
Solo-fast Universal Constructions
for Deterministic Abortable Objects?

Claire Capdevielle, Colette Johnen, and Alessia Milani

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. In this paper we study efficient implementations for deterministic abortable objects.
Deterministic abortable objects behave like ordinary objects when accessed sequentially, but they
may return a special response abort to indicate that the operation failed (and did not take effect)
when there is contention.
It is impossible to implement deterministic abortable objects only with read/write registers [4].
Thus, we study solo-fast implementations. These implementations use stronger synchronization
primitives, e.g., CAS, only when there is contention. We consider interval contention.
We present a non-trivial solo-fast universal construction for deterministic abortable objects. A
universal construction is a method for obtaining a concurrent implementation of any object from
its sequential code. The construction is non-trivial since in the resulting implementation a failed
process can cause only a finite number of operations to abort. Our construction guarantees that
operations that do not modify the object always return a legal response and do not use CAS. More-
over in case of contention, at least one writing operation succeeds. We prove that our construction
has asymptotically optimal space complexity for objects whose size is constant.

Keywords: Concurrent programming, abortable object, universal construction, solo-fast imple-
mentation, lower bound, space complexity, wait-freedom

1 Introduction

With the raise of multicore and many core machines efficient concurrent programming is a major chal-
lenge. Linearizable shared objects are central in concurrent programming ; They provide a convenient
abstraction to simplify the design of concurrent programs. But implementing them is complex and ex-
pensive when strong progress conditions are required, e.g. wait-freedom (every process completes its
operations in a finite number of steps) [10]. The complexity originates in executions where processes ex-
ecute concurrent operations. Obstruction-freedom was proposed to circumvent this difficulty by allowing
an operation to never return in case of contention [11]. This separation between correctness and progress
let devise simpler and more efficient algorithms. In fact any obstruction free object can be implemented
using only read/write registers.

On the other hand, as pointed out by Attiya et al., [4], ideally shared objects should always return the
control, and when this happens the caller should know if the operation took place or not. This behavior
is formalized in the notion of deterministic abortable object proposed by Hadzilacos and Toueg [9]. A
deterministic abortable object ensures that if several processes contend to operate on it, it may return a
special response abort to indicate that the operation failed. And it assures that an operation that aborts
does not take effect. Operations that do not abort return a response which is legal w.r.t. the sequential
specification of the object.

In this paper we study efficient implementations for deterministic abortable objects. Attiya et al.
proved that it is impossible to implement deterministic abortable objects only with read/write registers,
[4]. Thus, we study implementations that use only read/write registers when there is no contention and
use stronger synchronization primitives, e.g., CAS, when contention occurs. These implementations are
called solo-fast and are expected to take advantage of the fact that in practice contention is rare.

The notion of solo-fast was defined in [4] for step contention : There is step contention when the steps
of a process are interleaved with the steps of another process. In the same paper, they prove a linear
lower bound on the space complexity of solo-fast implementations of obstruction-free objects. This result
also holds for deterministic abortable objects.

? This work was partially supported by the ANR project Displexity.

We consider an asynchronous shared-memory system where processes communicate through lineariz-
able shared objects and can fail by crashing, i.e. ; a process can stop taking steps while executing an
operation. In this model, we study the possibility that deterministic abortable objects can be imple-
mented efficiently if a process is allowed to use strong synchronization primitives even in absence of
step contention, provided that its operation is concurrent with another one. This notion of contention
is called interval contention [1]. Step contention implies interval contention, the converse is not true. To
avoid the situations in which a crashed process can prevent other processes to terminate, we consider
only implementations where a crashed process can cause only a finite number of concurrent operations
to abort. This property, called non-triviality, is formally defined in [2].

First we prove a linear lower bound on the space complexity of solo-fast implementations of abortable
objects for our weaker notion of solo-fast. To prove our result we adapt the notion of pertubable object
presented in [14] to abortable objects. We prove that a k-CAS abortable register is perturbable according
to our definition, and, we prove the lower bound in a way similar to the proof in [4].

Then, we present a solo-fast universal construction for deterministic abortable objects. A universal
construction [10] is a methodology for automatically transform any sequential object in a concurrent one.
An implementation resulting from our universal construction is solo-fast and has asymptotically optimal
space complexity if the implemented object has constant size. Our algorithm guarantees that operations
that do not modify the object always return a legal response. Also in case of contention, at least one
writing operation succeeds to modify the object. In particular, writing operations are applied one at the
time. Each process makes a local copy of the object and computes the new state locally. We associate a
sequence number to each state. A process that wants to modify the ith state has to compete to win the
i+ 1th sequence number. A process that does not experience contention uses only read/write registers,
while a CAS register is used in case of contention to decide the new state. It may happen that (at most)
one process p behaves as if it was running solo, while other processes were competing for the same se-
quence number. In this case, we use a lightweight helping mechanism to avoid inconsistency : any other
process acquires the state proposed by p as its new state. If it succeeds to apply it, it notifies the process p
that its state has been applied. Then the helping process aborts. We ensure that if a process crashes while
executing an operation, then it can cause at most two operations per process to abort. Our construction
uses O(n) read/write registers and n+1 CAS registers. Also it keeps at most 2n+1 versions of the object.

Related work. Attiya et al. were the first to propose the idea of shared objects that in case of contention
return a fail response [4]. Few variants of these objects have been proposed [4, 2, 9]. The ones proposed
in [4, 2] differ from deterministic abortable objects in the fact that when a fail response is returned the
caller does not know if the operation took place or not.

A universal construction for deterministic abortable objects is presented in [9]. This construction is
derived from the universal construction presented in [10] and can be easily transformed into solo-fast by
using the solo-fast consensus object proposed in [4]. This construction has unbounded space complexity,
since it stores all the operations performed on the object. Also operations that only read the state of the
object modify the representation of the implemented object and may fail by returning abort.

Several universal constructions have been proposed for ordinary wait-free concurrent objects. A good
summary can be found in [5]. These constructions could be transformed in solo-fast by replacing the
strong synchronization primitives they use with their solo-fast counterpart. To the best of our knowledge
no solo-fast LL/SC or CAS register exist. Luchangco et al. presented a fast-CAS register [15] whose
implementation ensures that no strong synchronization primitive is used in execution without contention.
But, in case of contention, concurrent operations can leave the system in a state such that a successive
operation will use strong synchronization primitives even if running solo. So, their implementation is not
solo-fast. Even using this solo-fast consensus object Attiya at el, which has Θ(n) space complexity, we
cannot easily modify existing universal constructions to make them solo-fast for abortable objects while
ensuring all the good properties of our solution.

