Optimization of Service Time and Memory Space in a
Self-Stabilizing Token Circulation Protocol on Anonymous
Unidirectional Rings

Colette Johnen

L.R.I./JC.N.R.S., Université de Paris-Sud,
bat 490, 91405 Orsay Cedex, France
colette@lri.fr
www.Iri.fr/~colette/

Abstract We present a self-stabilizing token circulation protocol on unidirectional anonymous
rings. This protocol does not required processor identifiers, no distinguished processor (i.e. all
processors perform the same algorithm). The algorithm can deal with any kind of schedulings even
unfair ones.

Our protocol is a randomized self-stabilizing, meaning that starting from an arbitrary configuration
(in response to an arbitrary perturbation modifying the memory state), it reaches (with probability
1) a legitimate configuration (i.e. a configuration with only one token in the network). Once the
system is stabilized the circulation of the sole token is 1-fair (i.e. in every round, every processor
obtains the token once). N token circulations are done in at most 0(N?) computation steps where
N is the ring size.

The memory space required by our algorithm on each processor O(My), My being the smallest
non divisor of ring size. In [BGJ99a], it was been proven that the minimal memory space required
by a self-stabilizing token circulation under any unfair distributed scheduler is O(Mp). Previ-
ous randomized self-stabilizing token circulation protocols design to work under unfair distributed
schedulers require O(NN) memory space or they have not bound on the service time (i.e. duration
of a token round). Thus, we present the first protocol having the two major advantages: a bounded
service time and optimal in memory space.

Keywords: Distributed algorithm, self-stabilization, mutual exclusion, token circulation, anony-
mous ring, unfair scheduler, service time.

Résumé Nous présentons un protocole auto-stabilisant de circulation de jeton sur les anneaux
anonymes et unidirectionnels. Les processeurs ne peuvent pas étre distingués car ils n’ont pas
d’identifiant et ils exécutent tous le méme algorithme. L’algorithme est auto-stabilisant quelque
soit 'ordonnancement des processeurs (méme si 'ordonnancement est inéquitable).

L’algorithme que nous présentons est probabiliste. A partir d’une configuration arbitraire (obtenu
apres une perturbation dans le réseau) il atteint avec une probabilité égale & 1 une configuration
légitime (c-a-d une configuration avec un seul jeton).

Une fois que le systéme est stable, la circulation de I'unique jeton est 1-équitable (durant un tour,
chaque processeur obtient une et une seule fois le jeton). N tours du jeton sont réalisés en au plus
0(N?) pas de calcul, N étant la taille de I’anneau.

[’espace mémoire demandé par notre protocole est O(My) états par processeur (My étant le plus
petit entier non diviseur de la taille de ’anneau). Il a été prouvé que I’espace mémoire nécessaire
a un protocole auto-stabilisant de circulation de jeton sous n’importe quel ordonnancement est

O(My) [BGI99a].

Soit I'espace mémoire demandée par les précédents protocoles est O(N) états par processeur, soit
la durée maximale d’une circulation du jeton est non bornée. Nous présentons donc le premier pro-
tocole ayant les deux propriétés suivantes: optimal en espace mémoire et ayant un borne supérieure
sur la durée d’un tour du jeton.

Mots clés: systemes réparties, auto-stabilisation, systémes asynchrones, anonyme processeur,
exclusion mutuelle, circulation de jeton, temps de service

1 Introduction

Robustness is one of the most important requirements of modern distributed systems. Various
types of faults are likely to occur at various parts of the system. These systems go through the
transient faults because they are exposed to constant change of their environment.

The concept of self-stabilization [Dij74] is the most general technique to design a system to tolerate
arbitrary transient faults. A self-stabilizing system, regardless of the initial states of the processors
and initial messages in the links, is guaranteed to converge to the intended behavior in finite time.

Mutual exclusion is a fundamental task for the management of distributed system. A solution to
the problem of mutual exclusion is to implement a token circulation, the processor having the token
is granted access to the critical resource.

In this paper we address the task: token circulation on anonymous rings of any size. We have
in mind to obtain solutions both self-stabilizing and providing a good service time. Service time
is the maximal time in term of computation steps required by the protocol to perform a token
circulation. Because, on anonymous networks, without the ability to break symmetry, deterministic
self-stabilizing token circulation are impossible, our protocol is randomized.

Related works. Based on the random walks techniques, self-stabilizing randomized token circu-
lation protocols on bidirectionnel anonymous networks have been designed [1J90, DL0O0].

[Her90, BCD95] present randomized token circulation protocols on unidirectional rings that sta-
bilize with some type of schedulers (resp. synchronous scheduler and k-bounded scheduler). In
[KY97], the first token circulation protocol on unidirectional rings that self-stabilizes under unfair
distributed schedulers is presented. [BGJ99b] presents a space optimal token circulation protocol
on unidirectional rings that self-stabilizes under unfair distributed schedulers. An adaptation of this
protocol that has a better stabilization time is presented in [Ros00]. In [BDLGJ02], the protocol
of [BGJ99b] is extended in order to manage any anonymous unidirectional networks.

The protocols of [Her90, BCD95, KY97, BGJ99b, Ros00, DGTO00] are all based on the same tech-
nique: “to randomly retard the token circulation”. A processor having a token randomly decides
to pass or not the token. Under any scheduler, there is a probability one that one token T’ moves
faster that the other tokens, thus 7”7 will eventually catches up the others tokens and will eliminate
them.

The drawback of this technique is the service time. Once the ring is stabilized (i.e. there is
only one token in the ring), the only token also delays its moves. If the delay is unbounded
[BCDY95, KY97, BGJ99b, Ros00] the upper bounded of the service time is infinite: a processor may
never get the token because the token stay forever on the same processor. More precisely these

protocols are only weakly self-stabilizing for the specification “one token fairly circulates in the
ring”.

Datta and al. [DGT00] have adapted this technique to guarantee an upper bounded and an average
bounded of the service time (the both are O(N?)): the protocol ensures a boundary to the slowness
of a token move.

Kakugawa and al. in [KY97] have presented a token circulation protocol where the token circulation
is not delayed. But this protocol can work only under a weak scheduler (a centralized one). By
delaying the token circulation, Kakugawa and al. in [KY02] have adapted their protocol presented
in [KY97] to run under any unfair distributed scheduler. The service time is 2N.

Johnen [Joh02] have presented a protocol where once stabilized, the only token is not delayed
or locked; therefore this protocol ensures an optimal service: after N computation steps, each
processor has obtained one time the token.

Our contribution. We present a self-stabilizing token circulation protocol for anonymous uni-
directional ring of any size under unfair distributed scheduler. Our protocol is not based on the
technique “to randomly delay the token circulation”.

Our protocol does not require fairness property from the scheduler. On the contrary, under any
scheduler, the obtained computation is N-fair even during the stabilization period (i.e. two actions
of a processor, another processor performs at most N actions).

Once stabilized, the service time depends only of the scheduler. Under a synchroneous scheduler,
a token circulation is done in N computation steps (the optimal time). Under any scheduler, N
token circulations require at most O(N?) computation steps.

As the protocols of [DGT00], [KY02] and [Joh02], our protocol is self-stabilizing for the specification
“one token fairly circulates in the ring”. The protocol of [DGT00], [KY02] and [Joh02] have an
upper bounded on the service time (a token round takes respectively O(N?3), 2N, or N computation
steps). The protocols of [DGTO00], [KY02] and [Joh02] require O(log(N)) memory space on each
processor. Our protocol requires only O(My) memory space on each processor, My being the
smallest non divisor of ring size N (My is constant on the average). In [BGJ99a), it was been
proven that the minimal memory space required by a self-stabilizing token circulation under any
unfair distributed scheduler is O(My). Thus, our protocol is optimal in memory space.

We give a complete formal proof of correctness and convergence of our protocol.

Outline. The model for randomized self-stabilizing protocols is presented in section 2. In section 3,
we present SS_T'C' Weak: a weak version of our protocol that can deal only with weak schedulers
(k-bounded ones). The self-stabilization SS_T'C'_Weak is proven in section 4. In section 5, we
present S.S_T'C": our self-stabilizing token circulation protocol for unidirectional anonymous rings
of any size. The later protocol can deal with any unfair distributed scheduler.

2 Model

Abstract model. A non deterministic distributed system is represented in the abstract model
of transition systems. A distributed system is a tuple DS = (C,T,3,7) where C is the set of all
system configurations; X is the finite alphabet. For any letter o of 3, T}, is a transition function of
C to C subsets. 7 is a C subset called the initial configurations. We said that there is a transition
from ¢ of label « if T, (c) # ¢. The outputs of the transition T, (c) are the configurations of the
set T,(c). In a randomized distributed system, there is a probabilistic law on the outputs of a
transition. Let T'C'2 be the distributed system defined as ({4, B1, B2},T,{a,b1,02},{A, B1, B2})
where T, (4) = {4, B1, B2}; Ty (A) = {A, B2}; Ty (A) = {A, Bl}; Tin(Bl) = Tye(B2) = {B1, B2}

and Ty (B1) = Ty1(B2) = ¢. The probabilistic law associates to the transition 7,(A) is 1/2 for the
configuration A and 1/4 for Bl and B2. The probability laws associated to other transitions are
1/2 for each transition output.

A computation step is a pair of configurations (¢;, ¢;) where ¢; is an output of a transition
starting from ¢;. A computation e of DS is a sequence of consecutive computation steps e =
(co,c1), (€1,¢2) where ¢g € Z. A computation is mazimal, if the computation is either infinite,
or finite and the final configuration is a deadlock. e, = (A4, A)*(A, B1)((B1, B2)(B2,B1))" is a
maximal computation of T'C2 for any value of z. In the sequel of our paper, all computation is
assumed to be maximal.

Let ¢ be an initial configuration of a distributed system. The c-tree is the tree composed of
all maximal computations whose initial configuration is ¢. The computation forest of a distributed
system (C,T,%,7) is the set of all c-trees where ¢ € Z. The figure 1 illustrates the notion of tree.

A
b2 b a
.
/K 1 12 Y4/ 14 2
[
A B1 A B2 B2 B1 A

A B2A B2B2 BlL A Bl B2 5 gy B2B2 B1 A BL B2 g1 B, Bl B2A B2A B2B2 BL A

Figure 1: The beginning of A-tree of the distributed system 7T(C?2

Interpretation. In fact, the distributed system is a networks of processors (Proc) computing
protocol P. A protocol has a collection of variables (internal and/or field) and has a code part.
A processor communicates only with its neighbors (a subset of Proc). Communication among
neighbors is carried out by field variables.

The state of a processor is the collection of values of the process’s variables (internal or field).
A configuration of a distributed system is a vector of processor states. A local configuration is the
part of a configuration that can be “seen” by a processor (i.e. its state and the field variables of
its neighbors).

The code is a finite set of guarded rules: (i.e. label:: guard — action).
The guard of a rule on p is a boolean expression involving p local configuration. The action of a p
rule updates the p state. If the action is randomized, several statements are possible, and each of
them has some probability. A processor p is enabled at a configuration ¢, if the rule guard of p is
satisfied in c.

Computation step versus transition. Let ¢ be a configuration, and C'H be a subset of enabled
processors at ¢. We denote by < ¢ : C'"H > the set of configurations that are reachable from ¢ after
that the processors of C'H have performed an action. A computation step has three elements:
(1) an initial configuration: ¢, (2) a set of enabled processors: C'H, and (3) a configuration of
< ¢ : C'H >. The computation steps can be interpreted in terms of transitions in the abstract
model: < ¢: C'H > is the output configurations of the abstract transition Top(c¢) (in this abstract
model, the alphabet letters represents the subsets of Proc).

