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Abstract—The area of self-stabilization in large scale
networks has been received increasing attention among
researchers, since self-stabilization provides a foundation
for self-properties, including self-healing, self-organizing
and self-adaptive. This paper makes contributions in two
areas. First, we describe a new extended approach of self-
stabilization, called self-stabilization with service guaran-
tee. Second, we propose a self-stabilizing protocol com-
puting and preserving the knowledge of neighbor clusters,
called CNK. A cluster-head maintains about each neighbor
cluster: the identity of its head, paths leading to it, and
the list of members. The most interesting property of CNK
is the service guarantee during the stabilization phase.
CNK quickly provides, in at most 4 rounds, the following
minimal useful service: "each cluster-head knows valid
paths leading to heads of all its neighbor clusters". CNK
protocol preserves the minimal service despite changes in
the clustering structure (creation of new clusters, restruc-
turing or crumbling of existing clusters). The knowledge of
neighbor clusters is thus highly available. This knowledge
is enough to allow the continuity functioning of hierarchical
protocols as hierarchical routing protocols.

I. INTRODUCTION

A mobile Ad-hoc or sensor network is a distributed
multi-hops network which consists of mobile hosts that
move arbitrarily, and communicate between them via
wireless technologies without preexisting infrastructure.
The flat architecture of such networks is not scalable,
because all nodes are considered equal and they take
the same part in the network management, like routing
and forwarding tasks. The clustering was introduced for
improving scalability by supporting self-organization and
enabling hierarchical routing.
The clustering consists of partitioning network nodes
into non-overlapping groups called clusters. Each cluster
has a single head that acts as local coordinator of the
cluster, and eventually a set of ordinary nodes. So,
clustering creates a first hierarchical level (level 1) of
a flat topology (level 0). The clustering problem is well
studied in the context of multi-hop wireless networks [1].
In this paper, the studied problem is not the clustering,

but the knowledge of neighbour clusters assuming the
existence of an under-layer clustering protocol.

Motivation. Multi-level hierarchies can be obtained pro-
gressively: clusters of level i are regarded as nodes of
level i + 1, and the construction is started again in this
level. Hence, the creation of a level i + 1 requires the
knowledge of neighbor clusters of level i.
Furthermore, hierarchical protocols consider the cluster
(not the node) as the basic entity of the network. For
example, hierarchical packet forwarding is achieved from
a cluster to a neighbor one, until reaching the destination
cluster. Thus, routing packets between distant nodes in
clustering architecture requires also an efficient knowl-
edge of neighbor clusters. This knowledge is computed
by our protocol CNK.
In another hand, clustering protocols need to be self-
adaptive in order to deal with topology changes like:
links creation, links failure, nodes departure and nodes
arrival. Thereby, the obtained hierarchical structure will
be itself dynamic, due to: creation of new clusters,
disbanding of clusters, and change on the composition of
a cluster after ordinary nodes switching from a cluster to
another one. As consequence, all hierarchical protocols
must be adaptive to changes in the hierarchical structure.

For all these reasons, discovering and maintaining ef-
ficiently the neighborhood of each cluster becomes a
necessity. Moreover, as changes in the hierarchical struc-
ture may occur frequently, it is vital to avoid disruption
of hierarchical protocols. Thus, the knowledge of a valid
path to neighbor clusters should be always available in
spite of modifications in the clustering structure. Hence,
our CNK protocol is a self-stabilizing protocol; moreover
it ensures a service guarantee.

Self-stabilization with service guarantee. One of the
most wanted properties of distributed systems is the fault
tolerance and adaptivity to topological changes, which
consist of the system’s ability to react to faults and
perturbations in a well-defined manner. Self-stabilization



is an approach to achieve the fault-tolerance. A self-
stabilizing protocol, regardless of its initial state, con-
verges in finite time without any external intervention
to a legitimate state, from which the intended behav-
ior is exhibited. Self-stabilizing protocols are attrac-
tive because they do not require any correct initial-
ization; they can recover from any transient failure,
and they are insensitive to dynamic topology recon-
figurations. Nevertheless, during convergence periods,
self-stabilizing protocols do not guarantee any property.
Thus, self-stabilization is suited for distributed systems
with intermittent disruptions, where the delay between
two successive disruptions is so large that the system
recovers and provides the full (optimum) service for
some times. However, in large mobile networks where
the topology changes very often, the paradigm of self-
stabilization is no more satisfying. Indeed, the delay
between disruptions is no longer enough for the con-
vergence. So, the system may be continually disrupted
and it never provides the optimum service. This situation
may generate a total loss of service. As consequence, the
availability and reliability of self-stabilizing systems may
be compromised.

A protocol is self-stabilizing with service guarantee
if (1) it is self-stabilizing; (2) it reaches a configuration
where the minimal service is provided; (3) the minimal
service is preserved during progress of the protocol
toward the optimum service (i.e., during convergence to a
legitimate configuration) and, (4) it is maintained despite
the occurrence of some specific disruptions, called highly
tolerated disruptions HTD. As tiny it is the delay between
two consecutive occurrences of HTD disruptions, the
useful minimal service stays provided. In this approach,
disruptions highly tolerated are captured and handled by
the service guarantee mechanism, in such a way that the
minimal service stays provided. Whereas, the occurrence
of other disruptions, is handled by the self-stabilization
mechanism, i.e., after their occurrence, the system may
behave arbitrary, but it converges to a configuration
providing a minimal service. So, the service guarantee
is provided via both the recovering to a minimal useful
service, and its preservation despite the occurrence of
HTD disruptions.