Abortable objects behave similarly to transactional memory, [12]. Transactional memory enables pro-
cesses to synchronize via in-memory transactions. A transaction can encapsulate any piece of sequential
code. This generality costs a greater overhead as compared to abortable objects. Also transactional
memory is not aware of the sequential code embedded in a transaction. A hybrid approach between
transactional memory and universal constructions has been presented by Crain et al. [6]. Their solution
assumes that no failures occur. In addition they use a linked list to store all committed transactions.
Thus, their solution has unbounded space complexity. Finally, our algorithm ensures multi-version per-

2

missiveness and strong progressiveness proposed for transactional memory respectively in [16] and in [8]
when conflicts are at the granularity of the entire implemented object.

Paper organization. In Section 2 we present our model and preliminaries. In Section 3 we prove the
linear lower bound on the space complexity of solo-fast implementations of obstruction-free objects. In
Section 4 we present our solo-fast universal construction. Finally, the proofs of the construction are given
in Section 5.

2 Preliminaries

We consider an asynchronous shared memory system, in which n processes p1 . . . pn communicate through
shared objects, such as read/write registers and CAS objects. Every object has a type that is defined
by a quadruple (Q,O,R,∆), where Q is a set of states, O is a set of invocations, R is a set of responses,
and ∆ ⊆ Q × O × Q × R is the sequential specification of the type. A tuple (s, op, s′, res) in ∆ means
that if type T is in state s when op ∈ O is invoked, then T can change its state to s′ and return the
response res.

For each type T = (Q,O,R,∆), we consider the deterministic abortable counterpart of T as defined
in [9] and denoted T da. T da is equal to (Q,O,Rda, ∆da) where Rda = R ∪ {⊥} for some ⊥ /∈ R, and,
for every tuple (s, op, s′, res) in ∆, the sequential specification ∆da contains the following two tuples:
(s, op, s′, res) and (s, op, s,⊥). These two tuples of ∆da correspond to op completing normally, and op
aborting without taking effect.

A universal construction is a method to transform any sequential object into a linearizable concurrent
object. It consists in a method which takes as input the sequential code of an operation and its arguments.
The algorithm that implements this method is a sequence of operations on shared objects provided by
the system, called base objects. To avoid confusion between the base objects and the implemented ones,
we reserve the term operation for the objects being implemented and we call primitives the operations
on base objects. We say that an operation of an implemented object is performed and that a primitive
is applied to a base object.

In the following, we consider that for any given object o the set of operations to access it is either
historyless or not. Let o be a base object that supports two operations f and f ′. Following [7], we say
that f overwrites f ′ on o, if starting from any value v of o, applying f ′ and then f results in the same
value as applying just f , using the same input parameters (if any) in both cases. A set of primitives is
called historyless if all the primitives in the set that may change the state of the object overwrite each
other; we also require that each such operation overwrites itself.

A step of a process consists of a primitive applied to a base object and possibly some local computa-
tion. A configuration specifies the value of each base object and the state of each process at some point
in time. In an initial configuration, all base objects have their initial values and all processes are in their
initial states. An execution is a (possibly infinite) sequence Ci, φi, Ci+1, φi+1, . . . , φj−1, Cj of alternating
configurations (Ck) and steps (φk), where the application of φk to configuration Ck results in configura-
tion Ck+1, for each i ≤ k < j. For any finite execution α and any execution α′, the execution αα′ is the
concatenation of α and α′; in this case α′ is called an extension of α. An execution α is q-free if no step
in α is applied by the process q.

The execution interval of an operation starts with an invocation and terminates when a response is
returned. An invocation without a matching response is a pending operation. Two operations op and op′

are concurrent in a execution α, if they are both pending in some finite prefix of α. This implies that
their intervals overlap. An operation op precedes an operation op′ in α if the response of op precedes the
invocation of op′ in α. An operation experiences interval contention in an execution α if it is concurrent
with at least another operation in α.

Processes may experience crash failures. For any given execution α, if a process p does not fail in α,
we say that p is correct in α.

Properties of the implemented object. We consider universal construction that guarantees that
all implementations resulting by their application are wait-free [10], linearizable [13], non-trivial and
non-trivial solo-fast. Wait-free implementations ensure that in every execution, each correct process
completes its operation in a finite number of steps. Linearizability ensures that for every execution α

3

and for every operation that completes and some of the uncompleted operations in α, there is some
point within the execution interval of the operation called its linearization point, such that the response
returned by the operation in α is the same as the response it would return if all these operations were
executed serially in the order determined by their linearization points.

Informally, an implementation of an object is non-trivial if for every execution α every operation that
aborts is concurrent with some other operation in α, and an operation that remains incomplete does not
cause infinitely many other operations to abort. A more formal definition can be found in [2].

Finally, an implementation is said non-trivial solo-fast if for each execution α a process p applies some
no historyless primitives during performing an instance of operation op, only if op is concurrent with
some other operation in α and an operation that remains incomplete does not justify the application of
no historyless primitives by infinitely many other operations.

3 Lower Bound

In the following we adapt the definition of perturbable objects presented in [3] and originally proposed
in [14] to deterministic abortable objects.

Definition 1. A deterministic abortable object O is perturbable for n processes, if for every linearizable
and non-trivial implementation of O there is an operation instance opn by process pn, such that for any
pn-free execution αλ where no process applies more than a single event in λ and for some process pl 6= pn
that applies no event in λ, there is an extension of α, γ,consisting of events by pl, such that the first
response res 6= ⊥, that pn returns when repeatedly performing opn by itself after αλ is different from the
first response res′ 6= ⊥ it returns when repeatedly performing opn by itself after αγλ.

By adjusting the proof of Lemma 4.7 in [14], we prove that the set of deterministic abortable objects
which are perturbable is not empty. In particular, we prove that the k-valued deterministic abortable
CAS is perturbable.

A k-valued deterministic abortable CAS is the type (Q,O,R,∆), where Q = {1, 2, .., k}, O =
{Read,CAS(u, v) with u, v ∈ {1, 2, .., k}}, R = {1, 2, .., k} ∪ {true, false,⊥} and ∀s, u, v ∈ {1, 2, .., k}
∆ = {(s,Read, s, s)}∪{(s, CAS(s, v), v, true)}∪{(s, CAS(u, v), s, false) with u 6= s}∪{(s,Read, s,⊥)}∪
{(s, CAS(u, v), s,⊥)}.

Lemma 1. For all k ≥ n, k-valued deterministic abortable CAS object is perturbable for n processes for
any initial state.

Proof. Consider any linearizable and non-trivial implementation of a k-valued deterministic abortable
CAS object O, initialized to any value and shared by processes p1, ..., pn. Let α and λ be any pn-free
execution where no process applies more than a single event in λ.

Let pl be a process that applied no event in λ. If pl have a pending operation in α let γ′ be an
extension of α that completes the pending operation. Let P be the set of processes that have a pending
operation on O at the end of αγ′, then P ⊆ {p1, ..., pn−1} − {pl}.

