
Service Time Optimal Self-Stabilizing Token Circulation Protocol on
Anonymous Unidrectional Rings

Colette Johnen

L.R.I./C.N.R.S., Universit́e de Paris-Sud,
bat 490, 91405 Orsay Cedex, France

colette@lri.fr
www.lri.fr/ � colette/

Abstract

We present a self-stabilizing token circulation protocol
on unidirectional anonymous rings. This protocol does not
required processor identifiers, no distinguished processor
(i.e. all processors perform the same algorithm).

The protocol is a randomized self-stabilizing, meaning
that starting from an arbitrary configuration (in response to
an arbitrary perturbation modifying the memory state), it
reaches (with probability 1) a legitimate configuration (i.e.
a configuration with only one token in the network).

All previous randomized self-stabilizing token circula-
tion protocols design to work under unfair distributed
schedulers have the same drawback: once stabilized, the
service time is slow (in the best case, it is bounded by

��
where

�
is the ring size).

Once stabilized, our protocol provides an optimal ser-
vice: after

�
computation steps, each processor has ob-

tained one time the token.

The protocol can be used to implement a fair distributed
mutual exclusion in any ring topology network.

Keywords: distributed protocol, fault-tolerant, mutual
exclusion, self-stabilization, anonymous ring, token circu-
lation, unfair scheduler, service time.

1. Introduction

Robustness is one of the most important requirements
of modern distributed systems. Various types of faults are
likely to occur at various parts of the system. These systems
go through the transient faults because they are exposed to
constant change of their environment.

The concept of self-stabilization [10] is the most general
technique to design a system to tolerate arbitrary transient
faults. A self-stabilizing system, regardless of the initial
states of the processors and initial messages in the links,
is guaranteed to converge to the intended behavior in finite
time.

Mutual exclusion is a fundamental task for the manage-
ment of distributed system. A solution to the problem of
mutual exclusion is to implement a token circulation, the
processor having the token is granted access to the critical
resource. Therefore, lot of research works had been done
in order to design efficient self-stabilizing token circulation
protocols. Dijkstra gave a number of self-stabilizing proto-
cols for token circulation on a bidirectional ring, assuming
the existence of a leader [10, 11]. Several deterministic self-
stabilizing token passing protocols for different topologies
have been proposed in the literature: [2, 10, 15] for a ring;
[5, 16, 17] for a linear array of processors, [26, 12, 29] for
tree networks, and [19, 23, 30, 22, 9] for general networks.
All these protocols assume the existence of a distinguished
processor that performs some specific tasks. Deterministic
protocols for leader election and token circulation are pos-
sible in a ring of

�
anonymous processors only when

�
is prime under a centralized scheduler [10, 6] (i.e. during a
computation step a single processor, changes its state). Such
protocols are presented in [6, 27, 21, 14].

In this paper, we address the following task: “token
circulation on anonymous and unidirectional rings of any
size”. We have in mind to obtain solutions both self-
stabilizing and service optimal. Because, on anonymous
networks, without the ability to break symmetry, determin-
istic self-stabilizing token circulation are impossible,our
protocol is randomized.

Related works. Based on the random walks techniques,
self-stabilizing randomized token circulation protocolson

1

bidirectional anonymous networks have been designed [20,
13]. Mayer and al [28] have proposed a self-stabilizing ran-
domized round-robin token management protocol on bidi-
rectional rings that reduces an arbitrary plurality of tokens
(i.e. one or more) to a single token. Once stabilized, a
round-robin requires� �� �

computation steps.
In [18, 1], it is presented randomized token circulation

protocols on unidirectional rings that stabilize with some
type of schedulers (resp. synchronous scheduler and�-
bounded scheduler). In [24], the first token circulation pro-
tocol on unidirectional rings that self-stabilizes under un-
fair distributed schedulers is designed. Beauquier and al in
[4] presents a space optimal token circulation protocol on
unidirectional rings that is self-stabilizes under unfairdis-
tributed schedulers. An adaptation of this protocol that has
a better stabilization time is given in [31]. In [3], the pro-
tocol of [4] is extended in order to manage any anonymous
unidirectional networks.

The previous protocols on unidirectional anonymous
networks under distributed schedulers [18, 1, 24, 4, 31, 8]
are all based on the same technique: “to randomly retard the
token circulation”. A processor having a token randomly
decides to pass or not the token. Under any scheduler, there
is a probability one that one token� moves faster that the
other tokens, thus� will eventually catch up the others to-
kens and will eliminate them.
The drawback of this technique is the service time. Once the
ring is stabilized (i.e. there is only one token in the ring),the
only token also delays its moves. If the delay is unbounded
[1, 24, 4, 31] the upper bounded of the service time is infi-
nite: a processor may never get the token because the token
stay forever on the same processor. More precisely these
protocols are only weakly self-stabilizing for the specifica-
tion “one token fairly circulates in the ring”.
First, Datta and al. [8] have adapted this technique to guar-
antee an upper bounded and an average bounded of the
service time (the both are� �� � �

): the protocol ensures a
boundary to the slowness of a token move. Their protocol
requires� �	
 �� ��

memory space on each processor.
By delaying the token circulation, Kakugawa and al. in [25]
have adapted their protocol presented in [24] to run under
unfair distributed schedulers. The service time is

��
. The

required memory space on each processor is� �	
 �� ��
.

