Self-Stabilizing Depth-First Token Passing on Rooted Networks *

Colette Johnen? Gianluigi Alari? Joffroy Beauquier?
Ajoy K. Datta?

I'L.R.I., C.N.R.S. URA 410, Université de Paris-Sud, France
2 Unité d’Informatique, Université catholique de Louvain, Belgium
3 Department of Computer Science, University of Nevada Las Vegas

Abstract

We present a deterministic distributed depth-first token passing protocol on a rooted network.
This protocol does not use either the processor identifiers or the size of the network, but as-
sumes the existence of a distinguished processor, called the root of the network. The protocol
is self-stabilizing, meaning that starting from an arbitrary state (in response to an arbitrary
perturbation modifying the memory state), it is guaranteed to reach a state with no more than
one token in the network. The protocol implements a strictly fair token circulation—during a
round, every processor obtains the token exactly once. The proposed protocol has extremely
small memory requirement—only O(1) bits of memory per incident network link.

Keywords: Mutual exclusion, self-stabilization, spanning tree, token passing.

1 Introduction

Robustness is one of the most important requirements of modern distributed systems. Various
types of faults are likely to occur at various parts of the system. These systems go through the
transient states because they are exposed to constant change of their environment. The concept of
self-stabilization [5] is the most general technique to design a system to tolerate arbitrary transient
faults. A self-stabilizing system, regardless of the initial states of the processors and initial messages
in the links, is guaranteed to converge to the intended behavior in finite time.

The token circulation problem is similar to the mutual exclusion problem. A solution to the
problem of mutual exclusion on a (uni-directional) ring is to implement a token circulating from
one processor to the next in one direction; the token moves around the ring and a processor having
the token is granted access to the shared resource and may execute the code in the critical section.

Related Work. Dijkstra introduced the property of self-stabilization in distributed systems by
applying it to algorithms for mutual exclusion on a ring [5]. Several self-stabilizing token passing
algorithms for different topologies have been proposed in the literature [16]: Dijkstra [5, 6], Burns
and Pachl [4], Flatebo and Datta [8], and Flatebo, Datta, and Schoone [9] for a ring; Brown,
Gouda, and Wu [3] and Ghosh [10] for a linear array of processors, Kruijer [15] for tree network,

“Contact author: Colette Johnen, LRI, Université de Paris-Sud, Bat. 490, Campus d’Orsay, F-91405 Orsay Cedex,
France. phone : +33 1 69 15 67 02. fax : +33 1 69 15 65 86. email : colette@Iri.fr

and Tchuente [17] on general networks. Recently, Huang and Chen [12] presented a token circulation
protocol for a connected network in non-deterministic depth-first-search order, and Dolev, Israeli,
and Moran [7] gave a mutual exclusion protocol on a tree network under the model whose actions
only allow read/write atomicity. A memory-efficient token passing protocol on general network is
presented in [14].

All the solutions to the token passing problem mentioned above use a distinguished processor
whose program is different than the other processors in the network. Although this is undesirable
in a fault-tolerant distributed system, but as Dijkstra commented in [6] that, there is no uniform
deterministic self-stabilizing ring with a composite number of processors. Burns and Pachl [4]
showed that there is a uniform self-stabilizing ring for every prime n > 3.

One of the important performance issues of self-stabilizing algorithms is the memory requirement
per processor. The previous solutions to the token circulation problem on general networks have a
space complexity of O(log n), where n is the number of processors. In these protocols, each processor
maintains its distance to the distinguished processor. Awerbuch and Ostrovsky [1] proposed a
O(log" n) algorithm by using a data structure to maintain the distance variables in a distributed
manner. Itkis and Levin [13] introduced another data structure based on Thue-Morse sequence and
presented a O(1) bits per link solution.

Contributions. In this paper, we present a self-stabilizing depth-first token circulation scheme
on a general network with a distinguished root, called Algorithm 7 P. One of the desirable features
of the protocols written on large distributed systems is that they should not depend on the global
properties, such as, network size, which can change over time. Algorithm 7 P has this feature and
requires O(1) bits of memory per link. When the network size changes, the Algorithm 7P does
not need to be modified. The code at a processor needs to be modified only when the degree of the
processor changes (a locally checkable property). Our algorithm uses neither the distance variable
nor any special data structure to achieve the O(1) bits per link memory requirement. Algorithm
T P also implements a strictly fair circulation of token.

The algorithm presented in [14] has the same space complexity. But, in this algorithm, a
processor needs the knowledge of the state of the neighbors of its neighbors. Since the algorithm
assumes the atomic execution of the actions, this requirement makes the atomic step bigger: in one
atomic step, a processor reads the state of its neighbors, the neighbors of its neighbors, and finally
changes its own state. In Algorithm 7 P, a processor only reads the state of its neighbors in an
atomic step. Thus, Algorithm 7 P has a smaller atomicity than that in [14].

2 Preliminaries

In this section, we define the distributed systems and programs considered in this paper, and state
what it means for a protocol to be self-stabilizing. We then present the statement of the token
passing problem and its properties.

2.1 Self-Stabilizing System

System. Let DS = (PR, M) be a distributed system, where PR is a set of processors and M is
a set of bidirectional communication links. We will denote the processors by i :: 4 € {1..n} and the
root processor by r. A communication link (7, j) exists iff ¢ and j are neighbors. Each processor

i maintains its set of neighbors, denoted as N.i. Every processor owns a shared register (defined
in the following paragraph). The processors may only communicate with their neighbors using the
shared registers.