Contribution. The knowledge of neighbour clusters is
required in many distributed protocols for hierarchical
routing and multi-levels clustering, such as [3]. In this
paper, we propose a protocol for Clusters Neighbor
Knowledge (CNK) that is self-stabilizing with service
guarantee. CNK protocol assumes the existence of a 1-
hop clustering protocol, that provides and maintains the
hierarchical structure. On each head, CNK protocol builds

and maintains the knowledge of its neighbor clusters in a
self-stabilizing manner. The knowledge stored by a head
v about each neighbor cluster C, once CNK protocol has
stabilized is the following: (i) the head identity of C,
(ii) the path between v and the head of C, and (iii) the
members list of C.
The minimal useful service for CNK is defined as follows:
“each head of cluster knows heads of all neighbor
clusters and valid paths leading to them”. The goal is
to maintain the minimal service in spite of clustering
structure changes. The clustering protocol actions, i.e.,
changes in the hierarchical structure, are not transient
events. The minimal delay between their occurrences is
unbounded; it depends on the clustering protocol and on
the network topology dynamism. Therefore, the set of
HTD disruptions handled by CNK is actions done by the
clustering protocol (defined in section II).
To preserve the minimal useful service, CNK protocol
requires from the clustering protocol two properties
described in section IV. Some clustering protocols meet
these two properties, like [16] and [13].
In hierarchical networks, the packet routing is achieved
from a cluster to a neighbor cluster, until reaching
the destination cluster. Thus, the useful service highly
available provided by CNK is sufficient for upper layer
hierarchical protocols, as hierarchical routing protocols.

Related Works. The self-stabilization with service guar-
antee is related to the super-stabilization [8], robust self-
stabilization [17], [16], [13] and the safe convergence
[18].

A super-stabilizing protocol ensures that (1) a safety
predicate is satisfied in spite of a single topology change
that occurs from a legitimate configuration and, (2) this
safety predicate stays satisfied during the convergence to
a legitimate configuration assuming that no more topol-
ogy change event occurs during the convergence. As a
legitimate configuration is also safe, a self-stabilizing
with service guarantee protocol is super-stabilizing.

A robust self-stabilizing or self-stabilizing with safe con-
vergence protocol quickly reaches a safe configuration
where a minimal service is provided. The safety property
is preserved during the convergence to a legitimate con-
figuration. In case of a robust self-stabilization, the safety
property is also preserved despite of the occurrence of
HTD events. The goal of service guarantee within CNK
protocol is not to quickly converge to a safe configuration
where the minimal service is provided, because the
convergence to a legitimate configuration is fast enough
(it is done in constant time). The main objective is
to maintain the minimal service in spite of clustering
structure changes. Thus, a self-stabilizing with service
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guarantee protocol ensures the safe convergence and the
robustness properties.
Many 1-hop clustering algorithms have been proposed in
the literature. A large number of them are self-stabilizing
[2], [7], [10], [6], [9], [15], [19]. There are also robust
self-stabilizing clustering algorithms [16], [13], and self-
stabilizing with safe convergence [18].
Algorithms building neighborhood knowledge in flat
architectures are presented in [5], [11], [12]. In [5],
algorithms computing 2-hops neighborhood in wireless
networks are presented (they are based on geographic
position or distance). In [11], it is presented a self-
stabilizing mechanism implementing an algorithm re-
quiring distance-two knowledge in a standard network
where nodes only communicate with their 1-hop neigh-
bors. In [12], this mechanism is extended to distance-k
knowledge. This mechanism assumes centralized sched-
uler (during a computation step only one node does
an action). None of these algorithms guarantees any
property after a topology change.

The paper is organized as follows. In section II, we de-
scribe the model. Specification of knowledge of neighbor
clusters problem is defined in section III. In section IV,
we present the required interaction between clustering
and CNK protocols in order to provide the service guaran-
tee. The two modules of CNK: computation of knowledge
tables, and service guarantee mechanism are presented
respectively in sections V and VI. A sketch of proof is
provided in section VII. The detailed proofs are omitted
due to lack of space. They can be found in [14]. Finally,
simulation results are presented in section VIII.

II. MODEL

A distributed system S is modeled by an undirected
graph G (V, E), where V is the set of (mobile) nodes
and E is the set of edges. There is an edge (u,v) ∈ E,
if u and v can communicate between them (links are
bidirectional). In this case, u and v are neighbors. We
note Nv the set of v’s neighbors (the neighborhood):
Nv = {u ∈ V | (u,v) ∈ E}. The internal nodes among a
path connecting two nodes u and v, are called gateways.

We use the local shared memory as communication
model. Each node v maintains a set of local variables
such that v can read its own variables and those of its
neighbors, but can modify only its own one. The con-
tent’s of a node’s local variables determine its state, and
the union of all local states determines the configuration
of the system. The program of each node is given as a
set of rules of the form: {Rulei : Guardi −→ Actioni}. A
rule can be executed by a node v only if it is enabled, i.e.,
its guard is satisfied. A node is said to be enabled if it

has at least one rule enabled. In a terminal configuration,
no node is enabled.

Nodes are not synchronized; nevertheless several
nodes may perform their actions at the same time.
During a computation step ci → ci+1, one or several
enabled nodes perform their actions, and the system
reaches the configuration ci+1 from ci. A computation is
a sequence of configurations e = c0,c1, ...,ci, ..., where
ci+1 is reached from ci by one computation step. A
computation e is maximal if it is infinite, or if it reaches
a terminal configuration. A computation e is weakly fair,
if for any node v that is infinitely often enabled along e,
it eventually performs an action. In this paper, we study
only weakly fair computations. We note by Con f the
set of all configurations, and by E the set of all weakly
fair computations. The set of weakly fair computations
starting from a particular configuration c ∈ Con f is
denoted Ec. EA is the set of weakly fair computations
whose the initial configuration belongs to A⊂Con f .
We use the round notion to measure the time complexity.
The first round of a computation e = c1, ...,c j, ... is the
minimal prefix e1 = c1, ...,c j, such that every node v
enabled in c1, either executes a rule or becomes disabled
during e1. Let e2 be the suffix of e such that e = e1e2.
The second round of e is the first round of e2, and so on.
The round complexity of a computation is the number
of disjoint rounds of this computation.

Definition 1 (Attractor): Let B1 and B2 be subsets of
configurations of Con f . B2 is an attractor from B1, if
and only if the following conditions hold:
• Convergence:

∀e ∈ EB1(e = c1,c2, ...),∃i > 1 : ci ∈ B2.
∀c ∈ B1, If (Ec = /0) then c ∈ B2.

