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Abstract� We present a deterministic distributed depth��rst token passing protocol on a rooted
network� This protocol uses neither the processor identi�ers nor the size of the network� but assumes the
existence of a distinguises hed processor� called the root of the network� The protocol is self�stabilizing�
meaning that starting from an arbitrary state �in response to an arbitrary perturbation modifying the
memory state�� it is guaranteed to reach a state with no more than one token in the network� Our protocol
implements a fair token circulation scheme� i�e�� in every round� every processor obtains the token at least
once� The proposed protocol has extremely small state requirement�only 	�
��� states per processor� i�e��
O�log
� bits per processor� where 
 is the degree of the network� The protocol can be used to implement a
fair distributed mutual exclusion in any rooted network� This protocol can also be used to construct a DFS
spanning tree�
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�� Introduction

Robustness is one of the most important requirements of modern distributed systems� Various

types of faults are likely to occur at various parts of the system� These systems go through the

transient states because they are exposed to constant change of their environment� The concept

of self�stabilization �Dij��� is the most general technique to design a system to tolerate arbitrary

transient faults� A self�stabilizing system� regardless of the initial states of the processors and initial

messages in the links� is guaranteed to converge to the intended behavior in 	nite time�

The depth�	rst token circulation problem is to implement a token circulating from one processor

to the next in the depth�	rst order such that every processor gets the token at least once in every

round 
de	ned more formally later�� In this paper� the token is initiated by the root of the network�

Related Work� Dijkstra introduced the property of self�stabilization in distributed systems by

applying it to algorithms for mutual exclusion on a ring �Dij���� Several deterministic self�stabilizing

token passing algorithms for di�erent topologies have been proposed in the literature �BD��� BP���
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Dij��� FDS��� for a ring� �BGW��� Gho��� GH��� �� for a linear array of processors� and �Kru��� ��

for tree network� Huang and Chen �HC��� presented a token circulation protocol for a connected

network in non�deterministic depth�	rst�search order� and Dolev� Israeli� and Moran �DIM��� gave

a mutual exclusion protocol on a tree network under the model whose actions only allow read�write

atomicity�

One of the important performance issues of self�stabilizing algorithms is the memory requirement

per processor� The memory requirement of a processor depends on the total number of states of

the processor� Most of the previous solutions to the token circulation problem on general networks

require O
log n� bits per processor� where n is the number of processors� In these protocols� each

processor maintains its distance to the distinguished processor� Awerbuch and Ostrovsky �AO���

and Itkis and Levin �IL��� used some special data structures to store the distance� Thus� their

space complexity on each processor is O
log� n� and O
�� bits per edge� respectively�

A state�e�cient token passing protocol on general network is presented in �JB���� In this

protocol� a processor pi needs to maintain �
�i � �� states 
dlog
�
�i � ���e�� where �i is the

degree of pi� Subsequently� this result was improved by Petit and Villain �PV��a� to �
�i � ��

states for a processor pi� Both of these two protocols use neither the distance variable nor any

special data structure to achieve the low memory requirement� But� in these algorithms� a processor

needs the knowledge of the state of the neighbors of its neighbors� Since the algorithms assume

the atomic execution of the actions� this requirement makes the atomic step bigger�in one atomic

step� a processor reads the state of its neighbors� the state of the neighbors of its neighbors� and

	nally changes its own state� This drawback has been removed in �JABD���� In this protocol� a

processor only reads the state of its neighbors in an atomic step� Thus� this algorithm has a smaller

atomicity than that in �JB��� PV��a�� The state requirement of this protocol is ��
�i � �� states

for a processor pi� Petit and Villain �PV��c� and �PV��b� adapted the result of �JB��� and �PV��a��

respectively� in the message passing model�

Contributions� In this paper� we present a self�stabilizing depth�	rst token circulation scheme

on a general network with a distinguished root� called Algorithm T C� Algorithm T C has all the

desirable features of the algorithm in �JABD���� In addition� we reduced the state requirement for

a processor p to �
�p��� states 
only �
�p��� states on the root�� Also� our algorithm is simpler


less number of actions� than that in �JABD���� Algorithm T C implements a fair circulation of

token� Our algorithm can also be used to implement the distributed mutual exclusion among the

processors on a rooted network�

Outline of the Paper� The token passing problem is formally de	ned in Section ���� The rest

of the paper is organized as follows In Section �� we describe the distributed systems and the

model in which our token circulation scheme is written� and give a formal statement of the token

passing problem solved in this paper� In Section �� we present the token passing protocol� and

in the following section 
Section ��� we give the proof of correctness of the protocol� Some of the

formal proofs are moved to the appendix due to the lack of space� The state complexity of the

protocol is given in Section �� In Section �� we discuss the fairness issues implemented by our

protocol and also� the use of our protocol to implement the mutual exclusion protocol� Finally� we

make concluding remarks in Section ��

�



�� Preliminaries

In this section� we de	ne the distributed systems and programs considered in this paper� and state

what it means for a protocol to be self�stabilizing� We then present the statement of the token

passing problem and its properties�

���� Self�Stabilizing System

System� A distributed system is an undirected connected graph� S � 
V�E�� where V is a set

of nodes 
jV j � n� and E is the set of edges� Nodes represent processors and edges represent

bidirectional communication links� We consider networks which are asynchronous and rooted� i�e��

all processors� except the root are anonymous� We denote the processors by p  p � f���ng and the

root processor by r� The numbers� ���n� are used to identify the processors to present our ideas

here� but no processor� except the root 
identi	ed by r�� has any identity� A communication link


p� q� exists i� p and q are neighbors� Each processor p maintains its set of neighbors� denoted as

Np� We assume that Np is a constant and is maintained by an underlying protocol�

Programs� Each processor executes the same program except the root r� The program consists

of a set of shared variables 
henceforth referred to as variables� and a 	nite set of actions� A

processor can only write to its own variables and can only read its own variables and variables

owned by the neighboring processors� So� the variables of p can be accessed by p and its neighbors�

Each action is uniquely identi	ed by a label and is of the following form

� label � � guard � �� � statement �

The guard of an action in the program of p is a boolean expression involving the variables of p

and its neighbors� The statement of an action of p updates zero or more variables of p� An action

can be executed only if its guard evaluates to true� We assume that the actions are atomically

executed the evaluation of a guard and the execution of the corresponding statement of an action�

if executed� are done in one atomic step� The atomic execution of an action of p is called a step of

p�

The state of a processor is de	ned by the values of its variables� The state of a system is a

product of the states of all processors 
� V �� In the sequel� we refer to the state of a processor and

system as a 
local� state and con�guration� respectively� Let a distributed protocol P be a collection

of binary transition relations denoted by ��� on C� the set of all possible con	gurations of the system�

A computation of a protocol P is a maximal sequence of con	gurations e �
�
��� ��� ���� �i� �i��� ���

�
�

such that for i � �� �i �� �i�� 
a single computation step� if �i�� exists� or �i is a terminal

con	guration� Maximality means that the sequence is either in	nite� or it is 	nite and no action of

P is enabled in the 	nal con	guration� All computations considered in this paper are assumed to be

fair and maximal� During a computation step� one or more processors execute a step and a processor

may take at most one step� This execution model is known as the distributed daemon �BGM����

We use the notation Enable 
A� p� �� to indicate that the guard of the action A is true at processor

p in the con	guration �� A processor p is said to be enabled at � 
� � C� if there exists an action

A such that Enable 
A� p� ��� We assume a weakly fair daemon� meaning that if a processor� p is

continuously enabled� p will be eventually chosen by the daemon to execute an action�

�



The set of computations of a protocol P in system S starting with a particular con	guration

� � C is denoted by E�� The set of all possible computations of P in system S is denoted as E �

Predicates� x � P means that x satis	es the predicate P � We de	ne a special predicate true as

follows for any e � E � e � true�

Self�Stabilization� We use the following term� attractor in the de	nition of self�stabilization�

De�nition ��� �Attractor	� Let X and Y be two predicates of a protocol P de�ned on C of

system S� Y is an attractor for X if and only if the following condition is true�

�� � X  �e � E�  e � 
��� ��� ����  	i � ���j � i� �j � Y � We denote this relation as Y � X�

De�nition ��� �Self�stabilization	� The protocol P is self�stabilizing for the speci�cation predi�

cate SP on E if and only if there exists a predicate L de�ned on C such that the following conditions

hold�

�� �� � L  �e � E�  e � SP �correctness��

	� L� true �closure and convergence��

���� Speci�cation of the Depth�First Token Passing Protocol

We will use the following term to specify the protocol

De�nition ��
 �Token Circulation Round	� We de�ne a computation in the protocol T C start�

ing from a state 	� to another state 	� as a token circulation round �in the sequel referred to as

cround� if the following conditions are true�


i� r holds a token in both 	� and 	��


ii� There is at least one state in between 	� and 	� such that the token is passed among the

processors in the depth��rst search order��

The legitimacy predicate LT C of our token passing protocol is any con	guration such that 
i�

exactly one processor has a token at any time 
called the Single Token property�� and 
ii� for each

computation that starts in such a con	guration� during a token circulation round� each processor

obtains the token at least once 
called the Fairness property��

We also require our solution to the token passing problem to be self�stabilizing�

�� Depth�First Token Passing Algorithm

In this section� we propose the self�stabilizing depth�	rst token circulation algorithm� We 	rst

present the data structure used by the processors� Then we present the formal algorithm� Next� we

de	ne some terms to be used later in the paper� We then explain the process of token circulation�

followed by the method of error correction� In particular� we do not use the distance variable used

in �HC��� to destroy the cycles� We use a method similar to the one introduced in �JB��� to remove

the cycles in the network�

�We assume that the network has at least one processor other than r�

�




��� Data Structures and Algorithm T C

To distinguish each token round� each processor p uses a variable Cp� called the round color� which

contains a value � f�� �g when the system is stabilized� A third color E� called the Error color�

is used by processors� except the root� during the stabilization� The descendant relationship is

indicated by the variable Dp 
Dp � Np 
 f�g�� To choose its descendant� each processor p locally

distinguishes each neighbor by some ordering� denoted as �p�

The self�stabilizing depth�	rst token circulation is shown in Algorithm ���� To make the al�

gorithm readable� we present it in three parts the macros� predicates� and actions� The macros

are not variables and they are dynamically evaluated� Ancp denotes the set of ancestors of p� i�e��

Ancp � fq � Np j Dq � pg� UVp is the set of neighbors not visited by the token� Searchp chooses

the next neighbor from UVp� In the following� 
Ancp denotes the current number of ancestors of p�

If 
Ancp � �� then the only ancestor of p is denoted as ap�

Algorithm 
�� 
T C� Self�Stabilizing Depth�First Token Circulation in Rooted Network�

Macro
Ancp  fq � Np � Dq  pg

UVp 

�
q � Np �

�
�q �p Dp� � �Cq � Cp� � �Dq � p� � �q � r�
� ��Cq � E� � �Dq � ���

��

Searchp 

�
min�p

�UVp� if �UVp � ��
� otherwise

Predicates
Forward �p� 	 �Dp  �� �

�
�p  r� �

�
��Ancp  �� � �Cp � E� �

�
Cap  �Cp � ��mod �

���
Backtrack �p� 	 �Dp � �� � �Dp � r� �

�
DDp

 �
�
�
�
CDp

 Cp

�
� �Cp � E�

� ��p  r� � ��Ancp  ���
Break �p� 	 �p � r� � �Dp � ��

�

�
� �Dp  r�

�
�
�Cp  E� �

��
DDp

 �
�
�
�
��Ancp � �� �

�
CDp

 E
����

�
��
DDp

 �
�
� ��Ancp  �� �

�
CDp

� �Cp � ��mod �
��

	
A

EDetect �p� 	 �p � r� � �Cp � E�

�

� �
�Dp � �� �

�
CDp

 E
�
� ��Ancp  ��

�
� ��Dp � r� � ��Ancp � ���

�

EEnd �p� 	 �p � r� � �Cp  E� � �Dp  �� � ���Ancp  �� � �Ancp  frg��

Actions
TC� �� Forward�p� 
� Cp � �Cp � ��mod�� Dp � Searchp�
TC� �� Backtrack�p� 
� Dp � Searchp�
EC� �� Break �p� 
� Dp � ��
EC� �� EDetect �p� 
� Cp � E�
EC	 �� EEnd �p� 
� if ��Ancp  �� then Cp � �� else Cp � Cr�

The predicates are used to describe the guards of the actions in Algorithm ���� Actions TC� and

TC� implement the token circulation� i�e�� the correct behavior of the system� The token circulates

in the network according to the De	nition ���� Actions EC�� EC�� and EC� implement the error

correction of the system� i�e�� they are used to bring the system from an illegitimate con	guration

to a legitimate one� All these predicates will be explained in detail in Section ����

When the system stabilizes� the system must contain only one token which circulates in the

DFS order� In such a con	guration� a processor can make a move only if it holds the token� Hold

�



the token means Forward
p� or Backtrack
p� is true� Formally

Token
p�  Forward
p� �Backtrack
p�


��� Informal Explanation of Algorithm T C

The proposed algorithm has two major tasks 
i� to circulate the token in the network in a deter�

ministic depth�	rst order and 
ii� to handle the abnormal situations 
illegal con	gurations� due to

the unpredictable initial con	gurations and transient errors� The tasks 
i� and 
ii� are explained

with examples in Paragraphs Token Circulation and Error Correction� respectively�

Some De�nitions� A path �p is a sequence 
p�� p�� ���� pl� such that 
i� p � p�� 
ii� l � ��


iii� �i � ��� l� � Dpi � pi�� and 
iv� Dpl � � or Dpl � fp�� p�� ���� pl��g� �i � ��� l�� pi is said to

belong to the path �p and is denoted as pi � �p�

If Ancp � �� then �p is called a rooted path 
the path is rooted at p�� A path �p rooted at p �� r

is called an illegal rooted path and p is called illegal root� A path �p rooted at r is called the legal


rooted� path�

The processor pl � �p is termed as a leaf if Dpl � �� The leaf of a legal 
respectively� illegal�

rooted path is called legal 
respectively� illegal� leaf� A leaf� p� is termed as a live 
respectively�

dead� leaf� if Cp� �� E 
respectively� Cp� � E��

The path �p is called a cycle if Dpl � fp�� p�� ���� pl��g� A cycle �p is called a strict cycle

if �i � ��� l�� pi�� is the only ancestor of pi 
Ancpi � fpi��g� and pl is the only ancestor of p�

Ancp� � fplg�� Otherwise� there exists at least one rooted path �q such that all processors in the

cycle �p belong to �q i�e�� 	pi � �p such that i � ��� l� and 
Ancpi � �� Such a rooted path �p is

called a rooted cycle�

A rooted path with a live leaf is termed as a live rooted path� All other rooted paths are called

dead rooted paths�

Every processor p such that Ancp � � and Dp � � is called path�free� meaning p does not

belong to any path�

k l

a b c d e

f r g ih

j m
E

E

E

Figure ��� A Possible Con	guration�

These de	nitions are illustrated in Figure ���� Processors c� f� g� and j are illegal roots� d� e� i� h

form a strict cycle� f and c are roots of a rooted cycle� k is a dead leaf� l and m are path�free�

Token Circulation� The root r initiates the token circulation round� The token then traverses

all processors during a token circulation round 
De	nition �����

�



We use 	c� � C to denote a con	guration where every processor in the system is path�free and

has the color �� Similarly� 	c� denotes the con	guration in which every processor is path�free and

has the color �� Both 	c� and 	c� are among the possible con	gurations from where the algorithm

behaves correctly� i�e�� starting from 	c� 
respectively� from 	c��� Algorithm T C circulates the token


represented by the predicate Token
�� in the depth�	rst search order to reach 	c� 
respectively�

	c��� This is called one token circulation round 
cround�� �From 	c� 
respectively� 	c��� the system

reaches 	c� 
respectively� 	c�� again in the same manner� After stabilization� the system repeats

the crounds forever� The cround is implemented by Actions TC� and TC�� Every su�x of the

computation starting from 	c� or 	c� is a legitimate con	guration�

r

(i) (ii) (iii) (v)

(vi) (viii) (x)

rrrrr

TC1 r r r r

(ix)

(iv)

(vii)

ba

c d

ba

c d

ba

c d

ba

c d

ba

c d

ba

c d

ba

c d

ba

c d
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Figure ��� Depth�First Search Token Circulation�

Consider the example in Figure ���� Step 
i� corresponds to the con	guration 	c�� In this

con	guration� Forward
r� is true and the only process enabled is r and the only action enabled at

r is TC�� The root changes its color 
Cr � 
Cr � ��mod�� and builds �r by choosing a descendant


Search predicate�� The root chooses the processor b as the descendant� This is shown in Step 
ii��

Similarly� b changes its color and chooses a descendant 
Step 
iii��� This process of extending the

path continues until c executes Action TC�� c does not have any neighbor to choose from� So� c

executes Dc � � 
Search�� This indicates to its ancestor d that the token has traversed all nodes

reachable from c in the DFS tree 
Step 
v��� Now� Backtrack
d� becomes true and d can execute