For instance, TC?2 is the system transition representing the weak self-stabilizing token circula-
tion [BCD95] on the unidirectional ring of size 2. Each processor has the same rule:

Token, — if (random(0,1) = 0) then Pass_Token,,.

A is the configuration where all processors have a token. B1 (resp. B2) is the configuration where
only the processor pl (resp. p2) has a token. The letter a represents the processor subset {pl, p2},
the letter b1 (resp. b2) represents the processor subset {pl} (resp. {p2}).

In the case of a deterministic protocol, a computation step is totally defined by the initial
configuration and the set of enabled processors. But in the case of randomized protocol, the
final configuration depends on the output of each processor action. Therefore, in the case of
randomized protocols, the computation step has a fourth characteristic element: the probabilistic
value associated to the computation step. This value depends on the probabilistic law of the random
variable of each processor involved in the computation step.

Strategy. Clearly, no probabilistic space can be directly based on computation tree structure.
Specific subtrees can equipped with a probabilistic space: the strategies [BGJ99b]. The formal
strategy definition is given below.

Definition 2.1 Let DS be a distributed system. Let T'r be a tree of DS. A DS strategy is a subtree
of Tr where at a node, there is only one outgoing transition.

The basic notion used to define a probabilistic space on the computations of a given strategy
st is the cone. Cones have been introduced in [Seg95]. A cone C} of st is the set of all st’s
computations with the common prefix h. length(h) is the number of computation steps in h. The
measure of a st-cone Cj, is the measure of the prefix i (i.e., the product of the probability of every

computation step occurring in h). For instance, the measure of stl-cone Cpy (figure 2.a) where
hl = (A, a, B2)is 1/4; the measure of st2-cone Cpy (figure 2.b) where h2 = (A, b1, B2) is 1/2.

oA

12 B2
a /4 B1 b2
/ V4i~e B2 Vo B2 142—9B1
B2 bl
a b1l y Ae——e@
Ae ‘ B1

% B1 2 12 ®Bl1
B2 A b2 To-en

B1

stl trategy of DS2 st2 trategy of DS2

Figure 2: The beginning of two T(C?2 strategy stl

Scheduler. Basically, a scheduler is intended to be an abstraction of the external non-determinism.
Because the effect of the environment is unknown in advance, the scheduler notion must be able
to formalize any external behavior. Defining a scheduler in some operational way - at that point
of the computation the scheduler has such or such choice - raises the problem to define exactly in
function of what the choice is made. If the choice depends of the actual configuration and of the

history, the generality of the scheduler is restricted. How, for instance, express that the scheduler
must be fair. That is the reason why in a deterministic system, we define a scheduler as a predicate
(subset) on infinite computations. In our framework, the key notion is the strategy. Formally, a
scheduler is completely defined by the set of strategies which it may “produce”.

Definition 2.2 Let DS be a distributed system. A scheduler D is a set of DS strategies.

Let DS be a distributed system. The unfair distributed scheduler is the set of all DS strategies.
The fair scheduler is the set of DS strategies that contain only fair computations. The e-fair
scheduler is the set of DS strategies st such that Py (unfair computations) = ¢. A k-bounded
scheduler is the set of strategies that contain only k-bounded computations (i.e. any computation
verifying the following property “until a processor p is enabled another processor can perform at
most k actions”).

2.1 Self-stabilization of a randomized protocol

In this section, we define the self-stabilization for randomized protocols with respect to the proba-
bilistic model.

Notation 2.1 lLet st be a strateqy of a distributed system DS performing a protocol P under a
scheduler D. Let PR be a predicate over configurations. The notation ¢ = PR means that the
configuration ¢ verifies the predicate PR. We note by EP R4 the set of st computations reaching a
configuration that satisfies the predicate PR.

Definition 2.3 (Predicate closure) Let L be a predicate defined on configurations of a dis-
tributed system DS. L is closed if any computation step cs from any configuration ¢l that verifies
L reaches a configuration c2 that verifies L.

A problem specification S P is a predicate on computations; for instance the specification of the
leader problem is “the system has and will always have one and only one leader; the leadership does
not move”. The definition of self-stabilization of DS under the scheduler D for a specification SP
required the definition of a predicate on configurations (legitimate predicate) L. If the DS converge
to L and verifies the L-correctness property then DS is a self-stabilizing system for S P under D.
In a deterministic system, the convergence property is “all computations under a scheduler D
reach a legitimate configuration”. In a randomized system the definition of convergence property
is probabilistic: “the probability to reach a legitimate configuration is 1 in any strategy of the
scheduler D”. The L-correctness property is deterministic in any distributed system (deterministic
or not): “any computation from a legitimate configuration ¢ (i.e. ¢ L) satisfies the specification

SP”.

Definition 2.4 (Probabilistic convergence) Let L be a predicate defined on configurations. A
randomized distributed system DS executing the protocol P under a scheduler D converges to L iff:
In any strategy st of DS under D the probability of the set of computations reaching L is equal to
1. Formally, Vst of DS under D, Py (ELy) = 1.

Definition 2.5 (Probabilistic Self-stabilization) A randomized distributed system DS execut-
ing the protocol P under a scheduler D is self-stabilizing for a specification SP (predicate on the
computations), if there exists a predicate on configuration L such that DS converges to L and
verifies the following property:

e correctness Vst of DS under D, Ve € st, if e € EL then e has a suffix that verifies SP.

The protocols [Her90, BCD95, KY97, BGJ99b, Ros00] are only weakly self-stabilizing for the
specification “one and only one token fairly circulates in the ring”. Because, some computations
from any “legitimate” configuration are not correct. It its always possible that “a token stays
forever on the same processor”. Fortunately, the probability of a such event is 0 in any strategy.