Our contribution. We present a self-stabilizing token cir-
culation protocol for anonymous unidirectional rings of any
size under unfair distributed schedulers. Our protocol is not
based on the technique “to randomly delay the token circu-
lation”. Our idea is to lock forever a token� when the ring
has several tokens. The other tokens keeping on circulate,
one of the other tokens will eventually catch up� : the to-
kens number decreases. A protocol based on the same idea
is presented in [24]. This protocol requires a centralized

scheduler. Under a centralized scheduler, at each computa-
tion step, only one processor performs an action. We have
adapted the protocol of [24]. to get a protocol that deals
with distributed schedulers. At each computation step, a
subset of enabled processors perform an action.
Our protocol does not require fairness property from the
scheduler. On the contrary, under any scheduler, the ob-
tained computation is

�
-fair even during the stabilization

period (i.e. between two actions of a processor, another pro-
cessor performs at most

�
actions).

The protocol [25] requires that each processor knows ex-
actly the ring size. Our protocol only requires that each
processor knows an upper bound on the ring size (called�

). Thus, our protocol works on dynamic rings (the ring
size may increase or decrease assuming the ring size does
not go beyond the upper bound).
As the protocols of [8] and [25], our protocol is self-
stabilizing for the specification“one token fairly circulates
in the ring”. Our protocol have the same space complexity
that the protocols of [8] and [25].
The protocols of [8] and [25] have an upper bounded of the
service time� �� � �

and
��

respectively. Once our pro-
tocol stabilized, the only token is not delayed or locked;
therefore our protocol provides an optimal service: after

�
computation steps, each processor has obtained one time
the token. Our protocol is the first one that never delays the
token circulation.
We give a complete formal proof of correctness and conver-
gence of our protocol.

Outline. The model for randomized self-stabilizing pro-
tocols is presented in section 2. The protocol is presented
in section 3. The proof of the protocol correctness and self-
stabilization is given in section 4.

2. Model

Abstract model. A non deterministic distributed system
is represented in the abstract model oftransition systems.
A distributed systemis a tuple� � �� � � � � �� �

where�
is the set of all system configurations;

�
is the finite

alphabet. For any letter� of
�

, �� is a transition func-
tion of

�
to

�
subsets.

�
is a

�
subset called the initial

configurations. We said that there is atransition from �
of label � if �� ��� �� �. The outputs of the transition�� ���

are the configurations of the set�� ���
. In a ran-

domized distributed system, there is a probabilistic law on
the outputs of a transition. Let� � �

be the distributed sys-
tem defined as��� � � �� � ��� � � �� � ��� ���� �� � � �� � ���
where �� �� � � �� � � �� � ��

; � ! �� � � �� � � ��
;� " �� � � �� � � ��

; � ! �� �� � � " �� �� � �� �� � ��
and� " �� �� � � ! �� �� � �. The probabilistic law asso-
ciates to the transition�� �� �

is
�#�

for the configuration�

and
�#$

for
� �

and
� �

. The probability laws associated to
other transitions are

�#�
for each transition output.

A computation stepis a pair of configurations��% � �& �
where �& is an output of a transition starting from�%. A
computation' of � is a sequence of consecutive compu-
tation steps' � ��(� �! � � ��! � �" �)))

. where�(* �
. A

computation ismaximal, if the computation is either in-
finite, or finite and the final configuration is a deadlock.'+ � �� � � �+ �� � � �� ��� �� � �� �� � � � ���,

is a maximal
computation of� � �

for any value of-.

Let � be an initial configuration of a distributed system.
The�-treeis the tree composed of all maximal computations
whose initial configuration is�. The computationforestof a
distributed system�� � � � � �� �

is the set of all�-trees where� * �
. The figure 1 illustrates the notion of tree.

1/4 B2

1/4

1/4

1/4

1/2
1/2

1/2
1/2

1/2

1/4

1/4

1/2
1/2

1/2
1/2

1/2

1/2

1/2
1/2

1/2
A

1/2

A
B1

B1
A

b1

b2

a

A

b2

1/2

1/2

1/2

A

a

b1

B1
B2
A

A
B1

1/2

a

A

B1

B2

A

B1
A

B1

B2

b2

b1

b1 B2

A

B1

A

b2

b1

1/2

1/2

1/2

1/2

1/4

b2

B2

A

1/4

b2
1/2

1/2

B1
b1

1/2

1/2

B1

B2

B1

B2

B2

B1

1/2

a

Figure 1. The beginning of �-tree of the dis-
tributed system � � �

Interpretation. In fact, the distributed system is a net-
works of processors (. /0�) computing protocol. . A pro-
tocol has a collection of variables (internal and/or field)
and has a code part. A processor communicates only with
its neighbors (a subset of. /0�). Communication among
neighbors is carried out by field variables.

The state of a processor is the collection of values of
the process’s variables (internal or field). A configuration
of a distributed system is a vector of processor states. A
local configurationis the part of a configuration that can be
“seen” by a processor (i.e. its state and the field variables of
its neighbors).

The code is a finite set of guarded rules:

(i.e. label:: guard1 action).

The guard of a rule on2 is a boolean expression involving2 local configuration. The action of a2 rule updates the2 state. If the action is randomized, several statements are
possible, and each of them has some probability. A proces-
sor2 is enabledat a configuration�, if the rule guard of2 is
satisfied in�.

Computation step versus transition. Let � be a configu-
ration, and� 3 be a subset of enabled processors at�. We
denote by4 � 5 � 3 6 the set of configurations that are
reachable from� after that the processors of� 3 have per-
formed an action. A computation step has three elements:
(1) an initial configuration:�, (2) a set of enabled proces-
sors: � 3 , and (3) a configuration of4 � 5 � 3 6. The
computation steps can be interpreted in terms of transitions
in the abstract model:4 � 5 � 3 6 is the output config-
urations of the abstract transition�78 ���

(in this abstract
model, the alphabet letters represents the subsets of. /0�).

For instance,� � �
is the system transition representing

the weak self-stabilizing token circulation [1] on the unidi-
rectional ring of size

�
. Each processor has the same rule:

� 0�'9: 1 if �/�9;0< �= � �� � =�
then. �>> � 0�'9: .

� is the configuration where all processors have a token.� �
(resp.

� �
) is the configuration where only the proces-

sor 2 �
(resp. 2 �

) has a token. The letter� represents the
processor subset�2 ��2 ��

, the letter
��

(resp.
��

) represents
the processor subset�2 ��

(resp.�2 ��
).

In the case of a deterministic protocol, a computation
step is totally defined by the initial configuration and the
set of enabled processors. But in the case of randomized
protocol, the final configuration depends on the output of
each processor action. Therefore, in the case of randomized
protocols, the computation step has a fourth characteristic
element: the probabilistic value associated to the computa-
tion step. This value depends on the probabilistic law of the
random variable of each processor involved in the compu-
tation step.

Strategy. Clearly, no probabilistic space can be directly
based on computation tree structure. Specific subtrees can
equipped with a probabilistic space: the strategies [4]. The
formal strategy definition is given below.

Definition 2.1 Let � be a distributed system. Let� / be
a tree of� . A � strategy is a subtree of� / where at a
node, there is only one outgoing transition.

The basic notion used to define a probabilistic space on
the computations of a given strategy>? is the cone. Cones
have been introduced in [32]. Acone�@ of >? is the set of
all >?’s computations with the common prefixA. 	'9
 ?A �A�
is the number of computation steps inA. The measure of a>?-cone

�@ is the measure of the prefixA (i.e., the product
of the probability of every computation step occurring inA). For instance, the measure of>? �-cone

�@! (figure 2)
whereA� � �� � � � � ��

is
�#$

; the measure of>?�-cone
�@"

(figure 3) whereA� � �� � ��� � ��
is

�#�
.

a
A 1/4

A1/2

a

B2 1/2

b2
1/2

b1

B1 1/2

1/2

B2

B1

1/2

1/4

A

B2

B1

B1

B2

1/4

1/4

Figure 2. The beginning of the� � �
strategy >? �

1/2

1/2

A

B2

B1

1/2

1/2 B2
b2

A b2

b1

1/2 A

B11/2

Figure 3. The beginning of the� � �
strategy >?�

Scheduler. Basically, a scheduler is intended to be an ab-
straction of the external non-determinism. Because the ef-
fect of the environment is unknown in advance, the sched-
uler notion must be able to formalize any external behavior.
Defining a scheduler in some operational way - at that point
of the computation the scheduler has such or such choice -
raises the problem to define exactly in function of what the

choice is made. If the choice depends of the actual config-
uration and of the history, the generality of the scheduler
is restricted. How, for instance, express that the scheduler
must be fair. That is the reason why in a deterministic sys-
tem, we define a scheduler as a predicate (subset) on infinite
computations. In our framework, the key notion is the strat-
egy. Formally, ascheduleris completely defined by the set
of strategies which it may “produce”.

Definition 2.2 Let� be a distributed system. A scheduler� is a set of� strategies.

Let � be a distributed system. Theunfair scheduler
is the set of all� strategies. Thefair scheduler is the
set of � strategies that contain only fair computations.
The B-fair scheduler is the set of� strategies>? such that.CD �E9F �G/ �0<2E?�?G09>� � B.
2.1. Self-stabilization of a randomized protocol

In this section, we define the self-stabilization for ran-
domized protocols with respect to the probabilistic model.

Notation 2.1 Let >? be a strategy of a distributed system� performing a protocol. under a scheduler� . Let. H
be a predicate over configurations. The notation� I . H
means that the configuration� verifies the predicate. H .
We note byJ K L CD the set of>? computations reaching a
configuration that satisfies the predicate. H .

Definition 2.3 (Predicate closure)Let M be a predicate
defined on configurations of a distributed system� . M
is closed if any computation step�> from any configuration� �

that verifiesM reaches a configuration��
that verifiesM .

A problem specification . is a predicate on computa-
tions; for instance the specification of theleader problem
is “the system has and will always have one and only one
leader; the leadership does not move”. The definition of
self-stabilization of� under the scheduler� for a spec-
ification . required the definition of a predicate on con-
figurations (legitimate predicate)M . If the � converge toM and verifies theM-correctness property then� is a self-
stabilizing system for . under� . In a deterministic sys-
tem, the convergence property is “all computations under a
scheduler D reach a legitimate configuration”. In a random-
ized system the definition of convergence property is proba-
bilistic: “the probability to reach a legitimate configuration
is

�
in any strategy of the scheduler D”. TheM-correctness

property is deterministic in any distributed system (deter-
ministic or not): “any computation from a legitimate con-
figuration� (i.e. � I M) satisfies the specification . ”.

Definition 2.4 (Probabilistic convergence)Let M be a
predicate defined on configurations. A randomized dis-
tributed system� executing the protocol. under a sched-
uler � converges toM iff: In any strategy>? of � under� the probability of the set of computations reachingM is
equal to 1. Formally,N >? of � under� , .CD �J O CD � � �

.

Definition 2.5 (Probabilistic Self-stabilization) A ran-
domized distributed system� executing the protocol.
under a scheduler� is self-stabilizing for a specification . (predicate on the computations), if there exists a pred-
icate on configurationM such that� converges toM and
verifies the following property:P correctnessN >? of � under� , N ' * >?, if ' *J O then' has a suffix that verifies . .

The protocols [18, 1, 24, 4, 31] are only weakly self-
stabilizing for the specification“one and only one token
fairly circulates in the ring”. Because, some computations
from any “legitimate” configuration are not correct. It its
always possible that “a token stays forever on the same pro-
cessor”. Fortunately, the probability of a such event is= in
any strategy.

Definition 2.6 (Weak Probabilistic Self-stabilization) A
randomized distributed system� executing the protocol. under a scheduler� is weakly self-stabilizing for a spec-
ification . , if � verifies the following property:P probabilistic correctness N >? of � under � ,.CD(�' has a suffix that verifies . �� � �

.

Based on previous works on the probabilistic automata
(see [32], [33], [34]) [4] presents a detailed framework for
proving self-stabilization of probabilistic distributedsys-
tems. A key notion islocal convergencedenotedM� . TheM� property is a progress statement as those presented in
[7] (for the deterministic systems) and [32] (for the prob-
abilistic systems). Informally, theM� �. H �� . H � � � � B�
property for a randomized self-stabilizing system means
that starting in a configuration satisfying. H !, the system
will reach a configuration which satisfies. H" , in less that� computation steps with a probability greater thanB. For-
mally thelocal convergenceproperty is defined as follows:

Definition 2.7 (Local Convergence)Let >? be a strategy,. H ! and . H" be two predicates on configurations, where. H ! is a closed predicate. LetQ be a positive probabil-
ity and � a positive integer. Let

�@ be a >?-cone with	�>? �A� I . H ! and letR be the set of sub-cones
�@Sof the

cone
�@ such that for every sub-cone

�@S: 	�>? �A T� I . H "
and	'9
 ?A �AT�U	'9
 ?A �A� V � . The cone

�@ satisfiesM��. H ! � . H " � Q � � �
if and only if. /CD �WXYSZ[�@S� \ Q .

Now, if in strategy>?, there existQCD 6 = and� CD \ �
such that any>?-cone,

�@ with 	�>? �A� I . H !, satisfies

M� �. H ! � . H " � QCD � � CD �, then the main theorem of the
framework presented in [4] states that the probability of the
set of computations of>? reaching configurations satisfying
both. H ! and. H" is 1. Formally:

Theorem 2.1 [4] Let >? be a strategy. Let. H ! and. H " be closed predicates on configurations such that. /CD �J K L !� � �
. If]QCD 6 = and]� CD \ �

such
that any >?-cone

�@ with 	�>? �A� I . H !, satisfies theM� �. H ! � . H" � QCD � � CD � property, then. /CD �J K L � � �
,

where. H � . H ! ^ . H " .

3. Self-stabilizing token circulation protocol

We present a self-stabilizing token circulation protocol
for anonymous unidirectional rings of any size under unfair
distributed schedulers (protocol 3.1).

To converge to a configuration where there is only one
regular token, our protocol locks forever a regular token�
when the ring has several regular tokens. The other regular
tokens keeping on circulate, one of the other regular tokens
will eventually catch up� : the regular tokens number de-
creases. [24] have presented a protocol based on the same
idea, but their protocol requires a centralized scheduler.

Protocol 3.1Optimal time service token circulation proto-
col for processor2
Field variables:_: (the current value) is an integer bounded by

� 6 �
(
�

being the ring size)/: (the random signature) of2 is in �= � ��

Macros (: is 2 ’s left neighbor):. �>> � 0�'9: � _: 5� �_`a b �� cde �

Predicates:� 0�'9: f _: �� �_`a b �� cde �� 	0��';: f �_: � =� ^ �/`a 6 /: �g /09
 � 0�'9 % f h� 0�'9: ^ �/: �� /`a� ^ �_: �� =�� 'i >'
: f �_`a � � U ��

The Moving rules:R ! 55 � 0�'9: ^ h� 	0��';: ^ h� 'i >'
: 1. �>> � 0�'9: j /: 5� /`a
R " 55 � 0�'9: ^ h� 	0��';: ^ � 'i >'
: 1. �>> � 0�'9: j /: 5� /�9;0< �= � ��

The Correcting rule:�� 55 g /09
 � 0�'9: 1 /: 5� /`a

The difficulty of this technique is to find a local config-
uration that indicates that several regular tokens are in the
ring. Let us analyze the behavior of our protocol when there

is only one regular token and no wrong token. Every
� U �

moves, the regular token� randomly changes its signature
values (R " rule). We name2 the processor that has per-
formed theR " action. After this action_: � = and /: is
equal to the signature value of� . The signature value of�
does not change during the next

� U�
moves of� (R ! rule).

Assuming that� is the only token in the ring, the next time
that2 gets a regular token: (1) this token is� ; (2) the signa-
ture of� has not changed in the mi-time (� has performed� U � 4 � U �

moves). Therefore we have,/`a � /: . We
conclude that if/`a �� /: , then� is not the only token in the
ring. The local configuration of2 (�_: � =� ^ �/`a �� /: �

)
indicates that several processors have a token - regular or
not -.

To avoid deadlock configuration, the regular token on2
is locked (i.e.2 is not enabled) only if��_: � =� ^ �/`a 6/: ��

.
Once, there is only one regular token in the ring; this

token is never locked it will freely circulate without delay.
The service time is optimal (

�
computation steps) - for-

mally proven in section 4.1.

Observation 3.1 Assume that during a computation step�>
of protocol 3.1, a processor2 performs an action. The pro-
cessor2 is not more enabled at the end of�>, unless it left
neighbor has also performed an action during�>. There-
fore, along any computation of protocol 3.1, the number of
enabled processors cannot increase whatever may happen.

Definition 3.1 A processor holds a regular token iff it veri-
fies the predicate� 0�'9. A processor holds a wrong token
iff it verifies the predicate

g /09
 � 0�'9.
Let � be a regular token holds by2 . The value of� is

the value of the2 ’s left neighbor. The signature of� is the
value of the2 ’s left neighbor.

Observation 3.2 As
� 6 �

, there is always a regular to-
ken in the ring.

A processor having a token (regular or wrong) passes
its token to its right neighbor when it performs an action.
When a processor holding a token receives another token,
the two tokens merge into a single token or the tokens anni-
hilate each other.

4. Self-stabilizing proof

We prove that the protocol 3.1 is a self-stabilizing pro-
tocol for the specification . : The token circulations are
service optimal. A token circulation is service optimal iff
(i) the circulation is

�
-fair (i.e. in every round, every pro-

cessor obtains the token once) and (ii) the round duration is
exactly

�
computation steps.

4.1. Correctness proof

Definition 4.1 We name
g

the weight function
� U1 k "

defined as:
g ��� � (number of regular tokens in c, number

of wrong tokens in c).M is the following predicate on configurations:Ml f �g ��� � ��� =��
.

M is the legitimate predicate. We will prove that any
computation whose the initial configuration verifiesM , ver-
ifies the specification . . First we will prove thatM is
closed and that all computations are infinite.

Observation 4.1 Let � be a configuration of protocol 3.1
such that

g ��� � �� � 	�. We have	 V � U �
and � V �

.
In the configuration�, the number of enabled processors is
inferior or equal to� b 	.

Let �T be the configuration reached from� after a com-
putation step. If

g ��T � � �� T � 	 T � then� T V � (the number
of regular tokens cannot increase).

Lemma 4.1 Let � be a configuration of protocol 3.1 on
an anonymous and unidirectional ring such that

g ��� ��� � 	�. Let �T be a configuration reached from� after a com-
putation step�>. Assume that

g ��T � � �� T � 	 T �. If 	 T 6 	
then� T 4 � otherwise� T V �.

Proof: According to observation 4.1, We have� T V �.
Assume that during�> there is creation of a wrong token.

We name2 the processor having this wrong token. There is
creation iff2 has a wrong token in�T and not in�, and2 ’s
left neighbor (m) has not performed the Correcting rule dur-
ing �>. m has performed a Moving rule during�>; otherwise2 would not verify the

g /09
 � 0�'9 predicate in�T. As2 has not a regular token in�T, then2 was holding a regu-
lar token in� and2 has not performed an action during�>.
Thus, a regular token has cautgh up another one during�>.
We have� T 4 �. The figure 4 illustrates the situaton where
a wrong token is created. n

(3,0)

(7,1) (7,1)(6,1)

(3,0)

(4,0)

(5,0)
p p

wrong token
p has a wrong token

(12,0)

(8,1)

(0,0)

(1,0)
(2,0)(2,0) (1,0)

(0,0)

(12,0)

(8,1)

(6,1)

(7,1)

(4,0)

Configuration without

Figure 4. Creation of a wrong token

Corollary 4.1 M is closed in the protocol 3.1 on an anony-
mous and unidirectional ring.

Proof: Let � be a configuration verifyingM . Let �T be a
configuration reached after a computation step from�. We
have

g ��T � � �� T � 	 T � According to observations 3.2 and
4.1, � T � �

. According to lemma 4.1,	 T � =. We haveg ��T � � ��� =� n
Lemma 4.2 There is not deadlock configuration in the pro-
tocol 3.1 on an anonymous and unidirectional ring.

Proof: Let � be a configuration of protocol 3.1. Assume
that� is a deadlock. In�, a processor2 (has a regular token
(observation 3.2). In�, a processor having a regular token
has the value=. As the distance between two regular tokens
is inferior to

� 4 �
. All processors having the value=

must have a regular token. In�, no processor has a wrong
token; therefore all processors between two regular tokens
have the same signature value. Let2 (, 2 !, ..., 2 o be the
finite processors series such that (i)NG * p= � 9 U �q � 2 % holds
a regular token and no processor between2 % and2 %r ! has a
regular token; and (ii)2 (� 2 o . We have9 \ �

because,
there is always a regular token in the ring (observation 3.2).N G * p= � 9 U �q

, We have/:s � /`astu 6 /:stu where	:stu
is the left neighbor of2 %r !. We conclude that/:v 6 /:w .
There is a contradiction because2 (� 2 o . n
Theorem 4.1 Let ' be a computation of protocol 3.1 on an
anonymous and unidirectional ring whose the initial config-
uration verifyingM . Along', . is verified.

Proof: According to lemma 4.2,' is infinite. According to
corollary 4.1, all configurations of' verifying M . In each
computation step of', the processor2 having the regular
token is the only enabled processor (observation 4.1).2
performs a Moving action to pass the token in the ring to
its right neighbor. After

�
computation steps, the regular

token has terminated a round. n
We have proven that onceM is reached . is verified. In

the following section, we will prove that in any strategy, the
probability to reach a configuration verifyingM is 1.

4.2. Convergence proof

First, we present three properties verify by any computa-
tion of the protocol 3.1. Secondly, we prove that any com-
putation from a configuration� where

g ��� � �� � 	 b ��
reaches a configuration�T such that

g ��� 6 g ��T �, in less
than �� U � b x� ��

computation steps. Third, in any
strategy, in any cone

�@ such that
g ��� � �� b �� =�

, the
probability to reduce the configuration weight in less than��� b $� ��

steps is greater than
�#�y

. Finally, we con-
clude that in any strategy under any scheduler, the probabil-
ity to reach a configuration verifyingM is 1.

Lemma 4.3 Let ' be a computation of protocol 3.1. Along', a processor2 will wait at most
� " computation steps

before performing an action.

