
Silent Anonymous Snap-Stabilizing Termination
Detection

Lélia Blin
LIP6

Université d’Évry Val d’Essone
Paris, France

lelia.blin@lip6.fr

Colette Johnen
LIP6, INRIA

Université de Bordeaux
Bordeaux, France

colette.johnen@labri.fr

Gabriel Le Bouder
LIP6, INRIA

Sorbonne Université
Paris, France

gabriel.le-bouder@lip6.fr

Franck Petit
LIP6, INRIA

Sorbonne Université
Paris, France

franck.petit@lip6.fr

Abstract—We address the problem of Termination Detection
(TD) in asynchronous networks. It is known that TD cannot
be achieved in the context of self-stabilization, except in the
specific case where the TD algorithm is snap-stabilizing, i.e., it
always behaves according to its specification regardless of the
initial configuration. In this paper, we propose a generic, deter-
ministic, snap-stabilizing, silent algorithm that detects whether
an observed terminating silent self-stabilizing algorithm, A, has
converged to a configuration that satisfies an intended predicate.
Our algorithm assumes that nodes know (an upper bound on)
the network diameter D. However, it requires no underlying
structure, nor specific topology (arbitrary network), and works in
anonymous networks, i.e., our algorithm uses no kind of assump-
tion allowing to distinguish one or more nodes. Furthermore, it
works under the weakest scheduling assumptions a.k.a, the unfair
daemon. Built over any asynchronous self-stabilizing underlying
unison U , our solution adds only OplogDq bits per node. Since
there exists no unison algorithm with better space complexity, the
extra space of our solution is negligible w.r.t. the space complexity
of the underlying unison algorithm. Our algorithm provides a
positive answer in Opmaxpk, k1, Dqq time units, where k and k1

are the stabilization time complexities of A and U , respectively.

Index Terms—Deterministic Termination Detection, Stabiliza-
tion, Anonymous Networks

I. INTRODUCTION

Termination Detection [1] is a fundamental and widely stud-
ied problem of distributed systems. It belongs to the category
of global system observation mechanisms that processes of
the distributed system may need in the accomplishment of a
global computation, for example, detecting the presence of
a deadlock, taking a snapshot of the global system state, or
maintaining a logical distributed clock. The distributed nature
of systems makes these problems difficult to solve. They are
subject to specific distributed algorithms dedicated to control
the global state of other distributed algorithms. Regarding the
termination detection (TD, for short) problem, any node of the
distributed system may need to detect whether a computation
has globally terminated. More precisely, upon a (local) request
(for instance, from an application) a node initiates an instance
of TD over the whole system to find out whether another
distributed algorithm is terminated.

Supported by the French ANR project ESTATE (ANR-16 CE25-0009-03).

In this paper, we focus on distributed algorithms that are
self-stabilizing [2]–[4]. These algorithms guarantee that start-
ing from an arbitrary initial system configuration, provided
the faults cannot corrupt the code of the algorithm, the
system recovers its specification within a finite time, without
any external intervention, to a configuration from which its
specification is forever satisfied thereafter. Self-stabilization is
well known to tolerate transient faults, i.e., faults that occur at
an unpredictable but quite rare times, and that do not result in
permanent hardware damages. By contrast with other so-called
robust approaches, self-stabilization does not hide the effect of
faults. It means that self-stabilization is suitable for systems
that tolerate temporary deviance of their specification. After
transient faults cease, there is a finite period of time, called
the stabilization phase, during which the safety properties of
the system may be violated. The stabilization time (that is to
say the time it takes for the system to recover its specification
after the faults cease) is one of the main efficiency parameters
of self-stabilizing algorithms.

Since the effect of faults cannot be hidden, it is impossible
for nodes to locally decide whether the system has globally
converged (except for a few trivial problems), and therefore,
is terminated. Indeed, assume an application where nodes
decide to use local variables (supposed to be updated by a
global detection mechanism) whether the stabilization phase
is over or not. Then it is always possible to build an arbi-
trary configuration in which the same nodes have access to
exactly the same local information. As a consequence, the two
situations are undistinguishable, leading to a wrong decision
in the second one. Nevertheless, a self-stabilizing algorithm
(at least) guarantees that by repeating global detection in-
stances, the variables provide the correct answer at some,
but in an unpredictable time. Indeed, let ssTD be a self-
stabilizing TD algorithm. By initiating ssTD, it is possible
that ssTD returns a wrong answer during the stabilization
phase, e.g., ssTD returns “yes” (meaning that an observed
algorithm A terminated), while A actually did not terminate.
In other words, ssTD can compute incorrect (or unsafe)
answers several (but a finite number of) times before at the
end computing true/correct answers. Self-stabilization ensures
that by repeating instances of ssTD, the answer is eventually
correct forever.

In [5], it is shown that the termination detection can be
achieved using only one detection instance i.e., at the very first
request to know whether an observed algorithm is terminated
or not, the returned answer is correct, even if the request
was initiated during the stabilization phase. Such a self-
stabilizing algorithm is said to be snap-stabilizing [6]. Snap-
stabilization is a stronger form of self-stabilization, as after
transient faults cease, a snap-stabilizing system immediately
resumes its correct behavior, without any external interven-
tion (still, provided the faults have not corrupted its code).
By definition, snap-stabilizing algorithms are self-stabilizing
algorithms whose stabilization time is null. It is important to
notice that snap-stabilizing algorithms do not hide better the
effects of transient faults than the self-stabilizing algorithms
that do not respect this property. However, while a self-
stabilizing algorithm guarantees only a finite, yet generally
unbounded, number of incorrect answers after the faults cease,
a snap-stabilizing algorithm offers correct answers from the
first request (after the faults cease).

Note that the snap-stabilizing solutions in [5] assume named
distributed systems, i.e., systems where each node has a unique
ID. Even if most of existing distributed systems are named,
developing algorithms that do not use process IDs definitively
makes sense in several aspects. Such algorithms are said
to be anonymous algorithms—or, algorithms for anonymous
systems.

Anonymity often makes the resolution of some problems
harder by far. That makes anonymous approaches interesting
from a computational point of view. Leader Election is the
most iconic problem. Indeed, the problem is quite trivial to
solve deterministically by using the total order provided by
process IDs—just choose the maximum or minimum ID as the
leader. By contrast, Leader Election cannot be solved in sys-
tems lacking of properties (as process IDs) that break possible
symmetries [7]. Also, anonymous solutions a priori require
less memory. Notably, they do not need process IDs, thus
saving (at least) Oplog nq bits, the number of bits necessary to
store an ID in a system of n nodes. Anonymous approaches
are also very attractive from a practical point of view. Indeed,
they provide solutions that preserve user privacy, they work for
systems with homonyms, where nodes can change their names
or be replaced during the algorithm life time. They are also
very suitable for networks made of units with weak capabilities
such as wireless sensor networks, body-area networks, etc.