Let Q be the set of processes that initiate a new operation on O during the execution λ. Since pl
applies no event in λ and λ is a pn-free execution, then Q ⊆ {p1, ..., pn−1} − {pl}. Moreover, if a process
have a pending operation in αγ′ it cannot initiate a new operation in λ because no process applies
more than a single event in λ. Thus we have P ∩ Q = ∅. Since P,Q ⊆ {p1, ..., pn−1} − {pl}, we have
|P |+ |Q| ≤ n− 2. Let V be the set of all v such that a CAS(v,−) operation on O is either pending in
αγ′ or initiated in λ. From above |V | ≤ n− 2.

Let res be the value returned by the first response which is not ⊥ after that pn performs a sequence
of read operations after αλ. Because of the non-triviality this value exists.

Let w ∈ {1, 2, .., n} be such that w /∈ V and w 6= res. Let γ′′ be an extension of αγ′ such that pl
applies a sequence of read operations until one of these read operations returns a value v′ 6= ⊥, and then
it applies the operation op = CAS(v′, w). By non-triviality the sequence of read operations in γ′′ is not
infinite and the operation CAS(v′, w) is successful.

Any CAS operation op” pending in αγ′ or initiated in λ is of the form CAS(v,−) with v 6= w. So,
none of the CAS is linearizable. Then, op is the last successful CAS of αγ′γ′′λ.

4

Let res′ be the value returned by the first response which is not ⊥ when pn performs a sequence
of read operations solo after αγ′γ′′λ. Because of non-triviality this value exists. We have res′ = w. By
definition res′ 6= res.
ut

In the following we prove that any non-trivial solo-fast implementation of a deterministic abortable
object that is perturbable has space complexity in Ω(n). The proof is similar to the proof of Theorem 4
in [3]. This proof does not directly apply because we consider a notion of solo-fast which is weaker than
the one assumed in [3]. In particular, we authorize processes to use strong synchronization primitives
even in absence of step contention if there is interval contention. But to avoid trivial solutions, a failed
operation can enable only a finite number of other operations to be executed using strong synchronization
primitives.

The following definition is needed for our proof. We say that a primitive is writing if its application
may change the state of the object.

Definition 2. A base object o is covered after an execution α if all the primitives applied to o in α are
historyless, and there is a process pn that has, after α, an enabled step e about to apply a historyless
writing primitive to o. We also say that e covers o after α.
An execution α is k-covering if there exists a set of processes pj1 , ..., pjk that does not contain process pn,
such that all the steps of α are applied by processes in this set and each of the processes in the set has
an enabled writing step that covers a distinct base object after α.

Theorem 1. Let A be an n-process non-trivial solo-fast implementation of a perturbable deterministic
abortable object. The space complexity of A is at least n− 1.

Proof. We prove the theorem by showing that A has an (n− 1)-covering execution.
The proof goes by induction. The empty execution is vacuously a 0-covering execution. Assume that

αi , for i < n − 1, is an i-covering execution with covering set {pj1 , ..., pji}. Let λi be the execution
fragment that consists of the writing steps by processes pj1 ...pji that are enabled after αi , arranged in
some arbitrary order.

Let pji+1
/∈ {pn, pj1 , ..., pji} be a process that executes some steps solo after αi. Because of the non-

triviality of the solo-fast property after a finite number of steps the process pji+1
uses only historyless

primitives. We define δji+1
the sequence of steps executed by pji+1

after αi after which pji+1
has finished

an operation (no enabled step) and it applies only historyless primitives (if any). In the same way, we
define δji+x for pji+x /∈ {pn, pj1 , ..., pji} for x = 2..n− i− 1 relatively to αiδji+1 ...δji+x−1 .

Let δ be the concatenation of all δji+x
for x = 1..n− i− 1. We have αi

′ = αiδ. After αi
′ the process

pji+x
for x = [2, n− i− 1] will apply historyless primitive.

By Definition 1, there is an execution fragment γ by some process pjx /∈ {pn, pj1 , ..., pji} such that
the first response different than abort, i.e. ⊥, returned to pn when repeatedly executing opn respectively
after α′iλi and α′iγλi is different. We claim that γ contains a writing step that accesses a base object not
covered after α′i . We assume otherwise to obtain a contradiction. Since all steps in executions fragment
λi and γ apply primitives from a historyless set, every writing primitive applied to a base object in γ
is overwritten by some event in λi. Thus, the values of all base objects are the same after α′iλi and
after α′iγλi. This implies that opn must return the same response after both α′iλi and α′iγλi , which is a
contradiction.

γ′ is the shortest prefix of γ at the end of which pjx has an enabled writing step about to access an
object o not covered after α′i. We define αi+1 to be α′iγ

′. Thus, at the end of αi+1, pjx has an enabled
writing step that accesses o. αi+1 is an execution, after which processes pj1 , ..., pji , pjx have enabled
steps that cover distinct objects. Hence, αi+1 is an (i + 1)-covering execution. It follows that A has an
(n− 1)-covering execution. ut

4 A Non-trivial Solo-fast Universal Construction (NSUC)

The algorithm uses read/write registers and CAS objects. A register R stores a value from some set and
supports a read primitive which returns the value of R, and a write primitive which writes the value
v in R. A CAS object support two primitives : CAS(o, e, v) and Read(o), where o is a CAS register,

5

e an expected value, and v a new value. If the value currently stored at a matches the expected value
e, then CAS(o, e, v) stores the new value v at o and returns true (the CAS succeeds). Otherwise, CAS
returns false and does not modify the object (the CAS fails); Read(o) returns the value stored in the
CAS object and it does not modify the state of o.

The shared variables present in the algorithm are following :

– An array A of n single writer multireader (SWMR) registers. Each register contains a sequence value.
In particular, process pi announces its intention to change the current state of the shared object,
by writing into location A[i] the sequence that will be associated to the new state if pi succeeds its
operation. Our algorithm guarantees that each state of the object is univocally associated with a
sequence. Initially, A[j] = 0 for j = 1..n.

– An array F of n SWMR registers. Each register contains a sequence and the pointer to a state of the
shared object. The process pi writes < seq, σ > in F [i] if it has detected that it is the first process
to announce its intention to define the state for the sequence seq, σ is the proposed state. Initially,
F [j] =< 0,⊥ > for j = 1..n.

– An array OS of n SWMR registers. If there is no contention process pi writes < seq, state > into
OS[i] where state is the pointer to the new state of the shared object computed by pi while executing
its operation and seq is the associated sequence value. Initially, OS[j] =< 0,⊥ > for j = 1..n.

– A single CAS register OC which contains a sequence, an identifier of a process and a pointer to a
state of the shared object. It is used in case of contention to decide the new state of the object among
the ones proposed by the concurrent operations.

In particular, if a process pi detects the contention, it tries to change the state of the CAS register
into a tuple (< seq, id, newState >) where id is the identifier of the process that proposes the state
newState associated to the sequence seq.

id may be different than i if process pi detects that another process pid is concurrently executing an
operation and both are trying to propose a new state for the same sequence value. pi then helps the
other process to apply its changes. Initially, OC =< 0, 0, σ > where σ is the pointer to the initial
state of the shared object.

