Service Time Optimal Self-Stabilizing Token Circulation Protocol on
Anonymous Unidrectional Rings

Colette Johnen

L.R.I./C.N.R.S., Universé de Paris-Sud,
bat 490, 91405 Orsay Cedex, France
colette@lri.fr
www.Iri.fr/ ~colette/

Abstract The concept of self-stabilization [10] is the most general
technique to design a system to tolerate arbitrary trahsien
We present a self-stabilizing token circulation protocol faults. A self-stabilizing system, regardless of the atiti
on unidirectional anonymous rings. This protocol does not states of the processors and initial messages in the links,
required processor identifiers, no distinguished processo is guaranteed to converge to the intended behavior in finite
(i.e. all processors perform the same algorithm). time.
The protocol is a randomized self-stabilizing, meaning Mutual exclusion is a fundamental task for the manage-
that starting from an arbitrary configuration (in responget ~ Ment of distributed system. A solution to the problem of
an arbitrary perturbation modifying the memory state), it Mutual exclusion is to implement a token circulation, the

reaches (with probability 1) a legitimate configuratiore(i, ~ Processor having the token is granted access to the critical
a configuration with only one token in the network). resource. Therefore, lot of research works had been done

. . o . in order to design efficient self-stabilizing token cirdida

. All previous ranglomlzed self-stabilizing t_oke_n c_|rcula- protocols. Dijkstra gave a number of self-stabilizing prot
tion protocols design to work under unfair d'SFr.'bUted cols for token circulation on a bidirectional ring, assugin
sche_dulgrs hgve the same drawback: once stabilized, thethe existence of aleader [10, 11]. Several deterministiec se
service time Is TQ‘IOW _(|n the best case, it is bounde@ Ny stabilizing token passing protocols for different topaésy
whereXN is the ring size). have been proposed in the literature: [2, 10, 15] for a ring;

Once stabilized, our protocol provides an optimal ser- [5, 16, 17] for a linear array of processors, [26, 12, 29] for
vice: after N computation steps, each processor has ob- tree networks, and [19, 23, 30, 22, 9] for general networks.

tained one time the token. All these protocols assume the existence of a distinguished
The protocol can be used to implement a fair distributed Processor that performs some specific tasks. Deterministic
mutual exclusion in any ring topology network. protocols for leader election and token circulation are-pos

sible in a ring of N anonymous processors only whéh

is prime under a centralized scheduler [10, 6] (i.e. during a
Keywords: distributed protocol, fault-tolerant, mutual computation step a single processor, changes its statef). Su
exclusion, self-stabilization, anonymous ring, tokemwir protocols are presented in [6, 27, 21, 14].
lation, unfair scheduler, service time. In this paper, we address the following task: “token

circulation on anonymous and unidirectional rings of any

size”. We have in mind to obtain solutions both self-
1. Introduction stabilizing and service optimal. Because, on anonymous
networks, without the ability to break symmetry, determin-
istic self-stabilizing token circulation are impossiblyr

Robustness is one of the most important reqwrementsprotocoI is randomized.

of modern distributed systems. Various types of faults are
likely to occur at various parts of the system. These systems
go through the transient faults because they are exposed t&kelated works. Based on the random walks techniques,
constant change of their environment. self-stabilizing randomized token circulation protocols

bidirectional anonymous networks have been designed [20,scheduler. Under a centralized scheduler, at each computa-
13]. Mayer and al [28] have proposed a self-stabilizing ran- tion step, only one processor performs an action. We have
domized round-robin token management protocol on bidi- adapted the protocol of [24]. to get a protocol that deals
rectional rings that reduces an arbitrary plurality of take with distributed schedulers. At each computation step, a
(i.e. one or more) to a single token. Once stabilized, a subset of enabled processors perform an action.
round-robin require®(N') computation steps. Our protocol does not require fairness property from the
In [18, 1], it is presented randomized token circulation scheduler. On the contrary, under any scheduler, the ob-
protocols on unidirectional rings that stabilize with some tained computation igV-fair even during the stabilization
type of schedulers (resp. synchronous schedulerkand period (i.e. between two actions of a processor, another pro
bounded scheduler). In [24], the first token circulation-pro cessor performs at moat actions).
tocol on unidirectional rings that self-stabilizes under u The protocol [25] requires that each processor knows ex-
fair distributed schedulers is designed. Beauquier and al i actly the ring size. Our protocol only requires that each
[4] presents a space optimal token circulation protocol on processor knows an upper bound on the ring size (called
unidirectional rings that is self-stabilizes under unfdis- B). Thus, our protocol works on dynamic rings (the ring
tributed schedulers. An adaptation of this protocol that ha size may increase or decrease assuming the ring size does
a better stabilization time is given in [31]. In [3], the pro- not go beyond the upper bound).
tocol of [4] is extended in order to manage any anonymousAs the protocols of [8] and [25], our protocol is self-
unidirectional networks. stabilizing for the specificatiofone token fairly circulates
The previous protocols on unidirectional anonymous in the ring”. Our protocol have the same space complexity
networks under distributed schedulers [18, 1, 24, 4, 31, 8] that the protocols of [8] and [25].
are all based on the same technique: “to randomly retard thelThe protocols of [8] and [25] have an upper bounded of the
token circulation”. A processor having a token randomly service timeO(N?®) and2N respectively. Once our pro-
decides to pass or not the token. Under any scheduler, theréocol stabilized, the only token is not delayed or locked;
is a probability one that one tokéh moves faster that the therefore our protocol provides an optimal service: afer
other tokens, thu& will eventually catch up the others to- computation steps, each processor has obtained one time
kens and will eliminate them. the token. Our protocol is the first one that never delays the
The drawback of this technique is the service time. Once thetoken circulation.
ring is stabilized (i.e. there is only one tokenintherigy ~ \We give a complete formal proof of correctness and conver-
only token also delays its moves. If the delay is unboundedgence of our protocol.
[1, 24, 4, 31] the upper bounded of the service time is infi-
nite: a processor may never get the token because the toke@utline. The model for randomized self-stabilizing pro-
stay forever on the same processor. More precisely thesaocols is presented in section 2. The protocol is presented
protocols are only weakly self-stabilizing for the spe@fic in section 3. The proof of the protocol correctness and self-
tion “one token fairly circulates in the ring” stabilization is given in section 4.
First, Datta and al. [8] have adapted this technique to guar-
antee an upper bounded and an average bounded of the Nodel
service time (the both a®(N?)): the protocol ensures a
boundary to the slowness of a token move. Their protocol
requiresO(lg(N)) memory space on each processor.
By delaying the token circulation, Kakugawa and al. in [25]
have adapted their protocol presented in [24] to run under
unfair distributed schedulers. The service time#. The
required memory space on each processor(ig(N)).