Programs. FEach processor executes a program and the processors execute their programs asyn-
chronously. The program consists of a set of variables and a finite set of actions. The processors
have two types of variables: local variables and field variables. The field variables are part of the
shared register which is used to communicate with the neighbors. The local variables defined in
the program of processor ¢ are used strictly locally, meaning that they cannot be accessed by the
neighbors of 7. A processor can only write to its own shared register and can only read shared
registers owned by the neighboring processors. So, the field variables of 7+ can be accessed by i
and its neighbors. The program of each processor consists of a finite set of actions. Each action is
uniquely identified by a label and is of the following form:

< label >:: < guard > — < statement >

The guard of an action in the program of 7 is a boolean expression involving the local variables
of 4, and the field variables of ¢ and its neighbors. The statement of an action of ¢ updates zero or
more local variables and field variables of 4. An action can be executed only if its guard evaluates
to true. We assume that the actions are atomically executed: the evaluation of a guard and the
execution of the corresponding statement of an action, if executed, are done in one atomic step. The
atomic execution of an action of 7 is called a step of ¢; this is known as the distributed daemon [2].

The state of a processor is defined by the values of its field variables. The state of a system is
a product of the states of all processors (€ PR). In the sequel, we refer to the state of a processor
and system as a local state and global state, respectively. A computation of a protocol P is a fair,
mazimal sequence of global states ® = (41, 02, ...) such that for i = 1,2,..., the global state d;;1 is
reached from d; by a single computation step. During a computation step, one or more processors
execute a step and a processor may take at most one step. Fairness of the sequence means that if
any action in P is continuously enabled along the sequence, it is eventually chosen for execution.
Mazimality means that the sequence is either infinite, or it is finite and no action of P is enabled
in the final global state. All computations considered in this paper are assumed to be fair and
maximal.

Let £ be a global state predicate of a protocol P specified with respect to the problem specifi-
cation SP that P implements. £ holds at all global states reached by the computations of P that
meet SP. Thus, £ characterizes the set of all global states reached in the “correct” computations
of P. The predicate L is called a legitimacy predicate or an invariant of P.

The protocol P is self-stabilizing for the specification SP if (i) every computation of P starting
from a global state where £ holds preserves £ (closure), and (ii) starting from any arbitrary global
state, every computation of P reaches a global state where £ holds (convergence).

2.2 Specification of the Token Passing Protocol

The legitimacy predicate L7 p of our token passing protocol is any global state such that (i) no two
processors have simultaneous token access at any time (called the Single Token property), and
(i) for each computation that starts in such a global state, during a token circulation round, each
processor obtains the token exactly once (called the Strict Fairness property).

We also require our solution to the token passing problem to be self-stabilizing.

3 Token Passing Protocol

In this section, we propose a self-stabilizing depth-first token circulation algorithm. We first present
the general approach to the solution, followed by the definition of the local and field variable at
each processor. Finally, we present the actions of the algorithm formally.

3.1 Idea of the Solution

The proposed algorithm has two major tasks: to circulate the token in the network in a deterministic
depth-first order and to handle the abnormal situations (illegal states) due to the unpredictable
initial states and transient errors. The actions of the program for the token circulation are formally
presented in Section 3.3 and the actions for the error handling processor are given in Section 3.4.

The root r (in the sequel referred to as the legal root) initiates a depth-first circulation round
with a color of 1 or 3. We will refer to the circulation round as cround, and the color used in a
circulation round as r_color. The circulation rounds with the colors of 1 and 3 are referred to as
cround; and crounds, respectively. Once the system is stabilized, in one cround, the token traverses
every processor in the network in the depth-first order. The branches created due to the traversal
of the token are called the depth-first branches.

In the beginning of a cround, the processor r holds the token and it is the leaf of the depth-first
branch. The leaf (in this case r) chooses one of the neighbors i as a child and passes the token to
i. So, i is the leaf now. After i uses the token (or exits the critical section), 7 selects one of its
neighbors j who did not get the token yet. So, the token traversal procedure extends the branch
originating at r. This continues until a leaf is unable to find any unvisited neighbor. At this
time, the leaf drops the token, allowing its parent to remove this branch, create another depth-first
branch (choose another child), and pass the token to an unvisited neighbor (the child). If the parent
cannot find an unvisited neighbor, the branch is shrunk. This token traversal continues until the
branch is reduced to r, i.e, all processors of the network have been visited during this cround. This
completes the cround. r now initiates another cround with the other color and the token traversal
is repeated.

The system has an unpredictable initial state—illegal branches or cycles can may exist initially.
There are mainly two error handling tasks: one to remove the illegal branches and the other to
eliminate the cycles. Our approach to handling the illegal branches (which are not cycles and are
not rooted to the legal root) is similar to the ideas in [12] and [14], and is formally presented in
Section 3.4.1. The illegal roots detect their abnormal situation and change their status to E. The
E status is propagated to their leaves, these F status leaves are de-linked from their parents, and
finally, these detached processors are recovered (changing their status to Ok).

The cycle elimination strategy is similar to the one proposed in [14]. Typically, a distance
variable is used for this purpose. But, we do not use such variables. The basic idea is to detect
the cycle by a processor which does not belong to the cycle. The coloring scheme (discussed in
detail in Section 3.2) is designed such that during cround; (crounds), no processor should have a
color of 3 (1). Therefore, if in cround; (crounds), the processor having the token 7 has a 3-colored
(1-colored) neighbor j, j is faulty (j may be inside a cycle). The leaf i chooses j as the child. The
faulty processor j detects that it has two parents and changes its status to £+ +. All descendents
of j change their status to E, Then the parent of the faulty processor inside the cycle drops its
faulty child and breaks the cycle. As, the nodes inside a cycle cannot change their color, all cycles

are eventually destroyed.

3.2 Basic Structures

In this section, we define the field variables of the register and local variables at each processor.

The field variables are denoted as field_name.processor_id. For example, D.i refers to the field
D of processor i. If a field variable D.i points a processor j (a neighbor of 7), then D.D.i refers to
the field D of D.i, i.e., D.D.5 = j.

The field variables of processor 7 are defined as follows:

e D.i:: The child pointer. It points to one of its neighbors or contains NULL, i.e., D.2 € N.i or
D.=NULL. If D.s = NULL, then D.D.; = NULL.

e S.i:: The status. It contains a value € {Ok, E, E+ +}. Once the system stabilizes, all processors
have the Ok status. The E and F + + status are used during the error recovering processor and
explained in the following sections.

e C.i:: The color. It takes value € {0,1,2,3}. All arithmetic operations (+ and —) on C are
modulo 4. The legal root r initiates depth-first token circulation rounds cround; and crounds
alternately (see Section 3.1). Once the system stabilized, all processors except the leaf, in the
current depth-first branch, have an odd color of 1 or 3 corresponding to r_color. Other processors
have an even color. The processors who are yet to receive the token during this circulation round
are colored r_color — 1. The processors who received the token, but are not in the depth-first
branch (the branch expands and shrinks as explained in Section 3.1) are colored r_color+1. The
idea of using a 4-state variable is an extension of the ideas in [5, 10] on a general graph.

Before evaluating their guards, the processors read the shared registers of their neighbors and
update their local variables. The local variables of 4 are defined below:

e P;:: The set of parents of 7. Ideally, a processor should have at most one parent. But, due
to the faults, a processor may have more than one parent. The parent-child relations satisfy
jeEP e Dy=1.

e NP;:: The number of parents of i = |P;|.

In the next two sections, we present the actions of the Algorithm 7 P. Our protocol consists of
fourteen actions: TC1-TC4, IB1-IB5, CE1-CE4, and ERL1.

3.3 Token Circulation

The actions for the token circulation use the following definitions:

e EvenColor(i) = (C.i=0)V (C.i=2)

e OddColor(i) = (Ci=1)V (C.i=23)

e GoodLeaf(i) = (D.i= NULL) A (S.i = Ok) A EvenColor(i)

e Token(i) = GoodLeaf(i)AN((i=7r)V(i#r)ANNP,=1)A(Fje P (Ci=C.j—1))))
The legal root r holds the token iff GoodLeaf(r) holds. Processor i # r holds a token iff

GoodLeaf (i) holds and its color is its parent’s color minus 1.
i may enter the critical section iff T'oken(i) holds.

o Anomalous(i,k) = (ke Ni)A(k#r)N(Ck=C.i+3)
The processor ¢ has a neighbor £ which has an “unexpected” color with respect to . The
unexpected color is C.i + 3.
o FirstChild(i,k) = Token(i) A (k€ N.i)A(k#1)N(Sk=2S53) AN (Ck=Ci)A
(Vj € N.i:: =Anomalous(, j))
Processor ¢ holds the token, in 4’s neighborhood there is no processor with an “unexpected color”,
and ¢ has a neighbor k£ which could be a potential child.
e DeadEnd(i) = Token(i) A (Vj € N.i:: —Anomalous(i,j) A ~FirstChild(i, 7))
Processor ¢ does not have any neighbor which can be a possible FirstChild.
e ChildDone(i) = (D.i # NULL) A (S.i = Ok) A OddColor(i) A (C.i = C.D.i — 1)
Processor ¢ has a child £ who has used the token and is a leaf.
e NVChild(i,k) = (k€ N.ai)AN(k#r)N(Sk=0k)A(Ck=Ci—-1)
Processor 7 has a neighbor £ who can be a possible child. £ did not get the token yet in this
cround.
e NewChild(i,k) = ChildDone(i) N NV Child(i, k)
Processor ¢ selects k£ as the next child.
e Backtrack(i) = ChildDone(i) A (Vj € N.i: =NV Child(i,j))
Processor ¢ does not have any neighbor which can be a possible child.
The actions of the program for token circulation at processor ¢ are defined in Figure 1.

TC1l:: DeadEnd(i) — Ci=Ci+2

TC2:: FirstChild(i,k) — Ca=Ci+1;, Di=%k
TC3:: NewChild(i,k) — D.i=k

TC4:: Backtrack(i) — Du=NULL; Ci=Ci+1

Figure 1: Actions for Token Circulation.

0-3: color @ : Ok status holding Token O : Ok status
legal root legd root legal root legal root
\%) 0
3—5 —5& e 0 S—&c
Before cround3 After TC2 After TC1 After TC3
legal root legal root legal root lega root
3 3 TC4()3 0
% T~)
0 0
Tca 334
TC1
After TC2 After TC1 After TC4 After cround 3

and before cround 1

Figure 2: Token Circulation.

Figure 2 shows the circulation of a token starting from the legal root. The legal root r initiates
a circulation round (crounds in the figure) by executing the action TC2. The token moves from r
(previous leaf) to its first child which is now the leaf. Thus, the tree expands following a branch.
The leaf uses the token, but cannot find a first child to pass the token to. So, it drops the token
by action TC1. The legal root now finds another suitable unvisited child which can receive the
token (action T'C3). This child becomes the new leaf. If the current leaf has used the token and
an unvisited processor does not exist, the branch is shrunk by the action TC4. When the branch is
completely destroyed (e.g. the round is over), the legal root () has the token and it starts another
round (cround; in Figure 2).

3.4 Error Handling

A distributed system has an unpredictable initial state where the D pointers may point to any
neighbors or NULL. Thus, illegal branches or cycles may exist in the initial state. In this section,
we present two error handling tasks: one to eliminate the illegal branches and the other to remove
the cycles of D pointers. The actions defined in the following sections together with those defined
in the previous section (Section 3.3) complete our solution to the Algorithm 7 P.

3.4.1 Elimination of Illegal Branches

We use the following definitions in the actions to eliminate the illegal branches:
e BadShape(i) = ((D.i # NULL) A (S.i = Ok) A EvenColor(i)) V
((D.i=NULL) A (S.i = Ok) A OddColor(i)) V
(D.i=NULL)A(Si=FE++))
e FastBacktrack(i) = (D.i# NULL) A (D.D.t = NULL) A (S.D.i # Ok)
Processor ¢ has a child whose status is not Ok and is a leaf.
e Detached(i) = (D.i= NULLA(NP;=0)
Processor ¢ has no child and no parent.
e TllegalRoot(i) = (i1 #r)AN(D.i# NULL)A(NP; =0)
Processor ¢ is the root of a branch, but is not the legal root r.
e TllegalParent(i) = (S.i=0k)A(Ik € N.i:: ((D.k =1i) A (S.k # Ok)))
The status of ¢’s parent is not Ok.
The actions to eliminate the illegal roots and branches at processor ¢ are defined in Figure 3.

IB1:: BadShape(i)
IB2:: FastBacktrack(i)

D.i=NULL; Si=F
D.i=NULL; Si=E

I

IB3:: Illegal Parent(i) Si=F
IB4:: Detached(i) A (S.i # Ok) Si=0k; Ci=0
IB5:: Illegal Root(i) A (S.i # E) Si=F

Figure 3: Actions to Eliminate the Illegal Roots and Illegal Branches.

Processor ¢ which is in BadShape but not in status E executes action IB1, changes its status
to E and de-links itself from its child. Processor i’s status is changed to Ok later by executing
actions IB2, IB3, and 1B4.

Figure 4 shows an example of eliminating an illegal root and an illegal branch. An illegal root
executes action IB5 and changes its status to £. The E status propagates from a processor to its
child by executing action IB3. A processor de-links an erroneous child that is a leaf (with status
E) by executing action IB2. Thus, child get detached. The Erroneous detached processors are
recovered by action IB4 by changing their status to Ok.

0-3: color @ : Ok status holding Token O : Ok status L] :Estatus
101B5 1 1L11B2 1L]1B4 0
legal root legal root legal root legal root legal root
o 3 [3 3
0 0 0 0 0
2 201B3 2 2 L]IB4 0
Illegal live branch Illegal dead branch Noillegal branch

Figure 4: Elimination of An Illegal Root and Illegal Branch

3.4.2 Elimination of Cycles

The actions of the program to eliminate the cycles of D pointers are given in Figure 5 and are
illustrated using an example in Figure 6. Processor ¢ detects an anomalous processor k and becomes
its new parent (action CE1). A processor having several parents and a child (thus, may be inside
a cycle) changes its status to '+ + (action CE2). The E status is assigned to a processor having
several parents but no child (action CE3). The E status propagates to the descendants of the
anomalous processor by repeated execution of action IB3. Then the parent of the anomalous
processor (that is inside the cycle) executes action CE4 and breaks the cycle. Action IB2 is
repeatedly executed until all the D pointers in the previous cycle are reset to NULL. Thus,
all processors become detached. Finally, as explained in Figure 4, these detached processors are
recovered by executing the action 1B4 repeatedly.

CE1l:: Token(i) AN Anomalous(i, k) — Di=k; Ci=Ci+1
CE2: (Di#NULL)A(Si#E++)A(NP>2) — Si=E++
CE3:: (D.i= NULL) A (Si# E)A (NP, > 2) s Si=E

CE4:: (S.i# Ok)A(S.D.i=E ++) — D.i=NULL; Si=E

Figure 5: Actions to Eliminate Cycles.

3.4.3 Miscellaneous Error Handling

If processor i’s D pointer points to the root r, then i removes that link (action ER1) because the
root cannot have a parent.

e ER1:: Di=r — D.au=NULL

0-3: color O : E++ status O : Ok status [] :E status

3
0\30 legal root

legal root legal root

i 1 1
1 1
CE2 IB3
After CE1 After CE2
1B2 3
al root legal root
1 1
1 1
After IB3 actions After CE4 After IB2 actions

Figure 6: Elimination of Cycles.

4 QOutline of the Correctness of the Token Passing Protocol

In this section, we present only the main results and the ideas of proving them. A few short proofs
are given in the appendix.

Definition 4.1 (Attractor) A global state predicate B of a protocol P is called an attractor for
another global state predicate A of P, if (i) B is closed in P, i.e., once B holds in an arbitrary
system computation in P, it continues to hold subsequently, and (ii) upon starting at an arbitrary
state in A, the system is guaranteed to reach a global state in B. We denote this relation as B < A.

The notation § - p means that the global state ¢ satisfies predicate p.

We apply the convergence stair method [11] to prove our protocol. We exhibit a finite sequence
of state predicates Ag, Ay,..., Ay, of Algorithm TP such that (i) A9 = true (meaning any
arbitrary state); (i) (A, = Lrp)V (Am F Lrp); (i) Vi: 0<j<m: Aj <A

First, we prove that all maximal computations are infinite. We partition the global states into
two sets depending on whether there exists a leaf or not. If there exists no leaf processor, then the
legal root has a parent (ER1 is enabled), or there is an infinite path rooted at r (i.e., a processor
inside this path has two parents). A processor in the path can execute CE2, CE4, or IB2 action.
If there exists a leaf, then the leaf or its parent can execute one of the actions.

Theorem 4.1 In any global state, at least one action of Protocol TP at a processor is enabled.

The following two theorems easily follow from the actions of T P.

Theorem 4.2 Ay = NP, =0. A1 < Ay.

Theorem 4.3 Ay = A A (Vi:i€{l,n}:: —BadShape(i)). Az < A;.

A branch not rooted at r and whose leaf is in Ok status, is called an illegal and live branch.
This kind of branch may expand because the processors in this branch may execute the token
circulation actions. We need to prove that all illegal and live branches will eventually be destroyed.
One complication in the process of removing these branches is that new illegal and live branches
may be created.

A new illegal and live branch is created when all parents of a processor ¢ simultaneously execute
CE4—i becomes the root of the new illegal branch. After the execution of CE4 by a parent j of 4,
j becomes a dead leaf, and the branch containing 5 and ¢ is now a dead branch. If 7 is inside a dead
branch, after the execution of CE4 by all parents of 7, i is a root of a dead branch (there is not
creation of a new illegal branch). If i is in several illegal and live branches, after the execution of
CE4 by i’s parents, all theses branches are now dead. Thus, the illegal branch rooted at i replaces
several illegal branches. If 7 is in only one illegal and live branch, then ¢ has F + + status and has
only one parent. Such a situation may exist initially, or may happen if ¢ had several parents and
has already lost at least one parent (by a previous execution of CE4 by a parent of i): during the
computation, several illegal and live branches are replaced by only one. Thus, only a finite number
of illegal live branches may be created (this number depends on the initial global state). Then, by
fair scheduling of IB3 and IB5, the illegal and live branches are converted to dead branches.

Theorem 4.4 A3 = Ay A (there exists no illegal and live branch). Ag < As.

In Aj, there is at most one live leaf which is inside the legal branch. Thus, only one of the
actions TC1, TC2, TC3, TC4, or CEl is enabled at only one processor i (the leaf of the legal
branch or its parent).

We call a legal branch color consistent if it is dead or all processors in it (except the leaf)
are colored r_color. Once Token(r) holds true, the legal branch is color consistent and stays color
consistent. We can prove that all maximal computations contain an infinite number of states where
Token(r) holds. Let ® be a computation with a finite number of states where T'oken(r) holds. In
Ags, after the execution of CE1, the legal branch ends in a cycle or a dead leaf. Then the legal branch
will eventually destroy itself and T'oken(r) will hold. Thus, ® does not contain any execution of
CEL. Eventually, along ®, only the token circulation actions are executed infinitely many times.
If ® does not contain the execution of T'C4 in r, then ® is finite. After the execution of TC4, the
system reaches a state where T'oken(r) holds.

Theorem 4.5 In As, all computations contain an infinite number of states where Token(r) holds.
Theorem 4.6 Ay = A3 A (the legal branch is color consistent). Ay < As.

If the legal branch is not color consistent, then a cycle may be created. The live leaf of the legal
branch may execute CE1 and choose a child which is in the legal branch and which is not colored
r_color, creating a cycle. Therefore, if there is at least an illegal, live branch, or if the legal branch
is color inconsistent. then a cycle can be created. But, in A4, no cycle is created.

We need to prove that the cycles are eventually destroyed. We consider a computation ¢ where
some processors are in some cycles. Let Ng denote the non-empty set of processors which are in a
cycle in any state in ®. We denote the distance between 4 and r as Dis;, and the minimal distance

10

between r and a processor in Ng by Disg. The processors in Ng are in strict cycles. A cycle is
called a strict cycle if every processor in the cycle has only one parent and is not in £+ + status. By
fair scheduling of CE2, IB3, and CE4, the cycles which are not strict cycles, will eventually become
dead branches. Let Disg = Dis; + 1 and 4 has a neighbor & € Ng. By induction on the distance
between i and r, we prove that ® contains an infinite number of states where Token(i) holds. If
Token(i) holds, either C.i = C.k+1 or C.i = Ck+3. If C.i = C.k+1, then the next time T'oken(z)
holds, #’s color will become C.k + 3. The reason is that, in the meantime, ¢ has executed TC1 or
a sequence TC2TC3"TC4, and k did not change its color. If T'oken(i) holds and C.i = C.k + 3,
then CE1 is enabled at ¢. CEl is the only action that can be executed in the protocol. After CEl
is executed at i, k is no longer inside a strict cycle.

Theorem 4.7 Ay = Ay N (Vi:i € {l,n} = =StrictCycle(i)). As < Ay.

The cycles which are not strict cycles will become dead branches. The dead branches will
destroy themselves by fair scheduling of IB2.

Theorem 4.8 A = As; A (Vi:i € {1,n} :: i is inside the legal branch or Detached(i) holds).
A6 < A5.

The detached processors that do not have the Ok status will recover (change to Ok status) by
executing IB4.

Theorem 4.9 A; = Ag A (Vi:ie{l,n} = Si=0kANP; <1). A; < Ag.

In A7, (i) only the token circulation actions are enabled, (ii) only one processor may execute
one action, (iii) there is no cycle and no illegal branch, and (iv) all processors are in Ok status.
Thus A7 [LTP-

Let 09 be the global state where all processors are detached and are 0_colored, and ds be the
global state where all processors are detached and are 2_colored. At the end of a cround, more
processors will be colored r_color. Thus, in any computation in A7, §y or ds will be eventually
reached.

Starting from Jy or d, in one cround, all processors get the token exactly once, and at the end
of the cround, the current state becomes §y or d2. Thus, Protocol T P provides a strictly fair token
circulating in the network after the system is stabilized.

5 Conclusion

We proposed a depth-first (strictly fair) token circulation protocol on rooted networks. The previous
solutions for token circulation, except [14], on general network topology have a space complexity
of O(logn), where n is the number of processors, because each processor stores its distance to
the legal root. In Algorithm 7 P, the distance variable is not used. The cycles are detected by
processors who are not in the cycles. The size of variable D (child) of ¢ is O(log A;) where A; is
the degree of 7. The variables C' (color) and S (status) are of constant size—4 bits total. The local
variable NP (number of parents) takes O(log A\;) space. The other local variable P (parents list)
requires one bit per communication link. Thus, the space complexity of Algorithm 7 P is O(1) per
communication link.

11

References

1]
2]

B. Awerbuch and R Ostrovsky, “Memory-efficient and self-stabilizing network reset,” Sympo-
stum on Principles of Distributed Computing, Los Angeles, California, 1994, pp.254-263.

J. Burns, M. Gouda, and R. Miller, “On Relaxing Interleaving Assumptions,” Proceedings of
the MCC Workshop on Self-Stabilization, Austin, Texas, November 1989.

G. Brown, M. Gouda, and M. Wu, “Token Systems that Self-Stabilize,” IEEE Transactions
on Computers, Vol. 38, No. 6, June 1989, pp. 845-852.

Burns J. and Pachl J. “Uniform Self-Stabilizing Rings,” ACM Transactions on Programming
Language and Systems, Vol. 11, No. 2, 1989, pp. 330-344.

E. W. Dijkstra, “Self-Stabilizing Systems in Spite of Distributed Control,” Communications
of the ACM 17, 1974, pp. 643-644.

E. W. Dijkstra, “Self-Stabilization in Spite of Distributed Control,” in Selected writings on
computing: a personal perspective, Springer-Verlag, Berlin, 1982, pp. 41-46.

S. Dolev, A. Israeli, and S. Moran, “Self-Stabilization of Dynamic Systems Assuming only
Read/Write Atomicity,” Proceedings of the 9th Annual ACM Symposium on Principles of
Distributed Computing, Quebec City, Canada, 1990, pp. 103-117; also Distributed Computing
Vol. 7, 1993, pp. 3-16.

M. Flatebo and A. K. Datta, “Two-State Self-Stabilizing Algorithms for Token Rings,” IEEFE
Transactions on Software Engineering, June 1994, pp. 500-504.

M. Flatebo, A. K. Datta, and A. A. Schoone, “Self-Stabilizing Multi-Token Rings,” Distributed
Computing, Vol. 8, 1995, pp. 133-142.

S. Ghosh, “An Alternate Solution to a Problem on Self-Stabilization,” ACM Transactions on
Programming Languages and Systems, Vol. 15, No. 4, September 1993, pp. 735-742.

M.G. Gouda and N. Multari, “Stabilizing Communication Protocols,” IEEE Transactions on
Computing, Vol. 40, No. 4, 1991, pp 448-458.

S. Huang and N. Chen, “Self-Stabilizing Depth-First Token Circulation on Networks,” Dis-
tributed Computing, Vol. 7, 1993, pp. 61-66.

G. Ttkis and L. Levin, “Fast and lean self-stabilizing asynchronous protocols,” 35th Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, 1994, pp. 226-239.

C. Johnen and J. Beauquier, “Space-Efficient Distributed Self-Stabilizing Depth-First Token
Circulation,” Proceedings of the 2nd Workshop on Self-Stabilizing Systems, Las Vegas, Nevada,
1995, pp. 4.1-4.15.

H.S.M. Kruijer, “Self-stabilizing (in spite of distributed control) in tree-structured systems,”
Information Processing Letters, 1979, 29:91-95.

M. Schneider, “Self-Stabilization,” ACM Computing Surveys, Vol. 25, No. 1, March 1993, pp.
45-67.

M. Tchuente, “Sur I'auto-stabilisation dans un reseau d’ordinateurs,” RAIRO Informatique
Theorique 15, No. 1, 1981, pp.47-66.

12

A Definitions

We use the following definitions in the proofs of Protocol T P:

Definition A.1 (Trap) A predicate T is called a trap in the global state § if the following condition
holds: (Vi :i € {1,n} :: 7(i)) is closed in §.

Qo—r = (3 (A sequence of processors 0,1,...,k):Vj € [0,k[:: D.j=D.(j+1))

e Cycle(i) = (3 Qo—r: (1=0=k))

o StrictCycle(i) = (3 Qo—r: (i=0=k)A(Vj€[0,k[:: NPjy1 =1)A(Si# E++))
Processor ¢ is in a cycle where every processor has only one parent and is not in E + + status.

e Inlllegal Branch(i) holds if the processor 4 is in a branch whose root is not 7.

e Leaf(i) = (D.i=NULL)AN((NP;>1)V(i=r))

e LiveLeaf(i) = Leaf(i) A (S.i = Ok)

e DeadLeaf(i) = Leaf(i) A (S.i # Ok)

e InLiveBranch(i) holds iff the processor 7 is in a branch ending with a live leaf.

e InDeadBranch(i) holds iff the processor i is in a branch ending with a dead leaf or a cycle.

e Tllegal LiveRoot (i) holds if the processor i is an illegal root of a branch ending with a live leaf.

e LiveEPProcessor(i) = (S.i=FE++)A(NP; = 1) A InLiveBranch(z)

e SpLegalLive(i) = InLegalLiveBranch(i) A ((NP;> 1)V (D.i=NULL)V (Si=E++))

Processor ¢ is a special processor in a live and legal branch, with some special properties.

e IncLegalLiveBranch = (3 Qo—m : (r =0) A InLiveBranch(r) A SpLegal Live(m)
A (Vi € [0,m[:: =SpLegal Live(i)) A (F i € [0,m[:: S.i = E))
IncLegal Live Branch is true if there exists a processor in a legal and live branch, with status E,
between the root and the first SpLegal Live processor in the legal branch.

e ILB = 1 if IncLegal LiveBranch is true, otherwise, false.
e /LR = Number of processors which satisfy Illegal Live Root.
e LEP = Number of processors which satisfy Live EP Processor.
e Sumr = ILR+LEP+ILB
e [llegal Processor(i) holds if the processor i is in a cycle, an illegal branch, or in a legal branch
(in this case, 7 joined the legal branch by executing CE1).
Notations:

Action_a 1} ¢ means that Action_a is enabled in the program of processor ¢ at the current global
state. (Action_a, Action_b, ... or Action_k) 1} ¢ means that only one of the actions among Action_a,
Action b, ... or Action_k is enabled in the program of processor i at the current global state.

B Liveness of the Algorithm 7P

Theorem 4.1 In any global state, at least one action of Algorithm T P at a processor is enabled.

Proof: We consider two types of global states: there exists a leaf ¢ and there exists no leaf. Assume
that 7 is a leaf. If 7 has the E + + status, IB1 1} 4. If ¢ has the E status, IB2 |} k (k € P)).
If Token(i) holds, then (TC1, TC2, CEl) { i. If ChildDone(k) holds, then (TC3, TC4) 1 k.
Otherwise, S.i # Ok, =Token(i), and =ChildDone(k). Then IB1 1} 4, IB3 {} i, CE3 1} 4, or IB1 1} &.

Assume that there exists no leaf. If r has a parent [, then IB1 f} [. If r does not have a
parent, then there is an infinite path rooted at r. This path must contain a processor (say i) sev-

13

eral times. Then CE2 1} 4, IB3 f} j (where j is inside the infinite path), or CE4 f} k (where k € P;). O

C Destruction of Illegal Live Branches

Theorem 4.2 Ay = NP, =0. A1 1 Ay.

Proof: Ay is closed: No action creates a parent of r. Every computation reaches A: If A; does not
hold in the current global state, at least one processor satisfies the guard of ER1. Every time ER1 is
executed, the number of r’s parents is reduced. Thus, by fair scheduling, A; will eventually hold. O

Theorem 4.3 A = A; A (Vi:i€ {1,n}:: —BadShape(i)). Az < A;.

Proof: After any action is executed by 4, BadShape(i) does not hold. Therefore As is closed. If Ay
does not hold in the current global state, at least one processor satisfies the guard of IB1. O

Remark C.1
IB1, ER1 ©As.
Token(i) < (TC1, TC2, or CE1) 1 i.
ChildDone(i) < (TC3, TC}) 1 i.
In Ay, (OddColor(i) A (S,i = Ok)) < (D.i # NULL),
In Ay, (EvenColor(i) A (S,i = Ok)) < (D.i = NULL).
In As, if (Token(i),i # r) holds, then —~ChildDone(k) holds, where k € P;.
In Ay, a processor can execute TC1, TC2, or CE1 iff it is a live leaf.
In As, a processor can execute TC3 or TCY4 iff it is in a live branch.
The processors inside a cycle or a dead branch cannot change their color.
A dead branch cannot gain a new processor or a live leaf.

Theorem C.1 A3/ = As A (Sumj; =0). Azl < As.

Proof: In As, only the execution of CE1l by the leaf of the legal branch changes the value of ILB
from 0 to 1: the leaf chooses k as a child and Illegal Live Root(k) holds. After the execution of
CE1l, we may have ILB = 1. But, Illegal LiveRoot(k) does not hold now. Thus, Sum; does not
increase.

Illegal LiveRoot(i) (LiveEP Processor(i)) holds after the execution of an action even if it did
not hold before, iff all parents of i (all parents except one) execute action CE4 and i was inside
a live branch. Thus, in A, only CE4 executed by a processor in a live branch may increase
the value of Sum;y. Let ¢ be a processor in a live branch, and j be a parent of ¢ that executes
CE4. Before the execution of CE4, Illegal LiveRoot(k) (where k is the root of the branch j is in),
IncLegal Live Branch, or Live EP Processor(l) (where [is in the legal branch) holds. After the exe-
cution of CE4, none of these predicates holds. If 7 has only one parent j, then Live EP Processor(j)
was true before this step. But, after the execution of CE4, only Illegal Live Root(i) holds and Sumj
has decreased. If ¢ has several parents, and only j executes CE4, then after the execution of CE4,
LiveEP Processor(i) may hold but Sum; did not increase. If several parents of i execute CE4 dur-
ing a computation step, then Sum; decreases. Thus, Sum; never increases, and decreases every
time that I LR increases. Therefore, Ag/ is closed.

By fair scheduling of the actions IB2, IB3, and IB5, A3/ will eventually hold. O

The following theorem follows from Theorem C.1:
Theorem 4.4 A3 = Ay A (there is not illegal, live branch). As < A,.

14

D Color Consistency of the Legal Branch

A legal branch is called color consistent if it does not end in a live leaf, or all processors in it, except
the leaf, have the r_color.

Remark D.1

In As, there is no illegal live branch and there is at most one live leaf.

In As, only one of the actions TC1, TC2, TCS3, TC}, or CE! is enabled at only one processor i
which is either the live leaf or the parent of the live leaf.

In As, if a processor i in a legal branch executes CEI1, then the legal branch becomes dead and
color consistent, i.e., the legal branch ends in a cycle or a dead leaf.

We define Ay = As A (the legal branch is color consistent).
Theorem 4.5 In As, all computations contain an infinitely many states where Token(r) holds.

Proof: Let ® be a computation with a finite number of states where Token(r) holds. After an
action CE1, the legal branch ends in a cycle or a dead leaf (Remark D.1). Then the legal branch
will eventually destroy itself and Token(r) will hold. Thus, CE1 is not executed in ® after the state
where Token(r) holds last. Then, no new processor will have several parents, and ® will eventually
reach a state where all processors have at most one parent. Once this state is reached, no new
processor will get the F + + status in ®. Thus, by fair scheduling of IB3, IB2, and CE4, the system
will will reach a state in @, where no processor has the F 4+ + status. So, the actions IB1, CEl,
CE2, CE3, CE4, and ER1 are not executed in ®. All the illegal branches are dead (they will delete
themselves by executing IB2), and no new one will be created (only CE4 can create a new illegal
root). Thus, only one of the token circulation actions is executed infinitely many times. ® would
be finite if TC4 is not executed by r. After the execution of CE4, the system reaches a state where
Token(r) holds. Thus, ® does contain an infinitely many states where T'oken(r) holds. O

Theorem 4.6 A, < As.

Proof: If Token(r) holds, the legal branch is color consistent. The token circulation actions ensure
that a processor creating a child takes the same color as that of the parent. In Ajs, after the exe-
cution of CEl, the legal branch becomes dead and color consistent (Remark D.1). IB4 changes the
color of a processor inside the legal branch, iff it is executed by r. After IB4 is executed, the legal
branch becomes color consistent. Other actions do not change the color. Thus, the legal branch,
once color consistent, preserves the same property. O

E Destructions of Cycles
We define A5 = Ay A (Vi:i€ {1,n}:: =StrictCycle(i)).
Lemma E.1 —StrictCycle is a trap in Ag.

Proof: In Ay, no action creates a new cycle, and a non-strict cycle cannot become a strict cycle. O

After the execution of CEl, the legal branch may contain processors in £ 4+ + and E status.
A processor in the legal branch may execute CE4 and create a new illegal branch (dead). Thus,
—Inlllegal Branch is not a trap in A4. But, all processors in this branch held Illegal Processor
before executing CE4. Therefore, we can prove that —Illegal Processor is a trap in Ay.

Lemma E.2 Illegal Processor(i) A =StrictCycle(i) cannot hold forever.

15

Proof: By fair scheduling of IB3, CE2, and CE4, the non-strict cycles will be broken into dead
branches. The illegal branches are all dead and will eventually destroy themselves. After the exe-
cution of CE1, the legal branch ends in a non-strict cycle or a dead leaf. O

Lemma E.3 —Illegal Processor is a trap in any state of Ay reached by any computation where

Token(r) has held.

Proof: Assume that Illegal Processor(i) is false and after the execution of some action, Illegal Pro-
cessor(i) holds. (i) Assume 7 joined the legal branch by CE1. But, before this step, ¢ was inside a
dead branch or a cycle. Thus, Illegal Processor(i) was true. (ii) Assume that a new illegal branch is
created by the execution of CE4. But, the processors in this new branch satisfied Illegal Processor
before the step. Once Token(r) is true, all processors that joined the legal branch by executing
TC2 or TC3, except the leaf, have the Ok status and have at most one parent. Thus, none of them
can execute CE4. Therefore, only processors that satisfy Illegal Processor, may execute CE4. O

We prove that starting from an arbitrary state in A4, the system is guaranteed to reach a state
in As. We prove this by contradiction. We assume the contrary, i.e., there exists a computation
® starting from a state in A4 such that it does not reach As. Let mathcal Ng denote the non-
empty set of processors which are in a strict cycle in every state in ®. Let mathcalDg indicate
the minimal distance between r and a processor in mathcalNg. We define Ay as a global state
where all processors in mathcal N ¢ are inside a cycle and other processors are not inside any cycle.
Ay = A N (Illegal Processor(i) = StrictCycle(i)). Once Token(r) holds, the system will reach
a state in A49 in the computation ® and A49 will continue to hold in ® (Lemmas E.2 and E.3). In
Ayo, CEl breaks a strict cycle into a non-strict cycle. Therefore, CE1 cannot be executed in A4y in
the computation ®. As in the proof of Theorem 4.5, we can prove that the system will eventually
have only the token circulation actions executed in ®.

Lemma E.4 Let i be a neighbor of r. If Dise > 1, then in Ao, Token(i) holds infinitely many
times in the computation .

Proof: After TC4 is executed once in r, TC4 will be enabled again only after all its neighbors
change their color. We know that TC4 is executed infinitely many times by r. Moreover, ¢ can
change its color only if Token(i) holds. O

Similarly, we prove the following lemma:

Lemma E.5 Let i be a processor such that Dis; < Dise — 1 and Token(i) holds in infinitely many
states in the computation ®. Let k be a neighbor of i. Then in A4o, Token(k) holds infinitely many
times in the computation P.

Lemma E.6 All computations starting from a state in Ay, reach a state in As.

Proof: Let i be a processor such that Disg = Dis; + 1 and StrictCycle(k) holds, where k is a
neighbor of 7. By induction on the distance between the processors ¢ and r, we can show that ®
contains an infinitely many states where T'oken(i) holds (by Theorem 4.5, and Lemmas E.4 and
E.5). When Token(i) holds, either C.i = C.k+ 1 or C.i = C.k +3. If C.i = C.k + 1, the next time
Token(i) holds, i’s color will become C.k + 3. The reason is that 7 executes TC1 or a sequence
TC2TC3"TC4, and k does not change its color. When T'oken(i) holds and C.i = C.k+ 3, i satisfies
the guard of CEl. CELl is the only action which can be executed in the protocol. Thus, CEl is
executed in ®, proving the contradiction. O

The following theorem follows from Lemmas E.1 and E.6.
Theorem 4.7 A5 < Ay.

16

F Fair Token circulations

Theorem 4.8 As = As A (Vi:i € {1,n} :: i is inside the legal branch or Detached(i) holds).
A6 < A5.

Proof: The processors that are not detached, are inside the legal branch, or satisfy the Illegal Pro-
cessor predicate (they are in a non-strict cycle or a dead branch). Therefore, As = A5 A (Vi:
i € {1,n} :: =Illegal Processor(i)).

As every computation contains infinitely many global states where Token(r) holds (Theo-
rem 4.5), the —=Illegal Processor predicate is a trap in As (Lemma E.3). So, Ag is closed.

In Ajs, a processor ¢ which satisfies Illegal Processor(i) is not in a a strict cycle; By Lemma E.2,
Illegal Processor(i) will not hold forever. O

Theorem 4.9 A7 = Ag N (Vi:ie{l,n}:Si=0kANP; <1). A; < Ag.

Proof: Action CE1 is not executed by any computation in Ag. So, no new processor can have
several parents. All computations will eventually reach a state where all processors have at most
one parent. Once this state is reached, no new processor will get the £ 4+ + status. Thus, by
fair scheduling of 1B3, IB2, and CE4, the system will will reach a state, where no processor has
the F + + status. So, the actions IB1, CE1l, CE2, CE3, CE4, and ER1 are no more executed.
All the illegal branches delete themselves by executing IB2, and no new one will be created (only
CE4 can create a new illegal root). No more processor will have the E status. Eventually, the sys-
tem will reach A7. In A7, only the token circulation actions may be executed. Thus, A7 is closed. O

17