– An array S of n CAS registers. Before trying to apply its changes to the CAS register OC, a process
stores the sequence value stored in OC in S. Precisely, if the value of OC is < seq, i, state >, S[i]
will be set to seq. This is necessary to ensure that a process whose operation completes thanks to
another process is aware that its operation succeeded. Thus, if S[i] = seq process i knows that its
operation which computed the state associated to seq succeeded.

Initially, S[j] = 0 for j = 1..n.

We suppose to know if an operation op may changed the state of the shared object, or if it cannot .
In the last case we say that op is read-only. This information is specified in the inputs.

6

Code for process pi to apply operation op with input arg on a DA object :

1 < seq, state >← STATE() ; //Find the last state and the sequence corresponding

2 < newState, res >← APPLYT (state, op, arg);
3 if op is read-only then
4 return res
5 end
6 seq ← seq + 1 ; //New sequence

7 A[i]← seq ; //The process announces its intention

8 idnew ← i;
9 seqA ← LEV ELA(i);

10 if seqA > seq then //A state is already decided for this sequence

11 return ⊥
12 end
13 if seqA = seq then //There is an interval contention

14 < idF , newStateF >←WHOS FIRST(seq);
15 if newStateF 6= ⊥ then //Presence of a first process

16 newState← newStateF ;
17 idnew ← idF ;

18 end

19 else
20 F [i]←< seq, newState >;
21 if LEV ELA(i) < seq then //The process is still alone

22 OS[i]←< seq, newState >;
23 return res

24 end

25 end
26 < seqOC , idOC , stateOC >←READ(OC);
27 while seqOC < seq do
28 OLD WIN(seqOC , idOC);
29 CAS(OC,< seqOC , idOC , stateOC >,< seq, idnew, newState >);
30 < seqOC , idOC , stateOC >←READ(OC);

31 end
32 if (seqOC = seq ∧ idOC 6= i) ∨ (seqOC > seq ∧READ(S[i]) 6= seq) then
33 res← ⊥;
34 end
35 return res

Algorithm 1: NSUC - Code for process pi

Description

At any configuration the state of the object is the value with the highest sequence stored either in the
CAS register OC or in the array OS.

When a process pi wants to execute an operation op on an object of type T , it first reads the current
state of the object and the corresponding sequence seq (line 1). Then, pi locally applies op to the read
state (line 2). The algorithm assumes a function APPLYT (s, op, arg) that returns the response matching
the invocation of the operation op in a sequential execution of op with input arg from state s for the
object of type T . APPLYT (s, op, arg) also returns the new state of the object.

If the operation op cannot change the state of the object, pi immediately returns the response (line 3
to 5). Otherwise, after incrementing the sequence value seq (line 6), pi announces its intention to modify
the state of the object by writing value seq + 1 into the register A[i] (line 7). In particular, according to
pi’s knowledge the current state of the object is the one associated to the sequence value seq and it is
going to compete to decide the new state. This latter will be associated to the sequence value seq + 1.

After announcing its intention to modify the object, pi checks if some other process is concurrently
executing a non trivial operation on it. This is done by reading the other entries of the array A and
looking for sequences greater than or equal to seq + 1.

7

Then, three cases can be distinguished.

– A greater sequence is found. Then some other process already decided the state for seq + 1 and pi
aborts.

– pi detects that it is the first process announcing a proposal for the sequence seq + 1 (no read
sequence is greater than or equal to pi’s one, i.e. LEV ELA(i) < seq + 1). So pi writes its proposal,
(seq + 1, newstate) into the register F [i] (line 20) and checks again for concurrent operations (line
21). If pi is still the only process to announce a proposal for seq + 1, it writes its proposal into the
register OS[i] (lines 21-22). This means that the state of the object associated to seq + 1 is the one
proposed by pi. This is because any other process competing for the same sequence will read that pi
is the first process to propose a new state for seq+ 1 and will help pi to complete its operation (lines
15-17 and line 19). Finally, pi returns the response of the operation (line 23).

– pi reads seq + 1 in one of the other entries. Then it detects that another process is concurrently
trying to decide the state for this sequence. If the detection is done on line 13, then pi checks the
presence of a process pj competing for the sequence seq+ 1 and which has seen no contention (i.e. pj
has written its proposal in F [j]) in line 14. If this process exists, pi will help pj to apply its changes
to the state of the object (lines 15 to 18). In particular, since there is contention pi will try to write
pj ’s proposal into the CAS register OC (lines 26 to 31). Then it will return abort (lines 32 to 35).

Otherwise pi continues to compete for its own proposal. It tries to write the proposed state into OC
(lines 26 to 31) until a decision is taken for the sequence seq+1. If a process (pi or a helper) succeeds
to perform a CAS in OC with pi’s proposal then pi returns the response of its own operation (line
35). Otherwise it aborts. We have a similar behavior if a process detects the contention on line 21.

STATE returns the current state of the shared object and its sequence.

code for the function STATE()
1 seqmax ← 0;
2 σmax ← ⊥;
3 for j = 1..n do
4 < seqOS , σ >← OS[j];
5 if seqOS > seqmaxthen seqmax ← seqOS ; σmax ← σ; end

6 end
7 < seqOC , idOC , σOC >←READ(OC);
8 if seqOC < seqmax then return < seqmax, σmax > end
9 return < seqOC , σOC >

Algorithm 2: function STATE

LEV ELA(i) returns the highest sequence written into the announce array A by a process other than
pi when.

code for the function LEV ELA(i)
1 seqmax ← 0;
2 for j = 1..n | j 6= i do
3 seqA ← A[j];
4 if seqmax < seqA then seqmax ← seqA; end

5 end
6 return seqmax

Algorithm 3: function LEV ELA

For a given sequence seq WHOS FIRST (seq) returns the couple (j, σ) where j is the first process
(if any) to propose a new state for seq and σ is the proposed stated. For any given sequence value, the
algorithm ensures that at most one such process exists. This is proved in Lemma 4.

code for the function WHOS FIRST (seq)
1 for j = 1..n do
2 < seqF , σF >← F [j];
3 if seq = seqF then return < j, σF > end

4 end
5 return < 0,⊥ >

Algorithm 4: function WHOS FIRST

8

OLD WIN tries to write seqOC in the CAS S[idOC] if S[idOC]’s value is smaller than seqOC . This
ensures that a slow process p whose operation succeeded to modify the CAS OC and then the state of the
implemented object is aware that its operation was successfully executed. In fact, it may happen that p
did not take steps while another process completed its operation and, then another operation overwrote
its changes by writing into OC. Then, p can recover the state of its operation checking into its location
in S and return the correct response.

code for the function OLD WIN(seqOC , idOC)
1 seqS ← READ(S[idOC]);
2 if seqOC > seqS then CAS(S[idOC], seqS , seqOC); end

Algorithm 5: Function OLD WIN

Complexity

Let t be the worst case time complexity to perform an operation on the sequential implementation
of the object (i.e. the time complexity of the function APPLYT). Because of the n iterations in the
function STATE, LEV ELA and WHOS FIRST , the time complexity of these functions is O(n). On
the contrary the time complexity for the function OLD WIN is O(1), then during each iteration of the
loop (lines 27 to 31 of the Algorithm 1) the time complexity is O(1). Since a process can repeat the loop
at most n times (according to Lemma 2 and Lemma 3 in the appendix), the worst time complexity for
the loop is O(n). And so, the time complexity is O(n+ t). Since for any operation, a process executes at
least STATE and APPLYT , the time complexity is Ω(n+ t). Then, we have a time complexity Θ(n+ t).

