round is 1. By induction, we
prove that for any integer n, the probability of the set of computations of C}, in which the privilege
completes at least n rounds is 1. O

24

Theorem 5.2 The protocol CTC is self-stabilizing for the specification SPyg under a k-bounded
scheduler.

Proof: The convergence is proven by lemma 5.3 and corollary 3.4. The correctness is proven by
the lemma 5.5. O

The cross-over composition between the protocol C'T'C and the protocol DT'C is called SSCTC
and presented in the protocol 5.3. SSCTC = CTC{ODTC.

Theorem 5.3 The protocol SSCTC is self-stabilizing for the specification SPyp under an arbi-
trary scheduler.

Proof: The protocol SSCTC is the result of the cross-over composition between the protocol CTC
which is self-stabilizing under a (N-1)-bounded scheduler for the specification SPyg (theorem 5.2)
and the protocol DT'C which is a (N-I)-fair protocol (theorem 5.1). Using the theorem 4.4, we
prove that the protocol SSCTC' is self-stabilizing for the specification SPy;p under an arbitrary
scheduler. O

5.3 Leader election under an arbitrary scheduler
5.3.1 Leader election under a k-bounded scheduler

We present the randomized protocol LE (see the protocol 5.4). We prove, using the attractor
technique, that the protocol LE is self-stabilizing for the leader election specification under a k-
bounded scheduler.

Notation 5.3 A processor has a privilege, if it verifies the Privilege predicate. A processor is a
leader, if it verifies the Leader_mark predicate. These predicates are defined in the protocol 5.4.

The goal of the color is to freeze the leader when it is unique, but also to ensure the circulation of
leader when the ring contains several ones. When a processor is privileged and leader, it randomly
selects a color. During the circulation of the privilege this color will be communicated to every
processor of the ring (A3). The leader waits until becoming privileged again. At that time, if the
color of its left neighbor is the same as its color, then it stays leader and starts the checking again
by randomly selecting a new color (action A3). In this case, it “assumes” that it is the only leader
in the ring.

Since the color is randomly selected, when there are several leaders in the ring, a leader will
eventually become privileged when its left neighbor does not have the right color (i.e. its color,
called co). In this case, the leader passes its leadership (action Aj) to its right neighbor. It
“assumes” that several leaders coexist in the ring. The leadership do several moves in the rings
up to catch the next leader. More precisely, the leadership moves until it reaches a processor that
does not have the co color (usually this processor is a leader). As after an A1 move, a processor
takes the co colors; in all cases, the leadership will do at most N moves.

Once the ring is stabilized, there is one frozen leader and one privilege that circulates. We prove
that LE is a self-stabilizing leader election protocol under a k-bounded scheduler.

25

Protocol 5.4 Randomized leader election on anonymous and unidirectional rings: LE
Field variables on p:
Imy is a variable taking value in [0, my -1]. (the variable represents the leader mark)
tp is a variable taking value in [0, my-1]. (the variable represents the privilege)
¢p is a boolean. (0 = blue and 1 = green)

Random Variables on p
(The two independent variables, are the two fields of the unique processor random variable.)
rand_bool, taking value in {1, 0}. Each value has a probability 1/2.
rand_color, taking value in {blue, green}. Each value has a probability 1/2.

Predicate:
Leader_mark(p) = lmy, — lmy, # 1 mod my
Privilege(p) = t, — t;, # 1 mod my

Macro:
Pass_Leader_mark(p) : lmy := (Imy, + 1) mod my
Pass_privilege(p) : t, := (tj, + 1) mod my

Action on p:
Ai:: Leader_mark(p) A (¢p # cip) A Privilege(p) —
if (rand_bool, = 0) then {c, := c}p; Pass_Leader_mark(p); Pass_privilege(p)}
Az:: Leader_mark(p) A (¢p = cp) A Privilege(p) —
if (rand_bool, = 0) then {c, := rand_color,; Pass_privilege(p)}
As:: = Leader_mark(p) A Privilege(p) —
if (rand_-bool, = 0) then {c, := c,; Pass_privilege(p)}

Theorem 5.4 The predicate Ly is a probabilistic attractor of true on the protocol LE under a
k-bounded scheduler.