A. Related Work

The question of detecting the stability of a self-stabilizing
algorithm in an anonymous system was first addressed in [8].
In this paper, the authors introduce the notion of observer: a
local node that can detect correctness of a given algorithm, but
cannot influence it. Assuming the central daemon, where only
one node takes a step at each time and a prime-size uniform
ring, the authors propose a deterministic distributed algorithm
for the observer that detects stability in Θpn2q steps from the
time the ring is stabilized. Located at each node, the proposed
observer is not subject to any type of corruption i.e., it is

not self-stabilizing. In [9], the authors also propose a non-
self-stabilizing observer. They propose an observer for syn-
chronous rooted systems, where all enabled nodes take steps
simultaneously and a unique node is distinguished from the
others. In an synchronous and non-self-stabilizing system, the
same authors remove the constraint of having a distinguished
node by introducing randomization [10].

The first deterministic algorithm that solves the problem
addressed in [8] that is also self-stabilizing is proposed in [5].
By contrast with the above results [8]–[10] that are not self-
stabilizing, the results in [5] show the necessity to achieve
snap-stabilization and not only self-stabilization. Indeed, only
snap-stabilization offers the desirable property of returning
the right answer to the request of knowing whether a self-
stabilizing algorithm achieved stability, even during the stabi-
lization phase of the observed algorithm. As mentioned earlier,
the solution in [5] requires a named network.

In anonymous networks of arbitrary size, unison [11]–[14]
offers a nice support to implement deterministic solutions [15].
The asynchronous unison consists of maintaining a local
logical clock (sometimes referred to as counter), one for each
node, such that: piq the clock value of each node does not
differ by more than 1 with any of its neighbors, and piiq
the clock value of each node is increased by 1 infinitely
often. The unison principle is a strong tool to synchronize
the whole system by implementing a synchronization barrier.
To the best of our knowledge, this principle forms the basis
of all known deterministic solutions for anonymous networks,
even non-self-stabilizing, that solve global (a.k.a., Total [16])
problems, i.e. problems involving all nodes of the network
before a decision can be taken. TD obviously belongs to this
class of algorithms. The phase algorithm in [16] and the TD
algorithm in [17] are typical examples of algorithms that use
an underlying unison mechanism. Both algorithms require that
nodes know (an upper bound on) the network diameter D, i.e.
the maximum distance between two nodes of the network.
As far as we know, the question of the necessity of this
knowledge to be able to deterministically solve total problems
remains open. In [18], the author proposes a snap-stabilizing
TD algorithm to characterize tasks that are solvable with snap-
stabilizing algorithms in anonymous networks. This algorithm
combines the synchronization technique in [17] and the self-
stabilizing enumeration algorithm in [19]. The former actually
uses a unison mechanism and requires that nodes know (an
upper bound of) D. The latter works on a particular class of
graphs (so called, non-ambiguous graphs [20]) and implements
a renaming mechanism that uses an a priori exponential
memory size.

Many self-stabilizing algorithms aim at being silent, i.e.,
after some calculations, the communication registers used by
the algorithm remain fixed as long as no request is made [21],
[22]. By communication variable, we mean variables shared
between neighboring nodes. Silence is trivially a desired
property with algorithms that terminate by building distributed
fixed structures—e.g., spanning trees, coloring, Maximal Inde-
pendent Set, etc. It is also very desirable for so-called “long-

lived” algorithms—e.g., mutual exclusion, unison, routing,
etc.—to reduce communication operations and bandwidth. For
instance, it is quite easy to design a self-stabilizing silent
unison [12], [22] by modifying the above Condition piiq as
follows: pii1q the clock value of each node is increased by 1,
provided that at least one node decides to do it.

B. Contribution

In this paper, we address asynchronous anonymous net-
works. We focus on terminating and silent self-stabilizing
algorithms i.e., self-stabilizing algorithms that converge in
finite time to a desired global configuration from which no
values of the communication variables are changed thereafter.
We present a generic, deterministic, silent algorithm that
detects whether an observed terminating silent self-stabilizing
algorithm has converged to a configuration that satisfies an
intended predicate. Our solution uses similar techniques as
in [15] to achieve snap-stabilization, namely it is based on
an underlying unison algorithm. However, in this paper, the
latter can be any (asynchronous) unison in the literature, e.g.,
[11]–[14].

As all existing deterministic anonymous total algorithms
in the literature (e.g., [15]–[18]), our algorithm requires that
nodes know (an upper bound on) the diameter D of the
network. It works under the weakest scheduling assump-
tions a.k.a, the unfair daemon. Built over any asynchronous
self-stabilizing underlying unison U , our solution adds only
OplogDq bits per node, where D is the diameter of the net-
work. Since there exists no unison algorithm with better space
complexity — the best space complexity for the asynchronous
unison is obtained in [14] with OplogDq bits —, the extra
space of our solution is negligible w.r.t. the space complexity
of the underlying unison algorithm. Time complexities are
given in terms of rounds that captures the execution rate of
the slowest node in any computation [3], [5]. The response
time computes the number of rounds between the time when
a request is triggered and the time when the answer to that
request is returned1. The response time of our solution is in
Opmaxpk, k1, Dqq rounds, where k and k1 are the stabilization
time complexities of A and U , respectively. In other words,
once both A and U are stabilized, our solution provides an
answer in optimal time, i.e., OpDq rounds.

Paper Outline: The remainder of the paper is organized
as follows. We first formally describe notations, definitions,
and the execution model in Section II. Then, in Section III,
we formally define the unison problem, and establish some
properties of self-stabilizing unison algorithm. In Section IV,
we present and formally describe our snap-stabilizing algo-
rithm for termination detection. Section V contains the proofs
of our claims and theorems, and in specific we establish that
our algorithm is snap-stabilizing for the termination detection
problem. We make some concluding remarks in Section VI.

1An answer to a request is given when the observed terminating silent algo-
rithm actually completed its task,i.e., when the system reached a configuration
satisfying an intended global predicate.

II. MODEL

We consider a distributed system modeled by a non-oriented
connected graph G “ pV,Eq. Two nodes are neighbors in G
if and only if the nodes can communicate with each other.
The set of neighbors of v in G is denoted by Nv . The set of
closed neighbors of v is the union of v and its neighbors, and
is denoted N rvs. The size of a graph is the number of nodes it
has, and is noted n “ |V |. The longest shortest path between
two nodes of G diameter D of a graph G is the size of the
longest shortest path between two nodes of G.

The (local) algorithm (or program) of a node consists of
a finite set of variables denoted by S and a finite set RA
of guarded actions (also referred to rules). Some variables,
like Nv and the unique identity of the node, may be constant
inputs provided by the system. An algorithm that does not
use the identity of the network nodes is called anonymous.
Each node can read its own variables and variables owned by
the neighboring nodes, but can write only to its own (non-
constant) variables. The communication between nodes lies
in the classical state model [2], i.e., are carried out by the
variables. Each rule in RA is of the following form:label:
guard Ñ action. Labels are used to identify rules in RA. A
guard is a Boolean predicate over the variables of the node
and that of its neighbors. If the guard of a rule is evaluated to
true on node v, then the rule is said enabled at v. An action is
the updating of some variables of a node. It can be executed
only if the corresponding guard is evaluated to true.

The state of a node v designates the content of all the local
variables of the node v. The set of states of all nodes in the
system, is called configuration of the system represented by the
symbol γ. We denote by Γ the set of all possible configurations
of the system. A node is said to be enabled in a configuration
γ if and only if at least one of its rule is enabled in γ.