Definition 2.6 (Weak Probabilistic Self-stabilization) A randomized distributed system DS
executing the protocol P under a scheduler D is weakly self-stabilizing for a specification SP, if DS

verifies the following property:
e probabilistic correctness Vst of DS under D, Py ({e has a suffiz that verifies SP}) = 1.

Based on previous works on the probabilistic automata (see [Seg95], [SL94], [WSS94]) [BGJ99b]
presents a detailed framework for proving self-stabilization of probabilistic distributed systems. A
key notion is local convergence denoted LC'. The LC property is a progress statement as those
presented in [CMS88] (for the deterministic systems) and [Seg95] (for the probabilistic systems).
Informally, the LC'(PR1, PR2, D, ¢) property for a randomized self-stabilizing system means that
starting in a configuration satisfying PRy, the system will reach a configuration which satisfies PRg,
in less that D computation steps with a probability greater than e. Formally the local convergence
property is defined as follows:

Definition 2.7 (Local Convergence) Let st be a strategy, PRy and PRy be two predicates on
configurations, where PRy is a closed predicate. Let § be a positive probability and DD a positive
integer. Let Cj, be a st-cone with last(h) = PRy and let M be the set of sub-cones Cyy of the cone
Ch, such that for every sub-cone Cpi: last(h') = PRy and length(h') — length(h) < D. The cone Cy,
satisfies LC' (PRy, PR3, 0, D) if and only if PrSt(UCh/EM Cr) > 6.

Now, if in strategy st, there exist ds > 0 and Dg > 1 such that any st-cone, Cj with
last(h) F PRy, satisfies LC'(PRy, PR3, 05, Dg), then the main theorem of the framework presented
in [BGJ99b] states that the probability of the set of computations of st reaching configurations sat-
isfying both PRy and PR; is 1. Formally:

Theorem 2.1 [BGJ99b] Let st be a strateqy. Let PRy and PRy be closed predicates on con-
figurations such that Pry(EPRy) = 1. If 305 > 0 and 3Dy > 1 such that any st-cone Cy
with last(h) & PRy, satisfies the LC' (PRy, PRy, 05, D) property, then Pry(EPR) = 1, where
PR — PRl A PR2

3 Token circulation protocol under k-bounded schedulers

We present SS_T'C'_Weak, a self-stabilizing token circulation protocol for anonymous unidirectional
rings of any size under k-bounded schedulers. A k-bounded scheduler selectes any strategy con-
taining only k-bounded computations. In a k-bounded computation, until a processor p is enabled
another processor can perform at most £ actions. SS_TC _Weak is the conjunction of two protocol
layers.

The first layer is the self-stabilizing token circulation protocol under k-bounded scheduler presented
by Beauquier, Cordier and Delaét in [BCD95]. A processor having a token (called Mark) randomly
decides to keep its mark or to pass it to its right neighbor (rule Ry and R3). Unfortunately, there
is not upper bounded on the time needed by a Mark to perform a round. This protocol allows to

Protocol 3.1 SS TC Weak : Bound Service Time & Space optimal token circulation protocol

Field variables :
mr, (the Mark value) is an integer bounded by My
¢, (the color value) takes value in {0, 1,2}

Macros (I, is p’s left neighbor):
Pass_Mark, = mr, := (mr;, + 1) mod My

Predicates :
Mark, = mr, # (mr;, + 1) mod My
Token, = (marky, A ¢, = c,) V (mmark, A c, # c1,)

Rules :
Ry :: Mark, N —Token, —
If (random(0,1) = 0) then {Pass_Marky;c, := ¢, }
Ry :: Mark, A Token, —
If (random(0,1) = 0) then {Pass_Marky;c, := ¢, }
else ¢, := (¢, + 1+ random(0,1)) mod 3
R3 i =Mark, N Token, — ¢, := ¢,

distinct one processor in the ring : the processor verifying the Mark predicate. The distinguished
processor changes time to time when the Mark moves.

The second layer is a self-stabilizing token circulation on semi-uniform rings of any size. The
distinguished processor does not execute the same algorithm as the other processors. A standard
processor (a processor that does not verify the Mark predicate) has a token when it does not
have the same color has its left neighbor. A standard processor passes its token by taking the
color of its left neighbor (rule R3). Unlike the others, the distinguished processor (processor that
verifying the Mark predicate) has a token when it does have the same color has its left neighbor; it
passes the token by changing its color (rule R3). In [Dij74], Dijkstra has presented a self-stabilizing
token circulation based on this idea requiring N 4+ 1 colors. In [Her92], Herman have presented
an adaptation of the Dijkstra protocol requiring only 3 colors. The space improvement is possible
because the distinguished processor randomly chooses its new color. To prove his protocol, Herman
assumes that the scheduler is central and randomized: in any configuration, the scheduler randomly
chooses one enabled processor. We have adapted the protocol of [Her92] to deal with a moving
distinguished processor. We give a prove of our protocol under any k-bounded scheduler.

The service time of S5 TC _Weak does not depend on the output of random variables but only on
the scheduling. Under a synchronous schedule a round requires only N steps. (section 4.3).

4 Self-stabilization Proof of SS_TC Weak

We prove that the protocol 3.1 under a k-bounded scheduler converges to a legitimate configuration.

Definition 4.1 A processor holds a token iff it verifies the predicate Token.
Let T be a token held by p. The color of T is the color of the p’s left neighbor.

The L1 predicate on configurations is defined by one and only one processor verifies the Mark
predicate. A configuration verifying L1 is said semi-legitimate.

The legitimate predicate L on configuration is : one processor and only processor has a Mark and
one and only one processor verifies the Token predicate.

4.1 Convergence of 55 _TC _Weak to a semi-legitimate configuration

In this section, we prove that L1 is an attractor. First we prove that L1 predicate is closed. Then,
we prove that in strategy under a k-bounded scheduler, the probability to reach a semi-legitimate
configuration is 1. The convergence proof to a semi-legitimate is very similar to the convergence
proof of protocol [BCD95] under a k-bounded scheduler given in [BGJ99b]. We present the proof
only for the sake of completeness.