Let s be the size of the sequential representation of the object. The NSUC algorithm stores at most
2n+ 1 sequential representation of the object (n for the array F , n for the array OS and 1 for OC). So
the space complexity of NSUC algorithm is in O(ns).

5 Proofs of NSUC

In the following all the line numbers refer to Algorithm 1 unless specified.

5.1 Wait-freedom

For any pair of tuples t1, t2 stored in OC or in OS we say that t1 is greater than t2 iff the sequence in
t1 is greater than the sequence in t2.

Observation 1 The values written in the CAS object OC are increasing.

This follows from the fact that the CAS object OC is written only at line 29 and because of line 27 the
value written is greater than the value stored in OC immediatly before the write succeeded.

Observation 2 ∀i = 1..n the values written in OS[i] are increasing.

OS[i] is written only by process pi. Inspection of the pseudocode of the function STATE reveals that a
process pi begins the execution of an operation op with a value of seq equal to or greater than the value
in OS[i] at the configuration before the invocation of op. Before writing a new sequence value in OS[i]
the only operation on seq is an increment (line 6 of Algorithm 1).

Lemma 2. A process p stays in the loop (lines 27 to 31) only if another process q succeeds the CAS at
line 29 with a sequence value smaller than the seq value of p when executing line 27, in between the last
read of OC by p and the last CAS operation to OC by p.

Proof. Let us assume that no process succeeds a CAS on OC between the last read of OC by p and the
application of CAS on OC by p. Then process p succeeds its CAS and writes a tuple with sequence seq
into OC. p exits the loop because by Observation 1 the value it successively reads in OC is greater than
or equal to seq. Similarly, if a process succeeds the CAS with a sequence greater or equal than seq, then
by Observation 1, p exits the loop. ut

9

Lemma 3. Let p be a process in the loop (lines 27 to 31). Another process q can prevent p to exit the
loop at most once.

Proof. According to Lemma 2, a process q can prevent p to exit the loop only if it succeeds its CAS
with a sequence smaller than the value of seq of p, in between the time of the last read of OC by p
and the following CAS by p. Let v be the value of the seq of p when p executes line 27. Assume that a
process q writes into OC a sequence value smaller than v in between the last read of OC by p and its
successive application of CAS to OC. After its CAS, q exits the loop by Observation 1 and its operation
is terminated. If q executes a new operation, it will obtain (at line 1) a sequence value greater than
or equal to v. This is because of Observation 1, Observation 2 and by the pseudocode of the function
STATE. Then q cannot prevent anymore p to exit the loop. ut

Lemma 2 and Lemma 3 prove the following theorem.

Theorem 2. Every invocation of an operation by a non-faulty process returns after a finite number of
its own steps.

5.2 Deterministic Abortable Object

In this section, we prove that every operation that aborts (i.e. returns ⊥) does not modify the state of
the implemented object.

Lemma 4. For any given integer value v at most one process writes v into F .

Proof. A process pi writes v into F (line 20 of Algorithm 1) only if the seqA value read line 9 is smaller
than v. Observe that pi writes v in A[i] (line 7) before executing line 9 of Algorithm 1.

Assume by contradiction that there is another process pj that writes v into F . Then, since both pi
and pj verify the condition seqA < v, none of them read the value v written into A by the other process.
This means that the read of A[i] (A[j]) by pj (pi) precedes the write of A[i] (A[j]) by pi (pj). Since the
write of A[i] precedes the read of A[j] by pi and similary from pj , we reach a contradiction. ut

Lemma 5. Let t, t′ be two tuples written into OC and/or into OS. If t and t′ have a same sequence
value then the state field of t is equal to the state field of t′.

Proof. By Observation 1 for any given integer value v at most one tuple with sequence value v is written
into OC. By Lemma 4 the same holds for the tuples written into OS. It remains to prove that for any
pair of tuples t and t′ with a same sequence value and such that t is written into OC and t′ is written
into OS, the state field of t and t′ is the same.

If there is a state s associated to a sequence value v which is written in OC by process pi and a state
s′ associated to a sequence value v which is written in OS by process pj . Then pj has previously written
< v, s′ > into F [j] (line 20) and before this write pj wrote v into A (line 7). Since at line 21 pj reads a
sequence value smaller than v, then the read of A[i] precedes the write of v into A[i] by pi. Since pi first
writes v into A[i] and then reads A[j], the value read in A[j] is greater than or equal to v. Since pi writes
into OC (i.e. it executes line 29), the value read in A[j] is equal to v. Then, it executes lines 13-18 and
by Lemma 4 and according to the pseudocode of the function WHOS FIRST , we have that at line 14
pi reads the state s written by pj . Thus s = s′. ut

Observation 3 A sequence value v cannot be written in S[i] if no process has written in OC the triplet
< v, i, state >.

This follows from lines 26, 28 of Algorithm 1 and line 3 of Algorithm 5.

Observation 4 ∀ i = 1..n the values written in S[i] are increasing.

This follows from lines 2,3 of Algorithm 5.

Lemma 6. Consider an invocation to OLD WIN(v, i) by a process p which returns. If p, while executing
OLD WIN(v, i) reads S[i] < v on line 1, then either p succeeds the CAS(S[i],−, v) on line 3 or some
other process wrote v into S[i] at a configuration that precedes the application of this CAS.

10

Proof. Let s1, . . . sh be the sequence of tuples with process identifier i written into OC ordered according
to their sequence number. By Observation 1 this order corresponds to the order these tuples are written
into OC. Thus, sk with k = 1, . . . h is the k-th tuple with identifier i written into OC. The proof is by
induction on k.

In the base case k = 1. Let C be the first configuration at which the value of OC is s1. Let q be
the process that overwrites the value s1 in OC. Before applying this write operation on OC, q invokes
OLD WIN(s1.seq, i) where s1.seq is the sequence number of s1. Since q is the process that overwrites
s1 and by Observation 3, the value read by q in S[i] is the initial value and then it is smaller than s1.seq.
Suppose q fails the CAS(S[i],−, s1.seq). Then, by Observation 3 another process has written s1.seq into
S[i] before q applies its CAS. Thus, when q returns from OLD WIN(s1.seq, i) the value s1.seq has been
written into S[i].