When one or several enabled nodes are simultaneously
activated, they all atomically read the states of their neighbors,
non-deterministically pick one enabled rule, and execute the
corresponding action. If no node is enabled in a configuration
γ, then γ is a terminal configuration.

The asynchrony of the system is modeled by a map D,
commonly called schedule. The input of the schedule D is a
non-empty sequence of configurations pγ0, γ1, . . . , γkq. If γk
is terminal, then Dpγ0, γ1, . . . , γkq is the empty set, else it is
a non-empty subset of the enabled nodes of γk. A scheduler
is a class of schedules. We assume, in this paper, the most
general scheduler, where no assumption is made, commonly
called the unfair distributed scheduler.

Let us denote by γ ÝÑ
A

γ1 a computing step of Algorithm A,
where γ1 is obtained from γ after the activation of one
or several enabled nodes and the simultaneous execution of
their action. Given a schedule D, an execution is a finite
or infinite sequence of computing steps γ0 ÝÑ

A
γ1 ÝÑ

A
¨ ¨ ¨

such that @i, the nodes that were activated between γi and
γi`1 is Dpγ0, γ1, . . . , γiq. Configuration γ0 is called the initial
configuration of the system. An execution ϵ is said maximal
if ϵ is infinite, or if ϵ “ pγ0 ÝÑ

A
γ1 ÝÑ

A
¨ ¨ ¨ ÝÑ

A
γf q and γf

is a terminal configuration. If ϵ “ pγ0 ÝÑ
A

γ1 ÝÑ
A
¨ ¨ ¨ q is an

execution, then we call subexecution of ϵ any subsequence
ϵ1 “ pγi ÝÑ

A
γi`1 ÝÑ

A
¨ ¨ ¨ q.

A node v is neutralized in the computing step γ ÝÑ
A

γ1 if v
is enabled in γ and not enabled in γ1, but does not execute any
action between these two configurations. Neutralization occurs
when some neighbors of v changed their state between γ and
γ1, and this change makes the guards of all actions of v false.
To evaluate the stabilization time, we use the classical notion
of round [3], [5]. Let ϵ be an execution. The first round of an
execution ϵ, noted ϵ1, is the minimal prefix of ϵ in which every
node that is enabled in the initial configuration either executes
an action or becomes neutralized. Let ϵ2 be the suffix of ϵ
starting from the last configuration of ϵ1. The second round of
ϵ is the first round of ϵ2, and so forth.

The predicates considered in the following are boolean
functions over the configurations of the system. Let R be
a predicate and γ a configuration. We note γ P R when R
evaluates to true in γ, and γ R R otherwise. Denote by true
the predicate that always evaluates to true. Given an algorithm,
A, the predicate R is closed for A if for every computing step
γ ÝÑ

A
γ1 such that γ P R, then γ1 P R. Algorithm A converges

to predicate Q from predicate R under the scheduler D if Q is
closed and if for any execution ϵ “ pγ0 ÝÑ

A
γ1 ÝÑ

A
¨ ¨ ¨ q under

D such that γ0 P R, there exists i ě 0 such that γi P Q. This
is noted R ŹAD Q. If D is the unfair distributed scheduler,
we may simplify R ŹAD Q to R ŹA Q. R is an attractor if
trueŹR. When it is clear in the context, we indifferently use
a predicate and the set of configurations it describes.

The specification SPP of a problem P is a predicate over
the executions, which describes a specific behavior of the
system. An algorithm A solves a problem P under a certain
scheduler if every execution of A under that scheduler satisfies
the specification of P .

Definition 1 (Simulation). An algorithm T is said to simulate
an algorithm A if the variables of A are a subset of the
variable of T , and if any (possibly infinite) execution of
T , ϵ “ pγ0 ÝÑ

T
γ1 ÝÑ

T
¨ ¨ ¨ q corresponds to a legitimate

execution of A, ϵA “ pγ0|A ÝÑ
T

γ1|A ÝÑ
T
¨ ¨ ¨ q on the subset

of the variables of A, with possibly empty computing steps
γi|A “ γi`1|A.

Definition 2 (Self-stabilization). Algorithm A is a self-
stabilizing algorithm for problem P under a certain scheduler
D if there exists a predicate R such that ΓŹAD R and such
that any execution of A starting from a configuration γ P R
satisfies SPP .

An execution of A has stabilized once R is valid. The
stabilization time of A is the maximal number of rounds in
executions of A starting from any configuration, before A
stabilized.

A self-stabilizing algorithm for problem P is silent if
maximal executions that satisfy SPP are finite.

Definition 3 (Snap-stabilization). An algorithm A is snap-

on wk

offidl

RB : Rstart

RB : Rstop

App : get

App : ask

Fig. 1. Diagram for reqv

stabilizing for a specification SP if any execution of A starting
from any configuration satisfies SP .

A request-based algorithm RB is an algorithm that interacts
with an external application App, typically an external user or
another algorithm. This interaction takes place through one
shared variable, req, that can be updated by the application.
The variable req has four values: idl,on,wk,off. The value
idl means that no request is in progress on node v for the
application. Node v is then said idle. Value on means that
a request is initiated, but the computation is not launched.
Once the requested computation is running, req is set to wk.
The fourth value, off indicates that the requested computation
is done, but the result has not been communicated to the
application yet. Variable req is updated through four methods.
Two of them, ask and get, are part of App. The two others,
Rstart and Rstop, are part of RB—see Figure 1.

Snap-stabilization is a suitable paradigm for request-based
algorithms. Indeed, a snap-stabilizing request-based algorithm
ensures that if the application executes ask on one node v,
then the following execution of get on the same node v will
mark the end of a correct computation. We define the response-
time of a request-based algorithm as the maximal number of
rounds between any computing step in which the application
executes ask on any node v, and the following computing step
in which the same node v updates reqv to off.

In this paper, we consider the Snap-Stabilizing Termination
Detection problem.

Definition 4 (Termination Detection). Let A be a silent self-
stabilizing algorithm that solves a problem P , and let T be
a request-based algorithm. T is a snap-stabilizing algorithm
that solves the Termination Detection of A if:

1) T simulates A,
2) A ultimately converges in any execution of T ,
3) if a request is emitted on node u (req is set from idl to

on), then u ultimately answers (i.e., req is set to off),
4) when it answers, algorithm A has converged.
The last two items can be more formally defined as follows:

let ϵ “ γ0 ÝÑ
T

γ1 ÝÑ
T
¨ ¨ ¨ be an execution of T . If Dt P N, Dv P

V such that in γt, reqv “ on, then piq Dt1 ą t : reqv “ off
and piiq @t1 ą t : reqv “ off,A has stabilized in γt1 .

III. UNISON ALGORITHMS

A. Definition of the problem

Our algorithm lies in unison algorithms. Such algorithms
guarantee that all the nodes in the system have a variable

clock that increases infinitely often such that two neighbors
have a difference of at most one between their clocks.

Definition 5 (Unison Algorithm). Let U be a distributed
algorithm. U is a self-stabilizing unison algorithm with range
m if the following conditions are respected.

1) Definition: Every node u has a variable clocku, with
values in C, such that C Ě Z{mZ;

2) Safety: Let Ppuq ” clocku P Z{mZ ^
`

@v P

Nu, clockv P tclocku ´ 1, clocku, clocku ` 1u
˘

, and
let PU ” @u P V,Ppuq. Then trueŹU PU ;

3) Liveness: @u, clocku is increased infinitely many times.
The unison algorithm has converged as soon as PU is true.

To achive maximal genericity, we consider that C can
contain other values than the classical clock values, in Z{mZ.
Typically, C can contain control values such as K, nil, etc.
Notice that if the value of clock P Z{mZ, then the usual
arithmetic operations on clock are modulo´m operations. In
the following, we are interested in the operations on clock,
specific to each algorithm, only if clock P Z{mZ.

Any self-stabilizing unison algorithm can be made silent,
with as consequence the loss of the liveness property. To
do so, we can prevent the clock to increase if there is no
request for it and the safety property is achieved. Essentially,
if Ppuq and @v P Nu, clockv P tclocku ´ 1, clockuu,
then u is not activatable. If the initial configuration of the
system respects the safety property, then the system reaches
a terminal configuration as soon as all the clock reach the
highest initial value. Yet, one may want to keep a silent self-
stabilizing unison algorithm running as long as some external
condition is not satisfied. This request notion may be extended
with the concept of local request [12]. Silent self-stabilizing
unison algorithms are equipped with one additional predicate
LocReqpvq that depends on external parameters. When this
predicate is evaluated to true on one node, then it takes
precedence over the termination condition, and forces the
system to keep running with respect to Ppuq. In the following,
we consider a silent self-stabilizing unison algorithm.

It will be useful for us to separate the rules of U into three
distinct sets. Let RU be the set of the rules of U . Let us
define P`puq ” Ppuq ^ @v P Nu, clockv ‰ clocku ´ 1, and
P´puq ” Ppuq ^ Dv P Nu : clockv “ clocku ´ 1. Note that
P`puq and P´puq are mutually exclusive, and, joined, equate
P puq. We suppose without loss of generality that the guard of
all the rules in RU contains ␣Ppuq, P`puq, or P´puq. Since
U is a self-stabilizing algorithm, any rule that includes Ppuq
in its guard guarantees that its action will not invalidate Ppuq.
Thus, actions that include P`puq either increment clocku by
one or do not update it. In the same way, actions that include
P´puq cannot update clocku. Among all the rules that include
P`puq, we denote by RUN

, and call the normal rules the
rules whose action increases by 1 the variable clocku. These
are the rules by which U makes progress. We denote by RUT

and call the transparent rules all the other rules that include
Ppuq, that do not update clocku by definition. Transparent
rules do not necessarily exist, but cannot be avoided a priori.

Finally, we denote by RUC
and call the convergence rules

all the other rules of RU , rules that include ␣Ppuq and that
enable convergence. By definition, U has stabilized if and only
if no rule of RUC

is activatable. We define the sluggishness
of U , and denote SpUq as the maximal number of consecutive
transparent rules a node can execute between two executions
of normal rules, after stabilization. Sluggishness depicts how
much the transparent rules might slow down clock increment.
Sluggishness of algorithms presented in [11]–[14], [23] is 0.

B. Tools on unison

In this subsection we introduce logical tools that will be
useful to reason on generic unison algorithms. Definitions 6
to 9 were introduced in [15]. Definition 10 is original work
and was designed specifically for our proof.

Definition 6 (Event). Let ϵ “ pγ0 ÝÑ
U

γ1 ¨ ¨ ¨ q be a finite or
infinite execution. An event is a pair pv, t` 1q such that v is
activated in γt ÝÑ

U
γt`1. We say that v executes a rule at time

t`1. By convention, pv, 0q is an event for all v P V . An event
pv, tq is said to be external if the guard of the executed rule
by v depends on at least one shared register of a neighbor
of v. An event pv, tq is a normal (resp. transparent, resp.
convergence) event if v executes a normal (resp. transparent,
resp. convergence) rule at time t.

Definition 7 (Causal relation ù). The causal relation is
the smallest relation ù on the set of events such that the
following two conditions hold:

1) Let pv, tq and pv, t1q be two events such that t1 is the
greatest integer such that t1 ă t. Then pv, t1q ù pv, tq;

2) Let pv, tq and pw, t1q be two events such that pv, tq is an
external event, w P Nv , t1 is the greatest integer such
that t1 ă t. Then pw, t1q ù pv, tq.

Definition 8 (Dependance Relation ùN). Let pv, t0q and
pw, t1q be two events. We say that pw, t1q normally depends on
pv, t0q, and denote pv, t0q ùN pw, t1q if there exists k ě 0
and t1, . . . tk such that pv, t0q ù pv, t1q ù ¨ ¨ ¨ pv, tkq ù

pw, t1q and pv, tiq, i ą 0 are transparent events, and pw, t1q

is a normal event. Denote pv, tq ĺN pw, t1q if there is a path
w.r.t to ùN from pv, tq to pw, t1q.

Definition 9 (N -sequence). When a node v consecutively
executes k normal rules, possibly intercut with transparent
rules,

ùN pv, t0q ùN pv, t1q ùN ¨ ¨ ¨ ùN pv, tk´1q

it executes an N -sequence of length k.

Definition 10 (Causal pyramid). Let p “ v0v1 . . . vk be a path
of length k. We say that p is a causal pyramid of length d ě
2k` 1 and of origin t00 if @i P r0, ks,@j P ri, pd´ 1q´ is, Dtij ,
such that:

‚ @i, we have tii ă ti`1
i`1 and ti`1

pd´1q´pi`1q
ă ti

pd´1q´i

‚ @i, vi does not execute rules of RUC
in

pti´1
i´1, t

i´1
pd´1q´pi´1q

q

v0

v1

v2

pv0, t00q ùN pv0, t01q ùN ¨ ¨ ¨ ùN pv0, t02k´1q ùN pv0, t02kq

pv1, t11q ùN ¨ ¨ ¨ ùN pv1, t12k´1q

¨ ¨ ¨

|
|
|

v1: no rule of RUC

|
|
|

|
|
|

v2: no rule of RUC

|
|
|

Fig. 2. Causal Pyramid Scheme

‚ @i, vi executes an N -sequence
ùN pvi, t

i
iq ùN pvi, t

i
i`1q ùN ¨ ¨ ¨ ùN

pvi, t
i
pd´1q´iq

Notice that if p is a causal pyramid, then pv0, t
0
0q ĺN

pv1, t
1
1q ĺN ¨ ¨ ¨ ĺN pvk, t

k
kq ĺN pvk, t

k
pd´1q´kq ĺN ¨ ¨ ¨ ĺN

pv0, t
0
d´1q.

C. Properties of unison algorithms

In this section, we extend and adapt some of the results
of [15] to any unison algorithm.

Lemma 1. Let v and w be two neighbors. Suppose that v
is a causal pyramid of length 3 and of origin t0, and that in
pt0, t2q, w does not execute rules of RUC

. Then vw is a causal
pyramid of length 3 and of origin t0.

Proof. At time t0, clockw is equal to p´1 or p. If pw, t1q does
not exist, then at time t2, clockw ď p and clockv “ p ` 2,
which is contradictory.

The following lemma directly follows by induction of
Lemma 1 on the length of an N -sequence.

Lemma 2. Let v and w be two neighbors. Suppose that v is
a causal pyramid of length x ě 3 and of origin t0, and that
in pt0, tx´1q, w does not execute rules of RUC

. Then vw is a
causal pyramid of length x and of origin t0.

Lemma 2 establishes a link between the behavior of two
neighbors. By induction on the distance between v and any
other process, Theorem 1 follows.

Theorem 1. Let v0 and vk be two nodes, and let p “

v0v1 ¨ ¨ ¨ vk be a path. Suppose that v0 . . . vk´1 is a causal
pyramid of length d ě 2k`1, and that in ptk´1

k´1, t
k´1
pd´1q´pk´1q

q,
vk does not execute rules of RUC

. Then v0 ¨ ¨ ¨ vk is a causal
pyramid of length 2k ` 1.

Corollary 1. Let v0 and vk be two nodes, and let p “

v0v1 ¨ ¨ ¨ vk be a path. Suppose that v0 is a causal pyramid
of length 2k ` 1, and that @i, vi does not execute rules of
RUC

in pt0, t2kq. Then v0 ¨ ¨ ¨ vk is a causal pyramid of length
2k ` 1.

IV. ALGORITHM

Let us consider a silent self-stabilizing algorithm A that
solves a problem P under the unfair distributed scheduler.
We introduce a generic mechanism that builds an anonymous
silent snap-stabilizing request-based algorithm T that solves

the Termination Detection of A. Based on an anonymous self-
stabilizing unison algorithm U , it follows the request-based
mechanism described in Section II. More specifically, for each
node v, the algorithm communicates with the application App
by means of reqv—refer to Figure 1. To know whether A has
terminated or not, App triggers a request to T by executing
App : ask on some idle nodes v1, v2, . . . , vk of the system,
setting reqvi,iPr1,ks

from idl to on. Next, T answers to the
request only after algorithm A has terminated, by setting reqv

to off. Then, App may execute App : get that sets reqv to idl.

A. Variables

The variables of node v in algorithm T are:
‚ SpA, vq the set of all variables of node v in algorithm A.
‚ SpU , vq the set of all variables of node v in algorithm U ,

including clockv .
‚ doiv P r0, 2D`2s, for duration of inactivity. This variable

is used to store the number of steps since the last time a
convergence rule (for A or U) was executed by node v.
Variable doi propagates through the whole system with
the following rule: if the maximum value of doi among
the neighbors of v is p, then v cannot set doiv under
p´ 1.

‚ cntv P r0, 2D`1s is a countdown to 0, initiated at 2D`1
when the application asks for the termination.

‚ reqv P ton,wk,off, idlu, for request, is the interface
between App and T . reqv may be updated according
to Figure 1.

The space complexity of the variables of T is OplogDq bits
per node, where D is an upper bound of the diameter of
the graph. Consequently, the space complexity of the whole
system is OpCpAq`CpUq` logDq bits per node, where CpAq
(resp. CpUq) is the space complexity of algorithm A (resp. of
algorithm U) in bits per node.

B. Overview of the algorithm

The detail of the rules of algorithm T is presented in
Algorithm 1. Algorithm T simulates both algorithms A and
U , independently. When an enabled node v is activated, v
atomically executes the rule of A for which it is enabled, if
such rule exists, the rule of U for which it is enabled, if such
rule exists, and updates the proper variables of algorithm T .

Since algorithm T performs two distinct and independent
tasks: the simulation of A and U on the one hand, the detection
of termination on the other hand, it is natural to divide the
set of the rules of T , RT , in two disjoint sets: RS

simul and
RS

proper. A node is enabled for T if it enabled for at least
one rule of RS

simul or RS
proper. If an enabled node is activated,

then it atomically executes the rule of RS
simul for which it is

activatable, if such a rule exists, and the rule of RS
proper for

which it is activatable, if such a rule exists.
RS

simul contains the rules that simulate algorithms A and
U , and also updates the variable doi. If the activated node
v has not yet converged for both A and U , then it exe-
cutes a rule for at least one of those algorithms and sets
its variable doiv to 2D ` 2. The convergence rules are

Rcvg “ tRUC
cvg,RN

cvg,RA
cvgu Ă RS

simul, whose different guards
correspond to the different possible ways for a node to be
activatable for A and/or U . Be aware that the rules of Rcvg

are not convergence rules in the sense of unison algorithms,
since RN

cvg is a normal rule, and RA
cvg is a transparent rule.

Otherwise, if w is only activatable for a transparent rule of
U , then it executes Rtrans P RS

simul and nothing else.
Finally, if v is only activatable for a normal rule of U then

v executes the rule Rwait P RS
simul, that sets doiv to one less

than the maximum value of doi of the closed neighbors of v.
As a consequence, as long as one node v has not converged for
A, variable doi is maintained at 2D`2 on v. When activated,
the neighbors of v set their variable doi to 2D`1 (or 2D`2
if one rule of Rcvg is activated). After that, if one neighbor
of a neighbor of v is activated, then it sets its variable doi to
at least 2D, and so on. Thus, if one node is activatable for a
convergence rule, then the variable doi will propagate at high
value along the graph. Yet, this property requires that all the
nodes are activated, in a specific order.

Fortunately, since U is a unison algorithm, no node, and
no subset of nodes, may compute independently of the rest of
the system, and decrease its doi variable down to 0 regardless
of what happens in the whole system. This guarantees that,
starting from any configuration, after a node v executes 2D`1
computing steps, the variable doiv is under the influence of
all the other nodes of the system. Consequently, after 2D` 1
computing steps of node v, the variable doiv cannot be 0 unless
all the nodes in the graph have converged for both A and U .
This property allows us to design our procedure thanks to the
variable cnt.

Whenever App asks one node v for the termination of the
algorithm, v executes rule Rstart, it sets its variable cntv to
2D`1 and updates its variable reqv from on to wk. Variable
cntv is decreased by one each time a normal rule of U is
executed, and is updated to 2D ` 1 as soon as doiv ‰ 0.
Since U is a unison algorithm, in a legitimate execution cntv
reaches 0 only after all nodes have converged for A. As a
desired consequence, algorithm T is snap-stabilizing for the
detection of termination for algorithm A.

C. Predicates
Let RS P RA, RU , RUC

, RUT
, RUN

be the set of the rules
of one algorithm, and let v be a node. ActpRS, vq returns true
if and only if node u is activatable by a rule of RS.

ActpRS, vq ” v is activatable by one rule of RS (1)

As described in Section III-A, we consider a silent self-
stabilizing unison algorithm U . In T , the normal rules of
U , denoted RUN

, are not activatable on node v unless the
following predicate LocReqpvq is evaluated to true.

LocReqpvq ”
ł

pDu P Nv : clocku “ clockv ` 1q
ActpRA, vq
pdoiv ‰ 0q
preqv P ton,wkuq

(2)

When both algorithm A and U have converged on node v,
the only simulation rules that v may execute are the normal

rules of algorithm U , which permit the liveness of U . This
situation is described by the predicate UnisonOnly.

UnisonOnlypvq ” ␣ActpRA, vq ^ ActpRUN
, vq (3)

D. Actions
Let RS P RA, RU , RUC

, RUT
, RUN

be the set of the rules
of one algorithm, and let v be a node. Let SimulRpRS, vq be
a procedure that executes the activatable rule in RS on node
v if such rule exists and which does nothing otherwise. Proce-
dure Simulpvq sequentially executes one rule of Algorithm A
if possible, then one rule of Algorithm U , again if possible.
Formally:

SimulRpRS, vq ”

$

&

%

v updates its state executing
the enabled rules in RS if ActpRS, vq
v does nothing otherwise

(4)

Simulpvq ” SimulRpRA, vq;SimulRpRU , vq (5)

Procedure Propagate doipvq updates the variable doiv to
one less than the maximal value of doi of the closed neighbors
of v:

Propagate doipvq ” doiv :“ maxp0, max
wPNrvs

pdoiw´1qq (6)

V. CORRECTNESS OF ALGORITHM T
In this section, we establish that T is a snap-stabilizing

procedure for the detection of the termination of Algorithm A.
This proof is divided in three subsections. In Subsection V-A,
we prove that T satisfies both conditions 1 and 2 of Defini-
tion 4. In Subsection V-B, we prove that T satisfies Condi-
tion 3 of Definition 4. Finally, in Subsection V-C, we prove
that T satisfies Condition 4 of Definition 4.

A. Simulation properties of T
In this subsection, we establish Theorem 2, which ensures

that T satisfies Condition 1 and Condition 2 of Definition 4.
Due to the lack of place, the detail of the proof is omitted.
We will describe the scheme of the proof only.

Theorem 2. T is a simulation of both A and U , and in any
execution of T , both A and U ultimately converge.

We first establish by syntaxical analysis Lemma 3 that
characterizes the terminal configurations of T . These config-
urations are the one in which U converged, and in which on
all the nodes v of the system, LocReqpvq is not verified (this
includes the termination of A).

Lemma 3. The terminal configurations of T are the configu-
rations such that @v P V :

␣ActpRU , vq ^ ␣LocReqpvq

According to the design of Algorithm T , it is pretty obvious
that any execution of T is a simulation of both A and U . Since
A is a silent self-stabilizing algorithm, there does not exists
infinite executions of A. Thus, there only exists a finite number

Algorithm 1: Algorithm T
1 During a step, if a rule of set RS

simul and a rule of set RS
proper are enabled then v executes these 2 rules.

2 RS
simul :: rules to update doi
RUC
cvg : ActpRUC

, vq ÝÑ Simulpvq; doiv :“ 2D ` 2 P RTC

RA
cvg : ActpRA, vq ^ ␣

`

ActpRUC
, vq _ ActpRUN

, vq
˘

ÝÑ Simulpvq; doiv :“ 2D ` 2 P RTT

Rtrans : ␣ActpRA, vq ^ ActpRUT
, vq ÝÑ Simulpvq P RTT

RN
cvg : ActpRA, vq ^ ActpRUN

, vq ÝÑ Simulpvq; doiv :“ 2D ` 2 P RTN

Rwait : UnisonOnlypvq ÝÑ Simulpvq;Propagate doipvq P RTN

3 RS
proper :: rules to update cnt and req
Rstart : reqv “ on ÝÑ reqv :“ wk; cntv :“ 2D ` 1
Rstop : reqv “ wk^ UnisonOnlypvq ^ cntv “ 0^ doiv “ 0 ÝÑ reqv “ off
Rcpt : reqv “ wk^ UnisonOnlypvq ^ cntv ‰ 0^ doiv “ 0 ÝÑ cntv :“ cntv ´ 1
Rend : reqv “ wk^ UnisonOnlypvq ^ doiv ‰ 0 ÝÑ cntv :“ 2D ` 1

of activation of A in an execution of T , and since U is a self-
stabilizing algorithm, it ultimately converges in any execution
of T . This is stated in Lemma 4.

Lemma 4. U converges in any maximal execution of T .

Finally, since U is a unison algorithm, all the nodes are
regularly activated in any exececution, which implies that the
convergence of A necessarily occurs in any maximal execution
of T . This completes the proof of Theorem 2.

Remark 1. Since T is a simulation of U , we can extend
the results of Section III-C to the executions of T . To do
this, we extend to T the concepts of normal, transparent,
and convergence rule, normal dependance relation, and N -
sequence. T has one convergence rule RUC

cvg , two transparent
rules RA

cvg and Rtrans, and two normal rules RN
cvg and Rwait.

Specifically, Theorem 1 and Corollary 1 remain valid on T .

B. Termination of T
In this subsection, we establish Theorem 3, that states that

T satisfies Condition 3 of Definition 4.
We define Γcvg Ă Γ the set of configurations in which

A has stabilized and U has converged, and Γdoi the set of
configuration in which, in addition, @v,doiv “ 0. Lemma 5
states that Γdoi is an attractor.

Definition 11. Let Γdoi Ă Γcvg Ă Γ be
Γcvg : @v P V, p␣ActpRA, vq ^ ␣ActpRUC

, vqq
Γdoi : @v P V, p␣ActpRA, vq ^ ␣ActpRUC

, vq ^ doiv “ 0q

Lemma 5. ΓŹT Γcvg ŹT Γdoi

Due to the lack of place, the proof of Lemma 5 is omitted.
Finally, we define Γw

td where w P V , as the set of the
configurations of Γdoi such that reqw P toff, idlu. Theorem 3
states that any execution that starts in Γdoi eventually reaches
a configuration of Γw

td.

Definition 12. Let w P V . Let Γw
td Ă Γdoi be the set of

configurations such that, @v P V :

p␣ActpRA, vq ^ ␣ActpRUC , vq ^ doiv “ 0q ^ reqw P toff, idlu

Theorem 3. Let w P V be a node and ϵ “ pγ0 ÝÑ
T

γ1 ÝÑ
T
¨ ¨ ¨ q

be a maximal execution such that γ0 P Γdoi. There exists i ě
0 : γi P Γ

w
td.

Proof. Suppose γ0 R Γ
w
td, i.e. γ0preqwq P ton,wku.

Case 1: in γ0, reqw “ wk. Since Γdoi is closed, the only
rules of RS

proper activatables by w are Rstop and Rcpt. As long
as reqw P ton,wku, LocReqpwq is satisfied, and since U is a
unison algorithm, it makes progress, which means that Rwait

is regularly activated on all nodes. Thus, as long as cntw ‰ 0,
Rcpt is regularly activated by w. Since each activation of Rcpt

by w decreases cntw by 1, it ultimately reaches 0, afterwhat
Rstop is activated by w, and then, the system has reached Γw

td.
Case 2: in γ0, reqw “ on. Then the previous guarantees

as well that node w will eventually be activated, through rule
Rstart, after what reqw “ wk, which is the case above.

The previous results ensure that, whatever the initial con-
figuration is, the system globally converges to Γdoi, and each
node is infinitely often in an availability state for the app.

C. Snap-stabilization

In this subsection, we establish Theorem 5, that states that
T satisfies Condition 4q of Definition 4.

The activation of Rstart by w corresponds to the request by
w to detect the termination of Algorithm A. The activation of
Rstop by w corresponds to the detection of the termination of
Algorithm A by w. Lemma 6 states that w will eventually
execute the rule Rstop along any execution starting by a
termination detection request by w (i.e. the activation of
Rstart by w). This lemma allows us to define, for a maximal
execution starting by a termination detection request by w,
the response time to w’s request: fpw, ϵq, the time of the first
computing step in which w executes the rule Rstop. This is
stated in Definition 13.

Lemma 6. Let w P V and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T

γ1 ÝÑ
T
¨ ¨ ¨ q be

a maximal execution such that w executes Rstart in γ ÝÑ
T

γ0.
Di ą 0 such that in γi´1 ÝÑ

T
γi, w executes Rstop.

Proof. Lemma 5 ensure that there exists i such that γi P Γdoi.
Theorem 3 applied to ϵ1 “ pγi ÝÑ

T
γi`1 ÝÑ

T
¨ ¨ ¨ q ensures that

there exists j ě i : γj P Γ
w
td.

In γ0, reqw “ wk, and in γj , reqw P toff, idlu. This is only
possible if between γ0 and γj , w executes Rstop.

Definition 13 (Final Descent). Let w P V and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T

γ1 ÝÑ
T
¨ ¨ ¨ q be a maximal execution such that w executes

Rstart in γ ÝÑ
T

γ0. We denote by fpw, ϵq the time of response
of w in ϵ: the smallest i ą 0 such that during γi´1 ÝÑ

T
γi, w

executes Rstop. If w executes Rend along ϵf “ pγ ÝÑ
T

γ0 ÝÑ
T

¨ ¨ ¨ ÝÑ
T

γfpw,ϵq´1q then let css “ γs´1 ÝÑ
T

γs be the latest
computing step of ϵf in which w executes Rend. Otherwise
we set s “ 0 and css “ γ ÝÑ

T
γ0. Remark that css is the latest

computing step of ϵf in which w executes a rule that sets cntw
at 2D ` 1.

We denote by ϵs the final descent of w in ϵ, ϵs “ γs ÝÑ
T

γs`1 ÝÑ
T
¨ ¨ ¨ ÝÑ

T
γfpw,ϵq´1.

In the sequel of this subsection, we study the properties of
ϵs. We establish that γs P Γcvg. As Γcvg is closed, γfpw,ϵq P

Γcvg: a terminal configuration of A is reached.
Lemma 7 will allow us to use Corrolary 1.

Lemma 7. Let w be a node and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T

γ1 ÝÑ
T

¨ ¨ ¨ q be a maximal execution such that w executes Rstart in
γ ÝÑ

T
γ0. Then w does not execute any rule of Rcvg in ϵs, and

w executes an N -sequence of length at least 2D ` 1 in ϵs.

The first assertion is proved by contradiction, as a conse-
quence of Definition 13. The second one comes from the fact
that Rcpt is executed 2D` 1 times in ϵs, thus so does Rwait.

Definition 14 (Anchor of an execution). Let v P V and let
ϵ “ pγ ÝÑ

T
γ0 ÝÑ

T
¨ ¨ ¨ q be an execution. We say that v is an

anchor of ϵ if during ϵ, v executes a rule that is not Rstart,
and if the first rule different from Rstart executed by v is a
rule of Rcvg .

We now introduce Theorem 4 that establishes that if an
execution does not respect the snap property of Definition 4
then there exists an anchor of that execution. Due to the lack
of place, the detail of the proof is omitted. We give only the
main steps of the proof.

Theorem 4. Let w be a node and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T

γ1 ÝÑ
T

¨ ¨ ¨ q be a maximal execution such that w executes Rstart in
γ ÝÑ

T
γ0. If γs R Γcvg, then there exists a node v that is an

anchor of ϵs.

We first establish by contradiction that, if ϵ is an execution
that starts in a configuration where A or U has not stabilized,
and such that all nodes are activated, then at least one node
executes a convergence rule for A of U during ϵ. This first
result allows us to establish that if an execution does not
respect the snap property of Definition 4 then there exists a
node that executes a convergence rule for A of U during a
final descent ϵs. Once again, we reason by contradiction, and
observe that we can use Lemma 7 and Corollary 1. Finally, we
prove that if there exists a node that executes a convergence
rule for A of U during a final descent ϵs, there exists an anchor
of that execution. Indeed, consider csa the first computing step
of ϵs where a node executes a convergence rule, and consider

v a node that executes a convergence rule during csa. Then,
necessarily, the first activation of v during ϵs happens at csa.
The combination of that last result and of the previous one
terminates the proof of Theorem 4.

Theorem 4 allows us to prove Lemma 8 by contradiction:
if there exists an anchor of ϵs then a contradiction is raised.

Lemma 8. Let w be a node, and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T

γ1 ÝÑ
T

¨ ¨ ¨ q be a maximal execution such that w executes Rstart in
γ ÝÑ

T
γ0. We have: γs P Γcvg.

In the proof of Lemma 8, we consider a causal pyramid of
maximal lenght with origin w that ends near a node v, such
that v executes a convergence rule before the action of the last
node of the pyramid. We then prove that variable doi spreads
down the pyramid from v to w, which leads to the conclusion
that w executes Rend during ϵs, absurd.

Theorem 5. T is a snap-stabilizing algorithm for the termi-
nation detection problem.

Proof. Let ϵ be a maximal execution of T . Suppose there
exists a node w and a computing step pcsask “ γask´1 ÝÑ

T
γaskq P ϵ such that in csask, App executes App : ask on node
w. According to Lemma 4, and since U is a unison algorithm,
w is activated again in the ϵ-subexecution ϵ1 “ pγask ÝÑ

T
¨ ¨ ¨ q.

Let cs0 “ pγ ÝÑ
T

γ0q be the first computing step of ϵ1 in
which w is activated. In cs0, w executes rule Rstart. Thus,
the ϵ1-subexecution ϵ2 “ pγ ÝÑ

T
γ0 ÝÑ

T
¨ ¨ ¨ q corresponds to the

premises of Lemma 8 that, combined with Lemma 5, guarantee
that γfpw,ϵq P Γcvg. By definition, w do not execute Rstop

between γask and γ. Thus, γfpw,ϵq´1 ÝÑ
T

γfpw,ϵq is the first
computing step subsequent to γask in which w executes Rstop.
This proves that w positively answers to the request of App,
and that when it does, A has indeed terminated.

D. Time complexity

Definition 15 (Full Round). Recall the sluggishness of U us
the maximal number of transparent rules a node can execute
between two normal rules, in a stabilized execution. A full
round of an execution is defined as 1` SpUq rounds.

The notion of full round is the suitable notion to evaluates
the time of response of our snap-stabilizing algorithm, since
Algorithm U is for us a blackbox. Recall that, for unison
algorithms presented in [11]–[14], the notion of full round
is identical to the more classical notion of round.

Theorem 6. Let w be a node, and let ϵ “ pγ ÝÑ
T

γ0 ÝÑ
T
¨ ¨ ¨ q

be a maximal execution such that γ P Γcvg and in γ ÝÑ
T

γ0,
w executes Rstart. Then fpw, ϵq occurs in OpDq full rounds
after γ.

