
Self�Stabilizing Depth�First Token Passing on Rooted Networks �

Colette Johnen� Gianluigi Alari� Jo�roy Beauquier�

Ajoy K� Datta�

� L�R�I�� C�N�R�S� URA ���� Universit�e de Paris	Sud� France
� Unit�e d
Informatique� Universit�e catholique de Louvain� Belgium
� Department of Computer Science� University of Nevada Las Vegas

Abstract

We present a deterministic distributed depth��rst token passing protocol on a rooted network�
This protocol does not use either the processor identi�ers or the size of the network� but as�
sumes the existence of a distinguished processor� called the root of the network� The protocol
is self�stabilizing� meaning that starting from an arbitrary state �in response to an arbitrary
perturbation modifying the memory state�� it is guaranteed to reach a state with no more than
one token in the network� The protocol implements a strictly fair token circulation�during a
round� every processor obtains the token exactly once� The proposed protocol has extremely
small memory requirement�only O�	� bits of memory per incident network link�

Keywords� Mutual exclusion� self�stabilization� spanning tree� token passing�

� Introduction

Robustness is one of the most important requirements of modern distributed systems� Various
types of faults are likely to occur at various parts of the system� These systems go through the
transient states because they are exposed to constant change of their environment� The concept of
self�stabilization ��� is the most general technique to design a system to tolerate arbitrary transient
faults� A self�stabilizing system� regardless of the initial states of the processors and initial messages
in the links� is guaranteed to converge to the intended behavior in �nite time�

The token circulation problem is similar to the mutual exclusion problem� A solution to the
problem of mutual exclusion on a 	uni�directional
 ring is to implement a token circulating from
one processor to the next in one direction� the token moves around the ring and a processor having
the token is granted access to the shared resource and may execute the code in the critical section�

Related Work� Dijkstra introduced the property of self�stabilization in distributed systems by
applying it to algorithms for mutual exclusion on a ring ���� Several self�stabilizing token passing
algorithms for di�erent topologies have been proposed in the literature �
��� Dijkstra ��� ��� Burns
and Pachl ���� Flatebo and Datta ���� and Flatebo� Datta� and Schoone ��� for a ring� Brown�
Gouda� and Wu ��� and Ghosh �
�� for a linear array of processors� Kruijer �
�� for tree network�

�Contact author� Colette Johnen� LRI� Universit�e de Paris�Sud� Bat� ��	� Campus d
Orsay� F����	� Orsay Cedex�

France� phone �
�� � �� �� �� 	�� fax �
�� � �� �� �� ��� email � colette�lri�fr

and Tchuente �
�� on general networks� Recently� Huang and Chen �
�� presented a token circulation
protocol for a connected network in non�deterministic depth��rst�search order� and Dolev� Israeli�
and Moran ��� gave a mutual exclusion protocol on a tree network under the model whose actions
only allow read�write atomicity� A memory�e�cient token passing protocol on general network is
presented in �
���

All the solutions to the token passing problem mentioned above use a distinguished processor
whose program is di�erent than the other processors in the network� Although this is undesirable
in a fault�tolerant distributed system� but as Dijkstra commented in ��� that� there is no uniform
deterministic self�stabilizing ring with a composite number of processors� Burns and Pachl ���
showed that there is a uniform self�stabilizing ring for every prime n � ��

One of the important performance issues of self�stabilizing algorithms is the memory requirement
per processor� The previous solutions to the token circulation problem on general networks have a
space complexity of O	log n
� where n is the number of processors� In these protocols� each processor
maintains its distance to the distinguished processor� Awerbuch and Ostrovsky �
� proposed a
O	log� n
 algorithm by using a data structure to maintain the distance variables in a distributed
manner� Itkis and Levin �
�� introduced another data structure based on Thue�Morse sequence and
presented a O	

 bits per link solution�

Contributions� In this paper� we present a self�stabilizing depth��rst token circulation scheme
on a general network with a distinguished root� called Algorithm T P � One of the desirable features
of the protocols written on large distributed systems is that they should not depend on the global
properties� such as� network size� which can change over time� Algorithm T P has this feature and
requires O	

 bits of memory per link� When the network size changes� the Algorithm T P does
not need to be modi�ed� The code at a processor needs to be modi�ed only when the degree of the
processor changes 	a locally checkable property
� Our algorithm uses neither the distance variable
nor any special data structure to achieve the O	

 bits per link memory requirement� Algorithm
T P also implements a strictly fair circulation of token�

The algorithm presented in �
�� has the same space complexity� But� in this algorithm� a
processor needs the knowledge of the state of the neighbors of its neighbors� Since the algorithm
assumes the atomic execution of the actions� this requirement makes the atomic step bigger� in one
atomic step� a processor reads the state of its neighbors� the neighbors of its neighbors� and �nally
changes its own state� In Algorithm T P � a processor only reads the state of its neighbors in an
atomic step� Thus� Algorithm T P has a smaller atomicity than that in �
���

� Preliminaries

In this section� we de�ne the distributed systems and programs considered in this paper� and state
what it means for a protocol to be self�stabilizing� We then present the statement of the token
passing problem and its properties�

��� Self�Stabilizing System

System� Let DS � 	PR�M
 be a distributed system� where PR is a set of processors and M is
a set of bidirectional communication links� We will denote the processors by i �� i � f
��ng and the
root processor by r� A communication link 	i� j
 exists i� i and j are neighbors� Each processor

�

i maintains its set of neighbors� denoted as N�i� Every processor owns a shared register 	de�ned
in the following paragraph
� The processors may only communicate with their neighbors using the
shared registers�

Programs� Each processor executes a program and the processors execute their programs asyn�
chronously� The program consists of a set of variables and a �nite set of actions� The processors
have two types of variables� local variables and �eld variables� The �eld variables are part of the
shared register which is used to communicate with the neighbors� The local variables de�ned in
the program of processor i are used strictly locally� meaning that they cannot be accessed by the
neighbors of i� A processor can only write to its own shared register and can only read shared
registers owned by the neighboring processors� So� the �eld variables of i can be accessed by i

and its neighbors� The program of each processor consists of a �nite set of actions� Each action is
uniquely identi�ed by a label and is of the following form�

� label ��� � guard � �� � statement �

The guard of an action in the program of i is a boolean expression involving the local variables
of i� and the �eld variables of i and its neighbors� The statement of an action of i updates zero or
more local variables and �eld variables of i� An action can be executed only if its guard evaluates
to true� We assume that the actions are atomically executed� the evaluation of a guard and the
execution of the corresponding statement of an action� if executed� are done in one atomic step� The
atomic execution of an action of i is called a step of i� this is known as the distributed daemon ����

The state of a processor is de�ned by the values of its �eld variables� The state of a system is
a product of the states of all processors 	� PR
� In the sequel� we refer to the state of a processor
and system as a local state and global state� respectively� A computation of a protocol P is a fair�

maximal sequence of global states � � 	��� ��� � � �
 such that for i �
� �� � � �� the global state �i�� is
reached from �i by a single computation step� During a computation step� one or more processors
execute a step and a processor may take at most one step� Fairness of the sequence means that if
any action in P is continuously enabled along the sequence� it is eventually chosen for execution�
Maximality means that the sequence is either in�nite� or it is �nite and no action of P is enabled
in the �nal global state� All computations considered in this paper are assumed to be fair and
maximal�

Let L be a global state predicate of a protocol P speci�ed with respect to the problem speci��
cation SP that P implements� L holds at all global states reached by the computations of P that
meet SP � Thus� L characterizes the set of all global states reached in the �correct� computations
of P� The predicate L is called a legitimacy predicate or an invariant of P�

The protocol P is self�stabilizing for the speci�cation SP if �i� every computation of P starting
from a global state where L holds preserves L 	closure
� and �ii� starting from any arbitrary global
state� every computation of P reaches a global state where L holds 	convergence
�

��� Speci�cation of the Token Passing Protocol

The legitimacy predicate LTP of our token passing protocol is any global state such that �i� no two
processors have simultaneous token access at any time 	called the Single Token property
� and
�ii� for each computation that starts in such a global state� during a token circulation round� each
processor obtains the token exactly once 	called the Strict Fairness property
�

We also require our solution to the token passing problem to be self�stabilizing�

�

� Token Passing Protocol

In this section� we propose a self�stabilizing depth��rst token circulation algorithm� We �rst present
the general approach to the solution� followed by the de�nition of the local and �eld variable at
each processor� Finally� we present the actions of the algorithm formally�

��� Idea of the Solution

The proposed algorithm has two major tasks� to circulate the token in the network in a deterministic
depth��rst order and to handle the abnormal situations 	illegal states
 due to the unpredictable
initial states and transient errors� The actions of the program for the token circulation are formally
presented in Section ��� and the actions for the error handling processor are given in Section ����

The root r 	in the sequel referred to as the legal root
 initiates a depth��rst circulation round

with a color of
 or �� We will refer to the circulation round as cround� and the color used in a
circulation round as r color� The circulation rounds with the colors of
 and � are referred to as
cround� and cround�� respectively� Once the system is stabilized� in one cround� the token traverses
every processor in the network in the depth��rst order� The branches created due to the traversal
of the token are called the depth��rst branches�

In the beginning of a cround� the processor r holds the token and it is the leaf of the depth��rst
branch� The leaf 	in this case r
 chooses one of the neighbors i as a child and passes the token to
i� So� i is the leaf now� After i uses the token 	or exits the critical section
� i selects one of its
neighbors j who did not get the token yet� So� the token traversal procedure extends the branch
originating at r� This continues until a leaf is unable to �nd any unvisited neighbor� At this
time� the leaf drops the token� allowing its parent to remove this branch� create another depth��rst
branch 	choose another child
� and pass the token to an unvisited neighbor 	the child
� If the parent
cannot �nd an unvisited neighbor� the branch is shrunk� This token traversal continues until the
branch is reduced to r� i�e� all processors of the network have been visited during this cround� This
completes the cround� r now initiates another cround with the other color and the token traversal
is repeated�

The system has an unpredictable initial state�illegal branches or cycles can may exist initially�
There are mainly two error handling tasks� one to remove the illegal branches and the other to
eliminate the cycles� Our approach to handling the illegal branches 	which are not cycles and are
not rooted to the legal root
 is similar to the ideas in �
�� and �
��� and is formally presented in
Section ����
� The illegal roots detect their abnormal situation and change their status to E� The
E status is propagated to their leaves� these E status leaves are de�linked from their parents� and
�nally� these detached processors are recovered 	changing their status to Ok
�

The cycle elimination strategy is similar to the one proposed in �
��� Typically� a distance

variable is used for this purpose� But� we do not use such variables� The basic idea is to detect
the cycle by a processor which does not belong to the cycle� The coloring scheme 	discussed in
detail in Section ���
 is designed such that during cround� 	cround�
� no processor should have a
color of � 	

� Therefore� if in cround� 	cround�
� the processor having the token i has a ��colored
	
�colored
 neighbor j� j is faulty 	j may be inside a cycle
� The leaf i chooses j as the child� The
faulty processor j detects that it has two parents and changes its status to E��� All descendents
of j change their status to E� Then the parent of the faulty processor inside the cycle drops its
faulty child and breaks the cycle� As� the nodes inside a cycle cannot change their color� all cycles

�

are eventually destroyed�

��� Basic Structures

In this section� we de�ne the �eld variables of the register and local variables at each processor�
The �eld variables are denoted as field name�processor id� For example� D�i refers to the �eld

D of processor i� If a �eld variable D�i points a processor j 	a neighbor of i
� then D�D�i refers to
the �eld D of D�i� i�e�� D�D�i � j�

The �eld variables of processor i are de�ned as follows�

� D�i�� The child pointer� It points to one of its neighbors or contains NULL� i�e�� D�i � N�i or
D�i � NULL� If D�i � NULL� then D�D�i � NULL�

� S�i�� The status� It contains a value � fOk�E�E��g� Once the system stabilizes� all processors
have the Ok status� The E and E �� status are used during the error recovering processor and
explained in the following sections�

� C�i�� The color� It takes value � f��
� �� �g� All arithmetic operations 	� and �
 on C are
modulo �� The legal root r initiates depth��rst token circulation rounds cround� and cround�
alternately 	see Section ��

� Once the system stabilized� all processors except the leaf� in the
current depth��rst branch� have an odd color of
 or � corresponding to r color� Other processors
have an even color� The processors who are yet to receive the token during this circulation round
are colored r color �
� The processors who received the token� but are not in the depth��rst
branch 	the branch expands and shrinks as explained in Section ��

 are colored r color�
� The
idea of using a ��state variable is an extension of the ideas in ���
�� on a general graph�

Before evaluating their guards� the processors read the shared registers of their neighbors and
update their local variables� The local variables of i are de�ned below�

� Pi�� The set of parents of i� Ideally� a processor should have at most one parent� But� due
to the faults� a processor may have more than one parent� The parent�child relations satisfy
j � Pi � D�j � i�

� NPi�� The number of parents of i � jPij�

In the next two sections� we present the actions of the Algorithm T P � Our protocol consists of
fourteen actions� TC
�TC�� IB
�IB�� CE
�CE�� and ER
�

��� Token Circulation

The actions for the token circulation use the following de�nitions�

� EvenColor	i
 � 	C�i � �
 � 	C�i � �

� OddColor	i
 � 	C�i �

 � 	C�i � �

� GoodLeaf	i
 � 	D�i � NULL
 	 	S�i � Ok
 	EvenColor	i

� Token	i
 � GoodLeaf	i
 	 		i � r
 � 		i
� r
 	 	NPi �

 	 	�j � Pi �� 	C�i � C�j �

The legal root r holds the token i� GoodLeaf	r
 holds� Processor i
� r holds a token i�
GoodLeaf	i
 holds and its color is its parent�s color minus
�
i may enter the critical section i� Token	i
 holds�

�

� Anomalous	i� k
 � 	k � N�i
 	 	k
� r
 	 	C�k � C�i � �

The processor i has a neighbor k which has an �unexpected� color with respect to i� The
unexpected color is C�i� ��

� FirstChild	i� k
 � Token	i
 	 	k � N�i
 	 	k
� r
 	 	S�k � S�i
 	 	C�k � C�i
 	
	�j � N�i ��
Anomalous	i� j

Processor i holds the token� in i�s neighborhood there is no processor with an �unexpected color��
and i has a neighbor k which could be a potential child�

� DeadEnd	i
 � Token	i
 	 	�j � N�i ��
Anomalous	i� j
 	
FirstChild	i� j

Processor i does not have any neighbor which can be a possible FirstChild�

� ChildDone	i
 � 	D�i
� NULL
 	 	S�i � Ok
 	OddColor	i
 	 	C�i � C�D�i�

Processor i has a child k who has used the token and is a leaf�

� NV Child	i� k
 � 	k � N�i
 	 	k
� r
 	 	S�k � Ok
 	 	C�k � C�i�

Processor i has a neighbor k who can be a possible child� k did not get the token yet in this
cround�

� NewChild	i� k
 � ChildDone	i
 	NV Child	i� k

Processor i selects k as the next child�

� Backtrack	i
 � ChildDone	i
 	 	�j � N�i �
NV Child	i� j

Processor i does not have any neighbor which can be a possible child�

The actions of the program for token circulation at processor i are de�ned in Figure
�

TC��� DeadEnd	i
 �� C�i � C�i � �
TC��� FirstChild	i� k
 �� C�i � C�i �
� D�i � k

TC��� NewChild	i� k
 �� D�i � k

TC��� Backtrack	i
 �� D�i � NULL� C�i � C�i �

Figure
� Actions for Token Circulation�

: Ok status: Ok status holding Token

legal root

2 3
0

 After TC2

3

TC1

legal root

2

legal root

2

legal root legal root

22

TC2

2 22
2 0 0

2 3

Before cround After TC2 After TC1 After TC3

2
2

33

TC1 TC2

TC3

3

legal root legal root legal root

00 03 0
000

3

After TC1 After TC4 After cround 3

1

0

3 0

TC4

TC4

and before cround

0-3 : color

Figure �� Token Circulation�

�

Figure � shows the circulation of a token starting from the legal root� The legal root r initiates
a circulation round 	cround� in the �gure
 by executing the action TC�� The token moves from r

	previous leaf
 to its �rst child which is now the leaf� Thus� the tree expands following a branch�
The leaf uses the token� but cannot �nd a �rst child to pass the token to� So� it drops the token
by action TC
� The legal root now �nds another suitable unvisited child which can receive the
token 	action TC�
� This child becomes the new leaf� If the current leaf has used the token and
an unvisited processor does not exist� the branch is shrunk by the action TC�� When the branch is
completely destroyed 	e�g� the round is over
� the legal root 	r
 has the token and it starts another
round 	cround� in Figure �
�

��� Error Handling

A distributed system has an unpredictable initial state where the D pointers may point to any
neighbors or NULL� Thus� illegal branches or cycles may exist in the initial state� In this section�
we present two error handling tasks� one to eliminate the illegal branches and the other to remove
the cycles of D pointers� The actions de�ned in the following sections together with those de�ned
in the previous section 	Section ���
 complete our solution to the Algorithm T P �

����� Elimination of Illegal Branches

We use the following de�nitions in the actions to eliminate the illegal branches�

� BadShape	i
 � 		D�i
� NULL
 	 	S�i � Ok
 	EvenColor	i

 �
		D�i � NULL
 	 	S�i � Ok
 	OddColor	i

 �
		D�i � NULL
 	 	S�i � E ��

� FastBacktrack	i
 � 	D�i
� NULL
 	 	D�D�i � NULL
 	 	S�D�i
� Ok

Processor i has a child whose status is not Ok and is a leaf�

� Detached	i
 � 	D�i � NULL 	 	NPi � �

Processor i has no child and no parent�

� IllegalRoot	i
 � 	i
� r
 	 	D�i
� NULL
 	 	NPi � �

Processor i is the root of a branch� but is not the legal root r�

� IllegalParent	i
 � 	S�i � Ok
 	 	�k � N�i �� 		D�k � i
 	 	S�k
� Ok

The status of i�s parent is not Ok�

The actions to eliminate the illegal roots and branches at processor i are de�ned in Figure ��

IB��� BadShape	i
 �� D�i � NULL� S�i � E

IB��� FastBacktrack	i
 �� D�i � NULL� S�i � E

IB��� IllegalParent	i
 �� S�i � E

IB��� Detached	i
 	 	S�i
� Ok
 �� S�i � Ok� C�i � �
IB	�� IllegalRoot	i
 	 	S�i
� E
 �� S�i � E

Figure �� Actions to Eliminate the Illegal Roots and Illegal Branches�

Processor i which is in BadShape but not in status E executes action IB
� changes its status
to E and de�links itself from its child� Processor i�s status is changed to Ok later by executing
actions IB�� IB�� and IB��

�

Figure � shows an example of eliminating an illegal root and an illegal branch� An illegal root
executes action IB� and changes its status to E� The E status propagates from a processor to its
child by executing action IB�� A processor de�links an erroneous child that is a leaf 	with status
E
 by executing action IB�� Thus� child get detached� The Erroneous detached processors are
recovered by action IB� by changing their status to Ok�

0-3 : color : E status: Ok status: Ok status holding Token

Illegal live branch Illegal dead branch No illegal branch

legal root legal root legal root legal rootlegal root

2

1

00
2 2

0
2 0

1 1 1 0

00

IB2 IB5 IB4

 IB4 IB3

Figure �� Elimination of An Illegal Root and Illegal Branch

����� Elimination of Cycles

The actions of the program to eliminate the cycles of D pointers are given in Figure � and are
illustrated using an example in Figure �� Processor i detects an anomalous processor k and becomes
its new parent 	action CE

