Fast self-stabilizing k-independent dominating set construction ${ }^{\star}$ Labri Technical Report RR-1472-13

Colette Johnen
Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract

We propose a fast silent self-stabilizing building a k-independent dominating set, named $\mathcal{F I D}$. The convergence of protocol $\mathcal{F I D}$, is established for any computation under the unfair distributed scheduler. $\mathcal{F I D}$ reaches a terminal (also legitimate) configuration in at most $4 n+k$ rounds, where n is the network size. $\mathcal{F I D}$ requires $(k+1) \log (n+1)$ bits per node.

keywords distributed computing, fault tolerance, self-stabilization, k independent dominating set, k-dominating set, k-independent set

1 Introduction

In this paper, we consider the problem of computing a distance- k independent dominating set in a self-stabilizing manner in case where $k>1$. A nodes set is a distance- k independent dominating set if and only if this set is a distance- k independent set and a distance- k dominating set. A set I of nodes is distance- k independent if every node in I is at distance at least $k+1$ to any other node of I. A set of nodes D is distance- k dominating if every node not belonging to D is at distance at most k of a node in D. We propose a very simple and fast protocol, called $\mathcal{F I D}$. The protocol $\mathcal{F I D}$ reaches a terminal configuration in at most $4 n+k$ rounds, where n is the network size. $\mathcal{F I D}$ requires $(k+1) \log (n+1)$ bits per node. The obtained distance- k independent dominating set contains at most $\lfloor 2 n / k+2\rfloor$ nodes.

Related Works. Silent self-stabilizing protocols building distance- k dominating set are proposed in [51]. These protocols do not build a k-independent set.
In [6|7], Larsson and Tsigas propose self-stabilizing (l, k)-clustering protocols under various assupmtions. These protocols ensure, if possible, that each node has l cluster-heads at distance at most k from itself.

[^0]In [2], a silent self-stabilizing protocol extracting a minimal distance- k dominating set from any distance- k dominating set is proposed. A minimal distance- k dominating set has no proper subset being a distance- k dominating set. The protocol converges in $O(n)$ rounds, it requires at least $O(k \cdot \log (n))$ bits per node.
The paper [4] presents a silent self-stabilizing protocol building a small distance- k dominating set : the obtained dominating set contains at most $\lceil n /(k+1)\rceil$. The protocol of [4] converges in $O(n)$ rounds, it requires $O(\log (n)+k \cdot \log (n / k))$ bits per node. The protocol of [3] builds competitive k-dominating sets : the obtained dominating set contains at most $1+\lfloor(n-1) /(k+1)\rfloor$ nodes. The protocol of [3] converges in $O(n)$ rounds, it requires $O(\log (2 k .2(\Delta+1) .2 n . D))$ bits per node, where D is the network diameter, and Δ is a bound on node degree. The protocols of [3]4] use the hierachical collateral composition of several silent self-stabilizing protocols whose a leader election protocol and a spanning tree construction rooted to the elected leader. So their convergence time are larger than $4 n+k$ rounds.
The presented protocol is simple : no use of the hierachical collateral composition, no need of leader election process, neither the building of spanning tree. Therefore, the protocol $\mathcal{F I D}$ is fast.

2 Model and Concepts

A distributed system S is an undirected graph $G=(V, E)$ where the vertex set, V, is the set of nodes and the edge set, E, is the set of communication links. A link $(u, v) \in E$ if and only if u and v can directly communicate (links are bidirectional); so, the node u and v are neighbors. N_{v} denotes the set of v 's neighbors: $N_{v}=\{u \in V \mid(u, v) \in E\}$. The distance between the nodes u and v is denoted by $\operatorname{dist}(u, v)$. The set of nodes at distance at most k of a node v is denoted by k -neigborhood $(\mathrm{v})=$ $\{u \in V \mid \operatorname{dist}(u, v) \in[1, k]\}$.

Definition 1 (distance- k independent dominating set). Let D be a subset of V; D is a distance- k dominating set if and only if $\forall v \in V / D$ we have k-neigborhood $(v) \cap D \neq \emptyset$. Let I be a subset of V; I is a distance- k independent set if and only if $\forall u \in I$ we have k -neigborhood $(u) \cap$ $I=\emptyset$. A subset of V is a distance- k independent dominating set if this subset is a distance-k dominating set and a distance-k independent set.

To every node v in the network is assigned an identifier, denoted by $i d_{v}$. Two distinct nodes have distinct identifier. It is possible to order the
identifier values. The symbol \perp denotes a value smaller than any identifier value in the network.