Observation 4.1 For any configuration, there is at least one processor that verifies the Mark
predicate because My does not divide the ring size N. Any processor p having a Mark is enabled.
There is not deadlock configuration.

Lemma 4.1 In the protocol SS_TC Weak under any scheduler, the predicate L1 is closed.

Proof: During a computation step, either the processor holding a Mark (i.e. verifying the Mark
predicate) does not pass the Mark, or it passes its Mark. In the first case, it stays the only marked
processor; in the seconde case, its neighbor becomes the new marked processor. O

Lemma 4.2 Let k be an integer. Let st be a strategy of the protocol SS_TC Weak under a k-

bounded scheduler. Any cone of st satisfies LC' (true, L1, %kN2+N2, kN3 + N?).

Proof: Let C}, be a cone of st. Assume that in last(h), there are m > 1 marked processors. Let
P1,D2, - - -Pm be the processors having a Mark in last(h). We name M1 (resp. M2) the Mark in p;
(resp. pz). Let dy be the distance between M1 and M2.

Let sc; be the following scenario : during the last step of sey (i) the Ry Mark moves from p; to
py’s right neighbor; and (ii) M2 does not move during scy. At the end of sc¢y, the distance between
M1 and M2 has decreased
We study the sub-cone Cpj, of Cp, where : hy ends with an action of p; where it passes its Mark or
by the merging of two Marks. hy contains at most one action of py; and during iy the processor py
keeps its Mark. h; realizes the scy scenario or two Marks merge. As the scheduler is k-bounded, hy
exists and other processors perform at most k actions in hy. Each time that po performs an action
in hq, its random variable takes the value 1; when py performs its action, its random variable takes
the value 0. We have |hy| < k(N — 1)+ 1 and Py (Chp,) > Pst(Ch).%kH.

By repeating dy times the scenario scq, the system reaches a configuration where M1 has merged
with M2. Let C,; be a sub-cone of (), where h’ realizes d; times the scenario sc; or two Marks
merge. In last(h'), there are at most m — 1 Marks. We have |h/| < dy(k(N — 1)+ 1) < kN?+ N,
and Py (Cha) > Por(Cr) 3D > () VY,
By repeating m — 1 times the scenario sc¢, the system reaches a configuration where there is one
Mark. Let Chpg be a sub-cone of C}, where H realizes m — 1 times the scenario sc. We have
2 3 2 1(m—1)(kN?+N) 1 V2 (k+1)
|H| < (m—1)(kN*+ N) < kEN°4+ N* and Py (Cry) > Py (Ch)-5 > Py (Ch).5 .
O

From Theorem 2.1 and Lemma 4.2, we get :

Theorem 4.1 In any strategy st of protocol 3.1 under any k-bounded scheduler, the probability of
the set of computations reaching L1 is 1.

4.2 Convergence of SS_TC _Weak to a legitimate configuration

In this section, we study only the computations from a semi-legitimate configuration. We will
prove that under a k-bounded scheduler, the probability to reach a legitimate configuration from a
semi-legitimate configuration is 1, in any strategy. We also prove the the predicate L is closed.

Observation 4.2 After that a processor performs an action during a computation step cs, it does
not have a Token unless it left neighbor has changed its state during cs.

Let p be a processor that does not have the color of its left neighbor. p has a Token or a Mark.

Lemma 4.3 Let ¢ be a configuration ¢ that verifies L1. In ¢, there is at least one processor that
has a Token.

Proof: If all processors have the same color then the processor having the Mark has a Token.

Assume that there are at least two colors in the ring. Let pl be processor having the Mark. Let p2
be the first processor at the right of p1 that does not have p1’s color. p2 has a Token or the Mark
(Observation 4.2). As there are several colors in the ring p2 # pl. Thus p2 has a Token. O

Lemma 4.4 Let c¢s be a computation step from a configuration ¢ that verifies L1. Let p be a
processor that has a Token after cs. Assume that p has not a Token in ¢ or it has performed a rule.
p has a Token after cs iff p’s left neighbor has performed rule Ry or Rs during cs.

Proof: We name ¢ the p’s left neighbor. If p has a Token in ¢ then (by hypothesis) it has performed
an action during cs. If ¢ does not perform an action, during cs then p has not a Token after c¢s
(Observation 4.2). If p does not have a Token in ¢ and ¢ does not perform any action during cs
then clearly p has not a Token after cs. Thus ¢ performs anction during cs.

Therefore, ¢ has a Mark or/and a Token in ¢. We name co the color of ¢ and co’ the color of ¢ left
neighbor, in c.

Assume that ¢ performed R action during ¢s. Thus, ¢ has the only Mark in the ring; and co # co'.
We conclude that p has not a mark before c¢s. Therefore, during cs, either p performs R3 action
or not action. If p does not perform any action then p did not have a Token (by hypothesis) and
neither a Mark in ¢. Therefore the p color is co before and after c¢s. If p performs action Rs, p has
the color co after ¢s. In any case, after ¢s, p has the co color.

After cs, q has kept its state (i.e. it has kept its Mark) or it has passed its Mark to p. In the first
case, p cannot not have a Token after ¢s (Observation 4.2). In the last case, ¢ has changed its color
during ¢s to get the color co’. After ¢s, p has a Mark and does not have the ¢’s color: it does not
have a Token. We conclude that ¢ does not perform Ry during cs.

We have proven that ¢ performs rule during ¢s. This rule is Ry or Rs. a

Corollary 4.1 Let T'1 be a Token hold by p. Along any computation after any action of p, T'1 is
held by p’s right neighbor or its has vanished.

Lemma 4.5 Along any computation from any semi-legitimate configuration, the number of Tokens
cannot increase.