Abstract model. A non deterministic distributed system
is represented in the abstract modelt@insition systems
A distributed systenis a tupleDS = (C,T,%,Z) where
C is the set of all system configuration¥; is the finite
alphabet. For any letter of ¥, T, is a transition func-
tion of C to C subsets.Z is aC subset called the initial
configurations. We said that there istransition from ¢
Our contribution. We present a self-stabilizing token cir- of label a if T,(c) # ¢. The outputs of the transition
culation protocol for anonymous unidirectional rings ofan T, (c) are the configurations of the s&(c). In a ran-
size under unfair distributed schedulers. Our protocobis n domized distributed system, there is a probabilistic law on
based on the technique “to randomly delay the token circu-the outputs of a transition. LEIC2 be the distributed sys-
lation”. Our idea is to lock forever a tokéhwhen thering tem defined a${ A, B1, B2},T, {a, b1, b2}, {A, B1, B2})
has several tokens. The other tokens keeping on circulatewhere T,(A) = {A4,B1,B2}; T, (A) = {A,B2};
one of the other tokens will eventually catch Tip the to- Tyo(A) = {A,B1}; Ty (B1) = Ty(B2) = {B1,B2}
kens number decreases. A protocol based on the same ideand T2 (B1) = T1(B2) = ¢. The probabilistic law asso-
is presented in [24]. This protocol requires a centralized ciates to the transitiofi, (4) is 1/2 for the configuratiomd

and1/4 for B1 and B2. The probability laws associated to Interpretation. In fact, the distributed system is a net-
other transitions arg/2 for each transition output. works of processorsHroc) computing protocoP. A pro-
tocol has a collection of variables (internal and/or field)
and has a code part. A processor communicates only with
its neighbors (a subset dProc). Communication among
neighbors is carried out by field variables.

A computation stefis a pair of configurationgc;, c;)
wherec; is an output of a transition starting from. A
computatiore of DS is a sequence of consecutive compu-

tation steps = (cg,c1),(c1,¢2).... Whereeg € Z. A))
computation ismaximal if the computation is either in- The state of a processor is the collection of values of

finite, or finite and the final configuration is a deadlock. e Process’s variables (internal or field). A configuration

s = (A, A)*(4, B1)((B1,B2)(B2,B1))* is a maximal of a dlstrllbuted' system is a vector qf processor states. A

computation of'C2 for any value ofz. local configurationis the_ par_t of a conflguratlc_)n that can be
“seen” by a processor (i.e. its state and the field varialfles o

Let ¢ be an initial configuration of a distributed system. its neighbors).

Thec-tr_eq_s the tre_ze compo_sed of all maX|ma_1I computations The code is a finite set of guarded rules:

whose initial configuration is. The computatioforestof a

distributed systeniC, T', X, 7) is the set of alt-trees where

¢ € Z. The figure 1 illustrates the notion of tree.

(i.e. label:: guard— action).
The guard of a rule op is a boolean expression involving
p local configuration. The action of arule updates the
p state. If the action is randomized, several statements are

ﬁ/. A possible, and each of them has some probability. A proces-
a ﬁlf“ Bl sorp is enabledat a configuratiom, if the rule guard op is
lie B2 satisfied inc.

Computation step versus transition. Letc be a configu-

\1/4. by 2082 ration, andC' H be a subset of enabled processora. atve
Bl 1>—e Bl denote by< ¢ : CH > the set of configurations that are
/4 reachable fronz after that the processors 6fH have per-
2t B1 formed an action. A computation step has three elements:
b2 (1) an initial configuration:, (2) a set of enabled proces-
A

B2 15~e B2 sors: CH, and (3) a configuration of ¢ : CH >. The
computation steps can be interpreted in terms of transition
2 in the abstract modelk ¢ : CH > is the output config-
urations of the abstract transitidit(c) (in this abstract
model, the alphabet letters represents the subsdtsai).