Each node maintains a set of shared variables. A node can read its own variables and those of its neighbors, but it can modify only its variables. The state of a node is defined by the values of its local variables. The cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of rules. Each rule has the form: Rule $e_{i}:<$ Guard $_{i}>\longrightarrow<$ Action $_{i}>$. The guard of a v 's rule is a boolean expression involving the state of the node v, and those of its neighbors. The action of a v 's rule updates v 's state. A rule can be executed by a node v only if it is enabled, i.e., its guard is satisfied by the node v. A node is said to be enabled if at least one of its rules is enabled. A configuration is terminal, if and only if no node can execute a rule.
During a computation step from a configuration one or several enabled nodes perform simultaneously an action to reach another configuration. A computation e is a sequence of configurations $e=c_{0}, c_{1}, \ldots, c_{i}, \ldots$, where c_{i+1} is reached from c_{i} by a single computation step, $\forall i \geqslant 0$. A computation e is maximal if it is infinite, or if it reaches a terminal configuration.

Definition 2 (Silent Self-Stabilization). Let \mathcal{L} be a predicate on the configuration. A distributed system S is a silent self-stabilizing system to \mathcal{L} if and only if (1) all terminal configurations satisfy \mathcal{L}; (2) all computations reach a terminal configuration.

Stabilization time. We use the round notion to measure the time complexity. The first round of a computation $e=c_{1}, \ldots, c_{j}, \ldots$ is the minimal prefix $e_{1}=c_{1}, \ldots, c_{j}$, such that every enabled node in c_{1} either executes a rule or it is neutralized during a computation step of e_{1}. A node v is neutralized during a computation step if v is disabled in the reached configuration.
Let e^{\prime} be the suffix of e such that $e=e_{1} e^{\prime}$. The second round of e is the first round of e^{\prime}, and so on.
The stabilization time is the maximal number of rounds needed by any computation from any configuration to reach a terminal configuration.

3 The protocol $\mathcal{F I D}$

The protocol $\mathcal{F I D}$, presented in protocol 1, builds a distance- k independent dominating set.

Notation 1 A node v is a head if $\operatorname{dom}[0](v)=i d_{v}$; otherwise it is an ordinary node.

Once the network is stabilized, any ordinary node v has in its k-neigborhood a head having a largest identifier than its own identifier. And, the heads set is a distance- k independent set.

```
Protocol 1 : \(\mathcal{F I} \mathcal{D}\) : Fast distance-k independent dominating set construc-
tion
Shared variables
    - \(\operatorname{dom}[](v)\) is a table of \(k+1\) members. A member is identifier value or \(\perp\).
Predicates
    - resignation \((v) \equiv i d_{v}<\max \{\operatorname{dom}[\mathrm{i}](v) \mid 0<i \leq k\}\)
    - toUpdate \((v) \equiv \exists i \in[1, k]\) such that
                \(\operatorname{dom}[\mathrm{i}](v) \neq \max \left\{\operatorname{dom}[\mathrm{i}-1](u) \mid u \in N_{v}\right\}\)
    - ordinaryToUpdate \((v): \operatorname{dom}[0](v) \neq \perp\)
    - headToUpdate \((v)\) : dom \([0](v) \neq i d_{v}\)
Rules
    \(\mathbf{R U}(v):\) toUpdate \((v) \longrightarrow\)
            for \(i \in[1, k]\) do \(\operatorname{dom}[\mathrm{i}](v):=\max \left\{\operatorname{dom}[\mathrm{i}-1](u) \mid u \in N_{v}\right\}\);
            if resignation \((v)\) then \(\operatorname{dom}[0](v):=\perp\); else \(\operatorname{dom}[0](v):=i d_{v}\);
    \(\mathbf{R E}(v): \neg\) toUpdate \((v) \wedge \neg\) resignation \((v) \wedge\) headToUpdate \((v) \longrightarrow\)
                                    \(\operatorname{dom}[0](v):=i d_{v} ;\)
    \(\mathbf{R R}(v): \neg \operatorname{toUpdate}(v) \wedge \operatorname{resignation}(v) \wedge\) ordinaryToUpdate \((v) ; \longrightarrow\)
                        \(\operatorname{dom}[0](v):=\perp ;\)
```

The value of dom[i] (v) is \perp if there is not a path of length i from a head to v. Otherwise, the value of $\operatorname{dom}[i](v)$ is the largest head identifier such that there is a path of length i from this head to v.