� A processor having several parents and a child 	thus� may be inside
a cycle
 changes its status to E �� 	action CE�
� The E status is assigned to a processor having
several parents but no child 	action CE�
� The E status propagates to the descendants of the
anomalous processor by repeated execution of action IB�� Then the parent of the anomalous
processor 	that is inside the cycle
 executes action CE� and breaks the cycle� Action IB� is
repeatedly executed until all the D pointers in the previous cycle are reset to NULL� Thus�
all processors become detached� Finally� as explained in Figure �� these detached processors are
recovered by executing the action IB� repeatedly�

CE��� Token	i
 	Anomalous	i� k
 �� D�i � k� C�i � C�i�

CE��� 	D�i
� NULL
 	 	S�i
� E ��
 	 	NPi � �
 �� S�i � E ��
CE��� 	D�i � NULL
 	 	S�i
� E
 	 	NPi � �
 �� S�i � E

CE��� 	S�i
� Ok
 	 	S�D�i � E ��
 �� D�i � NULL� S�i � E

Figure �� Actions to Eliminate Cycles�

����� Miscellaneous Error Handling

If processor i�s D pointer points to the root r� then i removes that link 	action ER

 because the
root cannot have a parent�

� ER��� D�i � r �� D�i � NULL

�

0-3 : color : E status: Ok status: E++ status

3

0

1 1 1
legal rootlegal root

33

1 1
3

3

3

3

3

3

After CE1 After CE2Before CE1

3 3 3

legal root

 IB3

33 3

1 1 1
legal root legal root33

3

11 1

legal root 33

3
 CE4

3

After IB3 actions After CE4 After IB2 actions

3

333 3

3

33

 CE1 CE2

 IB2

Figure �� Elimination of Cycles�

� Outline of the Correctness of the Token Passing Protocol

In this section� we present only the main results and the ideas of proving them� A few short proofs
are given in the appendix�

De
nition ��� �Attractor� A global state predicate B of a protocol P is called an attractor for
another global state predicate A of P� if �i� B is closed in P� i�e�� once B holds in an arbitrary

system computation in P� it continues to hold subsequently� and �ii� upon starting at an arbitrary

state in A� the system is guaranteed to reach a global state in B� We denote this relation as B �A�

The notation � � p means that the global state � satis�es predicate p�
We apply the convergence stair method �

� to prove our protocol� We exhibit a �nite sequence

of state predicates A�� A�� � � � � Am� of Algorithm T P such that �i� A� � true 	meaning any
arbitrary state
� �ii� 	Am � LTP
 � 	Am � LTP
� �iii� �j � � � j � m �� Aj�� � Aj �

First� we prove that all maximal computations are in�nite� We partition the global states into
two sets depending on whether there exists a leaf or not� If there exists no leaf processor� then the
legal root has a parent 	ER
 is enabled
� or there is an in�nite path rooted at r 	i�e�� a processor
inside this path has two parents
� A processor in the path can execute CE�� CE�� or IB� action�
If there exists a leaf� then the leaf or its parent can execute one of the actions�

Theorem ��� In any global state� at least one action of Protocol T P at a processor is enabled�

The following two theorems easily follow from the actions of T P �

Theorem ��� A� � NPr � �� A� � A��

�

Theorem ��� A� � A� 	 	�i � i � f
� ng ��
BadShape	i

� A� � A��

A branch not rooted at r and whose leaf is in Ok status� is called an illegal and live branch�
This kind of branch may expand because the processors in this branch may execute the token
circulation actions� We need to prove that all illegal and live branches will eventually be destroyed�
One complication in the process of removing these branches is that new illegal and live branches
may be created�

A new illegal and live branch is created when all parents of a processor i simultaneously execute
CE��i becomes the root of the new illegal branch� After the execution of CE� by a parent j of i�
j becomes a dead leaf� and the branch containing j and i is now a dead branch� If i is inside a dead
branch� after the execution of CE� by all parents of i� i is a root of a dead branch 	there is not
creation of a new illegal branch
� If i is in several illegal and live branches� after the execution of
CE� by i�s parents� all theses branches are now dead� Thus� the illegal branch rooted at i replaces
several illegal branches� If i is in only one illegal and live branch� then i has E �� status and has
only one parent� Such a situation may exist initially� or may happen if i had several parents and
has already lost at least one parent 	by a previous execution of CE� by a parent of i
� during the
computation� several illegal and live branches are replaced by only one� Thus� only a �nite number
of illegal live branches may be created 	this number depends on the initial global state
� Then� by
fair scheduling of IB� and IB�� the illegal and live branches are converted to dead branches�

Theorem ��� A� � A� 	 �there exists no illegal and live branch�� A� � A��

In A�� there is at most one live leaf which is inside the legal branch� Thus� only one of the
actions TC
� TC�� TC�� TC�� or CE
 is enabled at only one processor i 	the leaf of the legal
branch or its parent
�

We call a legal branch color consistent if it is dead or all processors in it 	except the leaf

are colored r color� Once Token	r
 holds true� the legal branch is color consistent and stays color
consistent� We can prove that all maximal computations contain an in�nite number of states where
Token	r
 holds� Let � be a computation with a �nite number of states where Token	r
 holds� In
A�� after the execution of CE
� the legal branch ends in a cycle or a dead leaf� Then the legal branch
will eventually destroy itself and Token	r
 will hold� Thus� � does not contain any execution of
CE
� Eventually� along �� only the token circulation actions are executed in�nitely many times�
If � does not contain the execution of TC� in r� then � is �nite� After the execution of TC�� the
system reaches a state where Token	r
 holds�

Theorem ��	 In A�� all computations contain an in�nite number of states where Token	r
 holds�

Theorem ��
 A� � A� 	 �the legal branch is color consistent�� A� � A��

If the legal branch is not color consistent� then a cycle may be created� The live leaf of the legal
branch may execute CE
 and choose a child which is in the legal branch and which is not colored
r color� creating a cycle� Therefore� if there is at least an illegal� live branch� or if the legal branch
is color inconsistent� then a cycle can be created� But� in A�� no cycle is created�

We need to prove that the cycles are eventually destroyed� We consider a computation � where
some processors are in some cycles� Let N� denote the non�empty set of processors which are in a
cycle in any state in �� We denote the distance between i and r as Disi� and the minimal distance

�

between r and a processor in N� by Dis�� The processors in N� are in strict cycles� A cycle is
called a strict cycle if every processor in the cycle has only one parent and is not in E�� status� By
fair scheduling of CE�� IB�� and CE�� the cycles which are not strict cycles� will eventually become
dead branches� Let Dis� � Disi �
 and i has a neighbor k � N�� By induction on the distance
between i and r� we prove that � contains an in�nite number of states where Token	i
 holds� If
Token	i
 holds� either C�i � C�k�
 or C�i � Ck��� If C�i � C�k�
� then the next time Token	i

holds� i�s color will become C�k � �� The reason is that� in the meantime� i has executed TC
 or
a sequence TC�TC�nTC�� and k did not change its color� If Token	i
 holds and C�i � C�k � ��
then CE
 is enabled at i� CE
 is the only action that can be executed in the protocol� After CE

is executed at i� k is no longer inside a strict cycle�

Theorem ��� A� � A� 	 	�i � i � f
� ng ��
StrictCycle	i

� A� � A��

The cycles which are not strict cycles will become dead branches� The dead branches will
destroy themselves by fair scheduling of IB��

Theorem ��� A	 � A� 	 	�i � i � f
� ng �� i is inside the legal branch or Detached	i
 holds��

A	 � A��

The detached processors that do not have the Ok status will recover 	change to Ok status
 by
executing IB��

Theorem ��� A
 � A	 	 	�i � i � f
� ng �� S�i � Ok 	NPi �

� A
 � A	�

In A
� �i� only the token circulation actions are enabled� �ii� only one processor may execute
one action� �iii� there is no cycle and no illegal branch� and �iv� all processors are in Ok status�
Thus A
 � LTP �

Let �� be the global state where all processors are detached and are � colored� and �� be the
global state where all processors are detached and are � colored� At the end of a cround� more
processors will be colored r color� Thus� in any computation in A
� �� or �� will be eventually
reached�

Starting from �� or ��� in one cround� all processors get the token exactly once� and at the end
of the cround� the current state becomes �� or ��� Thus� Protocol T P provides a strictly fair token
circulating in the network after the system is stabilized�

� Conclusion

We proposed a depth��rst 	strictly fair
 token circulation protocol on rooted networks� The previous
solutions for token circulation� except �
��� on general network topology have a space complexity
of O	log n
� where n is the number of processors� because each processor stores its distance to
the legal root� In Algorithm T P � the distance variable is not used� The cycles are detected by
processors who are not in the cycles� The size of variable D 	child
 of i is O	log�i
 where �i is
the degree of i� The variables C 	color
 and S 	status
 are of constant size�� bits total� The local
variable NP 	number of parents
 takes O	log�i
 space� The other local variable P 	parents list

requires one bit per communication link� Thus� the space complexity of Algorithm T P is O	

 per
communication link�

References

�
� B� Awerbuch and R Ostrovsky� �Memory�e�cient and self�stabilizing network reset�� Sympo�
sium on Principles of Distributed Computing� Los Angeles� California�
���� pp���������

��� J� Burns� M� Gouda� and R� Miller� �On Relaxing Interleaving Assumptions�� Proceedings of
the MCC Workshop on Self�Stabilization� Austin� Texas� November
����

��� G� Brown� M� Gouda� and M� Wu� �Token Systems that Self�Stabilize�� IEEE Transactions
on Computers� Vol� ��� No� �� June
���� pp� ��������

��� Burns J� and Pachl J� �Uniform Self�Stabilizing Rings�� ACM Transactions on Programming
Language and Systems� Vol�

� No� ��
���� pp� ��������

��� E� W� Dijkstra� �Self�Stabilizing Systems in Spite of Distributed Control�� Communications
of the ACM �	�
���� pp� ��������

��� E� W� Dijkstra� �Self�Stabilization in Spite of Distributed Control�� in Selected writings on
computing
 a personal perspective� Springer�Verlag� Berlin�
���� pp� �
����

��� S� Dolev� A� Israeli� and S� Moran� �Self�Stabilization of Dynamic Systems Assuming only
Read�Write Atomicity�� Proceedings of the �th Annual ACM Symposium on Principles of
Distributed Computing� Quebec City� Canada�
���� pp�
���

�� also Distributed Computing
Vol� ��
���� pp� ��
��

��� M� Flatebo and A� K� Datta� �Two�State Self�Stabilizing Algorithms for Token Rings�� IEEE
Transactions on Software Engineering� June
���� pp� ��������

��� M� Flatebo� A� K� Datta� and A� A� Schoone� �Self�Stabilizing Multi�Token Rings�� Distributed
Computing� Vol� ��
���� pp�
���
���

�
�� S� Ghosh� �An Alternate Solution to a Problem on Self�Stabilization�� ACM Transactions on
Programming Languages and Systems� Vol�
�� No� �� September
���� pp� ��������

�

� M�G� Gouda and N� Multari� �Stabilizing Communication Protocols�� IEEE Transactions on
Computing� Vol� ��� No� ��
��
� pp ��������

�
�� S� Huang and N� Chen� �Self�Stabilizing Depth�First Token Circulation on Networks�� Dis�
tributed Computing� Vol� ��
���� pp� �
����

�
�� G� Itkis and L� Levin� �Fast and lean self�stabilizing asynchronous protocols�� �
th Symposium
on Foundations of Computer Science� Santa Fe� New Mexico�
���� pp� ��������

�
�� C� Johnen and J� Beauquier� �Space�E�cient Distributed Self�Stabilizing Depth�First Token
Circulation�� Proceedings of the �nd Workshop on Self�Stabilizing Systems� Las Vegas� Nevada�

���� pp� ��
���
��

�
�� H�S�M� Kruijer� �Self�stabilizing 	in spite of distributed control
 in tree�structured systems��
Information Processing Letters�
���� ����
 ���

�
�� M� Schneider� �Self�Stabilization�� ACM Computing Surveys� Vol� ��� No�
� March
���� pp�
������

�
�� M� Tchuente� �Sur l�auto�stabilisation dans un reseau d�ordinateurs�� RAIRO Informatique
Theorique �
� No�
�
��
� pp�������

�

A De�nitions

We use the following de�nitions in the proofs of Protocol T P �

De
nition A�� �Trap� A predicate � is called a trap in the global state � if the following condition
holds
 	�i � i � f
� ng �� �	i

 is closed in ��

� Q��k � 	� 	A sequence of processors ��
� � � � � k
 � �j � ��� k��� D�j � D�	j �

� Cycle	i
 � 	� Q��k � 	i � � � k

� StrictCycle	i
 � 	� Q��k � 	i � � � k
 	 	�j � ��� k��� NPj�� �

 	 	S�i
� E ��

Processor i is in a cycle where every processor has only one parent and is not in E �� status�

� InIllegalBranch	i
 holds if the processor i is in a branch whose root is not r�

� Leaf	i
 � 	D�i � NULL
 	 		NPi �

 � 	i � r

� LiveLeaf	i
 � Leaf	i
 	 	S�i � Ok

� DeadLeaf	i
 � Leaf	i
 	 	S�i
� Ok

� InLiveBranch	i
 holds i� the processor i is in a branch ending with a live leaf�

� InDeadBranch	i
 holds i� the processor i is in a branch ending with a dead leaf or a cycle�

� IllegalLiveRoot	i
 holds if the processor i is an illegal root of a branch ending with a live leaf�

� LiveEPProcessor	i
 � 	S�i � E ��
 	 	NPi �

 	 InLiveBranch	i

� SpLegalLive	i
 � InLegalLiveBranch	i
 	 		NPi �

 � 	D�i � NULL
 � 	S�i � E ��

Processor i is a special processor in a live and legal branch� with some special properties�

� IncLegalLiveBranch � 	� Q��m � 	r � �
 	 InLiveBranch	r
 	 SpLegalLive	m

	 	�i � ���m���
SpLegalLive	i

 	 	� i � ���m��� S�i � E

IncLegalLiveBranch is true if there exists a processor in a legal and live branch� with status E�
between the root and the �rst SpLegalLive processor in the legal branch�

� ILB �
 if IncLegalLiveBranch is true� otherwise� false�

� ILR � Number of processors which satisfy IllegalLiveRoot�

� LEP � Number of processors which satisfy LiveEPProcessor�

� SumI � ILR� LEP � ILB

� IllegalProcessor	i
 holds if the processor i is in a cycle� an illegal branch� or in a legal branch
	in this case� i joined the legal branch by executing CE

�

Notations�

Action a � i means that Action a is enabled in the program of processor i at the current global
state� 	Action a� Action b� � � � or Action k
 � i means that only one of the actions among Action a�
Action b� � � � or Action k is enabled in the program of processor i at the current global state�

B Liveness of the Algorithm T P

Theorem ��� In any global state� at least one action of Algorithm T P at a processor is enabled�

Proof
 We consider two types of global states� there exists a leaf i and there exists no leaf� Assume
that i is a leaf� If i has the E � � status� IB
 � i� If i has the E status� IB� � k 	k � Pi
�
If Token	i
 holds� then 	TC
� TC�� CE