• Closure: ∀e ∈ EB2(e = c1, ...),∀i > 1 : ci ∈ B2.

Definition 2 (Self-stabilization): A system S is self-
stabilizing if and only if there exists a set L of con-
figurations, named legitimate configurations, such that:
• L is an attractor from Con f .
• Configurations of L satisfy the specification of

problem.

Definition 3 (Stabilization with service guarantee):
Let P be the predicate that stipulates the minimal
service. Let H T D be a set of disruptions. A self-
stabilizing protocol has service guarantee despite H T D
disruptions if and only if the set of configurations
satisfying P is:
• Closed under any computation step.
• Closed under any disruption of H T D .
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Figure 1. Clustered network example

Definition 4 (Highly Tolerated Disruptions): The set
of H T D disruptions handled by CNK protocol is:
• Selection of new cluster-heads.
• Resignation of cluster-heads.
• Switching of nodes from a cluster to another one.

III. SPECIFICATION OF “KNOWLEDGE OF NEIGHBOR
CLUSTERS” IN 1-HOP CLUSTER STRUCTURE

In this paper, we focus on the knowledge of neighbor
clusters. Obviously, a clustering architecture should be
built and maintained over the time. We assume the
existence of a self-stabilizing 1-hop clustering protocol,
which runs simultaneously with our protocol CNK. The
clustering protocol gathers network nodes into 1-hop
clusters. Each cluster has a single head, and a set of
ordinary nodes which are neighbor of their heads.
In 1-hop clustering structure, two clusters C1, C2 are
neighbor, if there exist two nodes x ∈ C1 and y ∈ C2
that are neighbors ((x,y) ∈ E). Thus, in this structure,
two leaders u and v of neighbor clusters are at most
at distance 3. Furthermore, the path between the two
leaders u and v should not contain a leader.
Example. In Figure 1, although CH3 and CH2 are at
distance 3, their clusters are not neighbor; because, all
paths between CH2 and CH3 contain a leader.
Definition 5: The k−neighborhood of a node v ∈ V ,
denoted Nk

v , is the set of nodes that are at distance less
or equal than k from v.
Definition 6: The kR-neighborhood of a node v (for
k restricted neighborhood), denoted RNk

v , is the set of
nodes in v’s k-neighborhood reached by at least a path
in which the gateway(s) is (resp. are) not leader(s) (for
definition of leader, see Definition 8).

The knowledge built by CNK protocol, has to verify the
completeness and correctness properties.
• Completeness: Each leader knows all paths leading

to all leaders within its 3R-neighborhood.
• Correctness: Each leader knows only valid paths

leading to leaders within its 3R-neighborhood. Fur-
thermore, each leader knows the exact member list
of its neighbor clusters.

Definition 7 (Legitimate configurations): In a legiti-
mate configuration, the completeness and correctness
properties are satisfied.

The interest of self-stabilization with service guarantee
in the CNK protocol depends mainly on the two factors:
• The definition of minimal service: the minimal

service is the completeness property.
• The list of highly tolerated disruptions: all actions

done by the clustering protocol (see definition 4).

Let us study the hierarchical structure presented in figure
1. We assume that the completeness property is verified:
CH1 knows paths leading to CH2, CH3, and CH5,
but not paths leading to u3, and CH4. The clustering
protocol changes the clustering structure: u3 becomes
leader and CH3 becomes ordinary. Now, CH1 has two
new neighbor clusters: those of u3 and CH4, but it
does know any paths leading to these leaders. So, the
completeness property is no more satisfied. To avoid this
situation, CNK bridles the occurrence of HTD disruptions
using an interaction with the clustering protocol.

IV. REQUIREMENTS ON THE CLUSTERING PROTOCOL

As said previously, CNK assumes the existence of
an under-layer 1-hop clustering protocol. CNK requires
cooperation from the clustering protocol to ensure the
service guarantee. For this reason, the clustering pro-
tocol must meet two properties: robustness and proper
interactions with CNK. Some 1-hop clustering protocols
already follow the two properties like [16] and [13]. For
other self-stabilizing protocols, we believe that is feasible
to design a transformer providing a compatible version
with CNK protocol.

Proper interactions (illustrated in Figure 2). The vari-
able status indicates the hierarchical status of a node. It
is updated only by the clustering protocol, and its value
is an input to the CNK protocol. Conversely, the variable
Ready is updated only by the CNK protocol, and its value
is an input to the clustering protocol.
The usual hierarchical status of a node v are : cluster-
head (Statusv = CH), and ordinary node (Statusv = O).
Two intermediate hierarchical status are introduced:
nearly ordinary (Statusv = NO), and nearly cluster-head
(Statusv = NCH). The status transition diagram now
is as follows: when a cluster-head want to resign its
role, it takes the nearly ordinary status (NO). Whereas,
when an ordinary node want to become cluster-head, it
takes the nearly cluster-head status (NCH). By taking an
intermediate status (NCH or NO), the clustering protocol
“sends a request” to CNK protocol. Then, the clustering
protocol waits the approval from CNK. This authorization

4



Figure 2. Proper interactions between clustering and CNK protocol.

“is communicated” by CNK protocol through the variable
Ready.
The value RO (resp. RCH) of Readyv indicates that v is
ready to be ordinary (resp. cluster-head) without violat-
ing the completeness property (i.e., minimal service).
For ordinary nodes the default value of Ready is RO,
and for cluster-heads the default value is RCH. Only the
updating of Ready variable allows CNK protocol to ensure
the preservation of completeness property.
A nearly cluster-head v can become cluster-head, only if
Readyv is set to RCH; but it may return to the ordinary
status at any moment (even if Readyv = RCH). Similarly,
a nearly ordinary node v can become ordinary only if
Readyv is set to RO, but it may return to the cluster-
head status at any moment (even if Readyv = RO).
While a node v has the nearly ordinary status, it still
behaves as a leader of cluster. Furthermore, v is regarded
by CNK protocol as a future ordinary node: it may be a
gateway on a path between leaders. In the other hand,
a nearly cluster-head u behaves both as an ordinary
node and as a cluster-head. In this status, u maintains
a pseudo-cluster which is empty (u is the only node in
its cluster).
Definition 8 (leader / pseudo-leader): A leader v is a
node having the status of cluster-head or nearly ordinary.
A pseudo-leader v is a node having the nearly cluster-
head status.