When an ordinary node v has not a head in its k-neighborhood then the table dom [] in v does not contain any identifier. Notice that in this case, the predicates \neg resignation (v) and headToUpdate (v) are verified. So, the node v can perform the rule $\mathbf{R E}$ or the rule RU. Hence, the heads set is a distance- k dominating set in a terminal configuration.

The predicate resignation (v) is verified when the node v has in its k-neigborhood a head u having a larger identifier than v 's identifier (i.e. $i d_{v}<i d_{u}$). If the node v is a head then the predicate ordinaryToUpdate (v) is also verified. In this case, v can perform the rule $\mathbf{R R}$ or the rule $\mathbf{R U}$.

$\mathrm{k}=4$. The head identifiers are underlined. In each node, the value of dom [i] for $0 \leq \mathrm{i} \leq 4$ is indicated except if the value is \perp. The color of a node is the color of the head in its k -neighborhood having the largest identifier.

Fig. 1. A terminal configuration of $\mathcal{F I D}$

Therefore, the heads set is a distance- k independent set, in any terminal configuration.
The figure 1 presentes the values of the tables dom[] in a terminal configuration. The table dom[] of node 82 contains the values $(\perp, \perp, 70$, 80,90). So, in the node 78 , we have dom [3] ≥ 70 and dom[4] ≥ 80. As $\operatorname{dom}[4] \geq 80$, in the node 78 ; this node cannot become a head. The nodes 67 knows the existence of the single head in its 4-neighborhood having a larger identifier than its identifier (node 70) because dom [3] ≥ 70, in the node 78.

4 Correctness of the protocol $\mathcal{F I D}$

In this section, we prove that the set of heads is a distance- k independent dominating set, in every terminal configuration of the $\mathcal{F I D}$ protocol.

Observation 1 Letv be a node. In a terminal configuration, $\operatorname{dom}[0](v)=$ $i d_{v} \vee \operatorname{dom}[0](v)=\perp$

Definition 3. (OrdinaryPr(i)). For all $i \in[1, k]$, the property Ordinary $\operatorname{Pr}(i)$ is defined as follow: if there is not a path of length i from a head to the node v then $\operatorname{dom}[i](v)=\perp$ otherwise $\operatorname{dom}[i](v)=i d_{u}$ where $i d_{u}$ is the largest head identifier having a path to v of length i.

Lemma 1. In a terminal configuration, the property $\operatorname{OrdinaryPr}(1)$ is verified.

Proof. According to observation 1, $\operatorname{dom}[0](u) \neq \perp$ if and only if u is a head $\left(\operatorname{dom}[0](u)=i d_{u}\right)$.
Let v be an ordinary node, in a terminal configuration. If v has a not a head in its neigborhood then dom[0] $(u)=\perp, \forall u \in N_{v}$. So dom[1] $(v)=$ \perp. \perp is smaller than any identifier value. So, if v has a head in its neigborhood then $\operatorname{dom}[1](v)=\max \left\{i d_{u} \mid u \in N_{v}\right.$ and $\left.\operatorname{dom}[0](u)=i d_{u}\right\}$.

Lemma 2. Let i be a positive integer strictly smaller than k. In a terminal configuration, if the property OrdinaryPr(i) is verified then the property Ordinary $\operatorname{Pr}(i+1)$ is verified.

Proof. Let v be an ordinary node, in a terminal configuration in which the property Ordinary $\operatorname{Pr}(\mathrm{i})$ is verified. There is not a path of length $i+1$ from a head to v if and only if not v 's neighbor has a path of length i to a head. We have dom[i] $(u)=\perp, \forall u \in N_{v}$. So dom[i+1] $(v)=\perp$.
Let w be the head having the largest identifier such that there is a path of length $i+1$ from w to $v . v$ has a neighbor, denoted by u, on its path to w. As OrdinaryPr(i) is verified, dom[i] $(u)=i d_{w}$, and dom[i] $\left(u^{\prime}\right) \leq i d_{w}$ for any node $u^{\prime} \in N_{v}$. So dom $[i+1](v)=i d_{w}$.

Theorem 1. Let c be a terminal configuration. In c, any ordinary node u has a head in its k-neigborhood.

Proof. We will prove that if an ordinary node has not a head in its k neigborhood then the configuration c is not terminal.
In c, for all $i \in[1, k]$, the property Ordinary $\operatorname{Pr}(\mathrm{i})$ is verified according to the lemma 1 and to the lemma 2. Let u be an ordinary node without any head in its k-neighborhood. So there is not path of length lesser than $k+1$ between u and a head. We have dom [i] $(u)=\perp, \forall i \in[0, k]$. So the predicate \neg resignation $(u) \wedge$ headToUpdate (u) is verified in c. The node u can perform the rule $\mathbf{R E}$ or the rule $\mathbf{R U}$.