10

Proof: Let ¢s be a computation step from a configuration ¢ that verifies L1. Let ¢g be a processor
that has a Token after ¢s and not before ¢s. gg’s left neighbor, ¢y, has performed rule R, or Rs
(Lemma 4.4). Thus, ¢; had a Token before cs. ¢ has still a Token after cs iff ¢’s left neighbor
(called g3) has performed rule Ry or R3 during ¢s (Lemma 4.4).

By induction, we build a finite series of processors of 1 < m < N qo, ¢1, ... such that (i) Vi €
[0,m — 1], ¢; is at the right of ¢;+; and ¢; has a Token after c¢s; (ii) Vi € [1,m],q; has a Token in
¢; (iil) ¢ has not a Token after ¢s; (iv) go has not a Token in ¢. We conclude that along any

computation, the number of Tokens cannot increase whatever may happen. a
Lemma 4.6 L is a closed predicate.

Proof: L1 is closed (Lemma 4.1). There is always a Token in the ring (Lemma 4.3). As, along
any computation from any semi-legitimate configuration, the number of Tokens cannot increase
(Lemma 4.5). We conclude that L is closed. 0

Lemma 4.7 Let k be an integer. Let st be a strategy of the protocol SS_TC Weak under a k-
2
bounded scheduler. Any cone of st satisfies LC' (L1, L, %(kN +kN+N), EN? 4+ kN + N3).

Proof: Let C}, be a cone of st. Assume that in last(h), there are m > 1 Tokens. The Mark is on
the processor P. Let p; (resp. ps) be the first processor at the P left (resp. p; left) having a Token
in last(h). We name T'1 (resp. 7'2) the Mark in p; (resp. p;). Let d; be the distance between M1
and P. Let d; be the distance between M2 and M1. We have dy + dy < n.

If P does not have a Token, we defined sc; has the following scenario where co is the color of the
T2 Token: (preamble step) the T'1 Token reaches P; (first step) the P does not takes the co color
during the R action. (second step) the T2 Token reaches P.

If P does have a Token we define scy has the following scenario where co is the color of the T'1 Token:
(first step) P does not take the co color during the Ry action; (second step) the T'1 Token reaches
P. In all cases, during cs; the Mark does not move. At the end of this scenario, all processors
from pl to P, included have the same color: co. At the end, of ¢sy, T2 has vanished. The Token
T2 should be on P the marked processor but the color of P is not the color of its left neighbor F:
P has not Token.

We study the C';s sub-cones of Cy, where I/ realizes (i) ¢sy or (ii) two Tokens merge. The duration
of the preamble step and the first step is at most (dy + 1)k steps under a k-bounded schedule:
between two steps of T'1, P performs at most &k actions. Similarly, the duration of the second step
is at most dyk steps. During ¢sy; no Token does catch up its preceding Token; thus any Token
performs at most 2N steps. Therefore, |h/| < (N+1)k+2Nm and Py (Chpr) > Pst(Ch).%(dl+d2+l)k+l

N+2)k+1
> Py(Ch) AV
By repeating m — 1 times the scenario sc¢, the system reaches a configuration where there is one

Token. Let Chy be a sub-cone of C', where H realizes m — 1 times the scenario sc or m — 1

Tokens have merged. We have |H| < (N + 1)mk + 2N?m < kN? + kN + 2N3, and Py (Chy) >

EN24+EN+N
Poy(C) LN NN, O

From Theorem 2.1 and Lemmas 4.2 and 4.7. we get :

Theorem 4.2 In any strategy st of protocol 3.1 under any k-bounded scheduler, the probability of
the set of computations reaching L is 1.

11

4.3 Correctness of SS_TC_Weak

In this section we will prove that SS_TC _Weak protocol satisfies the specification “one and only
one Token fairly circulates in the ring and during a round, every processor obtains the Token exactly
one time” under a k-bounded scheduler.

Theorem 4.3 Any computation of the protocol 3.1 under any k-bounded scheduler from a legiti-
mate configuration satisfies the specification “one and only one Token fairly circulates in the ring
and during a round, every processor obtains the Token exactly one time”

Proof: In a legitimate configuration there are only one Token.

As L is closed, in any computation from a legitimate configuration there is always one and only
one Token. The processor p holding the Token is enabled (R3 or Rs). Therefore, p waits at most
kN computation steps before performing an action under a k-bounded scheduler.

Let ¢s be the computation step where p performs an action (R or R3). As p has the only Token.
during cs, p’s left neighbor does perform action Ry or Rs. p has not the Token after ¢s (Lemma
4.4). According to Lemma 4.4, p’s right neighbor has the Token after cs.

After at most kN? computation steps, the Token has performed a round. Clearly during a round
a processor gets exactly one time the Token. a

5 Token circulation protocol under unfair distributed schedulers

In [BGJ99a] is informally presented a protocol-compiler that transforms a self-stabilizing proto-
col under a k-bounded scheduler into an self-stabilizing protocol under any unfair distributed
scheduler. A formal presentation may be found in [BGJO1]. After transformation of the proto-
col SS_TC Weak, we get the protocol SS_T'C' (protocol 5.1).

The compiler modifies the rule ofSS_T'C _Weak, in such a way that holding a privilege is necessary
to perform an action of SS_T'C' _Weak. After an action of SS_TC _Weak, the processor has passed
the Privilege to its neighbor. If a processor holds a Privilege and it does not satisfy any guard
of S5 TC Weak it must pass its Privilege when it is chosen by the scheduler. When a processor
passes a Privilege, if it can perform an action of SS_TC _Weak, it performs this action. We prevent
the scheduler from having unfair behaviors: the scheduler cannot avoid choosing a processor. A
processor satisfying a guard of SS_T'C' _Weak has to wait at most N - (N — 1)/2 computation steps
before performing this action: another processor can perform at most N actions during the waiting.