Consider any other process p that invokes OLD WIN(s1.seq, i) and returns from this call. Assume
p reads a value smaller than s1.seq at line 1 and it fails the CAS(S[i],−, s1.seq). If it fails after q returns
from OLD WIN(s1.seq, i), the claim follows. Otherwise, by Observation 3 another process has written
s1.seq into S[i] in between its read operation and its application of the CAS.

For the induction step, Let p be a process that executes OLD WIN(sk.seq, i) and returns from this
invocation. Assume that p reads a value S[i] < sk.seq and fails the CAS(S[i],−, sk.seq). To invoke
OLD WIN(sk.seq, i) p has previously read sk into OC (line 26 of Algorithm 1). Then, by Observation
1, the tuple sk−1 was written into OC before this read operation.

Let C be the first configuration at which the value of OC is sk−1. The process that overwrites this
tuple has to previously invoke and return from the call of OLD WIN(sk−1.seq, i). Thus, by the inductive
hypothesis and Observation 3 at some configuration before the write into OC of the value sk, the value
of S[i] is equal to sk−1.

If p is the process that overwrites the value sk in OC. Then, by Observations 3 and 4 another process
has written sk.seq into S[i] before p applies its CAS. Otherwise p is not the process that overwrites the
value sk into OC. If it fails the CAS after sk is written into OC, then the claim follows. Otherwise, by
Observations 3 and 4 another process has written sk.seq into S[i] before p applies its CAS. ut

When a process pj succeeds a CAS in OC overwritting < v, i,− >, S[i] contains v.

Lemma 7. Let C be the configuration immediately after a successful application of CAS(OC,< v, i,− >
,−). Then S[i] = v at C.

Proof. By Observation 1 a tuple< v,−,− > can be written into OC only once. Let C be the configuration
immediatley after the successful application of CAS(OC,< v, i,− >,< −,−,− >) by a process p. Since
the CAS is successful there is a configuration C ′ that precedes C such that the value of the CAS object
OC is < v, i,− > at C ′ and in between C ′ and C no CAS operation on OC succeed.

Inspecting the pseudocode of Algorithm 1 reveals that p executes OLD WIN(v, i) before C. By
Observations 1 and 4 the value read by p in S[i] (line 1 of Algorithm 5) is less than or equal to v. If
the value read by p is less than v, then by Lemma 6 either p succeeds the CAS at line 3 of Algorithm 5
writing v into S[i] or another process did it at some configuration preceding the application of the CAS
on S[i] by p. Since no other CAS operation succeeds in between C ′ and C and because of Observation
4, the value of S[i] is v at C. ut

Let pi be a process executing an operation. We define seqiop as the sequence value that the function
STATE returns on line 1 during the execution of an operation instance op by process pi. If there is no
ambiguity or we are not interested in the process executing op we use seqop.

We denote seqO(C) the greatest sequence value stored in the CAS register OC and in the array OS
at configuration C and seqA(C) the greatest value in A at configuration C.

Lemma 8. For all positive integer v if seqO(C) ≥ v, then a process has written < v,−,− > into OC
or < v,− > into OS before configuration C.

Proof. We do the proof by backward induction on v. If v = seqO(C) the claim is true by definition of
seqO(C). We assume that for a v such that v ≤ seqO(C) the claim is true and we prove that it is true
for v − 1. Let p be the process which has written < v,−,− > into OC or < v,− > into OS before the

11

configuration C. Before this write operation p has read the value v − 1 in OC or in OS when executing
line 1 of Algorithm 1. Inspecting the pseudocode of the function STATE reveals that before this read
operation and then before configuration C a process wrote < v− 1,−,− > into OC or < v− 1,− > into
OS ut

The following theorem states that an operation instance that aborts does not change the state of the
shared object.

Theorem 3. If an operation instance op executed by a process p aborts, then the tuple with the new state
computed by p while executing op will never be written into OC or into OS.

Proof. A process can abort on line 11 or line 33. If the process aborts on line 11, it is trivial.
If the process pi aborts on line 33 either (vOC = seqiop + 1 ∧ idOC 6= i) or (vOC > seqiop + 1 ∧

READ(S[i]) 6= seqiop + 1), where vOC and idOC are respectively the sequence value and the identifier of
the last tuple pi read in OC.

– In the first case, pi has read the state associated to its sequence value seqiop + 1 and its not its state.
By Lemma 5 its proposed state will never be written in OC or in OS.

– In the second case, the sequence value read by pi in OC is greater than seqiop + 1 and S[i] does

not contain seqiop + 1. Then according to Lemma 7 and Observation 4, no process has written into

OC the state proposed by pi for the sequence value seqiop + 1. According to Lemma 8, a tuple with

sequence value equal to seqiop + 1 has been written into OS or into OC. Therefore the state proposed

by pi for the sequence number seqiop + 1 will never be written into OC or into OS (Lemma 5).

ut

5.3 Non-triviality

In this section we prove that our algorithm is non-trivial according to the definition of non-triviality
proposed in [2]. In particular, an operation can abort only if it is concurrent with another operation, and
an operation that does not complete can cause only a finite number of operations to abort. In particular,
we prove that it can cause the abort of at most two operations per process.

Observation 5 At any configuration C, we have seqA(C) ≥ seqO(C).

This follows from the fact that every process writes the greatest value read in OC and in OS plus one
in A before writing into OC or into OS.

Lemma 9. For any given execution α, and any configuration C in α we have seqA(C) = seqO(C) or
seqA(C) = seqO(C) + 1

Proof. Fix an execution. Initially this is true : seqA(0) = 0 and seqO(0) = 0. Assume that is true up to
configuration C. Two cases have to be studied.

– The step that brings from configuration C to configuration C + 1 is a write of a sequence value v
into OC or into OS by a process p.
Then seqA(C) = seqA(C+1). Also, according to Observation 1 and Observation 2, we have seqO(C+
1) ≥ seqO(C). If seqO(C + 1) = seqO(C) , then the claim is trivially true. Otherwise seqO(C + 1) >
seqO(C), and then seqO(C + 1) ≥ seqA(C + 1). By Observation 5 seqA(C + 1) ≥ seqO(C + 1). Then
seqA(C + 1) = seqO(C + 1).

– The step that brings from configuration C to configuration C + 1 is a write of a sequence value v
into A by a process pi while executing an operation op. This implies that seqO(C) = seqO(C + 1).
Also, v = seqiop + 1 and seqO(C) ≥ seqiop because seqiop has been read before configuration C.

• First consider seqO(C) = seqiop. If the value written by pi is not greater than the values stored in A

at C, then seqA(C) = seqA(C+1). Otherwise, we have seqA(C+1) = seqiop+1 = seqO(C+1)+1.
In both cases the claim follows.