The following theorem establishes that the set of heads is a distance- k independent set.

Theorem 2. Let c be a terminal configuration. In c, a head has not head in its k-neigborhood.

Proof. We will prove that if a head has a head in its k-neigborhood then the configuration c is not terminal.
Let wrongHeadSet the set of heads having one or several heads are in their k-neigborhood. Assume that wrongHeadSet is not empty. $v 1$ denotes the node of wrongHeadSet having the smallest identifier. $v 2$ denotes the closest head to $v 1$, and d denotes the distance between $v 1$ and $v 2$. We have $0<d \leq k$. According to the property $\operatorname{OrdinaryPr}(\mathrm{d})$, $\operatorname{dom}[\mathrm{d}](v 1) \geq i d_{v 2}$. So, in the configuration c, the predicate resignation $(v 1) \wedge$ ordinaryToUpdate $(v 1)$ is satisfied. The node $v 1$ can perform the rule $\mathbf{R R}$ or the rule RU.

5 Termination of the protocol $\mathcal{F I D}$

In this section, we prove that all maximal computations under the unfair distributed scheduler are finite by reductio ad absurdam arguments.

5.1 dom[0] values

Assume that a node or several nodes modify infinitely often their value of dom [0]. We named Set ${ }^{+}$the set of nodes that infinitely often modify the value of dom [0]. We denoted by u^{+}the node of Set $^{+}$having the largest identifier.

Let $e 2$ be the suffix of $e 1$ in which no node having a larger identifier than u^{+}'s identifier modifies the value of dom [0].
According to the definition of predicate resignation, there is an integer i such that dom[i] $\left(u^{+}\right)>i d_{u^{+}}$infinitely often (at time where u^{+}becomes ordinary) and $\operatorname{dom}[i]\left(u^{+}\right) \leq i d_{u^{+}}$infinitely often (at time where u^{+} becomes leader). So u^{+}has a neighbor named u_{i-1} such that (i) the value of dom [i-1] $\left(u_{i-1}\right)$ is infinitely often greater than $i d_{u^{+}}$and (ii) the value of dom [i-1] $\left(u_{i-1}\right)$ is infinitely often smaller than $i d_{u^{+}}$. It is possible only if there is a path of i nodes, $u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_{0}$, such that (i) the value of dom[i-j] $\left(u_{i-j}\right)$ is infinitely often greater than $i d_{u^{+}}$and (ii) the value of dom [i-j] $\left(u_{i-j}\right)$ is infinitely often smaller than $i d_{u^{+}}$with $1 \leq j \leq i$. So, the value dom $[0]\left(u_{0}\right)$ is infinitely often greater than $i d_{u^{+}}$; and infinitely
often smaller than $i d_{u^{+}}$. dom [0] $\left(u_{0}\right)$ can only take two values: \perp or $i d_{u_{0}}$. As \perp is smaller than any identifier value: u_{0} has a largest identifier than u^{+}, and u_{0} changes infinitely often its value of dom [0] during $e 2$.
There is a contradiction. So $e 2$ has a suffix $e 3$ where no node changes its value of dom [0].

$5.2 \forall 0<i \leq k, \operatorname{dom}[\mathrm{i}]$ values

Let us name u_{i} a node that modifies infinitely often its value of dom[i] with $0<i \leq k$ along $e 3$. It is possible only if there is a path of i nodes, $u_{i-1}, u_{i-2}, u_{i-3}, \ldots, u_{0}$, such that the value of dom $[\mathrm{i}-\mathrm{j}]\left(u_{i-j}\right)$ changes infinitely often, for $1 \leq j \leq i$. So, the value of $\operatorname{dom}[0]\left(u_{0}\right)$ changes infinitely often along $e 3$. There is a contradiction: $\forall 0<i \leq k$, no node modifies infinitely often its value of dom[i].

We have established that $e 3$ has a suffix $e 4$ where all tables dom [] have their final values. Any rule action by a node v modifies a value of its table dom []. So, a terminal configuration is reached.

6 Convergence time

In this section, we establish that the convergence time is at most $4 n+k$ rounds.

Lemma 3. The size of a distance-k independent set is at most $M=$ $\max (\lfloor 2 n /(k+2)\rfloor, 1)$.