The transformation ensures the following property: in any strategy of the protocol SS_TC under
any unfair distributed scheduler, the probability to reach a legitimate configuration (a configuration
where there is one Mark and one Token) is 1.

Property 5.1 The properties of this transformation have been largely studied [BGJ99b], [Ros00],
and [BGJ01]. One of the most interesting properties are:
o any computation has a suffix where the number of Privilege does not change;

o there is at least one Privilege in the ring;
o the number of Privileges cannot increase;

The upper bound on the time needed by a Privilege to perform X rounds is (X + 1)N?

computation steps.

12

Protocol 5.1 SS_TC : Bound Service Time & Space optimal token circulation protocol

Shared variables :
pry (the privilege value) is an integer bounded by My
mr, (the Mark value) is an integer bounded by My
¢, (the color value) takes value in {0, 1,2}

Macros (I, is p’s left neighbor):
Pass_privilege, = pr, := (pri, + 1) mod My
Pass_Mark, = mr, := (mr;, + 1) mod My

Predicates :
Mark, = mr, # (mr;, + 1) mod My
Privilege, = pr, # (pri, + 1) mod My
Token, = (marky, A ¢, = c,) V (mmark, A c, # c1,)

Rules :
M, :: Privilege, N Mark, N\ =Token, — Pass_Privilege,;
If (random(0,1) = 0) then {Pass_Marky;c, := ¢, }
My i Privilege, N Mark, N\ Token, — Pass_Privilege,;
If (random(0,1) = 0) then {Pass_Marky;c, := ¢, }
else ¢, := (¢, + 1 4 random(0,1) mod 3)
Mz i Privilege, N =Mark, N Token, — Pass_Privilege,; ¢, 1= ¢
My i Privilege, AN =Mark, N =Token, — Pass_Privilege,

p

5.1 Service Time of SS_TC

Let T be the Token that will stay forever in the ring. We prove that N T-token circulations require
at most 4N3 computation steps. We also establishes that any computation from a legitimate
configuration has a suffix where a Token circulation requires N steps under a synchronous scheduler.

Lemma 5.1 Let e be a computation of SST'C' from a semi-legitimate configuration, We name T
the Token that will stay forever in the ring.

Assume that e reaches a configuration where a processor p holds T and a Privilege (called Pr0).
Then along ¢, T and Pr0 will circulate forever together unless Pr0 merges with another privilege.

Proof: Let c¢s be the computation step where p performs an action (My or Ms). As p has the T
Token. During ¢s, According corollary 4.1, p right neighbor has the Token after ¢s. Thus after
cs, p’s right neighbor has the Token and the Privilege Pr0 unless p’s right neighbor was holding a
privilege and the two privileges vanish.

Let ¢s be a computation step, where p’s left neighbor performs an action and p does not. After cs,
two Privileges have merged (the Privilege that was on p’s left neighbor has caught Pr0). During
the merging, it is possible that two Privileges vanish. After ¢s, p has not any privilege. O

Lemma 5.2 Let T be the Token that will stay forever in the ring. In any computation of SS_TC
from a legitimate configuration, N T-rounds take at most 3N> computation steps.

13

Proof: Let ¢ be a semi-legitimate configuration with m Privileges. We study a computation from
c.

Let p be the processor having the Token T'. If p does not have a Privilege then the Token T stays
on p until p get a Privilege. p will get a Privilege in less than 2N? computation steps (Property
5.1). Then, p has the Token 7" and a Privilege.

Now the Token and the Privilege will circulate together until the Privilege merges with another
Privilege (Lemma 5.1) and the two Privileges vanish. This event can happen at most (m — 1)/2
times during any computation from c¢. After such an event, the Token circulation is delayed by
2N? computation steps (Property 5.1).

Once the Token T is joined with a Privilege, N T-token circulation needs (N + 1) N? computation
steps, assuming that there is no Privilege disparition (Property 5.1).

Therefore, N T-round requires, in the worst case, (m—1)N2+2N?+(N+1)N? < 3N? computation
steps. a

Lemma 5.3 Any computation of SS_T'C from a legitimate configuration, has a suffiz where a
Privilege and the Token are always hold by the same processor.

Proof: Let ¢ be a legitimate configuration. We study a e computation from c.

e has a suffix ¢ where no Privilege disapeared. In €', the number of Privileges is constant. Let ¢
be a configuration reached in ¢’. Let p be the processor having the Token in ¢. If p does not have
a Privilege then the Token stays on p until p get a Privilege. After at most N2 computation steps,
p has the Token and a Privilege. a

Lemma 5.4 Any computation under any schedulers of SS_T'C' from a legitimate configuration, has
a suffiz where a Token circulation requires at most N? steps. Any computation under a synchronous
scheduler of SS_TC from a legitimate configuration, has a suffiz where a Token circulation requires
N steps.

Proof: Let ¢ be a legitimate configuration. We study an e computation from c.

e has a suffix ¢ where no Privilege disappeared and the Token and a Privilege are always on the
same processor. The Token and the Privilege will circulate together forever (Lemma 5.1).

Under any scheduler, a T-round is a Privilege-round. Under any scheduler, X Privilege-rounds
require at most (X + N)N computation steps. Under a synchronous scheduler, a Pr0 round needs
N computation steps. a

5.2 Stabilization Time of SS_TC

In this section, we interest to the time requires on the average by the protocol SS_T'C' to reach a
legitimate configuration in any strategy under any scheduler. This time is called the stabilization
time.

SS_T'C' is the conjunction of two protocol layers. The first layer is T'C' protocol (self-stabilizing
Token circulation protocol under unfair distributed schedulers) presented in [BGJ99a]. T'C' is
the transformation by the protocol-compiler presented in [BGJ01] of Token circulation presented
protocol [BCD95]. The first layer protocol is a self-stabilizing protocol for the specification “the
ring has only one Mark”. Rosaz in [Ros00] proves that in any strategy, the average convergence
time of protocol in [BGJ99a] is O(N?) computation steps.

14

Thus the average time requires by protocol SS_T'C' to reach a semi-legitimate configuration is
O(N?) computation steps, in any strategy.

Now, we will compute the average time requires by protocol SS_TC' to reach a legitimate configu-
ration. First, we will compute the average time for a Token to reach the Mark (i.e. the Mark and
the Token are held by the same processor).

Let ¢ a a semi-legitimate configuration where there are several Tokens. Let T be the Token that
will stay forever in the ring. We name T'1 the first Token at the left of the Mark. We name d1 the
distance from T'1 to Mark. Assume that between 7’1 and the Mark there are d2 Privileges in ¢. We
have d2 < d1 < N. We name STy (resp. STr) the number of steps performed by the Mark (resp.
the Token T'1). Rosaz in [Ros00] proves that along any computation from ¢, STy < ST7r 4+ d2. In
the average, the Mark moves from a processor to its right neighbor every two Mark steps. After,
3d1 < 3N steps of Token T'1, in the average the Mark has moved at most (3d1+d2)/2 < 2d1 times.
As the Token T'1 moves during all its steps, we conclude that T'1 is held by the marked processor in
the average, after 3 rounds of T'1. During this time, the Token 7" has performed at most 4 rounds.

The color of Mark was randomly computed (probability 1/2) when the Token that follows T'1 was
held by the marked processor. Therefore, the probability that T'1 does not have the Mark color is
1/2. In that case the T'l vanishes when it reaches the marked processor. Thus, the expectation
time to discard a Token is less than 8 T-rounds. The expectation time to reach a legitimate is less
than 8N T-rounds (i.e. O(N?) computation steps - Lemma 5.2).

6 Conclusion

We have presented a randomized self-stabilizing token circulation protocol on unidirectional anony-
mous rings under unfair distributed scheduler. We have given a formal proof of the convergence of
the protocol.

Once stabilized, our protocol provides a 1-fair token circulation: during a round each processor has
only one time a token.

The memory space required by our protocol on each processor is O(My)). Our protocol is proven
to be space optimal [BGJ99a].

Moreover the service time is always bounded (O(N?) computation steps to perform N token
rounds). Under a synchronous scheduler, in N computation steps, each processor has a token.
The stabilization time is similar to the one of protocols [DGT00, KY02, Joh02]: O(N?) computation
steps.

References

[BCDY95] J. Beauquier, S. Cordier, and S. Delagt. Optimum probabilistic self-stabilization on
uniform rings. In WS595 Proceedings of the Second Workshop on Self-Stabilizing Sys-
tems, pages 15.1-15.15, 1995.

[BDLGJ02] J. Beauquier, J. Durand-Lose, M. Gradinariu, and C. Johnen. Token based self-
stabilizing uniform algorithms. Journal of Parallel and Distributed Computing,
62(5):899-921, May 2002.

[BGJ99a] J. Beauquier, M. Gradinariu, and C. Johnen. Memory space requirements for self-
stabilizing leader election protocols. In PODC99 Proceedings of the Fighteenth Annual
ACM Symposium on Principles of Distributed Computing, pages 199-208, 1999.

15

[BGJ99b]

[BGJO1]

[CMSS]

[DGTO0]

[Dij74]

[DL00]

[Her90]

[Her92]

[1J90]

[Joh02]

[KY97]

[KY02]

[Ros00]

[Seg95]

[SLY4]

J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing and space

optimal leader election under arbitrary scheduler on rings. Technical Report 1225,
L.R.I, December 1999.

J Beauquier, M Gradinariu, and C Johnen. Cross-over composition - enforcement
of fairness under unfair adversary. In WSS501 Proceedings of the Fifth International
Workshop on Self-Stabilizing Systems, Springer LNCS:2194, pages 19-34, 2001.

K. Chandy and J. Misra. Parallel Programs Design: A Foundation. Addison-Wesley,
1988.

A K. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing mutual exclusion using
unfair distributed scheduler. In IPDPS’2000 Proceedings of the 14th International
Parallel and Distributed Processing Symposium, pages 465-470, 2000.

E.W. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17:643-644, 1974.

J. Durand-Lose. Randomized uniform self-stabilizing mutual exclusion. Information
Processing Letters, 74(5-6):203-207, 2000.

T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35:63—67,
1990.

T Herman. Self-stabilization: randomness to reduce space. Distributed Computing,
6:95-98, 1992.

A. Israeli and M. Jalfon. Token management schemes and random walks yield self-
stabilizing mutual exclusion. In PODC90 Proceedings of the Ninth Annual ACM Sym-
posium on Principles of Distributed Computing, pages 119-131, 1990.

Colette Johnen. Service time optimal self-stabilizing token circulation protocol on
anonymous unidrectional rings. In SRDS 2002 21st Symposium on Reliable Distributed
Systems. IEEE, October 2002.

H. Kakugawa and M. Yamashita. Uniform and self-stabilizing token rings allowing
unfair daemon. IFEFE Transactions on Parallel and Distributed Systems, 8:154-162,
1997.

H. Kakugawa and M. Yamashita. Uniform and self-stabilizing fair mutual exclusion
on unidirectional rings under unfair distributed daemon. Journal of Parallel and Dis-
tributed Computing, 62(5):885-898, May 2002.

L. Rosaz. Self-stabilizing token circulation on asynchronous uniform unidirectional
rings. In PODCO0 Proceedings of the Nineteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 249-258, 2000.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
CONCUR’94 Fifth International Conference Concurrency Theory, Springer-Verlag
LNCS:836, pages 481-496, 1994.

16

[WSS94] S.H. Wu, S. A. Smolka, and E.W. Stark. Composition and behaviors of probabilistic
1/O automata. In CONCUR’94 Fifth International Conference Concurrency Theory,
Springer-Verlag LNCS:836, pages 513-528, 1994.

17