Proof: Similarly to the proof of the lemmas 5.3, we prove that the predicate L,k is a probabilistic
attractor of {rue on the protocol LE under a k-bounded scheduler. O

Once, a computation of LE has reached a configuration satisfying Ls;g; only one processor is
enabled (the privileged one) at each computation step, whatever the computation performed. Thus
the scheduler has no choice: it must select the enabled processor. After the next computation
step, according to rand-bool value, either this processor still has the privilege or the privilege has
moved to its right neighbor. In all cases, the scheduler has no choice. Therefore, all computations
have the same pattern: a processor perform several actions till it has the privilege then its right
neighbor gets the privilege and performs several actions, and so on. There is another pattern: “the
privileged processor stays privileged forever”; but on any strategy, the probability of this pattern
is zero.

Let coherent_color(p) be the following predicate over configurations: “ p verifies coherent_color(p)
predicate if (1) all processors between p and ¢ have the p’s color (¢ being the first privileged

26

processor at p right), or (2) all processors between p and the first leader to the p right have the
p’s color”. Let coherence(k) be the following predicate over configurations: “ there are at least k
coherent_color processors in the ring”.

The specification for the leader election problem is the following predicate SPrg: “there is only one
leader and its stays leader forever”. Let L;p be the following predicate over configurations: “(1)
coherence(N) is verified, (2) there is only one leader, and (3) there is only one privileged processor”.
A legitimate configuration for the protocol LFE is a configuration satisfying the predicate L.

Observation 5.1 Coherence(0) is equal to the true predicate.

The proof for self-stabilization of the protocol LE will be made using the attractor technique. In
fact, we prove that the predicate L, g is a probabilistic attractor for the predicate Lsg.

Lemma 5.6 For any processor p, coherent_color(p) is a closed predicate.

Proof: Let p be a coherent_color processor. We name ¢ the first privileged processor at p’s right.
If there is a leader ¢’ on the path from p to g where ¢’ # ¢ and ¢’ # p then after any action,
p still verifies the coherent_color predicate (only privileged processors may perform an action).
Otherwise, all processors between p and ¢ have the p’s color and are not leaders (i.e. the left
neighbor of ¢ has the p’s color). After any action of a privileged processor other than ¢, p still
verifies the coherent_color predicate. We study the action of ¢. First case, ¢ is a leader that has
the p’s color: to pass the privilege, it performs the action 42, thus it stays leader. Second case, q is
a leader that does not have the p’s color: when it passes its privilege, it passes the leadership and
takes p’s color (action A1). Third case, ¢ is not a leader, after passing its privilege by the action
A3, q gets the p’s color. In all cases, p still verifies the predicate coherent_color(p), after the ¢’s
action. O

Corollary 5.2 For all k € [0, N], coherence(k) is a closed predicate.

Corollary 5.3 On the protocol LE under any scheduler, the predicate Lysg and Lpg are closed
(see the proof of lemma 5.2).

Lemma 5.7 Let st be a strategy of the protocol LE under a k-bounded scheduler. Let i be an integer
less than N. There exist €54 > 0 and Ng > 1 such that any cone of st satisfies Local_Convergence
(Lag A coherence(i), Lyrg A coherence(i + 1), dsg, Ny).

Proof: Let C}, be a cone of st where last(h) - Lysp. Assume that there are exactly ¢ processors
that verify the predicate coherent_color on last(h). We name ¢ the privileged processor. We name
p the first processor at ¢’s right that does not verify the coherent_color predicate.

We will build a subcone of Cj,, Cpp such that at last(hh'), p verifies the coherent_color predicate.
As the coherent_color predicate is closed then last(hh') verifies the coherence(k + 1) predicate.

We exhibit a scenario where (1) the rand_bool variable of all processors between ¢ and p takes the
value 0 (i.e they pass the privilege in one computation step); (2) the rand_color variable of all
processors between ¢ and p takes the value blue; and (3) the scenario ends with an action of p.