% B1 For instanceI'C2 is the system transition representing
» 7 jom B2 the weak self-stabilizing token circulation [1] on the unid
ﬁijz;.A rectional ring of siz&. Each processor has the same rule:
b A b2 L2 ::El Token, — if (random(0, 1) = 0) thenPass_Token,,.
12 A is the configuration where all processors have a token.
b Y B2 B1 (resp. B2) is the configuration where only the proces-
1/2 El sorpl (resp. p2) has a token. The letter represents the
12788l processor subsépl, p2}, the letterb1 (resp.b2) represents
" A the processor subsépl} (resp.{p2}).
4 ¢B1 In the case of a deterministic protocol, a computation
1/2 ?b/lg}” B2 step is totally defined by the initial configuration and the

Figure 1. The beginning of A-tree of the dis-

tributed systemT'C2

set of enabled processors. But in the case of randomized
protocol, the final configuration depends on the output of
each processor action. Therefore, in the case of randomized
protocols, the computation step has a fourth characteristi
element: the probabilistic value associated to the computa
tion step. This value depends on the probabilistic law of the
random variable of each processor involved in the compu-
tation step.

Strategy. Clearly, no probabilistic space can be directly choice is made. If the choice depends of the actual config-
based on computation tree structure. Specific subtrees camration and of the history, the generality of the scheduler
equipped with a probabilistic space: the strategies [4f Th is restricted. How, for instance, express that the schedule
formal strategy definition is given below. must be fair. That is the reason why in a deterministic sys-
tem, we define a scheduler as a predicate (subset) on infinite
computations. In our framework, the key notion is the strat-
egy. Formally, sscheduleiis completely defined by the set

of strategies which it may “produce”.

Definition 2.1 Let DS be a distributed system. L& be
atree of DS. A DS strategy is a subtree dfr where at a
node, there is only one outgoing transition.

The basic notion used to define a probabilistic space onpefinition 2.2 Let DS be a distributed system. A scheduler
the computations of a given strategyis the cone. Cones p is a set ofDS strategies.

have been introduced in [32]. éoneC}, of st is the set of

all st's computations with the common prefix length(h) Let DS be a distributed system. Thenfair scheduler
is the number of computation stepsfinThe measure of & ig the set of allDS strategies. Thdair scheduler is the
st-coneCy, is the measure of the prefix(i.e., the product get of DS strategies that contain only fair computations.

of the probability of every computation step occurring in Thefajr scheduler is the set dbS strategiest such that
h). For instance, the measure @fl-coneCy; (figure 2) Py (unfair computations) = €.

wherehl = (A4, a, B2) is1/4; the measure oft2-coneCpz
(figure 3) wheréh2 = (4, b1, B2) is 1/2. 2.1. Self-stabilization of a randomized protocol

12 @A . . . o
B1 In this section, we define the self-stabilization for ran-

1 A /4 domized protocols with respect to the probabilistic model.
1/4 B2
1/2 B2 Notation 2.1 Let st be a strategy of a distributed system

\

Ae——2 o ° bl DS performing a protocolP under a scheduleb. Let PR
1a Bl % B1 be a predicate over configurations. The notatior PR
means that the configuration verifies the predicatéPR.
1/4 b2 1/2 e B2 We note byPR,; the set ofst computations reaching a
g configuration that satisfies the predicafR.
B2 1/2-®B1

Figure 2. The beginning of theT'C?2 strategy st1

Definition 2.3 (Predicate closure)Let L. be a predicate
defined on configurations of a distributed syst&xf. L
is closed if any computation step from any configuration
c1 that verifiesL reaches a configuratioe2 that verifiesL.

b 1/2 eB2
1/2 B2 A problem specificatiorb P is a predicate on computa-
1/2~eB1 tions; for instance the specification of theader problem
bl is “the system has and will always have one and only one
A leader; the leadership does not move”. The definition of
1/2 1/ Bl self-stabilization ofD S under the scheduled for a spec-
® b2 ification SP required the definition of a predicate on con-

127 OA figurations (legitimate predicatd). If the DS converge to

L and verifies thd.-correctness property thdnsS is a self-
stabilizing system foSP underD. In a deterministic sys-
tem, the convergence property is “all computations under a
scheduler D reach a legitimate configuration”. In a random-
Scheduler. Basically, a scheduler is intended to be an ab- ized system the definition of convergence property is proba-
straction of the external non-determinism. Because the ef-bilistic: “the probability to reach a legitimate configuoat

fect of the environment is unknown in advance, the sched-is 1 in any strategy of the scheduler D". Tliecorrectness
uler notion must be able to formalize any external behavior. Property is deterministic in any distributed system (deter
Defining a scheduler in some operational way - at that point Ministic or not): “any computation from a legitimate con-
of the computation the scheduler has such or such choice figurationc (i.e. ¢ - L) satisfies the specificatio$ir>”.

raises the problem to define exactly in function of what the

Figure 3. The beginning of theT'C?2 strategy st2

Definition 2.4 (Probabilistic convergence)Let L be a LC(PRy,PR>,64,Dy), then the main theorem of the
predicate defined on configurations. A randomized dis- framework presented in [4] states that the probability ef th
tributed systenD .S executing the protocdP under asched- set of computations oft reaching configurations satisfying
uler D converges td. iff: In any strategyst of DS under both PR; andPR, is 1. Formally:

D the probability of the set of computations reachihds

equal to 1. Formallyyst of DS underD, Py, (ELs:) = 1. Theorem 2.1 [4] Let st be a strategy. LetPR; and
PR, be closed predicates on configurations such that

Definition 2.5 (Probabilistic Self-stabilization) A ran- Prgy(EPR.) = 1. If 305 > 0 and 3D, > 1 such
domized distributed systefl.S executing the protocaP that any st-cone C;, with last(h) + PR;, satisfies the
under a scheduleD is self-stabilizing for a specification LC (PR, PRy, ds, D) property, thenPry (EPR) =1,
SP (predicate on the computations), if there exists a pred- wherePR = PRy A PR.
icate on configuratior. such thatD S converges td. and
verifies the following property: 3. Self-stabilizing token circulation protocol

e correctnessVst of DS underD, Ve € st, if e €

€L thene has a suffix that verifieSP. We present a self-stabilizing token circulation protocol

- for anonymous unidirectional rings of any size under unfair
distributed schedulers (protocol 3.1).

To converge to a configuration where there is only one
regular token, our protocol locks forever a regular toffen
when the ring has several regular tokens. The other regular
tokens keeping on circulate, one of the other regular tokens
will eventually catch ugl™: the regular tokens number de-
creases. [24] have presented a protocol based on the same
Definition 2.6 (Weak Probabilistic Self-stabilization) A idea, but their protocol requires a centralized scheduler.
randomized distributed systemS executing the protocol
P under a scheduleP is weakly self-stabilizing for a spec- Protocol 3.1Optimal time service token circulation proto-
ification SP, if DS verifies the following property: col for processop

e probabilistic correctnessVst of DS under D,
P, ({e has a suffix that verifieSP}) = 1.

The protocols [18, 1, 24, 4, 31] are only weakly sel
stabilizing for the specificatiofione and only one token
fairly circulates in the ring”. Because, some computations
from any “legitimate” configuration are not correct. It its
always possible that “a token stays forever on the same pro
cessor”. Fortunately, the probability of a such everit is
any strategy.

Field variables:
vp (the current value) is an integer boundedBy> N
(IV being the ring size)

Based on previous works on the probabilistic automata ; .
P P rp (the random signature) gfis in {0, 1}

(see [32], [33], [34]) [4] presents a detailed framework for
proving self-stabilization of probabilistic distributesy/s-
tems. A key notion idocal convergenceenotedLC. The
LC property is a progress statement as those presented in
[7] (for the deterministic systems) and [32] (for the prob-
abilistic systems). Informally, thd.C(PR1, PR2,D,¢)
property for a randomized self-stabilizing system means
that starting in a configuration satisfyif@R;, the system
will reach a configuration which satisfid3R,, in less that

D computation steps with a probability greater tlkakror-
mally thelocal convergenceroperty is defined as follows:

Macros (I, is p’s left neighbor):
Pass_Token, = v, := (v, + 1) mod B

Predicates
Token, = v, # (v; + 1) mod B
Blocked, = (v, =0) A (r; > 1p)
Wrong_Token; = —Token, A (rp 1) A (vp #0)
New_seg, = (v, =B -1)

The Moving rules:

Definition 2.7 (Local Convergence)Let st be a strategy, M, :: Tokeny A =Blocked, A =New_segp, —
PR, and PR, be two predicates on configurations, where Pass Tokeny;rp =1

PR, is a closed predicate. Let be a positive probabil- My :: Tokeny, A =Blocked, N New_seg, —
ity and D a positive integer. Let), be a st-cone with Pass_Tokeny;ry, := random(0,1)
last(h) F PRy and letM be the set of sub-coné€s ofthe ~ The Correcting rule:

coneC, such that for every sub-coif, : last(h') - PRy C3 :: Wrong Token, — rp :=1;

andlength(h')—length(h) < D. The con&}, satisfied.C'
(PR1, PR»,0,D) if and only ifPrst(Uc__ emCr) >0,

The difficulty of this technique is to find a local config-
Now, if in strategyst, there existy; > 0 andDg > 1 uration that indicates that several regular tokens aredn th
such that anyt-cone,C, with last(h) + PRy, satisfies ring. Let us analyze the behavior of our protocol when there

is only one regular token and no wrong token. EvBry- 1
moves, the regular tokéR randomly changes its signature
values (M5 rule). We namep the processor that has per-
formed theM, action. After this actiorv, = 0 andr, is
equal to the signature value ©f The signature value &f
does not change during the néx+1 moves ofl" (M; rule).
Assuming thafl" is the only token in the ring, the next time
thatp gets a regular token: (1) this tokerifis (2) the signa-
ture of T has not changed in the mi-tim& has performed
N —1 < B —1moves). Therefore we havg, = r,. We
conclude that if; # r,, thenT is not the only token in the
ring. The local configuration gf ((v, = 0) A (r; # rp))

4.1. Correctness proof

Definition 4.1 We naméV the weight functio@ — N2
defined as (c) = (number of regular tokens in ¢, number
of wrong tokens in c).

L is the following predicate on configurations:

L. = (W(c) = (1,0)).

L is the legitimate predicate. We will prove that any
computation whose the initial configuration verifiesver-
ifies the specificatior6 P. First we will prove thatL is
closed and that all computations are infinite.

indicates that several processors have a token - regular oppgervation 4.1 Let ¢ be a configuration of protocol 3.1

not -.

To avoid deadlock configuration, the regular tokenpon
is locked (i.e.p is not enabled) only if(v, = 0) A (r; >
Tp))-

Once, there is only one regular token in the ring; this
token is never locked it will freely circulate without delay
The service time is optimalN computation steps) - for-
mally proven in section 4.1.

Observation 3.1 Assume that during a computation stap

of protocol 3.1, a processagr performs an action. The pro-
cessorp is not more enabled at the end @f, unless it left
neighbor has also performed an action duriag There-
fore, along any computation of protocol 3.1, the number of

such thatW(c) = (k,1). We havd < N —1andk < N.
In the configuratiorr, the number of enabled processors is
inferior or equal tok + 1.

Letc' be the configuration reached fromafter a com-
putation step. IW(c') = (¥',1') thenk’ < k (the number
of regular tokens cannot increase).

Lemma 4.1 Let ¢ be a configuration of protocol 3.1 on
an anonymous and unidirectional ring such th&t(c) =
(k,1). Letc' be a configuration reached fromafter a com-
putation stepes. Assume thatV (¢') = (k',1'). If I’ > I
thenk' < k otherwisek’ < k.

Proof: According to observation 4.1, We hake< k.
Assume that durings there is creation of a wrong token.

enabled processors cannot increase whatever may happenyy e namep the processor having this wrong token. There is

Definition 3.1 A processor holds a regular token iff it veri-
fies the predicat& oken. A processor holds a wrong token
iff it verifies the predicat& rong T oken.

LetT be a regular token holds by. The value of" is
the value of the's left neighbor. The signature df is the
value of thep’s left neighbor.

Observation 3.2 AsB > N, there is always a regular to-
ken in the ring.

A processor having a token (regular or wrong) passes
its token to its right neighbor when it performs an action.
When a processor holding a token receives another token

the two tokens merge into a single token or the tokens anni-

hilate each other.

4. Self-stabilizing proof

We prove that the protocol 3.1 is a self-stabilizing pro-
tocol for the specificatior P: The token circulations are
service optimal. A token circulation is service optimal iff
(i) the circulation isl-fair (i.e. in every round, every pro-

creation iffp has a wrong token in’ and not inc, andp’s
left neighbor §) has not performed the Correcting rule dur-
ing cs. ¢ has performed a Moving rule during; otherwise

p would not verify theWrong_Token predicate inc’. As

p has not a regular token i#f, thenp was holding a regu-
lar token inc andp has not performed an action during
Thus, a regular token has cautgh up another one duting
We havek’ < k. The figure 4 illustrates the situaton where

a wrong token is created. m|
6y @Y 61, QY
.y SN X ®Y
, (4,0) 129 (4,0) 420
3,0 ©0) 3,0 09
3.0 2o @0 (3.0) 2o 0o

Configuration without p has a wrong token

wrong token

Figure 4. Creation of a wrong token

cessor obtains the token once) and (ii) the round duration isCorollary 4.1 L is closed in the protocol 3.1 on an anony-

exactly N computation steps.

mous and unidirectional ring.

Proof: Let ¢ be a configuration verifyind.. Let¢' be a
configuration reached after a computation step frorive
haveW (¢') = (k',1') According to observations 3.2 and
4.1,k = 1. According to lemma 4.1’ = 0. We have
W(d) = (1,0) O

Lemma 4.2 There is not deadlock configuration in the pro-
tocol 3.1 on an anonymous and unidirectional ring.

Proof: Let ¢ be a configuration of protocol 3.1. Assume
thatc is a deadlock. I, a processopy has a regular token
(observation 3.2). I, a processor having a regular token
has the valu®. As the distance between two regular tokens
is inferior to N < B. All processors having the value
must have a regular token. i no processor has a wrong

Proof: We study a fragment of wherep does not perform
any action, callegf. After an action, a processor does not
verify a guard rule till its left neighbor does not perform an
action. Therefore, between two actiongpdfs right neigh-
bor can perform at most one action. By induction on the dis-
tance fromp to ¢4, we prove that,; can perform at most
actions before @ action ¢ being the distance fromto ¢).
Therefore,f contains at mosf computation steps wheug
performs an action. Thug contains at mosiV (N — 1)/2
computation steps. m|

Lemma 4.4 Lete be a computation of protocol 3.1. A given
regular tokenT” will circulate forever in the ring and it will
have infinitely often the valuB — 1 or it will merge with its

token; therefore all processors between two regular tokengPreceding regular token.

have the same signature value. lpgt p1, ..., pn, be the
finite processors series such thai)e [0, n — 1], p; holds

a regular token and no processor betwggandp;,, has a
regular token; and (iipg = p,. We haven > 1 because,
there is always a regular token in the ring (observation. 3.2)
Vi € [0,n — 1], We haver, =7, > r, Wwherel,

is the left neighbor op;;.. We conclude that, > r, .
There is a contradiction becausg= p,,.

Theorem 4.1 Lete be a computation of protocol 3.1 on an
anonymous and unidirectional ring whose the initial config-
uration verifyingL. Alonge, SP is verified.

Proof: According to lemma 4.% is infinite. According to
corollary 4.1, all configurations of verifying L. In each
computation step o, the processop having the regular
token is the only enabled processor (observation 441).
performs a Moving action to pass the token in the ring to
its right neighbor. AfterN computation steps, the regular
token has terminated a round. O

We have proven that ondeis reached P is verified. In
the following section, we will prove that in any strategye th
probability to reach a configuration verifyingis 1.

4.2. Convergence proof

Proof: In a configuration o, assume that the regular token
T is on the processagr andT has the value:. Alonge, p
will perform a Moving action before that its left neighbor
performs a Moving action (otherwise tf¥e token would
merge with its preceding regular tok@H). After thep's
action, theT" token has the value + 1 and it is held by the

p’s right neighbor. By induction, we prove that tiietoken

will get the valueB — 1 or will merge with another token. If
the tokenT never merges with its preceding regular token:
T will get the valueD; then,T" will eventually get the value
B —1; and so one. m|

Lemma 4.5 Lete be a computation of protocol 3.1. Along
e, if the number of regular tokens does not decrease during
(X + N)N computation steps then each token (regular or
wrong) has performed at leasf moves during these com-
putation steps.

Proof: Lete' be the(X + N)N first computation steps ef
Assume that along/, the number of regular tokens does not
decrease. I’ the number of wrong token cannot increase
(lemma 4.1). Lefl" be a regular token. Leét’ be a token
(regular or not). We name:, (7") the number of moves of
T' duringe'.

Alonge’, aregular tokefl'1 always stays behind, oth-

First, we present three properties verify by any computa- €rwiseT” andT'1 would merge (the number of regular token
tion of the protocol 3.1. Secondly, we prove that any com- Would decrease). We hawe,, (T'1) < m,(T')+d whered is

putation from a configuration whereW(c) = (k,1 + 1)
reaches a configuratian such that¥ (c) > W (c'), in less
than (B — 1 + 3N)N computation steps. Third, in any
strategy, in any coné;, such that¥(c) = (k + 1,0), the
probability to reduce the configuration weight in less than
(2B + 4N)N steps is greater thary25. Finally, we con-

the initial distance betwe€eR1 andT'. If a wrong tokenl'2
catchs up a regular tokeh thenT'2 vanishes (a processor
cannot have a wrong and a regular token at the same time).
Thus,m.(T2) < m.(T) + d whered is the initial distance
betweerll'2 andT'.

We conclude that, ifn,. (T') < X thenm, (T") < X +

clude that in any strategy under any scheduler, the probabil V. By hypothesisjength(e’) = (X + N)N and we have

ity to reach a configuration verifying is 1.

Lemma 4.3 Lete be a computation of protocol 3.1. Along
e, a processomp will wait at most N2 computation steps
before performing an action.

proven thatlength(e') = sumr 4orenme (T') < (X +
N)N. There is a contradiction. |

Lemma 4.6 Lete be a computation of protocol 3.1. Along
e, if the number of regular tokens does not decrease during

(B — 1+ 3N)N computation steps then there is no wrong
token in the ring after these computation steps.

Proof: Assume that along, the number of regular tokens
does not decrease duri—1+3NN)N computation steps.
A regular tokenT” will be preceded by the same regular to-
kenT’ during these computation steps.

Along this sequencd, will get the valueB — 1 (lemma
4.4) in less thalB — 1 + N)N computation steps (lemma
4.5). Then, the processor having tHaoken (calledp) will
eventually perform thé/, action to get the valué and to
pass thd” token to its right neighbor (after at mas com-
putation steps - lemma 4.3 -). Until the next actiorppho
processor between and the tokerl” has a wrong token.
After at mostN? computation stepg; will perform an ac-
tion. We name’ the configuration of the system just before
thep action. Inc’, p has theT” token; thus no processor on
the path betweef” andT has a wrong token.

No processor inside this path may perform an action.
Only processors holdin@ or 7' may perform an action.
After their actions, no processor on the path betwEeand

T has a wrong token. Therefore, at the end of this sequence,

no processor has a wrong token. O

Lemma 4.7 Let st be strategy under a distributed unfair

scheduler of protocol 3.1 on an anonymous and unidirec-

tional ring. LetC; be ast-cone whereW (last(h)) =
(k,l + 1) Let M the set of sub-cona%,;, of C, such that
(i) lenght(h') < (B—143N)N and (ii) W(last(hh')) =
(K',1") such that ift’ = k thenl’ = 0. We havePry (M) =
PT’St(Ch)

Proof: We studyM' the set of sub-cond$;,;, of Cj, such
that: (i) inlast(hh'), no processor has a wrong token; or

(i) two regular tokens have merged during the last compu-

tation step ofh/. According to lemma 4.6, after at most
(B — 1+ 3N)N computation steps, no processor has a

the T' token (calledp) performs theM, action; (3)p gets
theT" token; (4) finally the left neighbor gf performs an
action during the last computations /gt

We study the sub-cond,, of C, where: (i) two to-
kens merge during the last computation step’adr (ii) the
scenariosc happens. We call/ the set of these sub-cones.

According to lemma 4.4, along any computationCgf
(a) the tokerll’ andT" will perform infinitely often theM,
action and any tokens will circulate forever in the ring or (b
two tokens will merge. Thus any computatiorCgfbelongs
M. We haveM = Cj,.

The first stage of scenarie required at mostB+ N)N
computation steps (times that tfié token gets the valu@
- lemma 4.5 -). The second stage (times thatfhwken
gets the valu®), required at mos(B + N)N. The third
stage requires at mo#¥? steps (time thap performs an
action). The last stage requird® steps (time thap’s left
neighbor performs an action). The lengthhbis inferior to
(2B + 4N)N computation steps.

Assume that alon@' the scenarioc does not happen.
By definition of &', we haveW (last(hh')) < (k, N —1).
If along b’ the scenariasc happens. No processor has
a wrong token along’ (lemma 4.1): all computation steps
of h' contains only Moving actions. Assume that aldrig
(i) T' always gets thé signature when it performs thils;
(ii) p gets thed signature when it performs thi&, action
(when it has thd" token); (iii) After (1), the signature d¢f’
will be always1. After (2), we have:((r, = 0) A (v, =
0)). After (3), p verifies the predicat@oken A Blocked.
p cannot perform any action until its left neighbor performs
an action. At the end af’, two tokens has merge@’ has
disappeared. Thi' stages are illustrated in the figure 5.