Proof: We study a fragment of' where2 does not perform
any action, calledF . After an action, a processor does not
verify a guard rule till its left neighbor does not perform an
action. Therefore, between two actions of2 its right neigh-
bor can perform at most one action. By induction on the dis-
tance from2 to mz, we prove thatmz can perform at most;
actions before a2 action (; being the distance from2 to mz).
Therefore,F contains at most; computation steps wheremz
performs an action. ThusF contains at most

� �� U ��#�
computation steps. n
Lemma 4.4 Let' be a computation of protocol 3.1. A given
regular token� will circulate forever in the ring and it will
have infinitely often the value

� U �
or it will merge with its

preceding regular token.

Proof: In a configuration of�, assume that the regular token� is on the processor2 and� has the value-. Along ', 2
will perform a Moving action before that its left neighbor
performs a Moving action (otherwise the� token would
merge with its preceding regular token� T). After the2 ’s
action, the� token has the value- b �

and it is held by the2 ’s right neighbor. By induction, we prove that the� token
will get the value

� U �
or will merge with another token. If

the token� never merges with its preceding regular token:� will get the value=; then,� will eventually get the value� U �
; and so one. n

Lemma 4.5 Let ' be a computation of protocol 3.1. Along', if the number of regular tokens does not decrease during�{ b � ��
computation steps then each token (regular or

wrong) has performed at least
{

moves during these com-
putation steps.

Proof: Let 'T be the�{ b � ��
first computation steps of'.

Assume that along'T, the number of regular tokens does not
decrease. In'T the number of wrong token cannot increase
(lemma 4.1). Let� be a regular token. Let� T be a token
(regular or not). We name< T| �� T� the number of moves of� T during'T.

Along 'T, a regular token� �
always stays behind� , oth-

erwise� and� �
would merge (the number of regular token

would decrease). We have< T| �� �� 4 < T| �� �b ; where; is
the initial distance between� �

and� . If a wrong token� �
catchs up a regular token� then� �

vanishes (a processor
cannot have a wrong and a regular token at the same time).
Thus,< T| �� �� 4 < T| �� � b ; where; is the initial distance
between� �

and� .
We conclude that, if< |S�� � 4 {

then< |S�� T � 4 { b�
. By hypothesis,	'9
 ?A �'T� � �{ b � ��

and we have
proven that	'9
 ?A �'T� � >E< } S~D��|o< |S�� T� 4 �{ b� ��

. There is a contradiction. n
Lemma 4.6 Let ' be a computation of protocol 3.1. Along', if the number of regular tokens does not decrease during

�� U � b x� ��
computation steps then there is no wrong

token in the ring after these computation steps.

Proof: Assume that along', the number of regular tokens
does not decrease during�� U �b x� ��

computation steps.
A regular token� will be preceded by the same regular to-
ken� T during these computation steps.

Along this sequence,� will get the value
� U �

(lemma
4.4) in less than�� U � b � ��

computation steps (lemma
4.5). Then, the processor having the� token (called2) will
eventually perform theR " action to get the value= and to
pass the� token to its right neighbor (after at most

� " com-
putation steps - lemma 4.3 -). Until the next action of2 , no
processor between2 and the token� has a wrong token.
After at most

� " computation steps,2 will perform an ac-
tion. We name�T the configuration of the system just before
the2 action. In�T, 2 has the� T token; thus no processor on
the path between� T and� has a wrong token.

No processor inside this path may perform an action.
Only processors holding� or � T may perform an action.
After their actions, no processor on the path between� T and� has a wrong token. Therefore, at the end of this sequence,
no processor has a wrong token. n
Lemma 4.7 Let >? be strategy under a distributed unfair
scheduler of protocol 3.1 on an anonymous and unidirec-
tional ring. Let

�@ be a >?-cone where
g �	�>? �A�� ��� � 	 b ��

Let R the set of sub-cones
�@@S of

�@ such that
(i) 	'9
 A? �AT� V �� U � b x� ��

and (ii)
g �	�>? �AAT �� ��� T � 	 T � such that if� T � � then	 T � =. We have. /CD �R � �. /CD �� @ �

Proof: We studyR T the set of sub-cones
�@@S of

�@ such
that: (i) in 	�>? �AAT�, no processor has a wrong token; or
(ii) two regular tokens have merged during the last compu-
tation step ofAT. According to lemma 4.6, after at most�� U � b x� ��

computation steps, no processor has a
wrong token or two regular tokens have merged. Thus any
computation of

�@ belongsR . We haveR T � �@. The
length ofAT is inferior to �� U �b x� ��

computation steps.
In the first case,

g �	�>? �AAT �� � �� � =�
. In the second case,g �	�>? �AAT �� � �� T � 	 T � where� T 4 �. R T � R . n

Lemma 4.8 Let >? be strategy under a distributed unfair
scheduler of protocol 3.1 on an anonymous and unidirec-
tional ring. Let

�@ be a st-cone where
g �	�>? �A�� ��� b �� =�

. Let R the set of sub-cones
�@@S of

�@ such that
(i) 	'9
 ?A �AT� V ��� b $� ��

and (ii)
g �	�>? �AAT �� 4�� � � U ��

. We have. /CD �R � \ . /CD �� @ � � �#�y
.

Proof: We name� a token. We name� T the token that
follows � in the ring.� T �� � , because the ring has several
tokens. Let�> be the following scenario: (1) a processor
holding� T performs theR " actions; (2) a processor having

the � token (called2) performs theR " action; (3)2 gets
the � T token; (4) finally the left neighbor of2 performs an
action during the last computations ofAT.

We study the sub-cones
�@@S of

�@ where: (i) two to-
kens merge during the last computation step ofAT or (ii) the
scenario>� happens. We callR the set of these sub-cones.