TC�� Since d has no more unvisited neighbors� Dd becomes equal to � 
Step 
vi��� Actions TC�

and TC� are repeated until all processors are visited by the token 
Steps 
vii� to 
x��� Step 
x�

corresponds to 	c�� Now� r changes its color to � and starts a new round with this color�

Error Correction� We now consider the transient failures� An example of an illegitimate con�

	guration was shown in Figure ����

Actions EC�� EC� and EC� are used to bring the system into a legitimate con	guration� Illegal

con	gurations are locally detected by the predicates Break� EDetect� and EEnd� We split the

predicates Break and EDetect into simpler predicates in Figure ��� to help explain them better�

First consider the illegal con	guration in which r has ancestors� For every ancestor p of r� p

satis	es BrkA 
Dp � r� and hence� Break
p�� Upon executing Action EC�� p eventually destroys

�



BrkA �p� 	 �Dp  r�
BrkB �p� 	 �Cp  E� � ��Ancp � �� �

�
CDp

 E
�

BrkC �p� 	 �Cp  E� �
�
DDp

 �
�

BrkD �p� 	
�
DDp

 �
�
� ��Ancp  �� �

�
CDp

� �Cp � ��mod �
�

Break �p� 	 �p � r� � �Dp � �� � �BrkA �p� � BrkB �p� � BrkC �p� � BrkD �p��
EDetectA �p� 	 �Dp � �� �

�
CDp

 E
�
� ��Ancp  ��

EDetectB �p� 	 �Dp � r� � ��Ancp � ��
EDetect �p� 	 �p � r� � �Cp � E� � �EDetectA �p� � EDetectB �p��

Figure ��� Predicates Break and EDetect�

the descendant pointer to r and since� r cannot be chosen as descendant in the algorithm 
see

macro UVp� q �� r�� r eventually does not belong to any illegal paths�

(v) (vi) (vii) (viii)

(iv)(i) (ii) (iii)

E

E

E

E

E

E

E

E

E

E

E E

E

E

E

E

E

E

E E

E

E

E

E

p

q

p

q

q’q’ p

q

p

q

q’q’

p

q

p

q

p

q

q’ q’ q’

TC1

EC2

EC2

EC2

EC2

EC1

EC1

p

q

q’

EC1

EC3

EC3

EC3

EC3

EC3

EC3

Figure ��� Cycles Destruction�

The Strict cycles are destroyed by the token circulation mechanism� We explain this strategy

using the example in Figure ���� In the con	guration in Step 
i�� p belongs to a cycle� The grey

processors in the 	gure can have any color� Assume that p is ��colored� The token circulation

consists of successive crounds� alternately colored with � and �� In the next cround� p is eventually

chosen as a descendant by one of its neighbors� Let q be that neighbor� q eventually executes

the macro Searchq 
Action TC� or TC�� and chooses p as the descendant� This is shown in Step


ii�� In this con	guration� p detects that it has more than one ancestor 
EDetectB
p� is true� and

executes EC� to become a E�colored processor 
Step 
iii���

�



The key point of our strategy is that the color E is propagated along the backtrack path� i�e��

the color E is propagated from a descendant to its ancestors� In our example� for each ancestor q

of p� EDetectA
q� is true� The ancestors of the E colored processors execute EC� to implement

the propagation of the color E through all the paths attached to q 
Steps 
iii� and 
iv���

Since p belongs to a cycle� its descendant 
q� in the 	gure is eventually E�colored 
Step 
v��� p

then satis	es BrkB� executes EC�� and detaches q� to break the cycle 
Step 
vi��� Next� for every

ancestor q �� r of p� either BrkD
q� or BrkC
q� becomes true depending on q is an illegal root or

not a root� Every E�colored path is eventually self�destroyed using EC� 
Step 
vii��� Finally� the

E�colored� path�free processors are made ��colored by Action EC� 
Step 
viii���

It is easy to see that the destruction of the rooted cycles is implemented using the same mech�

anism 
Step 
ii� and the following steps��

Finally� the protocol must destroy all illegal rooted paths� If a rooted path �p is a rooted cycle�

it is destroyed using the cycle destruction mechanism described above� Otherwise� it has a live 
not

E�colored� or dead 
E�colored� leaf� In the 	rst case� �p is self�destroyed as above 
Step 
vi� and

the following steps�� In the second case� �p is self�destroyed by just allowing the token to circulate�

When p executes Searchp� Dp strictly increases� So� every processor belonging to �p will eventually

be without any descendant and BrkD
p� becomes true� p then executes EC� and the illegal rooted

path �p is destroyed�

�� Correctness of the Token Passing Protocol T P

We apply the convergence stair method �GM��� to prove our protocol� We exhibit a 	nite sequence

of state predicates A��A�� � � � �Am� of Protocol T P such that the following conditions hold


i� A�  true 
meaning any arbitrary state�


ii� 
Am  LTP � � 
Am � LTP �


iii� �j  � � j � m  Aj�� �Aj

The proof outline is as follows

In Section ���� we show that eventually no processor has the root as a descendant� Then� we

prove that a locked processor 
which never executes any action� cannot be the root� and either it

does not have any descendant� or it belongs to a strict cycle 
Section ����� This last result trivial

leads to the proof of liveness of the algorithm 
Section ����� It also implies that all illegal live rooted

paths are eventually destroyed 
Section ����� That amounts to the fact that� once no live rooted

path exists� the system contains only one token� In Section ���� we show that as the root changes

its color in	nitely often� the legal path is eventually colored with the color of the root� Then in