27

The leaders between ¢ and p perform either the action Al or A2, but in all cases, they pass the
privilege in one computation step.

Thus, we build a subcone of C},, Cy,r where on last(H1H), p’s right neighbor is privileged, Moreover,
we have |h'| < N, and Py (Chp) > Pst(Ch).%2N. On last(h), the privilege is held by the right
neighbor of p. Thus p is a coherent_color processor.

2N
Ng =N and € = 17 O

Lemma 5.8 Let st be a strategy of the protocol LE under a k-bounded scheduler. There exist
est > 0 and Ng > 1 such that any cone of st satisfies Local_Convergence(Larg N coherence(N),

Lig, Oty ngt)-

Protocol 5.5 Randomized leader election protocol under any scheduler: SSLE
Field variables on p:
dt, is a variable taking value in [0, my-1]. (the variable represents the deterministic token)
Im,, is a variable taking value in [0, my-1]. (the variable represents the leader mark)
tp is a variable taking value in [0, my-1]. (the variable represents the privilege)
¢p is a boolean. (0 = blue and 1 = green)

Random Variables on p:
rand_bool, taking value in {1, 0}. Each value has a probability 1/2.
rand_color, taking value in {blue, green}. Each value has a probability 1/2.

Predicate:
Deterministic_token(p) = dt, — dt;, # 1 mod my
Leader_mark(p) = lmy, — lmy, # 1 mod my
Privilege(p) = t, — t;, # 1 mod my

Macro:
Pass_Deterministic_token(p) : dt, := (dt;, + 1) mod my
Pass_Leader_mark(p) : lmy := (Imyy + 1) mod my
Pass_privilege(p) : t, := (¢, + 1) mod my

Action on p:

Bi:: Deterministic_token(p) A Leader_mark(p) A (¢, # cip) A Privilege(p) —
Pass_Deterministic_token(p);
if (rand_bool, = 0) then { ¢, := ¢p; Pass_Leader_mark(p); Pass_privilege(p)}

Bo:: Deterministic_token(p) A Leader_mark(p) A (¢, = ¢jp) A Privilege(p) —
Pass_Deterministic_token(p);
if (rand_bool,, = 0) then {c, := rand_colory; Pass_Privilege(p)}

Bs:: Deterministic_token(p) A —~Leader_mark(p) A Privilege(p) —
Pass_Deterministic_token(p);
if (rand_bool, = 0) then { ¢, := ¢p; Pass_Privilege(p) }

By:: Deterministic_token(p) A —Privilege(p) — Pass_Deterministic_token(p)

28

Proof: Let C}, be a cone of st where last(h) - Lyg A coherence(N). If there is one leader in
last(h), then last(h) - Lpp. Assume that there are several leaders in last(h). Let us denote by ¢
the privileged processor. We name p the first leader at ¢’s left.

1. on last(h), the privilege processor is not a leader. The privilege reaches p, after that
each processor between ¢ and p passed the privilege in one computation step (i.e. the rand_bool
variable of all processors between ¢q and p takes the value 0) In the cone C},, we exhibit the subcone,

Chpr, where in last(hh'), p is privileged; and, we have |h/| < N, Pg(Chpr) > Pst(Ch).%N.

We name H1 the history hh'.On last(H1), (1) the privileged leader has the same color as its left
neighbor, or (2) the privileged leader has a different color from its left neighbor. In the last case,
we call H2 the history H1.

2. on last(H1), a leader is privileged, and has the same color as its neighbor. We name
p the privileged leader and s the next leader at p’s right. Let us study the scenerio where (1) p
performs the action A2 and does not get the s’ color; and (2) processors between p and s pass the
privilege in one computation step. Thus, we build a subcone of Cyy, C g where on last(H1H'),
s is a privileged leader and the color of s is not equal to the color of its left neighbor (p’s color).
Moreover, we have |H'| < N, and Py (Cyigr) > Pst(C’Hl).%NJrl Now, we call H2 the history
H1H'.