According to lemma 4.4, along any computation of
�@,

(a) the token� and� T will perform infinitely often theR "
action and any tokens will circulate forever in the ring or (b)
two tokens will merge. Thus any computation of

�@ belongsR . We haveR � �@.
The first stage of scenario>� required at most�� b � ��

computation steps (times that the� T token gets the value=
- lemma 4.5 -). The second stage (times that the� token
gets the value=), required at most�� b � ��

. The third
stage requires at most

� " steps (time that2 performs an
action). The last stage requires

� " steps (time that2 ’s left
neighbor performs an action). The length ofAT is inferior to��� b $� ��

computation steps.
Assume that alongAT the scenario>� does not happen.

By definition ofAT, we have
g �	�>? �AAT �� V �� � � U ��

.
If along AT the scenario>� happens. No processor has

a wrong token alongAT (lemma 4.1): all computation steps
of AT contains only Moving actions. Assume that alongAT,
(i) � T always gets the

�
signature when it performs theR " ;

(ii) 2 gets the= signature when it performs theR " action
(when it has the� token); (iii) After (1), the signature of� T
will be always

�
. After (2), we have:��/: � =� ^ �_: �=��

. After (3), 2 verifies the predicate� 0�'9 ^ � 	0��';.2 cannot perform any action until its left neighbor performs
an action. At the end ofAT, two tokens has merged:� T has
disappeared. TheAT stages are illustrated in the figure 5.

During the first stage,� T will perform one time theR "
action, during the second stage� T will perform at most

�
times the actionR " (� T performs at most

� b �
moves

- at most two times the actionR " -). During the two last
stages,2 performs no move; thus,� T can perform at most
one time the actionR ". The probability of (i), (ii) and (iii)
is greater than

�#�y
. Because alongAT, � T performs at most$

times the actionR " . We conclude that the probability that
in 	�>? �AAT �, there are less than� b �

tokens is greater than�#�y
. n

The following corollaries are direct consequences of two
preceding lemmas.

Corollary 4.2 Let >? be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and uni-
directional ring. Let

�@ be a st-cone where
g �	�>? �A�� ��� b � � 	�. Let R the set of sub-cones

�@@S of
�@ such that

(i) 	'9
 ?A �AT� V �x� b �� ��
and (ii)

g �	�>? �AAT �� V
�� � � U ��

. We have. /CD �R � \ . /CD �� @ � � �#�y
.

Therefore, the average expectation number of compu-
tation steps to reduce the number of tokens is less than

(2,0)

(0,1)

(12,0)

(6,0)

(5,0)

(5,0)(4,0)

(3,0)

(2,0)

(4,0)

(11,0)

T

T’

(0,0)

(11,1)

(10,1)

(9,1)

(1,0) (2,0)

(3,0)

(2,0)

(3,0)

(4,0)

T

T’

The signature of T’ is now 1

T’ is locked on p

Inital configuration

(1,0)

(0,0)
(4,0)

(6,0)

(5,0)

(7,0)

(6,0)(5,0)

(12,0)

(3,0)

(0,0)

(12,0) (0,0)

(1,0)

(11,0)

(12,0)

(10,0) (8,1)

(7,1)

(6,1)

T

T

T’

T’

A processor p has state (0,0)

(0,0)

(1,0)

(3,0)

(7,0)

(6,0)

(5,0)

(4,0)

(5,0)

(6,0)
T

T’ has disappeared

Figure 5. The locking of a regular token under a
synchronous scheduler

��=)�)�
.

Corollary 4.3 Let >? be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and uni-
directional ring. Let

�@ be a st-cone where
g �	�>? �A�� ���b � � 	� LetR the set of sub-cones

�@@Sof
�@ such that (i)	'9
 ?A �AT� V ��b �� �x� b�� ��

and (ii)
g �	�>? �AAT �� ���� =�

. We have. /CD �R � \ . /CD �� @ � � �#�y� .

The following theorem is a direct consequence of obser-
vation 4.1 and the preceding corollary.

Theorem 4.2 Let >? be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and
unidirectional ring. Any >?-cone

�@ satisfies theM��?/E' � M � �#�y� � �x� b �� �� "�
property.

From Theorems 2.1 and 4.2, we get:

Corollary 4.4 In any strategy>? of protocol 3.1 on anony-
mous and unidirectional rings under any unfair distributed
scheduler, the probability of the set of computations reach-
ing M is 1.

5. Conclusion

In this paper, we have presented a randomized self-
stabilizing token circulation on anonymous and unidirec-
tional rings of any size. We have given a formal proof of
the convergence of the protocol.

Our protocol is the first one that never delays the token
circulation. once stabilized, our protocol provides an opti-
mal service time: (i) it implements a1-fair token circulation
scheme, i.e., in every round, every processor obtains the to-
ken once; and (ii) the round duration is exactly

�
computa-

tion steps.
There are only two previous self-stabilizing token circu-

lation on anonymous and unidirectional rings [8, 25] that
ensure an upper bounded on the service time (respectively� �� � �

and
��

).
Similary to the computation of convergence time in [24],

we can prove that the expectation time of convergence of
our protocol is= �� � " �

computation steps (
�

is an integer
greater than the ring size

�
). This convergence time is sim-

ilar to the convergence time of protocols [8, 25]:� �� � �
computation steps.

The memory space required by our protocol and the pro-
tocols [8, 25] on each processor is� �	
 �� ��

.

References

[1] J. Beauquier, S. Cordier, and S. Delaët. Optimum proba-
bilistic self-stabilization on uniform rings. InProceedings
of the Second Workshop on Self-Stabilizing Systems, pages
15.1–15.15, 1995.

[2] J. Beauquier and O. Debas. An optimal self-stabilizing al-
gorithm for mutual exclusion on bidirectional non uniform
rings. In Proceedings of the Second Workshop on Self-
Stabilizing Systems, pages 17.1–17.13, 1995.