V. CNK PROTOCOL : COMPUTATION OF THE
KNOWLEDGE TABLES

Each node v builds and maintains a Knowledge Table
KTv having the structure presented in Figure 3. This table
contains the list of leaders and pseudo-leaders within
v’s 3R-neighborhood, associated with a path leading to
them, as well as the composition of their cluster (or
pseudo-cluster).
Each record of KTv is identified by the fields dest, g1 and
g2; it is the primary key of KTv. In follows, we specify
by (x,y,z) a record where dest = x,g1 = y,g2 = z.
The destination field of KTv contains the identity of
leaders and pseudo-leaders (whose the status is not
ordinary) which are at distance 3 at most from v. The
gateways used to reach the destination are stored in the
first and second gateway fields (g1 and g2). The value

Name Desti-

nation

G1 G2 List HS PIF

Type ID ID

or ⊥
ID

or ⊥
{ IDs } CH,

NCH

or NO

C, B

or F

Field

nota-

tion

dest g1 g2 list hs pif

Figure 3. Scheme of Knowledge Table

of g1 (resp. g2) in a record (u,g1,g2) of KTv is the first
(resp. second) gateway on the path from v to u if it exists;
otherwise, the value is ⊥. The list (resp. status) field
contains the list of cluster members (resp. hierarchical
status) of the destination node. The utility of pi f field
is discussed in section VI.
According to Figure 1, once the Knowledge Tables have
being computed, the record (CH5,v1,v5) belongs to
KTCH1, and (CH1,v5,v1) belongs to KTCH5.
The CNK protocol variables and macros are presented in
Protocol 5. The variable HSv indicates the hierarchical
status of a node v according to CNK protocol. HSv value
should be similar to the value of Statusv. Notice that only
the Clustering protocol updates the variable Statusv, and
only the CNK updates variables HSv and Readyv.

Protocol 1 : Variables and macros on node v.
Input variables (from the clustering layer)

Statusv ∈ {CH,O,NO,NCH}; The hierarchical status of v.
Headv ∈ {IDs}; The cluster-head’s identity of v.

Output variables (towards the clustering layer)
Readyv ∈ {RO,RCH}; (defined in section IV)

Shared variables
HSv ∈ {CH,O,NO,NCH}; The status of v : local copy (within CNK) of Statusv.
KTv; The Knowledge Table. Its scheme is presented in Figure 3.

Macros
Clusterv :: if HSv ∈ {CH,NO} then {z ∈ Nv : Headz = v}∪{v};

if HSv = NCH then {v};
Insert(dest,g1,g2,List,status), adds a record to KTv, such that the pi f field is
set to C.

Delete(x,y,z), removes from KTv the record identified by dest = x,g1 = y and
g2 = z.

U pdate(x,y,z, ls,st) :: Update KTv Set list := ls; hs := st; within the record
identified by dest = x, g1 = y, g2 = z

U pdatePIF(x,y,z, t) :: Update KTv Set pi f := t where dest = x, g1 = y, g2 = z

U pdateReady :: if HSv = CH then Readyv := RCH;
if HSv = O then Readyv := RO;

Each leader uses only the Knowledge Table of its neigh-
bors to compute its one. Every table KTv is updated by
4 rules. Each rule Ri (i ∈ [1,3]) has 3 kinds of sub-rules:
insertion of a new record (Ri1), updating a record (Ri2,
and Ri4), and deleting a record (Ri3, and Ri5 if it exists).

The rule R01(v) adds the record (v,⊥,⊥) to KTv if it
does not exist although v is a leader or a pseudo-leader.
R03 is enabled for ordinary nodes (Statusv = O), till KTv
contains the record (v,⊥,⊥). A leader or a pseudo-leader
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v having an incorrect HSv value, is enabled (rule R02
if (v,⊥,⊥) ∈ KTv otherwise rule R01). The rule R04(v)
updates the fields list and hs of the record associated to
v’s cluster in KTv.

The rule R1 ensures that each node v (whatever its status)
has an accurate record about clusters whose the head is
at distance 1 from v. Similarly, the rule R2 maintains the
validity of records whose the destination is at distance 2
from v, according only to the content of the Knowledge
Tables of v’s neighbors. v keeps (or adds) the record
(u,z,⊥) to KTv only if z (a v’s neighbor) is not a cluster-
head and if KTz contains a record about the u’s cluster.

R01(v) :: (Statusv 6= O)∧ (v,⊥,⊥) /∈ KTv
−→ HSv := Statusv; U pdateReady; Insert(v,⊥,⊥,Clusterv,HSv);

R02(v) :: (Statusv 6= O)∧ (v,⊥,⊥) ∈ KTv ∧ (HSv 6= Statusv)
−→ HSv := Statusv; U pdateReady; U pdate(v,⊥,⊥,Clusterv,HSv);

U pdatePIF(v,⊥,⊥,C);

R03(v) :: (Statusv = O)∧
(
HSv 6= Statusv ∨ (v,⊥,⊥) ∈ KTv

)
−→ HSv := Statusv; U pdateReady; Delete(v,⊥,⊥);

R04(v) :: (Statusv 6= O)∧∃(v,⊥,⊥,List,hs) ∈ KTv ∧ (HSv = Statusv) ∧(
List 6= Clusterv ∨hs 6= HSv

)
−→U pdate(v,⊥,⊥,Clusterv,HSv);

R11(v) : ∃u ∈ Nv ∧∃(u,⊥,⊥, list,hs) ∈ KTu ∧ (u,⊥,⊥) /∈ KTv
−→ Insert(u,⊥,⊥, list,hs);

R12(v) : ∃(u,⊥,⊥, list ′,hs′) ∈ KTv ∧ (u ∈ Nv)∧∃(u,⊥,⊥, list,hs) ∈ KTu ∧
(hs′ 6= hs)−→U pdate(u,⊥,⊥, list,hs); U pdatePIF(u,⊥,⊥,C);

R13(v) : ∃(u,⊥,⊥) ∈ KTv ∧ (u 6= v)∧
(
u /∈ Nv ∨ (u,⊥,⊥) /∈ KTu

)
−→ Delete(u,⊥,⊥);

R14(v) : ∃(u,⊥,⊥, list ′,hs′) ∈ KTv ∧ (u ∈ Nv)∧∃(u,⊥,⊥, list,hs) ∈ KTu ∧
(hs′ = hs)∧ (list ′ 6= list)−→U pdate(u,⊥,⊥, list,hs);

R21(v) : ∃z ∈ Nv ∧ (HSz 6= CH)∧∃(u,⊥,⊥, list,hs) ∈ KTz ∧ (u 6= z)∧ (u 6= v) ∧
(u,z,⊥) /∈ KTv −→ Insert(u,z,⊥, list,hs);

R22(v) : ∃(u,z,⊥, list ′,hs′) ∈ KTv∧ (z ∈ Nv)∧ (u 6= z)∧ (u 6= v)∧ (HSz 6= CH) ∧
∃(u,⊥,⊥, list,hs) ∈ KTz ∧ (hs′ 6= hs)
−→U pdate(u,z,⊥, list,hs); U pdatePIF(u,z,⊥,C);

R23(v) : ∃(u,z,⊥) ∈ KTv ∧ (z 6=⊥)∧
(
z /∈ Nv ∨ z = u∨ z = v∨u = v ∨

HSz = CH ∨ (u,⊥,⊥) /∈ KTz
)
−→ Delete(u,z,⊥);

R24(v) : ∃(u,z,⊥, list ′,hs′) ∈ KTv∧ (z ∈ Nv)∧ (u 6= z)∧ (u 6= v)∧ (HSz 6= CH) ∧
∃(u,⊥,⊥, list,hs)∈KTz ∧(hs′ = hs)∧(list ′ 6= list)−→U pdate(u,z,⊥, list,hs);

R31(v) : (HSv 6= O)∧∃w ∈ Nv ∧ (HSw 6= CH)∧∃(u,z,⊥, list,hs) ∈ KTw ∧
(u 6= v)∧ (z 6= v)∧ (z 6=⊥)∧ (u,w,z) /∈ KTv −→ Insert(u,w,z, list,hs);

R32(v) : (HSv 6= O)∧∃(u,w,z, list ′,hs′) ∈ KTv ∧ (w ∈ Nv)∧ (u 6= v) ∧
(z 6= v)∧ (z 6=⊥)∧ (HSw 6= CH)∧∃(u,z,⊥, list,hs) ∈ KTw ∧ (hs′ 6= hs)
−→U pdate(u,w,z, list,hs); U pdatePIF(u,w,z,C);

R33(v) : (HSv 6= O)∧∃(u,w,z) ∈ KTv ∧ (w 6=⊥)∧ (z 6=⊥)∧
(
w /∈ Nv ∨

u = v∨ z = v∨w = v∨HSw = CH ∨ (u,z,⊥) /∈ KTw
)
−→ Delete(u,w,z);

R34(v) : (HSv 6= O)∧∃(u,w,z, list ′,hs′) ∈ KTv ∧ (w ∈ Nv)∧ (u 6= v) ∧
(z 6= v)∧ (z 6=⊥)∧ (HSw 6= CH)∧∃(u,z,⊥, list,hs) ∈ KTw ∧ (hs′ = hs) ∧
(list ′ 6= list)−→U pdate(u,w,z, list,hs);

R35(v) : (HSv = O)∧∃(u,w,z) ∈ KTv ∧ (w 6=⊥)∧ (z 6=⊥)−→ Delete(u,w,z);

The rule R3 ensures that a leader or a pseudo-leader v
maintains correct knowledge about clusters whose the
head u (leader or pseudo-leader), is at distance 3 from
v. v keeps (or adds) the record (u,w,z) to KTv only if w
(a v’s neighbor) is not a cluster-head and if KTw contains
a record about the u’s cluster (u is at distance 2 from
w). An ordinary node removes all records about clusters
whose the head is at distance 3 (rule R35).
By considering nearly ordinary nodes as gateways, and
nearly cluster-heads as pseudo-leaders, the previous rules
build larger tables than those required to have the com-
pleteness property. This feature is important in order to
preserve the completeness property in spite of changes
in the hierarchical structure.

VI. CNK PROTOCOL : SERVICE GUARANTEE
MECHANISM

In this section, we present the mechanism that updates
the variable Ready in order to preserve the completeness
property in spite of reorganization of clusters.

A. How the variable Ready is updated ?

Due to an incorrect initial configuration, a node v may
need to correct the value of Readyv. If v is an ordinary
node then Readyv has to be RO (the rule RCO(v) does
the correction if necessary). Idem, if v is cluster-head
then Readyv has to be RCH (the rule RCCH(v) does the
correction if necessary).

RCO(v) : (HSv = O)∧ (HSv = Statusv)∧ (Readyv = RCH)−→ Readyv := RO;

RCCH(v) : (HSv =CH)∧(HSv = Statusv)∧(Readyv = RO) −→ Readyv := RCH;

Updating the variable Ready requires a careful study in
two cases: (1) a nearly cluster-head that sets Ready to
RCH and, (2) a nearly ordinary that sets Ready to RO.
According to the specification of completeness property,
a nearly cluster-head v does not know leaders of its
3R-neighborhood, and it is not known by these leaders.
However, once it sets Readyv to RCH, v may become
leader at any moment by an action of the clustering
protocol. In this new status, the node v must know and be
known by all leaders of its 3R-neighborhood, otherwise
the completeness property will be falsified. Therefore,
before setting its variable Readyv to RCH, v should
know the paths to leaders of its 3R-neighborhood, and
these leaders should know the reverse paths leading to
v. CNK allows v to update its variable Readyv only if
this knowledge is established. This extra knowledge can
be achieved only by a Propagation of Information with
Feedback (PIF) within the v’s 3-neighborhood.
A nearly ordinary node u also requires a propagation
of information with feedback before setting its variable
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Readyu to RO. Let us illustrate this feature by an
example. Let a configuration c illustrated in Figure 1,
and satisfying the completeness property where CH4 has
the status NO (ReadyCH4 = RCH). In c, CH4 knows a
path to CH2 and to CH3; whereas, CH2 may not know
a path to CH3 and vice versa. Once CH4’s Ready is
set to RO, CH4 may become ordinary at any time; and
CH2 and CH3 should know each other. Otherwise, the
completeness property will be falsified after clustering
protocol changing of CH4’s status to ordinary. Therefore,
the update of Ready variable by a nearly cluster-head
or a nearly ordinary node is associated to the end of a
Propagation of Information with Feedback (PIF).

To implement the service guarantee mechanism, we
adapt the PFC snap-stabilizing PIF algorithm [4] for
topologies organized as oriented tree. The PFC algo-
rithm is snap-stabilizing. Starting from any configura-
tion, if the PIF process terminates, then all nodes have
received the propagated information.
In PFC algorithm, each node behaves according to
whether it is the root, an internal or a leaf of the tree.
The root is a distinguished node, responsible to initiate
the PIF process. Every tree node v maintains a PIF-
state variable Sv, having three possible values {B,F,C}.
B value indicates that v is in the broadcast phase, F
value is associated to the feedback phase, and C value
is associated to the cleaning phase. At least 3 states per
node are required to achieve a PIF (proved in [4]). Any
initiated PIF, terminates in 2h+1 rounds (h is the height
of the tree).

B. Adapted PFC algorithm

The key idea of our solution is to consider the set of
knowledge tables as a forest of PIF-trees. A PIF-tree is
a tree composed of records of a knowledge tables. Each
record of KT is a node of one PIF-tree. The PIF-state
of each record is the pi f field of this record.

Definition 9 (records of a PIF-tree):
• The record (v,⊥,⊥) of KTv is a root of a PIF-tree.
• The parent of (v,⊥,⊥) of KTz is the root record

(v,⊥,⊥) of KTv.
• The parent of the record (v,z,⊥) of KTw is the record

(v,⊥,⊥) of KTz.
• The parent of the record (v,w,z) in KTu is the record

(v,z,⊥) of KTw.

Notice that, the root of the record (v,w,z) of KTu is
(v,⊥,⊥) of KTv. Each node v may have at most one root
record. The height of any PIF-tree is less or equal than
3; thus any PIF process requires at most 7 rounds.

Definition 10 (Leaves of a PIF-tree):

• The record (v,⊥,⊥) of KTz is leaf if the node z is
a cluster-head, or it does not have any descendant
(i.e., HSz = CH ∨ Nz/{v}= /0).

• The record (v,z,⊥) of KTw is a leaf if the node w
is a cluster-head or all its descendant are ordinaries
(i.e., HSw = CH ∨ ∀u ∈ Nw/{v,z} : HSu = O).

• The record (v,z,w) of KTu is always a leaf.

The adapted PFC algorithm is presented in Protocol 2.
For all paths v− z−w−u, the structure of the PIF-tree
rooted on v, according to definitions 9 and 10, is shown
in Figure 4.

(v,⊥,⊥) ∈ KTv

HSz 6= CH ∧ Nz/{v} 6= ∅
(v,⊥,⊥) ∈ KTz(v,⊥,⊥) ∈ KTz

(v, z,⊥) ∈ KTw

(v, z,⊥) ∈ KTw

(v, w, z) ∈ KTu

HSz = CH ∨ Nz/{v} = ∅

HSw 6= CH ∧ ∃u ∈ Nw/{v, z} : HSu 6= O

HSw = CH ∨ ∀u ∈ Nw/{v, z} : HSu = O

HSu 6= O

Figure 4. Structure of a PIF-tree rooted at (v,⊥,⊥) of KTv

The rules computing knowledge tables (i.e., Ri, i∈ [0,3])
have priority over rules of PIF algorithm (except correc-
tion rules RC and IC). This priority ensures that when
a node v participate to a PIF process by performing a
PIF rule, v first gets all paths leading to leaders and
pseudo-leaders known by its neighbors. Therefore, at
the end of the PIF process, the root knows paths to
all leaders and pseudo-leaders having participated to the
PIF. This priority is established in the Algorithm by the
predicate Disabled: a node v can perform a PIF rule only
if Disabled(v) is satisfied.

A root initiates a PIF by performing the broadcast rule
RB. Nodes of the tree which are at distance 1 from the
root participate to this phase by performing rule IB. This
rule can be performed on a record only if it is leaf or all
its descendants are in the cleaning state. The feedback
is initiated by a node in two cases : if it is a leaf at
distance 1 or 2 from the root (IF-d1 and IF-d2), or it is
at distance 2 from the root but all its descendants have
a record about the root (IF-d2).
At the end of the PIF, RF-guard is satisfied by the root;
thus, the rule RRCH or RRO is enabled. Once one rule
is performed, Ready is set to RCH or RO. Now, the
clustering protocol may change the node status.
Notice that the adapted PFC algorithm has other rules:
RC and IC rules. These rules set the pi f field of a record
to C. This action starts a cleaning phase in v’s sub-
tree: all nodes of its sub-tree will take the C state. The
cleaning phase is used (1) to reset records of the PIF-
tree, or (2) to abort the current PIF no more needed.
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Protocol 2 : PIF Algorithm on node v
Note: Gi j is the guard of rule Ri j defined in section V.
Predicates:

Disabled(v)≡ ∀i ∈ [1,3],¬G0i(v)∧¬Gi1(v)∧¬Gi2(v)

Constraint1(v)≡∀(z,⊥,⊥,hsv, pi fv)∈KTv∧(hsv 6= NCH∨ pi fv 6=C)
⇒∀u ∈ Nv/{z},(z,v,⊥,hsu, pi fu) ∈ KTu ∧ (hsu = hsv) ∧

(pi fv = C∨ pi fu 6= C)

Constraint2(v)≡ ∀(z,w,⊥,hs, pi f ) ∈ KTv ∧ (hs 6= NCH ∨ pi f 6= C)
⇒∀u ∈ Nv/{z,w},HSu = O∨ (z,v,w) ∈ KTu

Constraint3(v,u)≡ ∀(z,⊥,⊥,hsu, pi fu) ∈ KTu ∧
(hsu 6= NCH ∨ pi fu = F)⇒ (z,u,⊥,hsv, pi fv) ∈ KTv ∧

(hsv 6= NCH ∨ pi fv 6= C)

Rules:

/* Initiating the broadcast by the root */

RB(v) :: (v,⊥,⊥,C) ∈ KTv ∧
(
(HSv = NCH ∧Readyv = RO) ∨

(HSv = NO∧Readyv = RCH)
)
∧

(
∀u ∈ Nv,(v,⊥,⊥,C) ∈ KTu

)
∧

Disabled(v)−→U pdatePIF(v,⊥,⊥,B);

/* Termination of the PIF and updating the Ready variable */

RF-Guard(v)≡ (v,⊥,⊥,hsv,B) ∈ KTv ∧
(∀u ∈ Nv,(v,⊥,⊥,hsu,F) ∈ KTu)∧ (hsv = hsu)∧Disabled(v)

RRCH(v) :: HSv = NCH ∧RF-Guard(v)
−→ Readyv := RCH; U pdatePIF(v,⊥,⊥,F);

RRO(v) :: HSv = NO∧RF-Guard(v)∧Constraint1(v) ∧
Constraint2(v)−→ Readyv := RO; U pdatePIF(v,⊥,⊥,F);

/*Participating to the Broadcast by nodes at distance 1 from the root*/

IB(v) :: ∃(u,⊥,⊥,hsv,C) ∈ KTv ∧u ∈ Nv ∧ (u,⊥,⊥, pi f ) ∈ KTu ∧
(pi f 6= C)∧

(
HSv = CH ∨ (∀z ∈ Nv/{u} : (u,v,⊥,hsz,C) ∈ KTz ∧

hsz = hsv)
)
∧ Disabled(v) ∧ Constraint2(v) ∧ Constraint3(v,u)
−→U pdatePIF(u,⊥,⊥,B);

/*Propagation of Feedback by nodes at distance 2 and 1 from the root*/

IF-d1(v) :: ∃(u,⊥,⊥,hsv,B) ∈ KTv ∧u ∈ Nv ∧ (u,⊥,⊥, pi f ) ∈ KTu ∧
pi f ∈ {B,F}∧

(
HSv = CH ∨ (∀z ∈ Nv/{u} : (u,v,⊥,hsz,F) ∈ KTz ∧

hsz = hsv)
)
∧Disabled(v)∧Constraint2(v)∧Constraint3(v,u)
−→U pdatePIF(u,⊥,⊥,F);

IF-d2(v) :: ∃(u,z,⊥,hsv,C) ∈ KTv ∧ z ∈ Nv ∧ (u,⊥,⊥, pi f ) ∈ KTz ∧
pi f ∈ {B,F}∧ (HSz 6= CH) ∧

(
HSv = CH ∨

∀w ∈ Nv/{u,z},HSw = O∨ ((u,v,z,hsw) ∈ KTw ∧hsw = hsv)
)
∧

Disabled(v)−→U pdatePIF(u,z,⊥,F);

/* Correction rules : deal with incorrect initial configurations, and
initiate the cleaning phase. */

RC(v) :: (v,⊥,⊥, pi f ) ∈ KTv ∧
(
(HSv = CH ∧ pi f ∈ {B,F}) ∨

(HSv = NCH ∧Readyv = RO∧ pi f = F) ∨
(HSv = NO∧Readyv = RCH∧ pi f = F)

)
−→U pdatePIF(v,⊥,⊥,C);

IC-d1(v) :: ∃(u,⊥,⊥,hsv, pi fv) ∈ KTv ∧ (pi fv 6= C)∧ (u ∈ Nv) ∧
(u,⊥,⊥,hsu,C) ∈ KTu ∧Disabled(v)−→U pdatePIF(u,⊥,⊥,C);

IC-d2(v) :: ∃(u,z,⊥,hsv, pi fv) ∈ KTv ∧ (pi fv 6= C)∧ (z ∈ Nv) ∧
(u,⊥,⊥,hsz,C) ∈ KTz ∧Disabled(v)−→U pdatePIF(u,z,⊥,C);

VII. SKETCH PROOFS

The proof of self-stabilization with service guarantee
of CNK protocol is omitted due to lack of space. All
detailed proofs of convergence, closure and time com-
plexity can be found in [14].

Since the leader definition is based on the Status vari-
able. The completeness satisfiability depends on the
value of both clustering and CNK protocol variables
(Status and KT ). Thus, the completeness property may
be compromised by an action of the clustering protocol
even if its was satisfied before this action. Let us illus-
trate this feature by an example based on a configuration
c presented in Figure 1. Assume that in c, v5 is a nearly
cluster-head, Readyv5 = RCH, and KTv5 does not contain
any record at destination of CH3. In c, v5 is not leader,
but v5 may become a leader at any time by an action of
the clustering protocol (see Figure 2). The completeness
property is satisfied in c; nevertheless it is no longer
satisfied after that v5 becomes leader.
Therefore, to prove that CNK is self-stabilizing with
service guarantee, we have to define a predicate that
(1) is closed under any action of both clustering and
CNK protocols, and (2) ensures the fulfilment of the
completeness property. To achieve that, we define the
Strong-Completeness predicate.

Definition 11 (Quasi-leader, and Quasi-ordinary):
• QL(v)≡ (HSv = CH)∨ (HSv = NO) ∨

(HSv = NCH ∧Readyv = RCH)
• QO(v)≡ (HSv = O)∨ (HSv = NCH) ∨

(HSv = NO∧Readyv = RO)

A node v that satisfies QL(v), will be called quasi-
leader, and a node v that satisfies QO(v), will be called
quasi-ordinary. The definitions of quasi-leader and quasi-
ordinary nodes are given regardless the status of v within
clustering protocol, i.e., the variable Status. Each quasi-
leader (resp. quasi-ordinary) v, acts as a leader of cluster
(resp. an ordinary node). Notice that a node v may
be both quasi-leader and quasi-ordinary when v has a
pending request to change its status. In this case, v is
leader of its cluster, and it may be a gateway if necessary.

Definition 12 (k-QR-neighborhood): The k-QR-
neighborhood of a node v (for k quasi-restricted
neighborhood), denoted QRNk

v , is the set of nodes
from v’s k-neighborhood reached by a path where the
gateway(s) is (resp. are) quasi-ordinary(ies).

Definition 13 (Strong-Completeness predicate): The
Strong-Completeness predicate is satisfied if and only
if each quasi-leader knows all quasi-leaders within its
3-QR-neighborhood, and all paths leading to them.
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The Strong-completeness predicate depends only on CNK
protocol variables (it is uncorrelated on the variable
status). Thus, no action of the clustering protocol can
falsify or can satisfy the Strong-completeness property.

The sketch proof of convergence and closure is as
follows. First, we present a predicate P1 defined on the
clustering and CNK protocols variables. We prove that the
set of configurations SC1, in which P1 is satisfied, is an
attractor for both protocols. Furthermore, we prove that
in a configuration of SC1, if the Strong-completeness
predicate is satisfied then the completeness property is
also satisfied. In a second time, we describe the Strong-
completeness predicate involving only variables of the
protocol CNK. We prove that the set of configurations
SC2 (a subset of SC1), in which the Strong-completeness
predicate is satisfied, is an attractor of the CNK protocol.
Finally, we conclude that any computation of clustering
and CNK protocols has a suffix where the completeness
property (so, the minimal service) is always verified.

Time complexity. The convergence from any con-
figuration to a configuration satisfying the Strong-
completeness (so, the Completeness) property is
achieved in at most 4 rounds.
A request from the clustering protocol (i.e. a node
wanting to be cluster-head, or to be ordinary) is satisfied
in at most 7 rounds: it is the number of rounds required
to achieve the PIF process.
After the last modification of hierarchical status, 4
rounds are enough to reach a terminal configuration (that
is also a legitimate configuration).

VIII. SIMULATION RESULTS & CONCLUDING
REMARKS

In order to show the interest of self-stabilization with
service guarantee approach, we study a comparison be-
tween a naive version of CNK (without service guarantee
mechanism), denoted N-CNK, and the self-stabilizing with
service guarantee version of CNK. Our simulation experi-
ments are carried out thanks to the NS2.34 simulator. For
the naive version N-CNK, the self-stabilizing clustering
protocol [16] is used. Otherwise, the self-stabilizing with
service guarantee clustering protocol used is [13]. Both
clustering protocols are weight-based. They assume that
each node is assigned a weight value, that can increase
or decrease during time. The higher the weight of a node,
the better appropriate this node is for the role of cluster-
head. To achieve this feature in our simulation, we use
the following model of weight variation.
Each node randomly chooses its initial weight w between
two values Wmin(= 50) and Wmax(= 80). The node’s
weight changes according to a frequency f req(= 0.5),

which is the number of changes per second. Based on
the frequency value, the time when a node undergoes the
weight change is chosen randomly. We limit the variation
of weight to a parameter ∆(= 2). Thus, the new weight
of a node is chosen randomly between w−∆ and w+∆.

Obviously, to achieve this study, CNK protocol was
adapted to the message passing model. Each node v
broadcasts periodically (once per 0.6 second) to its
neighbors a message containing its state (its status and
KT ). Based on this message, v’s neighbors decide to
update their table or not. If within a certain period of
time (1.85 second), no message is received from a node,
this node is assumed to be no more neighbor.

Our network is composed of mobile nodes, with a prop-
agation radio range of 250m, randomly placed within a
1700m∗1700m area. The average number of neighbors
per node is equal to 5.

Mobility model. Each node moves randomly according
to the Random Waypoint model. Initially, network nodes
are randomly placed in the network area. Each node
selects a random destination and moves to it with a
randomly chosen speed (uniformly distributed between
0 m/s and 5 m/s). Upon reaching this destination,
another random speed and destination are targeted after
a pause time (0.5 second). The process is repeated until
the simulation ends.

For both version of CNK, identical mobility and weight
variation scenarios are used in order to gather fair results.
Furthermore, to get accurate results, each simulation
is driven with twenty different runs. Observed metrics
are then averaged on these different runs. A confidence
interval is also computed using the confidence level 95%
(values are negligible; they do not appear in figures).

A. Availability of optimum service

The availability of optimum service is inversely pro-
portional to the size of the network. In large scale
network, the optimum service is rarely available in both
protocols for both static and dynamic networks (Figures
5(a) and 5(b)). However, it stays more available in CNK
than N-CNK protocol.
Due to node’s weight change and mobility of nodes, the
hierarchical structure is continuously reconstructed. As a
result the member list of neighbor clusters changes very
often, and some paths stored in knowledge tables may
become invalid as soon as a node from this path becomes
cluster-head or moves out its neighbors. Therefore, the
optimum service is often broken. In this case, it is
interesting to provide and maintain at least an useful
minimal service.
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Figure 6. Availability of minimal service

B. Availability of minimum service

By increasing the network size, keeping nodes
static (speed=0) but changing the hierarchical structure
(freq=0.5), the minimal service (completeness property),
once provided, is preserved by CNK protocol during all its
execution time. In contrast, N-CNK protocol suffers from
the absence of minimum service more and more when
the network size increases. Indeed, in a network of 70
static nodes, the minimal service in N-CNK protocol is
unavailable during 60% of time (Figure 6(a)).

The appearance of new neighbor clusters are handled
in transparency by CNK protocol such that a leader has
always a path to leaders of neighbor clusters. Whereas
in N-CNK, a leader may have several neighbor clusters,
but it does not know any path leading to their leaders.
Due to the mobility of nodes, two clusters become neigh-
bors as soon a path is created between their leaders. As
mobility of nodes is unpredictable, the minimal service is
affected in both protocols. However, the minimal service
stays more available in CNK protocol (Figure 6(b)).
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