Proof. Let I be a k-independent set such that $|I|>1$. Let v be a node of I. We denote by closest(v) the set of nodes closer to v than any other node of I.
Notice that $\bigcup_{w \in I}$ closest $(w) \subset V$ and $\operatorname{closest}(v) \cap \operatorname{closest}(u)=$ $\emptyset, \forall(u, v) \in I^{2}$. Let u be the closest node to v that belongs to I. Let x be node on the path from v to u such that $0 \leq \operatorname{dist}(v, x) \leq\lfloor k / 2\rfloor$. Let w be a node of I other than v. We have $\operatorname{dist}(w, x)>k-\operatorname{dist}(v, x) \geq\lfloor k / 2\rfloor$ because $k<\operatorname{dist}(w, v) \leq \operatorname{dist}(v, x)+\operatorname{dist}(x, w)$. So, closest (v) contains the first $\lfloor k / 2\rfloor+1$ nodes in the path from v to u. We conclude that $|I| \leq\lfloor(2 n) /(k+2)\rfloor$.

Notation 2 Set $_{0}=\emptyset ; V_{i}=V-$ Set $_{i} ;$ vh h_{i} is the node of V_{i} having the largest identifier; Set $i_{i+1}=\operatorname{Set}_{i} \cup$ k-neighborhood $\left(v h_{i}\right) \cup\left\{v h_{i}\right\}$; $T_{i}=2 i(k+1)$.

For all nodes u, after the first round, the value of $\operatorname{dom}[0](u)$ is the identifier of a V 's node; this will stay true along the computation. For all nodes u, after the second round, the value of $\operatorname{dom}[1](u)$ is also the identifier of a V 's node; this will stay true along the computation.
So, for all nodes u, after the $k+1$ first rounds, the table dom [] (u) contains only V 's identifier; this will stay true along the computation.
After one more round, $v h_{0}$, the node having the largest identifier, $v h_{0}$, is a head. It will stay a head along the computation (because resignation $\left(v h_{0}\right)$ is never verified). After k more rounds, all nodes of k -neighborhood $\left(v h_{0}\right)$, are and will stay ordinary because they verify forever resignation. So after the first $T_{1}=2(k+1)$ first rounds, the nodes of $S e t_{1}$ have their final status (ordinary or head).

After $T_{i}+k+1$ rounds, for all $l \in[0, k]$, we have $\operatorname{dom}[1]\left(u_{i}\right) \in V_{i}$ for any node u_{i} of V_{i}. This will stay true along the computation. So, after one more round, $v h_{i}$ is a head; and it will stay a head.
After k more rounds, all nodes of k -neighborhood $\left(v h_{i}\right)$, are and will stay ordinary (because they verify forever resignation).
So after the first $T_{i+1}=2(k+1)+T_{i}$ first rounds, the nodes of Set $_{i+1}$ have their final status (ordinary or head).

The set $H X=\left\{v \mid \exists i\right.$ such that $\left.v=v h_{i}\right\}$ is a distance- k independent set. So $V_{M}=\emptyset$.
We conclude that after at most the first $2 n<T_{M}<4 n$ first rounds, all nodes have their final status (ordinary or head). After k more rounds, in any node, the table dom [] has its final values.

References

1. E. Caron, A. K. Datta, B. Depardon, and L. L. Larmore. self-stabilizing k-clustering algorithm for weighted graphs. Journal of Parallel and Distributed Computing, 70:1159-1173, 2010.
2. A. Datta, S. Devismes, and L. Larmore. A self-stabilizing $O(n)$-round k-clustering algorithm. In 28th IEEE Symposium on Reliable Distributed Systems (SRDS'09), pages 147-155, 2009.
3. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Competitive self-stabilizing k-clustering. In IEEE 32th International Conference on Distributed Computing (ICDCS'12), pages 476-485, 2012.
4. A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, and Y. Rivierre. Selfstabilizing small k-dominating sets. International Journal of Networking and Computing, 3(1):116-136, 2013.
5. A. K. Datta, L. L. Larmore, and P. Vemula. A self-stabilizing $O(k)$-time k-clustering algorithm. The Computer Journal, 53(3):342-350, 2010.
6. A. Larsson and P. Tsigas. A self-stabilizing (k,r)-clustering algorithm with multiple paths for wireless ad-hoc networks. In IEEE 31th International Conference on Distributed Computing Systems, (ICDCS'11), pages 353-362. IEEE Computer Society, 2011.
7. A. Larsson and P. Tsigas. Self-stabilizing (k,r)-clustering in clock rate-limited systems. In 19th International Colloquium Structural Information and Communication Complexity, (SIROCCO'12), Springer, LNCS 7355, pages 219-230, 2012.

[^0]: * This work was partially supported by the ANR project Displexity.