Section ���� we prove that all cycles are eventually detected and destroyed� Finally� in Section ����

we prove that the system reaches a con	guration which satis	es LT C � We give some proofs in the

appendix due to the lack of space�

���� Root Without An Ancestor

In this section� we show that the system trivially reaches a con	guration in which r does not have

any ancestor�

�



We de	ne A�  
�p �� r  Dp �� r��

Theorem ���� A� �A��

Proof� A� is closed The root r can not be chosen as a descendant by a process p �� r 
see

macro UVp� q �� r�� Hence� 
Ancr cannot increase�

Every computation leads to A� 
�p � f���ng��� � C  Dp � r� � Enable 
EC�� p� ��� p

executes EC� in the con	guration � or �� where � �� � and Enable 
EC�� p� ��� By fairness�

	�  � � � such that p executes EC�� Hence� 
Ancr decreases� Since 
Ancr cannot increase�

	� � C  �� �  Ancr � �� �

���� Properties of Locked Processors

We need the following term throughout this section

A processor p is said to be Locked in a con	guration �� if in all con	guration reachable from ��

Cp and Dp are constants� Formally

Locked
p� ��  
��  �� �  Cp� � Cp� �Dp� � Dp� � where Vp� denotes the value of

Vp in the con	guration ��

Since the daemon is weakly fair� Locked 
p� �� implies that p is not continuously enabled in all

con	gurations reachable from ��

We now prove that a locked processor can not be the root� and either it does not have any

descendant� or it belongs to a cycle�

Lemma ���� �p� q � ���n� �� � A�  
Locked 
p� �� � 
Dp � q��� 
	�  �� �  Locked 
q� ����

Proof Outline� We prove this by contradiction� If q is not Locked� then q eventually executes

an action such that q has no descendant and has the same color as p� or the color E� Thus� p would

be enabled forever� which contradicts the hypothesis�

For the detail proof� please see Lemma A�� in Appendix A�

Lemma ��
� �p� q � ���n� �� � A�  
Locked 
p� �� � 
Dp � q� � 
p �� r����
	�  �� �  ���  � � ��  Dq �� �

�

Proof Outline� Following the similar reasoning as in the previous lemma� we can show that q

will eventually reach a state where it has a descendant and will maintain it forever�

For the detail proof� please see Lemma A�� in Appendix A�

Lemma ���� �p � ���n� �� � A�  Locked 
p� ��� p does not belong to a rooted cycle�

Proof Outline� We prove this lemma by contradiction� If p belongs to a rooted cycle� it is

clear that a processor q in that cycle has at least two ancestors� The processor q will eventually get

the color E and the color E will be propagated along the cycle in the direction from the descendants

towards the ancestors� So� q�s descendant will also be E�colored� Then� q will break the cycle� By

induction� every process in the rooted cycle will eventually detach its descendant� Thus� p is not

Locked�

For the detail proof� please see Lemma A�� in Appendix A�

��



Theorem ��� �p � ���n� �� � A�  
Locked 
p� �� � 
p �� r��

� 

Dp � �� � 
p belongs to a strict cycle���

Proof� Assume that Dp � q� By Lemmas ��� and ���� 	�  � � �  Locked 
q� �� and

Dq �� �� By induction� the descendant of q will also be eventually locked� and so on� Since the

graph S is 	nite� p belongs to a cycle� By Lemma ���� p cannot belong to a rooted cycle� Thus� p

belongs to a strict cycle� �

Theorem ���� �p � ���n� �� � A�  Locked 
p� ��� 
p �� r�

Proof Outline� In order to be Locked� r must be in a strict cycle 
see Theorem ����� So� r

must have an ancestor� which cannot be true in any con	guration � A��

For the detail proof� please see Theorem A�� in Appendix A�

��
� Liveness

The following Lemma follows directly from Theorem ���

Lemma ��� �liveness	� In any con�guration � A�
 at least one processor is enabled�

���� Destruction of Live Illegal Rooted Paths

In this section� we show that all live illegal rooted paths are destroyed�

Lemma ���� Every illegal rooted path is eventually destroyed
 or becomes a strict cycle�

Proof� Assume the contrary� i�e�� there exists an illegal rooted path �p that does not disappear

and also does not become a cycle� Then� p is never chosen as a descendant� Otherwise� p is not an

illegal root and �p is destroyed� By Theorem ���� p is not Locked� So� there exists a con	guration

� � A� such that p executes an action� So� p executes EC� at � 
only Break
p� can be true��

After Action EC� is executed� the illegal rooted path rooted at p disappears� which contradicts

our assumption� �

Let us denote the number of live illegal leaves by LIL�

Lemma ���� �� � A�
 �� such that � �� �
 the value of LIL in � is less than or equal to the

value of LIL at ��

Proof Outline� Algorithm T C cannot create a new live illegal leaf for the following reasons


i� A dead illegal leaf cannot become a live illegal leaf� 
ii� A path cannot be split creating a live

illegal leaf� 
iii� A path�free processor cannot create a new illegal rooted path�

For the detail proof� please see Lemma B�� in Appendix B�

We de	ne A�  A� � 
LIL � ���

Theorem ����� A� �A��

Proof� Follows from Lemmas ��� and ���� �

Corollary ����� In any con�guration � A�
 if there exists a live leaf
 then it must be a legal leaf�

��



��� Color Consistency

In this section� we show that eventually� either the system contains no live leaf� or every processor

in the legal path 
except the leaf� has the same color as r has� In such a con	guration� the legal

path cannot create a new cycle�

We de	ne a predicate ColorConsistent in a con	guration � such that it is true if any of the

following conditions is true 
CC�� Dr � �� 
CC�� The leaf of the legal path is a live leaf and all

processors on the legal path� except the leaf� are r�colored 
with the same color as r�� 
CC�� The

legal path does not have a leaf 
rooted cycle�� or has a dead leaf�

We de	ne A�  A� � ColorConsistent�

Theorem ����� A� �A��

Proof Outline� By Theorem ���� r executes its actions in	nitely often� So� r starts a new

cround with a new color in	nitely often� If the legal path� �r does not meet any illegal path� then

it remains color consistent 
all processors� except the leaf� have the same color�� Otherwise� when