3. On last(H2), a leader is privileged and has different color from its left neighbor.
We name ¢ the privileged leader, and r the first leader at t right. As ¢ verifies the coherent_color
predicate, all processors between ¢ and r have the p’s color. There is a scenario where the privilege
and the leadership reach r, after that each processor between p and r passed the privilege and the
leadership in one computation step by the action Al (their rand_bool variable has taken the value
0). The leadership that was on ¢ is now on r; In the cone Cpo, there is a subcone, Cpopr, where

|H"| < N and Py (Cgopgr) > Pst(CHg).%N. On last(H2H"), thus there are less leaders than on
last(H2) (the leadership on ¢ is now amalgamated with the leadership in s).

By repeating the step 1, 2 and 3 at most m — 1 times (where m is the number of leaders in last(h));
we get a configuration where there is one leader. There is a subcone of Cj, Cpiz where (1) there is

only one leader, (2) |H| < 3N, and (3) Pu(Chzr) > Par(Cy)- 57 V0. =
Theorem 5.5 The protocol LE is self-stabilizing for the SPLp specification under a k-bounded
scheduler.

Proof:
e Convergence: In the protocol LE under a k-bounded scheduler, the predicate Ly/p is a
probabilistic attractor of true (theorem 5.4). The predicate Ly g is a probabilistic attractor

for the predicate Ljsp: the hypothesis of the corollary 3.3 are proven by the lemmas 5.7
and 5.8.

e Correctness: As the predicate L is closed, when L g is verified on a configuration, there
is only one leader. Whatever the computation performed, the leader stays the leader: the
action A; is never performed.

The condition of the theorem 3.4 are verified; The protocol LE is self-stabilizing for specification
S Py under a k-bounded scheduler. O

29

5.3.2 Leader election under an arbitrary scheduler

Let SSLE be the result of the cross-over composition between the protocols LE and DTC (SSLE =
LEGDTC). The code of SSLE is given in the protocol 5.5.

Theorem 5.6 The protocol SSLE is stabilizing for the leader election specification under an ar-
bitrary scheduler.

Proof: The protocol SSLE is a protocol obtained by the cross-over composition of LE and DTC.
The protocol LE is self-stabilizing under a (N-1)-bounded scheduler (theorem 5.5) and the protocol
DTC is (N-1)-fair (theorem 5.1). The protocol SSLE is self-stabilizing under an arbitrary scheduler
according to the theorem 4.4. O

The randomized SSLE protocol uses 2 - m?v states per processor; each processor needs O(lgm)
bits. Note that the value of my is constant on average.

6 Conclusion

In this paper, we presented and proved a new randomized leader election protocol, that needs the
minimal amount of space. Introducing explicitely the scheduler in the model allowed us to exhibit
the notion of strategy, which is the key element to be equipped with a probability. It should be
noticed that this model is quite general and does not depend neither on the ring structure nor on
stabilization, and could be used for proving other randomized protocols under a non-deterministic
scheduler. It should be also noticed that the probabilistic proof techniques could possibly apply
to other types of protocols. For instance, the proof (informal) of Rabin’s randomized Byzantine
protocol (in [20]) uses the fact that at each round there is a positive probability to reach agreement
(analogous to probabilistic convergence for self-stabilizing systems) and the fact that once reached,
agreement persists (anologous to closure). We think that the tools that we presented allow to give a
precise proof of Rabin’s protocol, in which the behaviour of ”Byzantine Generals” is made explicit
in the notion of strategy.

We also introduced a new protocol composition, the cross-over product. We showed how the cross-
over composition yields an automatic technique for transforming a protocol designed and proved
for a fair scheduler, into an equivalent protocol for an unfair ones. This technique can be used as
soon as a fair token circulation (albeit the scheduler is unfair) is available on the network structure.
We gave such a fair token circulation on rings and we are presently working to extend it to general
networks.

7 Acknowledgments

The authors thank P. Faith Fich for all the suggestions which clearly have improved our paper. We
thank also Laurent Rosaz who has an important contribution in simplifying the presentation of the
probabilistic framework.