During the first stagel” will perform one time thel/,
action, during the second sta@# will perform at most2
times the actiomM, (T performs at mosB + N moves
- at most two times the actiof/> -). During the two last
stagesp performs no move; thug” can perform at most

wrong token or two regular tokens have merged. Thus anyy.q'time the actioi/,. The probability of (i), (ii) and (iii)

computation ofC, belongsM. We haveM' = C,. The
length ofh’ is inferior to(B—1+3N)N computation steps.
In the first casel¥V (last(hh')) = (k,0). In the second case,
W (last(hh')) = (K¥',l") wherek' < k. M' = M.

Lemma 4.8 Let st be strategy under a distributed unfair
scheduler of protocol 3.1 on an anonymous and unidirec-
tional ring. LetCp, be a st-cone wher&/ (last(h)) =

(k +1,0). Let M the set of sub-cond,;,. of C; such that

(i) length(h') < (2B + 4N)N and (ii) W (last(hh')) <
(k, N —1). We havePr (M) > Pry(Cp) x 1/25.

Proof: We nameT' a token. We nam@&” the token that

follows T in the ring.T" # T', because the ring has several
tokens. Letecs be the following scenario: (1) a processor
holdingT” performs thel/, actions; (2) a processor having

is greater than /2°. Because along’, T" performs at most

4 times the actiod/,. We conclude that the probability that

in last(hh'), there are less than+ 1 tokens is greater than

1/25. O
The following corollaries are direct consequences of two

preceding lemmas.

Corollary 4.2 Let st be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and uni-
directional ring. LetCy, be a st-cone wher® (last(h)) =

(1 + k,1). Let M the set of sub-cong,;, of Cj such that

(@) length(h') < (3B + 7TN)N and (ii) W (last(hh')) <
(k, N —1). We havePry (M) > Prg(Ch) x 1/25.

Therefore, the average expectation humber of compu-
tation steps to reduce the number of tokens is less than

co 6O @0 0
(6,0) (7.0) (3,0) .0)
60 @0 o (5.0)
4.0) ©0 ©.1) 60
3o @O 420 @LO)

Inital configuration The signature of T' is now 1

(12,0 0.0 o 20
©0) (1,0) 00) (3.0)
(12,0 & (1110 @0
(11,0) = (10,1) oo
(20,0 8.1) ©9,1) (4.0)

A processor p has state (0,0) T’ is locked on p

a0 20
(0,0) (30
(7,0) (4.0)
6,0) ©0
' (50) (6,0)

T’ has disappeared

Figure 5. The locking of a regular token under a
synchronous scheduler

160.B.N.

Corollary 4.3 Let st be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and uni-
directional ring. LetC, be a st-cone wher@ (last(h)) =
(14 k,1) Let M the set of sub-con&s,;,. of Cp, such that (i)
length(h') < (k4+1)(3B+T7N)N and (ii) W (last(hh'))
(1,0). We havePr,, (M) > Pry(Ch) x 1/2%%.

The following theorem is a direct consequence of obser-
vation 4.1 and the preceding corollary.

Theorem 4.2 Let st be strategy under a distributed un-
fair scheduler of protocol 3.1 on an anonymous and
unidirectional ring. Any st-cone C,, satisfies theLC
(true, L,1/2°N (3B + 7TN)N2) property.

From Theorems 2.1 and 4.2, we get:

Corollary 4.4 In any strategyt of protocol 3.1 on anony-
mous and unidirectional rings under any unfair distributed
scheduler, the probability of the set of computations reach
ing Lis 1.

5. Conclusion

In this paper, we have presented a randomized self-
stabilizing token circulation on anonymous and unidirec-
tional rings of any size. We have given a formal proof of
the convergence of the protocol.

Our protocaol is the first one that never delays the token
circulation. once stabilized, our protocol provides ani-opt
mal service time: (i) it implementskfair token circulation
scheme, i.e., in every round, every processor obtains the to
ken once; and (ii) the round duration is exaddycomputa-
tion steps.

There are only two previous self-stabilizing token circu-
lation on anonymous and unidirectional rings [8, 25] that
ensure an upper bounded on the service time (respectively
O(N3) and2N).

Similary to the computation of convergence time in [24],
we can prove that the expectation time of convergence of
our protocol is0(BN?) computation stepsK is an integer
greater than the ring siz¥). This convergence time is sim-
ilar to the convergence time of protocols [8, 28)(N?)
computation steps.

The memory space required by our protocol and the pro-
tocols [8, 25] on each processoriglg(N)).

References

[1] J. Beauquier, S. Cordier, and S. D&ta Optimum proba-

bilistic self-stabilization on uniform rings. IRroceedings

of the Second Workshop on Self-Stabilizing Systeatges

15.1-15.15, 1995.

J. Beauquier and O. Debas. An optimal self-stabilizing al-

gorithm for mutual exclusion on bidirectional non uniform

rings. In Proceedings of the Second Workshop on Self-

Stabilizing Systempages 17.1-17.13, 1995.

J. Beauquier, J. Durand-Lose, M. Gradinariu, and C. Johnen.

Token based self-stabilizing uniform algorithndgurnal of

Parallel and Distributed Computing62(5):899-921, May

2002.

[4] J. Beauquier, M. Gradinariu, and C. Johnen. Randomized

self-stabilizing and space optimal leader election under ar-

bitrary scheduler on rings. Technical Report 1225, L.R.I,

December 1999.

G. Brown, M. Gouda, and C. Wu. Token systems that self-

stabilize. IEEE Transactions on Computer38:845-852,

1989.

[6] J. Burns and J. Pachl. Uniform self-stabilizing rings.
ACM Transactions on Programming Languages and Sys-
tems 11:330-344, 1989.

(2]

(3]

(5]

(7]
(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

K. Chandy and J. Misr&Parallel Programs Design: A Foun-
dation Addison-Wesley, 1988.

A. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing
mutual exclusion using unfair distributed scheduler. In
IPDPS’2000 Proceedings of the 14th International Paral-
lel and Distributed Processing Symposiymages 465—470,
2000.

A. K. Datta, C. Johnen, F. Petit, and V. Villain. Self-
stabilizing depth-first token circulation in arbitrary rooted
networks.Distributed Computing13(4):207-218, 2000.

E. Dijkstra. Self stabilizing systems in spite of distributed
control. Communications of the Association of the Comput-
ing Machinery 17:643—-644, 1974.

E. Dijkstra. A belated proof of self-stabilizatioDistributed
Computing 1:5-6, 1986.

S. Dolev, A. Israeli, and S. Moran. Self-stabilization of
dynamic systems assuming only read/write atomicidys-
tributed Computing7:3—-16, 1993.

J. Durand-Lose. Randomized uniform self-stabilizing mu-
tual exclusion. Information Processing Letters74(5-
6):203-207, 2000.

F. Fich and C. Johnen. A space optimal, deterministic,
self-stabilizing, leader election algorithm for unidirectional
rings. InDISCOO Distributed Computing 15th International
Symposium, Springer-Verlag LNCS:218fages 224239,
2001.

M. Flatebo, A. Datta, and A. Schoone. Self-stabilizing
multi-token rings Distributed Computingd:133—-142, 1994.

S. Ghosh. An alternative solution to a problem on self-
stabilization. ACM Transactions on Programming Lan-
guages and Systentkb:735-742, 1993.

M. Gouda and F. Haddix. The stabilizing token ring in three
bits. Journal of Parallel and Distributed Computing5:43—
48, 1996.

T. Herman. Probabilistic self-stabilizatioimformation Pro-
cessing Letters35:63—-67, 1990.

S. Huang and N. Chen. Self-stabilizing depth-first token
circulation on networks.Distributed Computing7:61—66,
1993.

A. Israeli and M. Jalfon. Token management schemes and
random walks yield self-stabilizing mutual exclusion. In
PODC90 Proceedings of the Ninth Annual ACM Sympo-
sium on Principles of Distributed Computingages 119-
131, 1990.

G. ltkis, C. Lin, and J. Simon. Deterministic, constant
space, self-stabilizing leader election on uniform rings. In
WDAG95 Distributed Algorithms 9th International Work-
shop Proceedings, Springer-Verlag LNCS:9pages 288—
302, 1995.

C. Johnen, G. Alari, J. Beauquier, and A. Datta. Self-
stabilizing depth-first token passing on rooted networks. In
WDAG97 Distributed Algorithms 11th International Work-
shop Proceedings, Springer-Verlag LNCS:1328ges 260—
274, 1997.

C. Johnen and J. Beauquier. Space-efficient distributed
self-stabilizing depth-first token circulation. Rroceedings

of the Second Workshop on Self-Stabilizing Systeages
4.1-4.15, 1995.

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

H. Kakugawa and M. Yamashita. Uniform and self-
stabilizing token rings allowing unfair daemd&EE Trans-
actions on Parallel and Distributed Systent:154-162,
1997.

H. Kakugawa and M. Yamashita. Uniform and self-
stabilizing fair mutual exclusion on unidirectional rings un-
der unfair distributed daemordournal of Parallel and Dis-
tributed Computing62(5):885-898, May 2002.

H. Kruijer. Self-stabilization (in spite of distributed control)
in tree-structured systemsnformation Processing Letters
8:91-95, 1979.

C. Lin and J. Simon. Observing self-stabilization. In
PODC92 Proceedings of the Eleventh Annual ACM Sympo-
sium on Principles of Distributed Computingages 113-
123, 1992.

A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-
stabilizing symmetry breaking in constant-space. In
STOC92 Proceedings of the 24th Annual ACM Symposium
on Theory of Computingages 667—678, 1992.

F. Petit. Highly space-efficient self-stabilizing depth-first to-
ken circulation for trees. I®OPODIS’97, International Con-
ference On Principles Of Distributed Systems Proceedings
pages 221-235, 1997.

F. Petit and V. Villain. Color optimal self-stabilizing depth-
first token circulation. In-SPAN'97, Third International
Symposium on Parallel Architectures, Algorithms and Net-
works Proceedings, IEEE Computer Society PréBEE
Computer Society Press, 1997. To appear.

L. Rosaz. Self-stabilizing token circulation on asynchronous
uniform unidirectional rings. IPODCO00 Proceedings of the
Nineteenth Annual ACM Symposium on Principles of Dis-
tributed Computingpages 249258, 2000.

R. Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time SystemBhD thesis, MIT, Departament
of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for proba-
bilistic processes. ICONCUR’94 Fifth International Con-
ference Concurrency Theory, Springer-Verlag LNCS;836
pages 481-496, 1994.

S. Wu, S. A. Smolka, and E. Stark. Composition and be-
haviors of probabilistic i/0 automata. BONCUR’'94 Fifth
International Conference Concurrency Theory, Springer-
Verlag LNCS:836pages 513-528, 1994.