�r meets an illegal path� its leaf becomes dead and it remains color consistent�

For the detail proof� please see Theorem C�� in Appendix C�

���� Cycle Destruction

In this section� we prove that all cycles are eventually destroyed� The process of destruction is as

follows All strict cycles are merged with the legal path and thus� become rooted cycles� Then by

the repeated application of EC� and EC�� the rooted cycles will be destroyed�

The �rst DFS tree �CD��� of the graphG is de	ned as the DFS spanning tree rooted at r� created

by traversing the graph in the DFS manner� and visiting the adjacent edges of every processor in

the order induced by �p� We de	ned the macro Searchp such that Algorithm T C circulates the

token in the 	rst DFS tree�

Lemma ���
� Starting from any con�guration � A�
 all nodes which do not belong
 either to the

legal path
 or to any strict cycles
 will be eventually path�free�

Proof� Follows directly from Lemma ���� �

Lemma ����� Starting from any con�guration � A�
 every processor which is path�free and E�

colored
 will be eventually path�free and �colored�

Proof� By fairness
 all E�colored and path�free processors eventually execute EC� because

none of its neighbors can choose it as a descendant �see UVp
 q cannot be chosen if Cq � E and

Dq � ��� �

Lemma ���� Starting from any con�guration � A�
 every strict cycle will be eventually trans�

formed into a rooted cycle�

Proof� By Lemma ���� for all con	gurations � A�� there exists no live leaf of an illegal rooted

path� So� our responsibility is to show that eventually a node on every strict cycle in the system

��



will be selected as a descendant by the leaf of the legal path� Assume the contrary� i�e�� there exists

one strict cycle which will never be reached by the legal path�

So� there exists � � A� such that all processors between r and the strict cycle on the 	rst DFS�

tree are path�free 
by Lemma ������ or they belong to the legal path 
r�colored in A��� By Lemma

����� 	��  �� �� such that every processor between r and the strict cycle is �� or ��colored� Also�

by successive crounds� 	���  �� � ��� such that every processor between r and the strict cycle has

the same color k 
� or ���

Let q be the 	rst processor in the strict cycle that is on the 	rst DFS tree� Let p � Nq be

the ancestor of q in the 	rst DFS tree� Since no strict cycle is reachable by the legal path 
by

assumption�� Cq � k� Otherwise� p will eventually select q as a descendant� which will contradict

our assumption� But� in the next cround� p will choose q as a descendant because Cp will be equal

to 
k � ��mod �� Thus� we arrive at the contradiction� �

Lemma ����� Starting from any con�guration � A�
 every cycle is destroyed�

Proof� By Lemma ����� every strict cycle is eventually transformed into a rooted cycle� By

Lemma ���� every rooted cycle is eventually destroyed� �

Let NC denote the number of cycles in the system�

We de	ne A�  A� � 
NC � ���

Theorem ����� A� �A��

Proof� A� is closed All processors which belong to the legal path have the same color� So� by

the de	nition of Search� Forward� and Action TC�� the leaf of the legal path chooses a descendant

of a di�erent color� So� no new cycle can be created in A�� Hence� NC cannot increase�

Every computation starting from a con	guration in A� leads to a state in A� Follows from

Lemma ����� �

���� Legitimacy Predicate

It is easy to prove that the legitimacy predicate LT C eventually holds� i�e�� exactly one processor

has a token at any time 
Single Token Property� and for each computation that starts in such

a con	guration� during a token circulation round� each processor obtains the token at least once


Fairness Property��

For the detail proofs� please refer to Appendix D�

�� State Complexity

A processor p in Algorithm T C uses two variables� Dp and Cp� The variable Cp� for a processor

p �� r� can have � di�erent values 
�� �� and E�� whereas Cr can have only � values 
� or ��� The

variable Dp can have �p 
jNpj� plus one 
�� values� So� a processor� p �� r� needs to maintain

�� 
�p � �� states and r needs �� 
�r � ��� Thus� the total number of con	gurations of the whole

network is

� 
�r � ���
Y

p�����n��p�	r

� 
�p � ��

��



It is worth mentioning here that all the previous papers computed the space complexity in terms

of the number of bits only� not in terms of the states� We feel that the measurement in terms of

the number of states is more accurate�

�� Fairness and Mutual Exclusion

The token circulation problem is similar to the mutual exclusion problem� A solution to the problem

of mutual exclusion in a network is to implement a token circulating from one processor to the next

following some pattern� The token moves around the network� A processor having the token is

granted access to the shared resource and can execute the code in the critical section�

Our solution to the depth�	rst token circulation problem can be used to solve the mutual

exclusion problem� After stabilization� in Algorithm T C� in each token circulation round� a processor

p holds the token as many times as its degree �p�once while satisfying Forward
p� and �p � �

while Backtrack
p� is true� Since the degrees of the processors in the network may not be the

same� Algorithm T C may not implement a strictly fair token circulation 
and mutual exclusion��

By strict fairness� we mean that in every round� all processors will obtain the token 
enjoy the

critical section access� exactly once� But� it is easy to implement the strict fairness in Algorithm

T C as follows A processor p can use the token 
access the critical section� if and only if Forward
p�

is true� Then� in each token circulation round� each processor obtains the token exactly once�

	� Conclusions

We presented a self�stabilizing depth�	rst token circulation scheme on a general network with a dis�

tinguished root� Algorithm T C and its proof are much simpler than the earlier algorithm �JABD����

Our algorithm implements a fair token circulation� This algorithm can be used to implement a

fair distributed mutual exclusion algorithm� Our algorithm can also be used to construct a DFS

spanning tree just by maintaining the descendant pointers instead of destroying them�
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A� Properties of Locked Processors

Lemma A��� �p� q � ���n� �� � A�  
Locked 
p� �� � 
Dp � q��� 
	�  �� �  Locked 
q� ����

Proof� We will prove this by contradiction� We assume the contrary� i�e��

	p� q � ���n�	� � A�  
Locked 
p� �� � 
Dp � q�� � 
��  �� �  �Locked 
q� ����

As p is locked� ��  �� � p � Ancq�

�� Assume that 	�  � � �  Cq � E� Thus� for all ��  � � ��� q can execute only EC� and

EC��

a Assume that Dq � � at �� Then� q can execute only EC� in �� Ancq does not in�

crease while q does not execute EC� because no neighbor of q can select q 
see macro

UVp�� Since q is not locked� 	��  � � ��  Enable
EC�� q� � ��� Since p � Ancq�

Enable
EC�� q� � �� implies �p � r and Ancq � frg� in � �� Execution of EC� makes

�Cp � Cr and Enable
TC�� r� � ��� 
Backtrack
r� is true�� In all ��� such that �� � ����

Enable
TC�� p� � ���� By fairness� p eventually runs TC� which contradicts the assump�

tion� Locked
p� ���

b Assume that Dq �� � in �� Then� q can execute EC� only in �� Since q is not locked�

	��  � � �� such that q eventually executes EC� in � �� After the execution of EC� by

q� Dq � �� Thus� we arrive at the assumed state of Case �a�

�� Assume that ��  �� �  Cq �� E� Thus� ���  � � ��� q will not execute EC�� EC�� and

EC��

a Assume that q executes TC� in	nitely often� Since Dq strictly increases with respect

to �q 
see macro Searchp�� 	�  � � �  Dq � �� In this case� ���  � � ���

Enable
TC�� p� � ��� Enable
EC�� p� � ��� or Enable
EC�� p� � �� depending on 
Ancp and

Cp� By fairness� p eventually executes TC�� EC�� or EC�� which contradicts the as�

sumption� Locked
p� ���

b Assume that q executes TC� a 	nite number of times only� So� 	�  �� � after which

q executes only TC�� But� after the execution of TC�� Cq � Cp� If Dq � �� then the

system reaches Case �a� If Dq �� �� then q is locked and we prove the contradiction�

�

Lemma A��� �p� q � ���n� �� � A�  
Locked 
p� �� � 
Dp � q� � 
p �� r����
	�  �� �  ���  � � ��  Dq �� �

�

Proof� By Lemma ���� 	�  �� �  Locked
q� ��� So� ���  � � ��� Dq remains unchanged�

Assume the contrary� i�e�� Dq � � in �� We will consider the following cases to arrive at the

contradiction�

��



�� Assume that Cp � E� Then� irrespective of the color of q� ���  � � ��  Break
p� 
Cp � E

and DDp � ��� By fairness� p eventually executes EC�� But� that is not possible since p is

locked�

�� Assume that Cp �� E�

�� Assume that Cq � E� Then ���  � � ��� EDetect
p� or Break
p� is true depending on

the value of 
Ancp� By fairness� p eventually executes either EC� or EC�� which is not

possible since p is locked�

�� Assume that Cq � Cp �� E� Then� ���  � � ��� Backtrack
p�� Break
p�� or EDetect
p�

is true� if 
Ancp � �� �� or � �� respectively� By fairness� p eventually executes TC��

EC�� or EC�� which is not possible since p is locked�

�� Assume that Cq � 
Cp � ��mod�� Then either �	��  � � ��  
Ancq � ��� or ����  � �

��  Ancq � fpg�� If 
Ancq � �� then Enable
TC�� q� � ��� If 
Ancq � �� Enable
EC�� q� � ���

By fairness� q eventually executes either TC� or EC�� both of which are not possible since q

is locked�

�

Lemma A�
� �p � ���n� �� � A�  Locked 
p� ��� p does not belong to a rooted cycle�

Proof� Let �q � 
p�� p�� ���� pl��� pl� be a rooted cycle� where p � �q and Dpl � pi� i � ��� l�



Ancpi � ��� We will prove this lemma by contradiction by assuming the contrary� i�e�� there is a

processor p such that Locked
p� �� is true and p belongs to the rooted cycle �p�

�� Assume that p � pi and Cpi �� E� Then EDetect
pi� is true� Thus� Enable
EC�� pi� �� and

��  � � �� Enable
EC�� pi� �� remains true because no action allows the ancestor of pi to

detach it because Dp �� �� By fairness� pi eventually executes EC� which contradicts the

assumption 
p is Locked��

�� Assume that p � pi and Cp � E� Since p is Locked 
according to our assumption�� by

Lemma ���� all processors pj� j � �i� l�� also are Locked�

a Assume that Cj �� E� Dj � i� and j � �i� l�� Then EDetect
pj� is true� Thus�

Enable
EC�� pj � ��� and ��  � � �� Enable
EC�� pj � �� remains true while pj does

not execute EC�� which contradicts the assumption by fairness� Following the similar

reasoning� we can show that all processors �j � �i� l�� pj � must have the color E to satisfy

our assumption�

b Following the similar reasoning as in Case �a� all processors �j � �i� l�� pj � must have the

color E to satisfy our assumption� Then Break
pi� is true� Thus� Enable
EC�� pi� ���

and remains true while pi does not execute EC�� which contradicts our assumption by

fairness�

��



�� From Cases �� �a� and �b� p �� pi� i�e�� pi cannot be Locked� Assume that p � pj� j � �i� l��

Then by Lemma ���� all processors pk� k � �i� l�� are also Locked� which contradicts the fact

that pi is not Locked� Thus� all processors pj� j � �i� l�� are not Locked�

�� Assume that p � pj� j � ��� i � ��� Then by Lemma ���� all processors pk� k � �j � �� l�� are

also Locked� which is not possible according to Case ��

�

Theorem A��� �p � ���n� �� � A�  Locked 
p� ��� 
p �� r�

Proof� We will prove by contradiction� Assume that 	� � A�  Locked
p� �� � p � r�

�� Assume that r has no descendant� Then� ��  �� �  Enable
TC�� r� ��� Thus� by fairness�

r is not Locked�

�� Assume that r has a descendant� q� Then by Lemma ���� q is also Locked� So� by Theorem ����

q is either inside a strict cycle or Dq � ��

a Dq � ��


i� Assume that 
Ancq � � 
Ancq � frg�� If Cq � E� then ��  �� �  Enable
EC�� q� ���

So� by fairness� q is not Locked� If Cq �� E� then ��  �� �  Enable
TC�� q� ���

Enable
TC�� r� ��� Thus� by fairness� either q or r is not Locked�


ii� Assume that 
Ancq � �� Assume that 	�  �� �  
Ancq � �� Thus� Ancq � frg

and by Case �a
i�� this is not possible� So� 	�  �� �  
Ancq � �� If Cq �� E� then

Enable
EC�� q� �� and q is not Locked� If Cq � E� then the ancestors of q 
 �� r� can

only execute Actions EC� or EC� until q remains their descendent� These ancestors

of q can execute EC� at most once 
to get the color E�� After this execution of

EC�� the ancestors can only execute EC�� Because Cq � E and Dq � �� it cannot

get a new ancestor� Thus� after repeated execution of EC�� eventually� q will have

no ancestors except r� This contradicts the assumption�

b q has a descendant and is inside a strict cycle� Since �� � A�� r has no ancestor� q must

belong to a rooted cycle 
Theorem ����� which contradicts the assumption�

�

B� Destruction of Live Illegal Rooted Paths

Lemma B��� �� � A�
 �� such that � �� �
 the value of LIL in � is less than or equal to the

value of LIL at ��

Proof� Assume the contrary� i�e�� LIL in � is greater than LIL in �� Then one of the following

is true 
�� A dead illegal leaf becomes a live illegal leaf� 
�� A path is broken creating a live illegal

leaf� and 
�� A processor� other than the root� becomes the root of an illegal rooted path�

��



�� For any p such that Cp � E� only EC� changes Cp� If p executes EC�� then one of the

following two conditions must be true 
i� Ancp � � and p is not a leaf� and 
ii� Ancp � frg

and p is not a leaf of an illegal path� Both 
i� and 
ii� contradict our assumption�

�� In order to break a path �p � 
p�� p�� ���� pl� so that a live leaf is created� 	pi � �p such that

pi executes an action in � and pi becomes a live leaf in �� Since� Dpi �� �� pi can execute

TC�� EC�� and EC� in ��

If pi executes EC�� then Cpi becomes equal to E� So� pi is not a live leaf�

If 
EC�� pi� ��� then Cpi � E in � because 
Ancpi � �� Since the execution of Ec� does not

change the color� pi cannot become a live leaf�

If 
TC�� pi� ��� then Dq � � in �� Thus� after the execution of TC�� pi becomes a live leaf�

but q is no more a leaf�

�� A processor� p �� r� without an ancestor� cannot select a new descendant because both

Forward
p� and Backward
p� are disabled for p�

We proved the contradiction in all three cases� �

C� Color Consistency

Lemma C��� The root r changes its color in�nitely often�

Proof� By Theorem ���� r executes an action in	nitely often� r can execute only TC� and

TC�� If r executes TC� in	nitely often� then r changes its color in	nitely often and hence� the

lemma is proven� Assume that r does not execute TC� in	nitely often� This implies that r executes

TC� in	nitely often 
by Theorem ����� Then� by the de	nition of Searchr� eventually Dr � �

must be true� This will enable r to execute TC�� which contradicts our assumption� �

Theorem C��� A� �A��

Proof� A� is closed

�� Assume that Dr � �� By Lemma C��� r changes its color in	nitely often� r chooses a

descendant by executing TC�� If r chooses a descendant which belongs to a cycle or to an

illegal rooted path with a dead leaf� then ColorConsistent remains true 
CC��� If r selects

a path�free descendant p� then p becomes the new live leaf of the legal path� �r� and thus�

ColorConsistent is preserved 
CC���

�� Assume that Dr �� �� The only processor which can choose a descendant is the live leaf of the

legal path by executing TC�� Assume that p is the live leaf� If p chooses a path�free processor

as the descendant� then all processors except the leaf� are r�colored� Thus� ColorConsistent

remains true 
CC��� If p selects a path�free descendant q� then q becomes the new live leaf

of the legal path� �r� and thus� ColorConsistent is preserved 
CC���

Every computation starting from a con	guration satisfying A� leads to a con	guration in A�

The proof follows from Corollary ����� �

��



D� Legitimacy Predicate

Theorem D�� �Single Token Property	� �� � A�
 exactly one processor has a token at any

time�

Proof� Follows from Corollary ����� �

Recall from Section ��� that 	c� and 	c� denote the con	gurations where every processor is

path�free and has the color � and �� respectively� Thus� both 	c� and 	c� satisfy LT C �

Lemma D��� �� � A�
 �� 	c� �

Proof� By Lemma ����� 	��  � � �� such that all processors in the system are path�free or

belong to the legal path� By Lemma ����� 	���  �� � ��� such that every path�free processor is ��

or ��colored� Then by successive crounds� 	�  ��� � � such that every processor is path�free and

has the same color k 
� or ��� If k � � in �� then the lemma is proven 
� � 	c��� If k � �� then� in

the next round� k becomes equal to �� �

Theorem D�
� LT C �A��

Proof� LT C is closed Follows from Actions TC� and TC��

Every computation starting from a con	guration in A� leads to a state in LT C  Follows from

Lemma D��� �

Theorem D�� �Fairness Property	� Starting from any con�guration � LT C 
 in every cround


every processor obtains the token at least once�

Proof� Follows from the De	nition ���� the de	nitions of 	c� and 	c� � the de	nition of token


Section ����� and Actions TC� and TC�� �

��


