
Robust Self-Stabilizing Weight-Based

Clustering Algorithm

Colette Johnen, Le Huy Nguyen

LRI, Univ. Paris-Sud, CNRS
F91405, Orsay, France

Abstract

Ad hoc networks consist of wireless hosts that communicate with each other in the
absence of a fixed infrastructure. Such networks cannot rely on centralized and orga-
nized network management. The clustering problem consists of partitioning network
nodes into non-overlapping groups called clusters. Clusters give a hierarchical orga-
nization to the network that facilitates the network management and that increases
its scalability.

In a weight-based clustering algorithm, the clusterheads are selected according to
their weight (a node’s parameter). The higher the weight of a node, the more suitable
this node is for the role of clusterhead. In ad hoc networks, the amount of bandwidth,
memory space or battery power of a node could be used to determine weight values.

A self-stabilizing algorithm, regardless of the initial system configuration, converges
to legitimate configurations without external intervention. Due to this property,
self-stabilizing algorithms tolerate transient faults and they are adaptive to any
topology change.

In this paper we present a robust self-stabilizing weight-based clustering algorithm
for ad hoc networks. The robustness property guarantees that, starting from an
arbitrary configuration, after one asynchronous round, the network is partitioned
into clusters. After that, the network stays partitioned during the convergence phase
toward a legitimate configuration where the clusters verify the “ad hoc clustering
properties”.

Key words: Distributed algorithm, Ad hoc networking, Weight-Based Clustering,
Self-Stabilization, Robustness.

1 Introduction

An ad hoc network is a self-organized network, especially those with wireless
or temporary plug-in connections. Such a network may operate in a standalone

Preprint submitted to Elsevier 17 March 2008

fashion, or may be connected to the larger Internet [14]. In these networks,
mobile routers may move arbitrary often; thus, the network’s topology may
change rapidly and unpredictably. Ad hoc networks cannot rely on centralized
and organized network management. Significant examples include establish-
ing survivable, efficient, dynamic communication for emergency/rescue oper-
ations, disaster relief efforts, and military networks. Meetings where partici-
pants aim at creating a temporary wireless ad hoc network is another typical
example. Quick deployment is needed in these situations.

Clustering means partitioning network nodes into groups called clusters, pro-
viding the network with a hierarchical organization. A cluster is a connected
subgraph of the global network composed of a clusterhead and ordinary nodes.
Each node belongs to only one cluster. In addition, a cluster is required to obey
certain constraints that are used for network management, routing methods,
resource allocation, etc. By dividing the network into non-overlapped clus-
ters, intra-cluster routing is administered by the clusterhead and inter-cluster
routing can be achieved in a reactive manner between clusterheads. Thus,
clustering-based routing reduces the amount of routing information propa-
gated in the network. Clustering facilitates the reuse of resources, which im-
proves the system capacity. Members of a cluster can share resources such as
software, memory space, printer, etc. Moreover, clustering can be used to re-
duce the amount of information that is used to store the network state. Distant
nodes outside of a cluster usually do not need to know the details of specific
events occurring inside this cluster. Indeed, an overview of the cluster’s state
is generally sufficient for those distant nodes to make control decisions. Thus,
the clusterhead is typically in charge of collecting the state of nodes in its
cluster and constructing an overview of its cluster state.

For the above mentioned reasons, it is not surprising that several distributed
clustering algorithms have been proposed during the last ten years [1–3,8,13,15,21].
The clustering algorithms in [1,13] construct a spanning tree. Then the clus-
ters are constructed on top of the spanning tree. The clusterheads set do not
necessarily form a dominating set (i.e., a node can be at distance greater than
1 from its clusterhead). Two network architectures for MANET (Mobile Ad
hoc Wireless Network) are proposed in [15,21] where nodes are organized into
clusters. The clusterheads form an independent set (i.e., clusterheads are not
neighbors) and a dominating set. The clusterheads are selected according to
the value of their IDs.

In [8], a weight-based distributed clustering algorithm taking into account
several parameters (node’s degree, transmission and battery power, node mo-
bility) is presented. In a neighborhood, the most suitable for the clusterhead
role (i.e., a node optimizing all the parameters) are the selected nodes. In [3], a
Distributed and Mobility-Adaptive Clustering algorithm, called DMAC, is pre-
sented. The clusterheads are selected according to a node’s parameter (called

2

weight). The higher the weight of a node, the more suitable this node is for the
role of clusterhead. An extended version of this algorithm, called Generalized
DMAC (GDMAC), is proposed in [2]. In the latter algorithm, the clusterheads
do not have to form an independent set. This implies that, when, due to the
mobility of the nodes, two or more clusterheads become neighbors, none has
to resign. Thus, in highly mobile environment the clustering management with
GDMAC requires less overhead than the clustering management with DMAC.
The DMAC and GDMAC algorithms are analyzed respectively in following
papers [6,7], with respect to their convergence time and message complexity.
In [8], a weight-based distributed clustering algorithm is presented; also the
computation of the node’s weight according to several parameters (node’s de-
gree, transmission power, battery power, . . .). In [17,25] probabilistic clustering
constructions for ad hoc sensor networks are presented.

A system is self-stabilizing when regardless of its initial configuration, it is
guaranteed automatically to reach a legitimate configuration in a finite num-
ber of steps. The correctness of self-stabilizing algorithms does not depend on
initialization of variables, and a self-stabilizing algorithm converges to some
predefined stable configuration starting from an arbitrary initial one. There-
fore self-stabilizing algorithms are inherently tolerant to transient faults in the
system. The self-stabilizing algorithms can also adapt dynamically to changes
in the network topology or system parameters (e.g., communication speed,
number of nodes). A new configuration resulting from a topological change is
viewed as an inconsistent configuration from which the system will converge
to a configuration consistent with the new topology. Several self-stabilizing
algorithms for cluster formation and clusterhead selection have been proposed
[5,11,16,18,22–24]. [16] presents a self-stabilizing algorithm that constructs a
maximal independent set (MIS) (i.e., members of the set are not neighbors,
and the set is maximal to this property). Note that a maximal independent set
is a good candidate for the clusterheads set because a maximal independent
set is also a dominating set (i.e., any node is member of the dominating set
or has a neighbor that is member of the set). In [11], a self-stabilizing algo-
rithm for the construction of wireless connected overlays is presented. Based
on the construction of MIS, the authors computed a connected dominating
set. In [24], a self-stabilizing algorithm that creates a minimal dominating set
(i.e., if any member of the set leaves the set, the set is not further a dominat-
ing set) is presented. Note that a minimal dominating set is not necessarily an
independent set. In [5], a self-stabilizing link-cluster algorithm under an asyn-
chronous message-passing system model is presented (no convergence proofs
are presented). The definition of cluster is not exactly the same as ours: an
ordinary node can be at distance two of its clusterhead. The presented clus-
tering algorithm requires three types of messages, our algorithms adapted to
message passing model require one type of message. A self-stabilizing algo-
rithm for cluster formation is presented in [23]. A density criterion (defined
in [22]) is used to select clusterhead: a node v chooses in its neighborhood the

3

node having the highest density. A v’s neighbor contains all nodes at distance
less or equal to 2 from v. Therefore, to choose clusterhead, communication at
distance 2 is required. Our algorithms builds clusters on local information; so
it requires only communication between nodes at distance 1 of each others.
In [10], a probabilistic self-stabilizing clustering algorithm is presented, the
clusterheads are randomly selected; in the average a MIS is built in O(lg(|V |)
asynchronous rounds where |V | is the network size.

Both algorithms DMAC and GDMAC are not self-stabilizing, i.e., they work
assuming correct initialization. They cannot cope with the wake up problem.
Sensors to conserve energy sleep a large portion of the time. During the sleep-
ing period of a sensor, the network topology may have drastically changed.
The sensor has to automatically adapt to the new situation. A self-stabilizing
version of DMAC and GDMAC is presented in [18]: they cope with any initial
configuration. They also adapt to arbitrary topology changes due to node crash
failures, communication link crash failures, node recovering or link recovering,
merging of several networks, and so on.

In this paper, we present a robust and self-stabilizing version of GDMAC
and DMAC. The obtained clusters satisfy the “ad hoc clustering properties”,
informally presented as follows:

(1) each node is at most at distance 1 from the clusterhead of its cluster.

(2) in a neighborhood there are at most k clusterheads (k being a given
parameter).

(3) the clusterhead of a node is nearly the best choice: its clusterhead
was a nearly optimal weight (its weight is at most h smaller than the
optimal weight).

Starting from an arbitrary configuration, the system satisfies the safety pred-
icate in one synchronous computation step (i.e., one asynchronous round).
Once the system satisfies the safety predicate, the system performs correctly
its task (i.e., the network is partitioned into clusters). The partition may have
to change to get a partition satisfying the ad hoc clustering properties. Dur-
ing the construction of the final clusters the safety predicate stay verified: the
network is always partitioned. That is why we call this algorithm robust. The
algorithm in [18] is not robust: a node may not belong to a cluster during
the stabilization phase even if it belongs initially to a well-formed cluster.
In [20] a robust self-stabilizing version of DMAC under synchronous scheduler
is presented. Our algorithm is adapted to 1-hop clusters formation algorithms
presented in [4,9,12,15].

The stabilization time or convergence time is the time needed to build clusters
having the ad hoc clustering properties from any initial configuration, along
any computation. The nodes have various speed therefore the convergence time

4

is established in term of asynchronous rounds. Our algorithm has the following
upper bound on the convergence time : 2D + 4 asynchronous rounds, where
D is the network diameter. This upper bound is formally proved in Section 7.

Our algorithm is designed for the state model. Nevertheless, it can be easily
transformed into an algorithm for the message-passing model. For this pur-
pose, each node v periodically broadcasts to its neighbors a message containing
its state. Based on this message, v’s neighbors decide whether to update their
variables or not. After a change in the value of v’s state, node v broadcasts to
its neighbors its new state.

The paper is organized as follows. In Section 2, the formal definition of self-
stabilization is presented. The clustering problem is discussed in the Section 3.
A robust version of [18] is described in Section 4. The self-stabilization proofs
are presented in Section 5. Section 6 discusses about the robustness of our
algorithm. Finally, the time complexity is analyzed in Section 7.

2 Model

Communication Model. We model a distributed system by an undirected
graph G = (V, E) in which V , is the set of nodes and there is an edge {u, v} ∈
E if and only if the nodes u and v can directly communicate: nodes u and v
are said neighbors.

The set of neighbors of a node v ∈ V will be denoted by Nv. In this paper, we
consider the local shared memory model of communication. Each node v has
a finite set of local variables such that the variables at a node v can be read
by node v and the neighbors of v, but can be only modified by node v.

Configuration. The state of a node is defined by the values of its local
variables. A configuration of a distributed system G is an instance of the node
states. Let C be the set of possible configurations.

Program: The program of every node v consists of a finite set of guarded
statements of the form Rule : Guard → Action.

Guard is a boolean predicate involving the local variables of v and the local
variables of its neighbors. Action is assignments that modify the local variables
in v. If a guard rule is evaluated to true by a node v, then we say the node v
is enabled.

Computation step. The evaluation of the rule guard, and the action per-
forming is done in an atomic step. The nodes are not synchronized; neverthe-
less several nodes may perform simultaneously an atomic step. Thus during a

5

computation step one or several nodes do simultaneously an atomic step.

Computation. A computation e of a system G is a sequence of configurations
c1, c2, ... such that for i = 1, 2, ..., the configuration ci+1 is reached from ci

by a single computation step where one or several enabled nodes perform
simultaneously an atomic step. E be the set of all possible computations of a
system G. The set of computations of G starting with the particular initial
configuration c ∈ C will be denoted Ec. The set of computations of E whose
initial configurations are all elements of B ∈ C is denoted as EB.

Identifiant. Every node v in the network is assigned a unique identifier (ID).
For simplicity, here we identify each node with its ID and we denote both with
v.

Attractor. In this paper, we use the notion attractor [19] to define self-
stabilization.

Definition 1 (Attractor). Let B1 and B2 be subsets of C. Then B1 is an
attractor for B2 if and only if:

1. ∀e ∈ EB2 , (e = c1, c2, ...),∃i ≥ 1 : ci ∈ B1 (convergence).

2. ∀e ∈ EB1 , (e = c1, c2, ...),∀i ≥ 1, ci ∈ B1 (closure under any compu-
tation steps).

Self-Stabilization. The set of configurations matching the specification of
problems is called the set of legitimate configurations, denoted as L. C\L
denotes the set of illegitimate configurations.

Definition 2 (Self-Stabilization). A distributed system S is called Self-
Stabilizing if and only if there exists a non-empty set L ⊆ C such that the
following conditions hold:

1. L is an attractor for C.
2. ∀e ∈ EL, e verifies the specification problem.

T Stabilization time. The stabilization time (also named convergence time)
is the number of asynchronous rounds needed to reach a legitimate configura-
tion from any initial configuration with any computation.

Definition 3 (Asynchronous round) The asynchronous round of the com-
putation comp = c0, ...cm starting at ci is the smallest segment of comp such
that (1) it starts at ci, and (2) each node enabled at ci performs a rule during
this segment or is not enabled at a configuration of this segment.

The first asynchronous round of the computation comp is the asynchronous
round of comp starting at the initially configuration of comp.

6

The xth asynchronous round of the computation comp is the asynchronous
round starting at the ending configuration of the x− 1th asynchronous round
of comp.

We consider synchronous computation, in which every node performs its code
simultaneously.

Definition 4 A synchronous computation step is a computation step where
all enabled nodes perform an action during the step.
A synchronous computation is a succession of consecutive synchronous com-
putation steps.

Lemma 5 A single computation step of a synchronous computation is an
asynchronous round.

Proof: Let us study the first computation step of the synchronous compu-
tation comp starting at ci: ci

cs→ ci+1. All enabled nodes at ci perform an
action during the computation step cs. Thus ci+1 is the ending of the first
asynchronous round starting at ci of comp (see the Definition 3). 2

2.1 Robustness

The communication graph changes over the time, with node departure, node
arrival, communication link failure, network merging, G denoted the the
communication graph at the current time.

Input changes model. In this paper, we cope with the following types of in-
put changes (these input changes may occur after some failures in the network)
: (i) Nodes may quit; for instance, after crash-failure (ii) node may recover or
join the network (iii) communication links may fail and/or recovers.

One motivation for our robust stabilization is that a system should react grace-
fully to the input changes - preserving a safety predicate in the presence of the
input changes. The safety predicate is chosen to ensure that the system still
performs correctly its task during the period of convergence. A self-stabilizing
protocol is robust with respect to input changes, if starting from a safe con-
figuration followed by input changes, the safety predicate holds continuously
until the protocol converges to a legitimate configuration.

Definition 6 (Robustness under Input Change [19]). Let SP be a pred-
icate on configurations called safety predicate, let IC be a set of input changes
in the system. A self-stabilizing distributed system S is robust under IC if and
only if a set of configurations satisfying the predicate SP (i) is closed under
any computation step, and (ii) is closed under any input change of IC.

7

3 Clustering for ad hoc networks

Clustering an ad hoc network means partitioning its nodes into clusters, each
one with a clusterhead and some ordinary nodes. In order to meet the require-
ments imposed by the wireless, mobile nature of these networks, nodes in the
same cluster has to be at distance at most 1 of their clusterhead. Thus, the
following clustering property has to be satisfied:

1. Every ordinary node has at least a clusterhead as neighbor (domi-
nance property).

We consider weighted networks, i.e., a weight wv is assigned to each node
v ∈ V of the network. In ad hoc networks, the amount of bandwidth, memory
space or battery power of a node could be used to determine weight values.
For simplicity, in this paper we assume that each node has a different weight.
Note that if several nodes have the same weight, one may use the couple
(weight, ID) to give distinct “weights” to each node. The choice of the clus-
terheads is based on the weight associated to each node: the higher the weight
of a node, the better this node is suitable to be a clusterhead.

Assume that the clusterheads are bound to never be neighbors. This implies
that, when due to the mobility of the nodes two or more clusterheads become
neighbors, those with the smaller weights have to resign and affiliate with
the now higher neighboring clusterhead. Furthermore, when a clusterhead v
becomes the neighbor of an ordinary node u whose current clusterhead has
weight smaller than v’s weight, u has to affiliate with (i.e., switch to the cluster
of) v. These “resignation” and “switching” processes due to node’s mobility
are a consistent part of the clustering management overhead that should be
minimized in ad hoc network where the topology changes fairly often. To
overcome the above limitations, in [2] Basagni introduced a generalization of
the previous clustering property called Ad hoc clustering properties defined as
follows:

1. Every ordinary node always affiliates with a neighbor which is clus-
terhead and has higher weight than the weight of the ordinary node
(affiliation condition).

2. For every ordinary node v, for every clusterhead z ∈ Nv : wz ≤
wClusterheadv + h (clusterhead condition).

3. A clusterhead has at most k neighboring clusterheads (k being an
integer, 0 ≤ k < n) (k-neighborhood condition).

The first requirement ensures that each ordinary node has direct access to
its clusterhead (the one of the cluster to which it belongs), thus allowing
fast inter cluster communication. The second requirement guarantees that
each ordinary node always stays with a clusterhead that gives it a “good”

8

service. By varying the threshold parameter h it is possible to reduce the
switching overhead associated to the passage of an ordinary node from its
current clusterhead to a new one. When h = 0 we simply obtain that each
ordinary node affiliates with the neighboring clusterhead with the highest
weight. Finally, the third requirement allows us to have up to k clusterheads
in its neighboring, 0 ≤ k < n. When k = 0 we obtain that two clusterheads
can not be neighbors.

3.1 Safety property for clustering algorithm

The safety property has to ensure that the network is partitioned into clusters
and each cluster has a leader that performs clusterhead tasks. In a clustered
network, the role of clusterhead is to act as a local coordinator within a cluster,
performing information aggregation and managing communication tasks. Even
during the stabilization phase, it is desired that the network is correctly par-
titioned, i.e., each node belongs to a single cluster having an effectual leader.
This property, called “safety”, guarantees the functioning of the applications
using the hierarchical structure.

Definition 7 safety property Each node belongs to a single cluster. Each clus-
ter has an effectual leader.

4 Robust Self-Stabilizing weight based Clustering Algorithm

In this Section, we present a weight-based clustering algorithm : variables are
formally presented in Algorithm 1, the predicates and the rules are presented
in Algorithm 2. Our algorithm constructs the clusters verifying the ad hoc
clustering properties. This algorithm is self-stabilizing and robust to the input
changes define in sub-section 4.1. Notice that if k = h = 0, our algorithm is a
robust and self-stabilizing version of DMAC [3]. Otherwise it is a robust and
self-stabilizing version of GDMAC [2].

A node has three possible states. It can be a truly clusterhead, in this case
the value of its Ch variable is T . It can be an ordinary node, in this case the
value of its Ch variable F . Or, it can be a nearly ordinary node, in this case
the value of its Ch variable is NF .

The goal of the R1 rule is to transform a node v into a well-formed truly
clusterhead (i.e., Chv = T ∧ Clusterheadv = v). An ordinary or nearly
ordinary node v becomes a clusterhead only when it cannot join a cluster

9

Algorithm 1 : constants and variable definition

Parameters

k, h : N;

Constants

wv : N; // the weight of node v

Local variables of node v

Chv: {T, F, NF}; // indicates the role of the node v

Clusterheadv : IDs; // the clusterhead of node v

SRv : N ;// SRv value contains the weight of a v’s neighbor.

Any clusterhead in v’s neighborhood having a weight weaker or equal to SRv should resign,

because k-neighborhood condition is violated in v’ neighborhood.

neighborhood

Macros

N+
v = {z ∈ Nv : (Chz = T) ∧ (wz > wv)}; // the set of v’s neighboring

clusterheads which have higher weight than v’s weight

(i.e., N+
v = ∅). The goal of the R2 rule is to ensure that the ordinary node

v is in a well-formed cluster (i.e., v verifies the affiliation and clusterhead
condition of ad hoc clustering properties). The R3 action is the first step done
by a clusterhead v. After the R3 action, v is a nearly ordinary node.

A truly clusterhead v (Chv = T) has to resign its role iff it violates the k-
neighborhood condition. A clusterhead v having to resign takes the nearly
ordinary state (Chv = NF) - it performs the R3 action. Node v stays in this
nearly ordinary state until all of nodes in its cluster have joined another cluster.
Node v that has a state “nearly ordinary” is requiring that the members of
its cluster join another cluster. Thus, the members of v’s cluster are enabled
(the predicate G11 or G21 is verified), till v is nearly ordinary. Once the cluster
of v is empty (i.e., ∀z ∈ Nv : Clusterheadz 6= v), node v is enabled; it can
become an ordinary node or a truly clusterhead (i.e., the predicate G1 or G2

is verified).

A truly clusterhead v checks the number of its neighbors that are clusterheads.
If this number is less than or equal to k then SRv should have the value 0 (R5

action). If this number is greater than k, then the clusterhead sets up the value
of SRv to the weight of the first neighboring clusterhead having to resign, the

10

Algorithm 2 : Robust Self-Stabilizing Weight-Based Clustering Al-
gorithm

Predicates

G0(v) = (∀z ∈ N+
v : wv > SRz) ∧ (|N+

v | ≤ k)

G1(v) = G11(v) ∨G12(v)

G11(v) ≡ (Chv 6= T) ∧ (N+
v = ∅)

G12(v) ≡ (Chv = T) ∧ (Clusterheadv 6= v) ∧G0(v)

G2(v) = G21(v) ∨G22(v)

G21(v) ≡ (Chv = F) ∧ {(∃z ∈ N+
v : wz > wClusterheadv + h)

∨(Clusterheadv /∈ N+
v)} ∧ (N+

v 6= ∅)

G22(v) ≡ (Chv = NF) ∧ {(∀z ∈ Nv : Clusterheadz 6= v) ∧ (N+
v 6= ∅)

G3(v) = G31(v) ∨G32(v)

G31(v) ≡ (Chv = T) ∧ ¬G0(v)

G32(v) ≡ (Chv = NF) ∧ (Clusterheadv 6= v)

G4(v) ≡ (Chv 6= T) ∧ (SRv 6= 0)

G5(v) ≡ (Chv = T) ∧ (SRv 6= max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)}))

Rules

R1(v) : G1(v) → Chv := T ; Clusterheadv := v;

SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)})

R2(v) : G2(v) → Chv := F ; Clusterheadv := maxwz{z ∈ N+
v }; SRv := 0

R3(v) : G3(v) → Chv := NF ; Clusterheadv = v; SRv := 0

// update the value of SRv

R4(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧G4(v) → SRv := 0

R5(v) : (¬G1(v) ∧ ¬G2(v) ∧ ¬G3(v)) ∧G5(v) →

SRv := max(0, k + 1th{wz : z ∈ Nv ∧ (Chz = T)})

one having the (k+1)th highest weight (R5 action). All clusterheads in v’s
neighborhood having smaller and equal weight than SRv will have to resign
to ensure k -neighborhood condition at node v.

SRv value of an ordinary node is 0 or v is enabled: the predicate G1, G2, G3

11

or G4 is verified.

Due to an incorrect initial configuration, a node v may have to correct the
value of its variable Clusterheadv and/or of its variable SRv. In this case, v
is enabled.

4.1 Safety predicate

The safety predicate SP is defined as follow:

SP ≡ ∀v ∈ V : (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv 6= F).

SP predicate ensures that (i) each node belongs to a cluster and that (ii) each
cluster has a clusterhead that performs its tasks correctly. Because the nearly
ordinary nodes and the truly clusterhead nodes acts as a clusterhead. Thus,
the hierarchical structure exists if the predicate SP is verified.

Let us denote z the clusterhead of a node v. The safety predicate SP ensures
that the node z is a neighbor of node v and node z is not an ordinary node.
Thus, the safety predicate SP is only violated in cases of a z’s removal (or a
crash of the node z), a failure of link between node v and node z. Therefore,
the safety predicate SP is preserved in the following input changes:

1. Change of node’s weight (illustrated in Figure 1).

2. Crash of ordinary nodes.

3. Joining of subnetworks that verify the predicate SP.

4. Failures of link between two ordinary nodes or between two cluster-
head nodes.

4.2 Illustration of a convergence phase

Algorithm 2 is illustrated in Figure 1, in this example, k = 1 and h = 0.
Initially, node 5 has 2 clusterheads in its neighborhood. It assigns the value of
its SR variable to 9. 9 is the weight of the first clusterhead which violates the
1-neighborhood condition in node 5’s neighborhood (Figure 1.b). Node 1 does
not stay clusterhead because SR5 ≥ w1 : node 1 resigns to nearly ordinary
state (Figure 1.c). No node has chosen node 1 as clusterhead (i.e., no node is
in the cluster led by node 1). Thus, during the next computation step, node
1 can join the cluster led by node 5. In the neighborhood of node 5 there is
one clusterhead, thus node 5 sets the value of its SR variable to 0 (R5 rule)
(Figure 1.d). Due to the change of the weight of node 4 (Figure 1.e), node 2
cannot stay ordinary : all clusterheads in the node 2’s neighborhood have a

12

: Nearly ordinary node: Ordinary node : Clusterhead node

R (4) 3

w= 91

(6)
2

R (4)R2

w= 15(SR=9)5

w= 91

w= 91

w= 15(SR=0)5

R (1) 2
R (5) 5

w= 91
w= 91

w= 91
w= 91

w= 91

w= 53

w= 155

w= 82

w= 53 w= 53

R (1) 3

w= 15(SR=9)5

w= 91w= 53
w= 53 w= 53

w= 53
w= 53

w= 53

w= 155

w= 155

w= 155
w= 155

w= 155

w= 104 w= 104 w= 104

w= 104
w= 74

w= 74

R (2)1

w= 74
w= 74 w= 74

w= 56w= 82w= 56w= 56

w= 56
w= 56

w= 56

w= 56w= 56
w= 56

w= 82 w= 82 w= 82

w= 82
w= 82

w= 82 w= 82

5(5)R

node 4 changes
its weight

ba c

f e d

g h i

Fig. 1. Convergence to a legitimate configuration in the case k = 1, h = 0

weight that is smaller than node 2’s weight. Thus, node 2 becomes clusterhead
(Figure 1.f). Node 4 resigns to nearly ordinary state (Figure 1.g). It cannot
keep the state “truly clusterhead”, because it violates the 1-neighborhood
condition: there are two clusterheads in its neighborhood which have a higher

13

weight than its weight (node 2 and 5). Node 6 does not verify the affiliation
condition (Chclusterhead6 = Ch4 = NF). Node 6 switches of its cluster, it goes
into the cluster led by node 2 (Figure 1.h). After that, node 4 can take the state
“ordinary” and stop to behave as a clusterhead. Node 4 joins the cluster led
by 5 (Figure 1.i). The network is stabilized. During the convergence phase, the
safety property SP is always verified: at any time, the network is partitioned
into clusters, and each cluster has a leader ready to do the leadership tasks
(i.e., a leader which has the state truly clusterhead or nearly ordinary).

5 Proofs of Self-Stabilization

5.1 Proof of convergence

We first prove that the system reaches a terminal configuration.

Definition 8

• Let us name Pv the predicate (Clusterheadv = v) ∨ (Chv = F).

• Let A1 be the configurations set defined by {c ∈ C | ∀v : Pv ≡ true}.

Lemma 9 The predicate Pv is closed under any computation step.

Proof: Assume that we have a computation step c1
cs→ c2, such that the

predicate Pv is verified by the configuration c1 and it is not verified by the
configuration c2. Only an action done by node v changes the value of v’s
variables. Thus node v does an action during the computation step cs. After
any action by node v, the predicate Pv is verified. There is a contradiction. 2

Lemma 10 If at the configuration c, the predicate Pv is not verified then node
v is enabled at the configuration c.

Proof: If node v is a truly clusterhead at the configuration c then the predicate
G12(v) or the predicate G31(v) is verified by the configuration c. If v is a nearly
ordinary node then the predicate G32(v) is verified by the configuration c. In
both cases, the node v is enabled in the configuration c. 2

Lemma 11 A1 is reached after the first asynchronous round.

Proof: Let comp a maximal computation. If the predicate Pv is verified at
initial configuration of comp, called c0, then the predicate Pv is verified at the
end of the first asynchronous round, because Pv is a closed predicate under
any computation step (see Lemma 9). Assume that the predicate Pv is not
verified at the configuration c0. The node v is enabled in the configuration c0

14

(see Lemma 10). Two cases are possible :

Case 1: node v does an action during the first round. At the config-
uration reached after an action by node v, the predicate Pv is verified. The
predicate Pv is verified at the end of the first asynchronous round (see Lemma
9).

Case 2: node v does not do an action during the first asynchronous
round. At some configuration of the first asynchronous round of comp, node v
is not enabled (Definition 3 of asynchronous round). We assume without losing
any generality, that this configuration is c. The predicate Pv is verified by the
configuration c (see Lemma 10). Then, the predicate Pv is verified forever (see
Lemma 9).

The predicate Pv is verified at the end of the first round, whatever is node v.
2

Corollary 12 A1 is an attractor.

Proof: The configuration set A1 is closed under any computation step because
the predicate Pv is closed under any computation step (see Lemma 9). Along
any computation, after an asynchronous round A1 is reached (see Lemma 11).
2

Fact 13 In any configuration of A1, the predicate G12(v) and the predicate
G32(v) are never true.

Lemma 14 In A1, along any maximal computation, between two consecutive
R1 actions by node v, another node u such that wu > wv, does the R1 action.

Proof: Let us study the segment of a computation c1, c2, . . . , cm starting and
ending by a computation step where v does the R1 action. At the configura-
tion c1 and the configuration cm−1 the predicate G11(v) is verified, we have
N+

v = ∅.
Once node v had performed the R1 action, Pv is verified and v is a truly clus-
terhead. Before performing again the R1 action, v becomes a nearly ordinary
node. Thus, node v does the R3 action during the segment c2, . . . , cm−1.
Assume that the R3 action of v is done during the computation step ci

cs→ ci+1

where 1 < i < m. The predicate G31(v) is verified by ci, thus we have N+
v 6= ∅

at ci. Thus between c1 and ci, a node u ∈ Nv, such that wu > wv has performed
the R1 action. 2

Lemma 15 Along any maximal computation starting from a configuration of
A1, a node v performs a finite number of times the R1 action.

15

Proof: Assume that comp is a maximal computation where the node v exe-
cutes infinitely often the R1 action. Following Lemma 14, between two con-
secutive the R1 action by node v a node u such that wu > wv performs the R1

action. Since the set of nodes is finite, then v performs the R1 action, infinitely
often only if there exists a node u (wu > wv) that performs the R1 infinite
often. Thus, we have an infinite sequence of nodes having increasing weight
that perform R1 action infinitely often. Since the number of nodes is finite,
this is a contrary. Hence our hypothesis is false. From A1, along any maximal
computation a node executes a finite number of times the R1 action. 2

Lemma 16 In A1, along any maximal computation, between two consecutive
R3 actions by node v, v does the R1 action.

Proof: Once node v had performed the R3 action, v is a nearly ordinary node.
Before performing R3 action, the predicate G31(v) has to be verified. Thus,
node v needs to become a truly clusterhead in the meantime. Only the R1

action transforms an (nearly) ordinary node into a truly clusterhead. Thus
between two consecutive R3 actions by node v, v does the R1 action. 2

Lemma 17 In A1, along any maximal computation a node v performs a finite
number of times the R2 action.

Proof: Assume that comp is a maximal computation where the node v ex-
ecutes infinitely often R2 action. comp has a suffix where node v does not
execute the R1 action and the R3 action but executes infinitely often the R2

action. Let us study the action of v in this suffix. Once v had performed
the R2 action, node v is an ordinary node. We have (∀z ∈ N+

v : wz ≤
wClusterheadv) ∧ (Clusterheadv ∈ N+

v).

When the node v performs R2 action, the predicate G21(v) is verified. We have
(∃z ∈ N+

v : wz > wClusterheadv + h) ∨ (Clusterheadv /∈ N+
v), implies that in

meantime Clusterheadv has performed the R3 action or a neighbor of v, z has
became a truly clusterhead. Thar is a contrary. 2

Corollary 18 Every maximal computation comp that starts in A1 has a suffix
where only the R4 action and the R5 action are executed.

Proof: During maximal computation comp, the number of R1 actions, R3

actions and R2 actions are finite (see Lemmata 15, 16, and 17). 2

Theorem 19 Starting from a configuration of A1, any maximal computation
reaches a terminal configuration.

Proof: Let us study a maximal computation comp. comp has a suffix where
only the R4 actions and the R5 actions are executed (see Corollary 18). In
this suffix, named suf , each node does at most one time the R4 action or R5

16

action. Because once the predicate G5∨G4 is not verified by a node, it will be
never verified along suf . Thus, suf contains at most |V | computation steps.
We conclude that comp reaches a terminal configuration. 2

5.2 Proof of correctness

In this Section we prove that all terminal configurations are legitimate.

Lemma 20 Let c be a configuration that contains a nearly ordinary node. c
is not a terminal configuration.

Proof: Assume that node v is a nearly ordinary node (i.e., Chv = NF is
verified). If ∀u ∈ Nv, Clusterheadu 6= v is verified then the predicate G11(v)
or the predicate G22(v) is verified. In this case, node v is enabled at the
configuration c. Assume that there is a node u ∈ Nv such that Clusterheadu =
v.

Case 1: node u is ordinary. Since Chv = NF then Clusterheadu /∈ N+
u

(see the definition of N+
u). Thus, the predicate G21(u) is verified. Node u is

enabled at the configuration c.

Case 2: node u is a truly clusterhead. We have Chu = T . Since Clusterheadu =
v 6= u. Thus, the predicate G12(u) or the predicate G31(u) is verified. Node u
is enabled at the configuration c.

Case 3: node u is nearly ordinary. We have Chu = NF . Since Clusterheadu =
v 6= u. Thus, the predicate G32(u) is verified. Node u is enabled at the config-
uration c. 2

Theorem 21 In a terminal configuration, the ad hoc clustering properties are
satisfied.

Proof: In a terminal configuration, for every node v, we have Gi(v) ≡ False : i =
{1..5}. Following Lemma 20, in a terminal configuration there is not a node v
such that Chv = NF .

Case 1: node v is ordinary, we have Chv = F . The predicate G1(v) is
not verified implies that N+

v is not empty. The predicate G2(v) is not verified
implies that (@z ∈ N+

v : (wz > wClusterheadv + h)) and (Clusterheadv ∈ N+
v).

Thus node v satisfies affiliation and clusterhead condition (properties 1 and
2).

Case 2: node v is a truly clusterhead, we have Chv = T . The predicate
(G3(v) is not verified implies that (∀z ∈ N+

v : wv > SRz) ∧ (|N+
v | ≤ k).

17

The predicate G1(v) is not verified implies that Clusterheadv = v. We now
prove that node v has at most k neighboring clusterheads. Since |N+

v | ≤ k,
then node v has at most k neighboring clusterheads with higher weight than
v’s weight. Assume that node v has more than k neighboring clusterheads.
The k + 1th of these clusterheads has a weight smaller than v weight. If

SRv 6= k + 1th{wz : z ∈ Nv ∧ (Chz = T)}) then node v is enabled. Thus,

SRv = k + 1th{wz : z ∈ Nv ∧ (Chz = T)}) < wv and v has a neighboring
clusterhead u such that wu ≤ SRv. Hence, the predicate G31(u) is verified
because v ∈ N+

u and wu ≤ SRv. Node u is enabled. That is a contrary. 2

6 Robustness

In a configuration that satisfies the predicate SP, the clusterhead of any node
performs its task correctly, because it is not an ordinary node. Thus, the
hierarchical structure is kept up. Let us remind the definition of the predicate
SP: SP ≡ ∀v ∈ V : (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv 6= F).

Definition 22 Let v a node. We define SPv as the safety predicate SP on v.
SPv ≡ (Clusterheadv ∈ Nv ∪ {v}) ∧ (ChClusterheadv 6= F).

Lemma 23 The predicate SPv is closed any computation step.

Proof: Assume that we have a computation step c1
cs→ c2, we will prove that if

the predicate SPv is verified by the configuration c1, then in the configuration
c2, the predicate SPv is verified.
We will prove by contrary. Assume that in the configuration c2, the predicate
SPv is not verified: (Clusterheadv /∈ {Nv ∪ v}) ∨ (ChClusterheadv = F). Thus,
during the computation step cs, there are two possibilities.

Case 1. node v changes its clusterhead during the execution of cs. Note that
the R4 actions and R5 actions do not change the value of clusterhead of node v.
If node v performs the R1 action or R3 action during the computation step cs
then the predicate SPv is always verified because after doing the action of the
rule R1 or R3, we have (Clusterheadv = v)∧(Chv 6= F). Thus, node v performs
the R2 action during the computation step cs. We denote z the clusterhead
selected by node v during the computation step cs. In the configuration c1,
we have Chz = T and in the configuration c2, we have Chz = F . During the
computation step cs, the node z cannot perform the R2 action. Thus, there is
a contrary because the rule R2 is the only rule that changes the value of the
variable Ch to F .

Case 2. node v did not change its clusterhead during the computation step cs.
We denote z the clusterhead of node v. In the configuration c1, the predicate

18

SPv is verified implies that Chz 6= F . In the configuration c2, the predicate
SPv is not verified implies that Chz = F . Thus, during the execution of cs,
the node z performed R2 action. But the node z can perform R2 action only
when the predicate G22(z) is verified, that implies Clusterheadv 6= z in the
configuration c1. That is a contrary. 2

Theorem 24 The predicate SP is closed under any computation step.

Proof: The theorem follows directly from Lemma 23. 2

7 Time complexity

7.1 Time to reach a safe configuration

In this Section, we study the time that is needed to reach a safe configuration.
A safe configuration verifies the predicate SP. We prove that along any com-
putation, a safe configuration is reached in a single synchronous computation
step.

Lemma 25 Assume that in the configuration c, we have the predicate Gi(v) ≡
False, ∀i ∈ {1..3}. The predicate SPv is verified by the configuration c.

Proof:

1. v is a truly clusterhead. Since the predicates G12(v) and G31(v) are not
verified, we have Clusterheadv = v, thus the predicate SPv is verified by the
configuration c.

2. v is an ordinary node. Since the predicates G11(v) and G21(v) are not
verified, we have Clusterheadv ∈ N+

v , thus the predicate SPv is verified by
the configuration c.

3. v is an nearly ordinary node. Since the predicate G32(v) is not ver-
ified, we have Clusterheadv = v, thus the predicate SPv is verified by the
configuration c.

Thus, in any case, the predicate SPv is verified by the configuration c. 2

Lemma 26 If during a computation step, node v does an action. The predi-
cate SPv is verified by the configuration reached after the computation step.

Proof: Let us study the computation step c1
cs→ c2 where node v does an

action.

19

1. node v performs the R1 action during the computation step cs.
After performing R1(v) action, we have (Clusterheadv = v)∧(Chv = T), thus
the predicate SPv is verified by the configuration c2.

2. node v performs R2 action during the computation step cs. We
denote z′ the clusterhead selected by node v during the computation step cs. In
the configuration c1, z′ is a truly clusterhead. Assume that the configuration c2

does not verify the predicate SPv (i.e. in the configuration c2, z′ is an ordinary
node). During the execution of cs, the node z′ has performed R2 action. But
the node z′ can perform R2 action only if the predicate G2(z

′) is verified by
the configuration c1, that implies that Chz′ 6= T in the configuration c1. That
is a contrary.

3. node v performs R3 action during the computation step cs. G3(v) ≡
True in c1. After performing R3(v) action, we have (Clusterheadv = v) ∧
(Chv = NF), thus, the predicate SPv is verified by the configuration c2.

4. node v performs the R4 action or the R5 action during cs. In the
configuration c1, Gi(v) ≡ False, ∀i ∈ {1..3}. The predicate SPv is verified by
the configuration c1 (see Lemma 25). Since the predicate SPv is closed under
any computation step (Lemma 23), then in the configuration c2, the predicate
SPv is verified.

Thus, in any case, the predicate SPv is verified by the configuration c2. 2

Theorem 27 The system verifies the predicate SP after the first asynchronous
round of any computation.

Proof: Let us study the computation c0, c1, ...ci. Without losing any generality,
we assume that the first asynchronous round is comp′ = c0, . . . , cm. We prove
that in the configuration cm, the predicate SPv is verified, for every node v.

Case 1. In the configuration c0, Gi(v) ≡ False, ∀i ∈ {1..3}. The predicate
SPv is verified by the configuration c0 (see Lemma 25). Since the predicate
SPv is closed under any comptation step (Lemma 23), then the predicate SPv

is verified by the configuration cm.

Case 2. In the configuration c0, ∃i ∈ {1..3} : Gi(v) ≡ True.
Case 2.1 During a computation step of comp′, node v performs an action.

We assume without losing any generality, that this action is done during the
computation step ci

cs→ ci+1 where i < m. The predicate SPv is verified by the
configuration ci+1 (see Lemma 26), thus it is verified by the configuration cm

(SPv is a closed predicate under any computation step).
Case 2.2 During any computation step of comp′, node v does not do an

action. At some configuration of comp′, node v is not enabled (by definition of
the first asynchronous round). We assume without losing any generality, that

20

this configuration is ci where 0 ≤ i ≤ m. The predicate SPv is verified by the
configuration ci (see Lemma 25), then it is verified by the configuration cm.

We conclude that the predicate SP is verified by the configuration cm. 2

Corollary 28 The system verifies the predicate SP after the first computa-
tion step of a synchronous computation.

Proof: During a synchronous computation, a single computation step is an
asynchronous round (see Lemma 5). According to Theorem 27, after an asyn-
chronous round, a safe configuration is reached. 2

7.2 Convergence time

The stabilization time (or convergence time) is the maximum number of asyn-
chronous rounds needed to reach a legitimate configuration from an arbitrary
initial one. We will establish that along any computation, a legitimate config-
uration is reached in less than 2|V |+ 3 asynchronous rounds.

To compute the stabilization time we need to define Vi, a set of nodes for
0 < i ≤ |V |, as follows:

Definition 29 DAG =(V’, E’) is the Directed Acyclic Graph built on G=(V,E)
as follows:

• V ′ = V is the set of nodes in the initial distributed system.

• E ′ is the arrows set. The arrow v → u belongs to E ′ if and only if
wv > wu and (u, v) ∈ E.

Definition 30

• Set1 is the set of DAG sources. A source is a node with no incoming
edges in the DAG.

• V0 = ∅.
for i > 0, Vi =

⋃j=i
j=1 Setj.

• All the parents of a node, vi+1, of Seti+1 belong to Vi and the node vi+1,
does not belong to Vi. Formally, for i ≥ 1, Si+1 = { v /∈ Vi | (u → v) ⇒
u ∈ Vi}.

Remark 31 Let us name l the length of the DAG. l is the length of the largest
directed path.
We have l ≤ D where D is the network diameter; and Vl+1 = V .

We will establish that from a configuration of A1, after 2l + 2 asynchronous
rounds, no node performs the R1 action or R3 action.

21

Lemma 32 From a configuration of A1, a node of V0 will never perform the
R1 action or R3 action, along any computation. The value SR of a truly
clusterhead of V0 can only decrease from a configuration of A1.

Proof : No node of V0 perform the R1 action or R3 action. The value SR of
a truly clusterhead of V0 can only decrease. The both facts are true because
V0 is empty. 2

Lemma 33 Let i be an integer greater than 0. From a configuration of A1,
after 2i−1 asynchronous rounds, a node of Vi will never perform the R1 action
or R3 action, along any computation. The value SR of a truly clusterhead of
Vi can only decrease after 2i asynchronous rounds from a configuration of A1.

Proof : The proof is done by induction. By hypotheses, we have (1) no node
of Vi−1 performs the R1 action or R3 action after sup(2i− 3,0) asynchronous
rounds from a configuration of A1 and (2) the value SR of a truly clusterhead
of Vi−1 can only decrease after 2i−2 asynchronous rounds from a configuration
of A1.

Let vi be a node of Seti. After 2i−2 asynchronous rounds from a configuration
of A1,

• The nodes of N+
vi

are neighbor of vi and their weight are higher than
the weight of vi (by definition of N+

vi
). Thus, the nodes of N+

vi
belong

to Vi−1. The set N+
vi

is stable (i.e. it will never change).

• The value SR of a truly clusterhead of Vi−1 can only decrease (by
induction hypothesis). Thus, if G0(vi) is verified then it will be always
verified along any computation.

• If N+
vi

is empty then G0(vi) is verified.

• If G0(vi) is not verified then N+
vi

is not empty, and it will never become
empty.

• If G11(vi) is not verified, it will be not verified along any computation.
Because, (1) N+

vi
is not empty it will never be empty; or (2) the node vi

is a truly clusterhead that will never give up its status (because G0(vi)
is always verified).

• if G31(vi) is not verified, it will be not verified along any computa-
tion. Because, (1) G0(vi) is verified, it will be always verified along any
computation; or (2) the node vi is not and will never become a truly
clusterhead (N+

vi
is never empty).

• If the predicate G11(vi) is verified, then G0(vi) is verified and vi is
enabled. Therefore, the node vi performs the R1 action during the 2i−
1th asynchronous round. At the end of this round, G11(vi) and G31(vi)
are not verified.

22

• If the predicate G31(vi) is verified, then N+
vi

is not empty and vi is
enabled. Therefore, the node vi performs the R3 action during the 2i−
1th asynchronous round. At the end of this round, G11(vi) and G31(vi)
are not verified.

The predicates G12(vi) and G32(vi) are not verified by the node vi in a con-
figuration of A1. Thus, after 2i− 1 asynchronous rounds from a configuration
of A1, along any computation, vi will not perform the R1 action or R3 action.
Moreover, no neighbor of a truly clusterhead of Vi will become a clusterhead.

Assume the value SR of a truly clusterhead of Vi, named ui, increases during
the xth asynchronous round (x > 2i) (i.e. the node ui has performed the R5

action during the xth asynchronous round). A neighbor of ui has becomed
a truly clusterhead during or after the x − 1th asynchronous round. Thus
(x−1 ≤ 2i). There is a contradiction. We conclude that after 2i asynchronous
rounds from a configuration of A1, along any computation, the value SR of a
truly clusterhead of Vi can only decrease. 2

We have proved that a configuration of A1 is reached after a single asyn-
chronous round (see Lemma 11) from any configuration along any computa-
tion.

Corollary 34 After 2l+2 asynchronous rounds from any configuration along
any computation, no node will perform the R1 action or R3 action.

Theorem 35 After 2l +3 asynchronous rounds from any configuration along
any computation, the predicates G4(v), G5, and G21(v) are never verified.

Proof : After 2l+2 asynchronous rounds from any configuration, if the predi-
cate G4(v) (resp. predicate G5(v), predicate G21(v)) is not verified then it will
never be verified because N+

v is stable, no node become nearly ordinary, and
only v may change the value of SRv.

After 2l + 2 asynchronous rounds from any configuration, if the predicate
G4(v) (resp. predicate G5(v), predicate G21(v)) is true, then the node v is
enabled. Therefore v performs the R4 action (resp. R5 action, R21 action) is
done during the 2l + 3th round. At the end of this asynchronous round, the
predicates G4(v), G5, and G21(v) are verified. 2

Theorem 36 After 2l +4 asynchronous rounds from any configuration along
any computation, no node will perform an action.

Proof : After 2l + 3 asynchronous rounds from any configuration along any
computation, only the nearly ordinary nodes are enabled (see Corollary 34
and Lemma 35). No node verifies the predicate G21. Thus a nearly ordinary
node, v, is the leader of an empty cluster: v is enabled (i.e. G11(v) or G22(v)

23

is verified). v cannot verify the G11(v) predicate (see proof of Lemma 33).

Thus, the node v verifies the predicate G22(v); v does the R2 action during
the 2l + 4th round. At the end of this asynchronous round, v is ordinary, and
it will stay ordinary (because, it never perform the R1 action). 2

We conclude that a terminal configuration is reached after at most 2|D| + 4
asynchronous rounds along any computation, from any initial configuration.

Figure 2 illustrates the number of asynchronous rounds needed to stabilize in
the case k = 1, h = 0.

Note that this example can be generalized at any value of k and h. We have
a configuration c composed of m blocs as depicted in Figure 2. Each bloc Bi

includes 3 nodes: Xi, Yi, Zi. We assume that the node weights are ordered as
the following: Xi > Yi > Zi > Yi+1. We denote |V | the number of nodes in the
system S, |V | = 3m. Notice that the diameter of the system is equal to 2m.
Following Algorithm 2, from the initial configuration, each bloc Bi will one
after another takes three asynchronous rounds to stabilize. Thus, 3m = 3D/2
asynchronous rounds are needed to converge to a legitimate configuration.
Notice that if k ≥ ∆, where ∆ is the maximal degree of the network, the k-
neighborhood condition is always verified. Thus, the convergence time is O(1)
rounds under an asynchronous scheduler.

8 Conclusion

In this paper, we present a robust and self-stabilizing version of GDMAC
and DMAC. Starting from an arbitrary configuration, the system satisfies the
safety predicate in one synchronous computation step (i.e., one asynchronous
round). Once the system satisfies the safety predicate, the system performs
correctly its task (i.e., the network is partitioned into clusters). During the
construction of the final clusters the safety predicate stay verified : the network
is always partitioned. Once a terminal configuration is reached, the ad hoc
clustering properties are satisfied. Moreover, our algorithm could be applied
to several 1-hop clusters formation solutions in [4,9,12,15].

We have established that the stabilization time is at most O(D) asynchronous
rounds, where D is the network diameter.

Our algorithm is designed for the state model. Nevertheless, it can be easily
transformed into an algorithm for the message-passing model. For this pur-
pose, each node v periodically broadcasts to its neighbors a message containing
its state. Based on this message, v’s neighbors decide whether to update their

24

: Ordinary node : Nearly Ordinary node

Z 1

B1 B2 Bm

X 2 X m

Y 2 Z 2 Y m Z m

X 1

Y 1

Before stabilization

X 1

Z 1

1
SR=Z

2
SR=Y

2
SR=Z

m
SR=Z SR=0

3
SR=Y

After the first synchronous computation step

2 m

Z

X X

Y 1 Y 2 2 Y m Z m

X 1

Z 1

1
SR=Z SR=0 SR=0 SR=0 SR=0 SR=0

After the second synchronous computation step

m

1 mY

X 2 X

Y 2 Z 2 Y m Z

B1

X 1

Z 1

SR=0 SR=0SR=0 SR=0 SR=0

After the third synchronous computation step: B1 is stabilized

2 m

1

X X

Y Y 2 Z 2 Y m Z m

X 2 X m

Y 2 Z 2 Y m Z m

X 1

Y 1 Z 1

After stabilization

: Clusterhead node

Fig. 2. Stabilization time in the case k = 1, h = 0

25

variables or not. After a change in the value of v’s state, node v broadcasts to
its neighbors its new state.

References

[1] S. Banerjee and S. Khuller. A clustering scheme for hierarchical control
in multi-hop wireless networks. In the 20th IEEE Conference on Computer
Communications (INFOCOM’01), pages 1028–1037, 2001.

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia
support in multi-hop wireless networks. In the IEEE 50th International
Vehicular Technology Conference (VTC’99), pages 889–893, 1999.

[3] S. Basagni. Distributed clustering for ad hoc networks. In the International
Symposium on Parallel Architectures, Algorithms, and Networks (ISPAN’99),
pages 310–315, 1999.

[4] P. Basu, N. Khan, and T. Little. A mobility based metric for clustering in
mobile ad hoc networks. In the 21st International Conference on Distributed
Computing Systems (ICDCSW ’01), page 413, 2001.

[5] D. Bein, A. K. Datta, C. R. Jagganagari, and V. Villain. A self-stabilizing
link-cluster algorithm in mobile ad hoc networks. In the 8th International
Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05),
pages 436–441, 2005.

[6] C. Bettstetter and B. Friedrich. Time and message complexities of the
generalized distributed mobility-adaptive clustering (GDMAC) algorithm in
wireless multihop networks. In the IEEE Vehicular Technology Conference
(VTC’03), pages 176–180, 2003.

[7] C. Bettstetter and R. Krausser. Scenario-based stability analysis of the
distributed mobility-adaptive clustering (DMAC) algorithm. In the 2nd ACM
Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc’01), pages
232–241, 2001.

[8] M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm
for mobile ad hoc networks. Journal of Cluster Computing, Special issue on
Mobile Ad hoc Networking, 5(2):193–204, 2002.

[9] C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop, mobile
wireless networks with fading channel. In the IEEE SICON’97, pages 197–211,
1997.

[10] S. Dolev and N. Tzachar. Empire of colonies self-stabilizing and self-organizing
distributed algorithms. In the 10th International Conference On Principles Of
Distributed Systems (OPODIS’06), Springer LNCS 4305, pages 230–243, 2006.

26

[11] V. Drabkin, R. Friedman, and M. Gradinariu. Self-stabilizing wireless connected
overlays. In the 10th International Conference On Principles Of Distributed
Systems (OPODIS’06), Springer LNCS 4305, pages 425–439, 2006.

[12] A. Ephremides, J.E. Wieselthier, and D.J. Baker. A design concept for
reliable mobile radio networks with frequency-hopping signaling. In the IEEE
Transactions on Wireless communications, pages 56–73, 1987.

[13] Y. Fernandess and D. Malkhi. K-clustering in wireless ad hoc networks.
In the 2nd ACM international workshop on Principles of mobile computing
(POMC’02), pages 31–37, 2002.

[14] M. Frodigh, P. Johansson, and P. Larsson. Wireless ad hoc networking: The
art of networking without a network. In Ericsson Review, No. 4, 2000.

[15] M. Gerla and J. T. Tsai. Multicluster, mobile, multimedia radio network.
Wireless Networks, 1(3):255–265, 1995.

[16] W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
protocols for maximal matching and maximal independent sets for ad hoc
networks. In the 5th IPDPS Workshop on Advances in Parallel and Distributed
Computational Models (WAPDCM’03), 2003.

[17] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-
specific protocol architecture for wireless microsensor networks. In the IEEE
Transactions on Wireless communications, 1(4):660–670, 2002.

[18] C. Johnen and L. Nguyen. Self-stabilizing weight-based clustering algorithm
for ad hoc sensor networks. In the 2nd International Workshop on Algorithmic
Aspects of Wireless Sensor Networks (AlgoSensors’06), Springer LNCS 4240,
pages 83–94, 2006.

[19] C. Johnen and S. Tixeuil. Route preserving stabilization. In the 6th
International Symposium on Self-stabilizing System (SSS’03), Springer LNCS
2704, pages 184–198, 2003.

[20] H. Kakugawa and T. Masuzawa. A self-stabilizing minimal dominating set
algorithm with safe convergence. In the 8th IPDPS Workshop on Advances in
Parallel and Distributed Computational Models (APDCM’06), 2006.

[21] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. In the
IEEE Journal on Selected Areas in Communications, 15(7):1265–1275, 1997.

[22] N. Mitton, A. Busson, and E. Fleury. Self-organization in large scale ad hoc
networks. In the 3rd Annual Mediterranean Ad Hoc Networking Workshop
(MED-HOC-NET’04), June 2004.

[23] N. Mitton, E. Fleury, I. Guérin. Lassous, and S. Tixeuil. Self-stabilization
in self-organized multihop wireless networks. In the 25th IEEE International
Conference on Distributed Computing Systems Workshops (WWAN’05), pages
909–915, 2005.

27

[24] Z. Xu, S. T. Hedetniemi, W. Goddard, and P. K. Srimani. A synchronous self-
stabilizing minimal domination protocol in an arbitrary network graph. In the
5th International Workshop on Distributed Computing (IWDC’03), Springer
LNCS 2918, 2003.

[25] O. Younis and S. Fahmy. Distributed clustering for ad-hoc sensor networks: A
hybrid, energy-efficient approach. In the 23rd IEEE Conference on Computer
Communications (INFOCOM’04), 2004.

28