Proof. Theorem 2 guarantees that all the rounds are finite.
During one full round, all nodes v such that @u P

Nv, clocku P tclockv, clockv ` 1u are activated and execute
rule Rwait. These activations imply that minvPV clockv in-
creases by at least one each full round. Since at any moment

the maximal difference between the clocks of two nodes is D,
we obtain that @k P N, during D`k full rounds all the nodes
are activated at least k times. After D` 1 full rounds, all the
nodes are activated, and the following property holds for any
node v in any configuration: doiv “ maxuPV doiu ^ doiv ą
0ñ UnisonOnlypvq. In other words, the nodes with maximal
value of doi are activatable for the rule Rwait. This implies
that the maximal value of doi decreases by at least one in each
full round. This ensures that after at most 3D` 3 full rounds,
the system is in Γdoi. Moreover after D ` 2D ` 2 more full
rounds, all the nodes are activated at least 2D`2 times, so w
executes Rcpt 2D`1 times, after what it executes rule Rstop.

We established that fpw, ϵq occurs in at most 6D ` 5 “
OpDq full rounds after the execution of Rstart by w.

VI. CONCLUSION

We proposed a generic, deterministic, snap-stabilizing,
silent algorithm that solves Termination Detection in asyn-
chronous networks. Our solution works assuming an unfair
scheduler. It has the nice feature of working in anonymous
networks, but requires that each node knows (an upper bound
on) the network diameter D. The space complexity of our
solution is OplogDq bits per node, and provides an answer in
Opmaxpk, k1, Dqq rounds, where k and k1 are the stabilization
time complexities of the observed and the unison algorithms,
respectively.

We have endeavored to provide a generic algorithm that
works with any self-stabilizing unison algorithm in the liter-
ature, e.g., [11]–[14]. However, the proposed solution returns
positive answers only, i.e., no answer is given while the ob-
served algorithm does not effectively terminate according to its
specification. Adapting our solution to provide snap-stabilizing
negative answers (i.e., without false negative answers) is not so
easy to achieve. It seems to be dependant on stabilizing time of
the unison algorithm. Therefore, we should be able to achieve
this goal by developing an ad-hoc solution, but likely at the
expense of genericity. Also, two other issues remain open in
anonymous settings, namely piq the question of necessity for
nodes to known the knowledge of (an upper bound on) the
diameter of the network (no matter the solution being self-
or non-self-stabilizing), and piiq the optimality in both spaces
and time to solve snap-stabilizing TD in anonymous networks.

REFERENCES

[1] N. Francez, “Distributed termination,” ACM Trans. Program. Lang.
Syst., vol. 2, no. 1, p. 42–55, 1980. [Online]. Available: https:
//doi.org/10.1145/357084.357087

[2] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,”
Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[3] S. Dolev, Self-Stabilization. MIT Press, 2000.
[4] K. Altisen, S. Devismes, S. Dubois, and F. Petit, Eds., Introduction

to Distributed Self-Stabilizing Algorithms, ser. Synthesis Lectures on
Distributed Computing. Morgan & Claypool Publishers, 2019.

[5] A. Cournier, A. K. Datta, S. Devismes, F. Petit, and V. Villain, “The
expressive power of snap-stabilization,” Theor. Comput. Sci., vol. 626,
pp. 40–66, 2016. [Online]. Available: https://doi.org/10.1016/j.tcs.2016.
01.036

[6] A. Bui, A. K. Datta, F. Petit, and V. Villain, “Snap-stabilization and
PIF in tree networks,” Distributed Computing, vol. 20, no. 1, pp. 3–19,
2007.

[7] D. Angluin, “Local and global properties in networks of processors,”
in Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC ’80), 1980, pp. 82–93.

[8] C. Lin and J. Simon, “Observing self-stabilization,” in Proceedings
of the Eleventh Annual ACM Symposium on Principles of Distributed
Computing, Vancouver, British Columbia, Canada, August 10-12, 1992,
N. C. Hutchinson, Ed. ACM, 1992, pp. 113–123. [Online]. Available:
https://doi.org/10.1145/135419.135444

[9] J. Beauquier, L. Pilard, and B. Rozoy, “Observing locally self-
stabilization,” J. High Speed Networks, vol. 14, no. 1, pp. 3–
19, 2005. [Online]. Available: http://content.iospress.com/articles/
journal-of-high-speed-networks/jhs252

[10] ——, “Observing locally self-stabilization in a probabilistic way,” J.
Aerosp. Comput. Inf. Commun., vol. 3, no. 10, pp. 516–537, 2006.
[Online]. Available: https://doi.org/10.2514/1.19858

[11] J. Couvreur, N. Francez, and M. Gouda, “Asynchronous unison,” in
Proceedings of the 12th IEEE International Conference on Distributed
Computing Systems (ICDCS’92), 1992, pp. 486–493.

[12] C. Boulinier, F. Petit, and V. Villain, “When graph theory helps
self-stabilization,” in Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Distributed Computing, PODC 2004.
ACM, 2004, pp. 150–159. [Online]. Available: https://doi.org/10.1145/
1011767.1011790

[13] S. Devismes and C. Johnen, “Self-stabilizing distributed cooperative
reset,” in 39th IEEE International Conference on Distributed Computing
Systems, ICDCS 2019. IEEE, 2019, pp. 379–389. [Online]. Available:
https://doi.org/10.1109/ICDCS.2019.00045

[14] Y. Emek and E. Keren, “A thin self-stabilizing asynchronous unison
algorithm with applications to fault tolerant biological networks,” in
PODC ’21: ACM Symposium on Principles of Distributed Computing.
ACM, 2021, pp. 93–102.

[15] C. Boulinier, M. Levert, and F. Petit, “Snap-stabilizing waves in
anonymous networks,” in Distributed Computing and Networking, 9th
International Conference, ICDCN 2008, ser. Lecture Notes in Computer
Science, vol. 4904. Springer, 2008, pp. 191–202. [Online]. Available:
https://doi.org/10.1007/978-3-540-77444-0z 17

[16] G. Tel, “Total algorithms,” in Concurrency 88, V. F. e. Springer, Ed.,
vol. LNCS 335. Springer-Verlag, 1988, pp. 277–291.

[17] B. K. Szymanski, Y. Shi, and N. S. Prywes, “Terminating iterative solu-
tion of simultaneous equations in distributed message passing systems,”
in Proceedings of the Fourth Annual ACM Symposium on Principles
of Distributed Computing, Minaki, Ontario, Canada, August 5-7, 1985,
M. A. Malcolm and H. R. Strong, Eds. ACM, 1985, pp. 287–292.

[18] E. Godard, “Snap-stabilizing tasks in anonymous networks,” Theory
Comput. Syst., vol. 63, no. 2, pp. 326–343, 2019.

[19] ——, “A self-stabilizing enumeration algorithm,” Inf. Process. Lett.,
vol. 82, no. 6, pp. 299–305, 2002.

[20] A. W. Mazurkiewicz, “Distributed enumeration,” Inf. Process. Lett.,
vol. 61, no. 5, pp. 233–239, 1997.

[21] S. Dolev, M. Gouda, and M. Schneider, “Memory requirements for
silent stabilization,” in PODC96 Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing, 1996, pp. 27–34.

[22] M. Gouda and F. Haddix, “The alternator,” in Proceedings of the Fourth
Workshop on Self-Stabilizing Systems. IEEE Computer Society Press,
1999, pp. 48–53.

[23] C. Boulinier, F. Petit, and V. Villain, “Synchronous vs. asynchronous
unison,” Algorithmica, vol. 51, no. 1, pp. 61–80, 2008. [Online].
Available: https://doi.org/10.1007/s00453-007-9066-x