[3] J. Beauquier, J. Durand-Lose, M. Gradinariu, and C. Johnen.
Token based self-stabilizing uniform algorithms.Journal of
Parallel and Distributed Computing, 62(5):899–921, May
2002.

[4] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized
self-stabilizing and space optimal leader election under ar-
bitrary scheduler on rings. Technical Report 1225, L.R.I,
December 1999.

[5] G. Brown, M. Gouda, and C. Wu. Token systems that self-
stabilize. IEEE Transactions on Computers, 38:845–852,
1989.

[6] J. Burns and J. Pachl. Uniform self-stabilizing rings.
ACM Transactions on Programming Languages and Sys-
tems, 11:330–344, 1989.

[7] K. Chandy and J. Misra.Parallel Programs Design: A Foun-
dation. Addison-Wesley, 1988.

[8] A. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing
mutual exclusion using unfair distributed scheduler. In
IPDPS’2000 Proceedings of the 14th International Paral-
lel and Distributed Processing Symposium, pages 465–470,
2000.

[9] A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-
stabilizing depth-first token circulation in arbitrary rooted
networks.Distributed Computing, 13(4):207–218, 2000.

[10] E. Dijkstra. Self stabilizing systems in spite of distributed
control. Communications of the Association of the Comput-
ing Machinery, 17:643–644, 1974.

[11] E. Dijkstra. A belated proof of self-stabilization.Distributed
Computing, 1:5–6, 1986.

[12] S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicity.Dis-
tributed Computing, 7:3–16, 1993.

[13] J. Durand-Lose. Randomized uniform self-stabilizing mu-
tual exclusion. Information Processing Letters, 74(5-
6):203–207, 2000.

[14] F. Fich and C. Johnen. A space optimal, deterministic,
self-stabilizing, leader election algorithm for unidirectional
rings. InDISC00 Distributed Computing 15th International
Symposium, Springer-Verlag LNCS:2180, pages 224–239,
2001.

[15] M. Flatebo, A. Datta, and A. Schoone. Self-stabilizing
multi-token rings.Distributed Computing, 8:133–142, 1994.

[16] S. Ghosh. An alternative solution to a problem on self-
stabilization. ACM Transactions on Programming Lan-
guages and Systems, 15:735–742, 1993.

[17] M. Gouda and F. Haddix. The stabilizing token ring in three
bits. Journal of Parallel and Distributed Computing, 35:43–
48, 1996.

[18] T. Herman. Probabilistic self-stabilization.Information Pro-
cessing Letters, 35:63–67, 1990.

[19] S. Huang and N. Chen. Self-stabilizing depth-first token
circulation on networks.Distributed Computing, 7:61–66,
1993.

[20] A. Israeli and M. Jalfon. Token management schemes and
random walks yield self-stabilizing mutual exclusion. In
PODC90 Proceedings of the Ninth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 119–
131, 1990.

[21] G. Itkis, C. Lin, and J. Simon. Deterministic, constant
space, self-stabilizing leader election on uniform rings. In
WDAG95 Distributed Algorithms 9th International Work-
shop Proceedings, Springer-Verlag LNCS:972, pages 288–
302, 1995.

[22] C. Johnen, G. Alari, J. Beauquier, and A. Datta. Self-
stabilizing depth-first token passing on rooted networks. In
WDAG97 Distributed Algorithms 11th International Work-
shop Proceedings, Springer-Verlag LNCS:1320, pages 260–
274, 1997.

[23] C. Johnen and J. Beauquier. Space-efficient distributed
self-stabilizing depth-first token circulation. InProceedings
of the Second Workshop on Self-Stabilizing Systems, pages
4.1–4.15, 1995.

[24] H. Kakugawa and M. Yamashita. Uniform and self-
stabilizing token rings allowing unfair daemon.IEEE Trans-
actions on Parallel and Distributed Systems, 8:154–162,
1997.

[25] H. Kakugawa and M. Yamashita. Uniform and self-
stabilizing fair mutual exclusion on unidirectional rings un-
der unfair distributed daemon.Journal of Parallel and Dis-
tributed Computing, 62(5):885–898, May 2002.

[26] H. Kruijer. Self-stabilization (in spite of distributed control)
in tree-structured systems.Information Processing Letters,
8:91–95, 1979.

[27] C. Lin and J. Simon. Observing self-stabilization. In
PODC92 Proceedings of the Eleventh Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 113–
123, 1992.

[28] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-
stabilizing symmetry breaking in constant-space. In
STOC92 Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, pages 667–678, 1992.

[29] F. Petit. Highly space-efficient self-stabilizing depth-first to-
ken circulation for trees. InOPODIS’97, International Con-
ference On Principles Of Distributed Systems Proceedings,
pages 221–235, 1997.

[30] F. Petit and V. Villain. Color optimal self-stabilizing depth-
first token circulation. InI-SPAN’97, Third International
Symposium on Parallel Architectures, Algorithms and Net-
works Proceedings, IEEE Computer Society Press. IEEE
Computer Society Press, 1997. To appear.

[31] L. Rosaz. Self-stabilizing token circulation on asynchronous
uniform unidirectional rings. InPODC00 Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 249–258, 2000.

[32] R. Segala.Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, MIT, Departament
of Electrical Engineering and Computer Science, 1995.

[33] R. Segala and N. Lynch. Probabilistic simulations for proba-
bilistic processes. InCONCUR’94 Fifth International Con-
ference Concurrency Theory, Springer-Verlag LNCS:836,
pages 481–496, 1994.

[34] S. Wu, S. A. Smolka, and E. Stark. Composition and be-
haviors of probabilistic i/o automata. InCONCUR’94 Fifth
International Conference Concurrency Theory, Springer-
Verlag LNCS:836, pages 513–528, 1994.