12

• If seqO(C) > seqiop, then there is a process pj which has written seqO(C) in OC or in OS before
the configuration C and after the configuration that immediately follows the read by pi on line
1. Then pj has written seqO(C) in A[j] before the configuration C. Also pj is not the process pi
otherwise seqop = seqO(C) and we reach a contradiction. Given that i 6= j, and since the value
written by pi is smaller than or equal to seqO(C), we have seqA(C) = seqA(C + 1). The claim
follows.

ut

The following Lemma states that when an operation that tries to write the ith state of the object
aborts, the ith state is already defined. Thus, our algorithm ensures that even in presence of interval
contention at least one operation succeeds to modify the state of the object.

Lemma 10. Let op be an operation that may change the state of the object executed by a process p. Let
C be the configuration immediately after op returns. A tuple corresponding to the sequence value seqop+1
has been written into OC or into OS before C.

Proof. Let p be a process that executes an operation op that may change the state of the object . op
returns because p executes one of the following lines : line 11, line 23 or line 35 of Algorithm 1. Let C
be the configuration immediately before op returns.

– If op returns on line 23 : Before returning, process p has written into its entry of OS a tuple
< seqop + 1,− > (line 22).

– If op returns on line 11 : The value read by process p at line 9 is greater than seqop + 1. According to
Lemma 9, we have seqA(C) = seqO(C) or seqA(C) = seqO(C) + 1, consequently we have seqO(C) ≥
seqop + 1. By Lemma 8, a process has written a tuple with the sequence value seqop + 1 into the CAS
register OC or into the array OS before configuration C.

– op returns on line 35 : Because of line 27 of Algorithm 1, we have seqO(C) ≥ seqop + 1. Then, by
Lemma 8, a process has written a tuple with the sequence value seqop + 1 in the CAS register OC
or into the array OS before configuration C.

ut

Lemma 11. For any given execution α, let op be an operation instance executed by process pi. If the
value of LEV ELA(i) reads by pi at some point during the execution of op is greater than or equal to
seqiop + 1, then op is concurrent with another operation op′ in α.

Proof. Let pi be a process that executes an operation op. Assume that pi reads LEV ELA(i) = vA ≥
seqiop + 1 during the execution of op. Then, another process pj has written the value vA into A[j] while
executing an operation instance op′.

Assume by contradiction that op and op′ operations are not concurrent. Since we assume they are not
concurrent and as the process pi reads a value written by pj during op′, op′ precedes op. Inspecting the
code reveals that op and op′ are not trivial operations since they access the array A. According to the
Lemma 10, when op′ terminates at configuration C, seqO(C) = vA. So, at configuration C ′ where pi starts
its operation seqO(C ′) ≥ vA and seqiop should be greater than or equal to vA. This is a contradiction. ut

Observation 6 An operation instance op executed by a process pi aborts only if pi reads LEV ELA(i) ≥
seqiop + 1 at some point during the execution of op.

This follows from the fact that if an operation instance aborts on line 11, the process has executed
line 10; if an operation instance aborts line 33 the process executed line 13 or line 21.

Lemma 12. For any given execution α, let op be an operation instance by process p that aborts in α.
Then op is concurrent with some other operation op′ in α.

Proof. Let op be an operation instance by process pi that aborts. By Observation 6 pi reads at some
point during the execution of op LEV ELA(i) ≥ seqiop + 1. Moreover by Lemma 11 op is concurrent with
another operation op′ in α. ut

13

Lemma 13. Fix an execution α. Let pi be a process that fails in α while executing an operation op. For
any non faulty process pj let op1 be the first operation executed by pj which is concurrent with op. Let
op2 and op3 be two consecutive operation instances executed by pj immediately after op1. We have that
seqjop3

> seqiop.

Proof. Let pi be a process that fails in α while executing an operation op. By Theorem 2 every operation
executed by a non-faulty process terminates. Let pj be a non-faulty process in α. Observe that the
invocation of op2 by pj follows the invocation of op by pi. Thus, by Observations 1 and 2 seqjop2

≥ seqiop.

Assume that seqjop2
= seqiop (otherwise the claim is proved). Let C ′ be the configuration immediately

after op2 returns, by Lemma 10 seqO(C ′) > seqjop2
. Then, inspecting the code of the function STATE

reveals that seqjop3
> seqiop. ut

Lemma 14. Fix an execution α. Let pi be a process that fails in α while executing an operation instance
op. Then for any non faulty process pj, op can abort at most two operations of pj.

Proof. Let pi be a process that fails and pj an other process. If seqiop < seqjop, the process pi cannot

cause the process pj to abort. This follows from Observation 6 and the fact that seqiop < seqjop. In fact,

since A[i] ≤ seqiop + 1 < seqjop + 1, pi cannot cause the read by pj of LEV ELA(j) ≥ seqjop + 1. The claim
follows from Lemma 13. ut

Lemma 12 and Lemma 14 prove the following theorem.

Theorem 4. The Algorithm NSUC is non-trivial.

5.4 Non-trivial solo-fast

In this section, we prove that our algorithm is non-trivial solo-fast. Informally, this means that during
the execution of an operation a process applies some no-histoyless primitives only if this operation is
concurrent with another one. Moreover, an operation op that does not complete can cause a process to
apply no-histoyless primitives for at most two consecutive operations concurrent with op.

Observation 7 A process pi applies no historyless primitive while executing an operation op only if it
reads LEV ELA(i) ≥ seqiop + 1 at some point during the execution of op.

This follows from the fact that a process applies no historyless primitive only on lines 28 and 29.
Then, to execute these lines it must have executed line 13 or line 21.

The following Lemma holds by Observation 7 and Lemma 11, in the same way we have proved Lemma
12 :

Lemma 15. For any given execution α, let p be a process that applies no historyless primitive while
executing an operation instance op. Then op is concurrent with some other operation op′ in α.

The following Lemma holds by Observation 7 and Lemma 13, in the same way we have proved 14 :

Lemma 16. Fix an execution α. Let pi be a process that fails in α while executing an operation instance
op. For any process pj, let op1,op2 and op3 be three consecutive operations executed by pj concurrently
with op. pj applies no historyless primitives when executing op3 only if it exists an operation op′ 6= op
such that the invocation of op′ follows the response of op1 and op′ is concurrent with op3.

Informally, this Lemma states that an operation op that does not complete can justify the application
of no historyless primitives by a process for the execution of at most two operations concurrent with op.

Lemma 15 and Lemma 16 prove the following theorem.

Theorem 5. The Algorithm NSUC is non-trivial solo-fast.

14

5.5 Linearizability

Fix an execution α, for any configuration C ∈ α, by Lemma 8 and Lemma 5, ∀0 < v ≤ seqO(C) there
is a unique state state such that a process has written < v,−, state > into OC or < v, state > into OS
before configuration C. We say that the operation that change the state of the object to the state state
such that a proces has written < v,−, state > into OC or < v, state > into OS, is associated to the
sequence v and also that the state state is associated to v.

Let π be a permutation of the high-level operations in α. We construct π by distinguishing three type
of operation : the read-only operations, the operations that are not read-only and return res 6= ⊥ and
the operations that are not read-only and return ⊥.

First, the operations that are not read-only and return res 6= ⊥ change the state of the object, so
they are associated to a sequence value. We order these operations according to the ascending order on
the sequence value associated to them.

Secondly, we consider each read-only operation in the order in which its reponse occurs in α. A read-
only operation op is placed immediately before the operation associated to the sequence value seqop + 1.

Finally, an operation op that is not read-only and returns ⊥ is placed immediately before the operation
associated to the sequence value seqop + 1.

Observation 8 Let op and op′ be two operations in α. By construction of π if seqop < seqop′ then op
precedes op′ in π .

Observation 9 Fix an execution α, for any configuration C ∈ α and for any v ≤ seqO(C), we have
that by construction of π, the last operation op in π such that seqop = v is the operation associated to
the sequence value seqop + 1.

Lemma 17. Let s be the state of the object of type T da before the operation op in π. Then the response
res returns by op in α is such that (s, op, s′, res) ∈ ∆ where ∆ is the sequential specification of T da.

Proof. Let ∆ be the sequential specification of T da. If op is an operation that is not read-only and return
⊥, then by definition of type T da, for any state s of the object there is (s, op, s,⊥) ∈ ∆

If op is an operation that is not read-only and returns res 6= ⊥, then it is associated to a sequence
value v and seqop = v − 1. Then res is such that (s, op, s′, res) ∈ ∆ with s the state associated to the
sequence value v−1 or the initial state if v = 1. By observation 8 the previous state is the state associated
to v − 1 or the inital state if v = 1. So, the claim is true.

If op is a read-only operation, then res is such that (s, op, s, res) ∈ ∆ with s the state associated to
the sequence value seqop or the initial state if seqop = 0. By Observations 8 and 9, the previous state is
the state associated to seqop or the inital state if seqop = 0. So, the claim is true. ut

Lemma 18. Let op and op′ be two high-level operation in α. If the invocation of op′ follows the response
of op in α, then op precedes op′ in π.

Proof. Let the invocation of an operation op′ follows the response of an operation op in α.

First assume that op is not read-only. Then by Lemma 10, Observations 1 and 2, we have seqop <
seqop′ . By observation 8, then op precedes op′ in π .

Then assume that op is read-only. Then by Observations 1 and 2, we have seqop ≤ seqop′ . If seqop <
seqop′ , by observation 8, then op precedes op′ in π . Let consider seqop = seqop′ . Two cases can be
distinguished. First, we consider that op′ is read-only. The response of op occurs in α before the reponse
of op′, then by construction of π for read-only operations, op precedes op′. Finally, if op′ is not read-only,
by construction of π, it is placed after all read-only operations with the same sequence value seqop. We
have also that op precedes op′ in π. ut

Lemma 17 and Lemma 18 prove the following theorem.

Theorem 6. The Algorithm NSUC is linearizable.

15

6 Conclusion

We have studied solo-fast implementations of deterministic abortable objects. We have investigated
the possibility for those implementations to have a better space complexity than linear if relaxing the
constraints for a process to use strong synchronization primitives.

We have proved that solo-fast implementations of some deterministic abortable objects have space
complexity in Ω(n) even if we allow a process to use strong synchronization primitives in absence of step
contention, provided that its operation is concurrent with another one. To prove our results we consider
only non-trivial implementations, that is implementations where a crashed process can cause only a finite
number of concurrent operations to abort.

Then, we have presented a non trivial solo-fast universal construction for deterministic abortable
objects.

Any implementation resulting from our construction is wait-free, non-trivial and non-trivial solo-fast
: without interval contention, an operation uses only read/write registers; and a failed process can cause
the use of CAS and the abort of at most two operations per process. Moreover, our universal construction
ensures that at least one writing operation succeeds to modify the object also in case of contention. And,
any operation that does not change the state of the objet always returns a legal response and does not
use strong synchronization primitives.

If t is the worst time complexity to perform an operation on the sequential object, then Θ(t + n) is
the worst time compexity to perform an operation on the resulting object. If the sequential object has
size s, then the resulting object implementation has space complexity in O(ns). This is asymptotically
optimal if the implemented object has constant size.

References

1. Afek, Y., Stupp, G., Touitou, D.: Long lived adaptive splitter and applications. Distributed Computing 15(2),
67–86 (2002), http://dx.doi.org/10.1007/s004460100060

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and query-abortable objects
and their efficient implementation. In: the 26th ACM Symposium on Principles of Distributed Computing
(PODC’07). pp. 23–32 (2007), http://doi.acm.org/10.1145/1281100.1281107

3. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of obstruction-free implementations.
J. ACM 56(4), 24:1–24:33 (2009), http://doi.acm.org/10.1145/1538902.1538908

4. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes in the absence of step contention.
In: the 19th International Conference on Distributed Computing (DISC’05). pp. 122–136 (2005)

5. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free transaction friendly data
structures. In: the 22nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’10). pp.
335–344 (2010), http://doi.acm.org/10.1145/1810479.1810538

6. Crain, T., Imbs, D., Raynal, M.: Towards a universal construction for transaction-based multiprocess pro-
grams. Theor. Comput. Sci. 496, 154–169 (2013)

7. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchronization. J. ACM 45(5),
843–862 (1998), http://doi.acm.org/10.1145/290179.290183

8. Guerraoui, R., Kapalka, M.: The semantics of progress in lock-based transactional memory. In: the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’09). pp. 404–415 (2009)

9. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: the 2013 ACM Symposium on Principles
of Distributed Computing (PODC’13). pp. 4–12 (2013), http://doi.acm.org/10.1145/2484239.2484241

10. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991),
http://doi.acm.org/10.1145/114005.102808

11. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-ended queues as an example.
In: the 23rd International Conference on Distributed Computing Systems (ICDCS’03). pp. 522–529 (2003)

12. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: the
20th Annual International Symposium on Computer Architecture (ISCA’93). pp. 289–300 (1993)

13. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems 12(3), 463–492 (1990)

14. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking implementations. SIAM J.
Comput. 30(2), 438–456 (2000)

15. Luchangco, V., Moir, M., Shavit, N.: On the uncontended complexity of consensus. In: the 17th International
Symposium on Distributed Computing (DISC03). pp. 45–59 (2003)

16. Perelman, D., Fan, R., Keidar, I.: On maintaining multiple versions in STM. In: the 29th ACM Symposium
on Principles of Distributed Computing (PODC’10). pp. 16–25 (2010)

16