30

References

[1]

[12]

[13]

[14]

E. Anagnostou and R. El-Yaniv. More on the power of random walks - uniform self-stabilizing
randomized algorithms. In WDAG91 Distributed Algorithms 5th International Workshop Pro-
ceedings, Springer-Verlag LNCS:579, pages 31-51, 1991.

D. Angluin. Local and global properties in networks of processors. In 12th Symposium on the
Theory of Computing, pages 82-93. ACM, 1980.

B. Awerbuch and R. Ostrovsky. Memory-efficient and self-stabilizing network reset. In
PODCY Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 254-263, 1994.

J. Beauquier, S. Cordier, and S. Delaét. Optimum probabilistic self-stabilization on uniform
rings. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 15.1-15.15,
1995.

J. Beauquier, M Gradinariu, and C. Johnen. Memory space requirements for self-stabilizing
leader election protocols. In POD(C99 Proceedings of the Eighteenth Annual ACM Symposium
on Principles of Distributed Computing, pages 199-208, 1999.

P. Billingsley. Probability and Measure. John Wiley & Sons, 1986.

L. Christoff. Testing equivalences and fully abstract models for probabilistic processes. In CON-
CUR’90 First International Conference on Concurrency Theory, Springer-Verlag LNCS:458,
pages 126-140, 1990.

S. Dolev and T. Herman. Parallel composition of stabilizing algorithms. In Proceedings of the
fourth Workshop on Self-Stabilizing Systems, pages 25-32, 1999.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only
read /write atomicity. Distributed Computing, 7:3-16, 1993.

S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck games. IEEE
Transactions on Software Engineering, 21:429-439, 1995.

J. Durand-Lose. Random uniform self-stabilizing mutual exclusion. In Distributed computing
: OPODIS 98, pages 89-97. Hermes, 1998.

M.G. Gouda and T. Herman. Adaptive programming. IEEE Transactions on Software Engi-
neering, 17:911-921, 1991.

M.G. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions on
Computers, 40:448-458, 1991.

A. Israeli and M. Jalfon. Token management schemes and random walks yield self-stabilizing
mutual exclusion. In PODC90 Proceedings of the Ninth Annual ACM Symposium on Principles
of Distributed Computing, pages 119-131, 1990.

31

[15]

[16]

[17]

G. Itkis and L. Levin. Fast and lean self-stabilizing asynchronous protocols. In FOCS94
Proceedings of the 34th Annual IEEE Symposium on Foundations of Computer Science, pages
226-239, 1994.

H. Kakugawa and M. Yamashita. Uniform and self-stabilizing token rings allowing unfair
daemon. IEEE Transactions on Parallel and Distributed Systems, 8:154-162, 1997.

A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing symmetry breaking in constant-
space. In STOC92 Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pages 667-678, 1992.

A. Mayer, R. Ostrovsky, and M. Yung. Self-stabilizing algorithms for synchronous unidi-
rectional rings. In SODAY6 Proceedings of the Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 564-573, 1996.

A. Pogosyants and R. Segala. Formal verification of timed properties of randomized distributed
algorithms. In PODCY95 Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 174-183, 1995.

M. O. Rabin. Randomized byzantine generals. In FOCS8) Proceedings of the 24st Annual
IEEE Symposium on Foundations of Computer Science, pages 403-409, 1984.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems, PhD
Thesis. PhD thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In CONCUR’9),
Fifth International Conference Concurrency theory, Springer-Verlag LNCS:836, pages 481—
496, 1994.

R.J. van Glabbeek, S.A. Smolka, B. Steffen, and C.M.N. Toft. Reactive, generative and
stratified models of probabilistic processes. In Proceedings 5th Annual Symposium on Logic in
Computer Science, Philadelphia, USA, 1990.

G Varghese. Compositional proofs of self-stabilizing protocols. In Proceedings of the Third
Workshop on Self-Stabilizing Systems, pages 80-94. Carleton University Press, 1997.

S.H. Wu, S. A. Smolka, and E.W. Stark. Composition and behaviors of probabilistic i/o
automata. In CONCUR’9; Fifth International Conference Concurrency theory, Springer-
Verlag LNCS:836, pages 513-528, 1994.

32