 � i� If ChildDone	k
 holds� then 	TC�� TC�
 � k�
Otherwise� S�i
� Ok�
Token	i
� and
ChildDone	k
� Then IB
 � i� IB� � i� CE� � i� or IB
 � k�

Assume that there exists no leaf� If r has a parent l� then IB
 � l� If r does not have a
parent� then there is an in�nite path rooted at r� This path must contain a processor 	say i
 sev�

�

eral times� Then CE� � i� IB� � j 	where j is inside the in�nite path
� or CE� � k 	where k � Pi
� �

C Destruction of Illegal Live Branches

Theorem ��� A� � NPr � �� A� � A��

Proof
 A� is closed� No action creates a parent of r� Every computation reaches A�� If A� does not
hold in the current global state� at least one processor satis�es the guard of ER
� Every time ER
 is
executed� the number of r�s parents is reduced� Thus� by fair scheduling� A� will eventually hold� �

Theorem ��� A� � A� 	 	�i � i � f
� ng ��
BadShape	i

� A� � A��

Proof
 After any action is executed by i� BadShape	i
 does not hold� Therefore A� is closed� If A�

does not hold in the current global state� at least one processor satis�es the guard of IB
� �

Remark C��
IB�� ER� �A��
Token	i
 � �TC�� TC�� or CE�� � i�
ChildDone	i
 � �TC�� TC�� � i�
In A�� 	OddColor	i
 	 	S� i � Ok

� 	D�i
� NULL
�
In A�� 	EvenColor	i
 	 	S� i � Ok

� 	D�i � NULL
�
In A�� if 	Token	i
� i
� r
 holds� then
ChildDone	k
 holds� where k � Pi�
In A�� a processor can execute TC�� TC�� or CE� i� it is a live leaf�
In A�� a processor can execute TC� or TC� i� it is in a live branch�
The processors inside a cycle or a dead branch cannot change their color�
A dead branch cannot gain a new processor or a live leaf�

Theorem C�� A�� � A� 	 	SumI � �
� A�� � A��

Proof
 In A�� only the execution of CE
 by the leaf of the legal branch changes the value of ILB
from � to
� the leaf chooses k as a child and IllegalLiveRoot	k
 holds� After the execution of
CE
� we may have ILB �
� But� IllegalLiveRoot	k
 does not hold now� Thus� SumI does not
increase�

IllegalLiveRoot	i
 	LiveEPProcessor	i

 holds after the execution of an action even if it did
not hold before� i� all parents of i 	all parents except one
 execute action CE� and i was inside
a live branch� Thus� in A�� only CE� executed by a processor in a live branch may increase
the value of SumI � Let i be a processor in a live branch� and j be a parent of i that executes
CE�� Before the execution of CE�� IllegalLiveRoot	k
 	where k is the root of the branch j is in
�
IncLegalLiveBranch� or LiveEPProcessor	l
 	where l is in the legal branch
 holds� After the exe�
cution of CE�� none of these predicates holds� If i has only one parent j� then LiveEPProcessor	j

was true before this step� But� after the execution of CE�� only IllegalLiveRoot	i
 holds and SumI

has decreased� If i has several parents� and only j executes CE�� then after the execution of CE��
LiveEPProcessor	i
 may hold but SumI did not increase� If several parents of i execute CE� dur�
ing a computation step� then SumI decreases� Thus� SumI never increases� and decreases every
time that ILR increases� Therefore� A�� is closed�

By fair scheduling of the actions IB�� IB�� and IB�� A�� will eventually hold� �

The following theorem follows from Theorem C�
�

Theorem ��� A� � A� 	 	there is not illegal� live branch
� A� � A��

�

D Color Consistency of the Legal Branch

A legal branch is called color consistent if it does not end in a live leaf� or all processors in it� except
the leaf� have the r color�

Remark D��
In A�� there is no illegal live branch and there is at most one live leaf�
In A�� only one of the actions TC�� TC�� TC�� TC�� or CE� is enabled at only one processor i
which is either the live leaf or the parent of the live leaf�
In A�� if a processor i in a legal branch executes CE�� then the legal branch becomes dead and

color consistent� i�e�� the legal branch ends in a cycle or a dead leaf�

We de�ne A� � A� 	 	the legal branch is color consistent
�

Theorem ��	 In A�� all computations contain an in�nitely many states where Token	r
 holds�

Proof
 Let � be a computation with a �nite number of states where Token	r
 holds� After an
action CE
� the legal branch ends in a cycle or a dead leaf 	Remark D�

� Then the legal branch
will eventually destroy itself and Token	r
 will hold� Thus� CE
 is not executed in � after the state
where Token	r
 holds last� Then� no new processor will have several parents� and � will eventually
reach a state where all processors have at most one parent� Once this state is reached� no new
processor will get the E�� status in �� Thus� by fair scheduling of IB�� IB�� and CE�� the system
will will reach a state in �� where no processor has the E � � status� So� the actions IB
� CE
�
CE�� CE�� CE�� and ER
 are not executed in �� All the illegal branches are dead 	they will delete
themselves by executing IB�
� and no new one will be created 	only CE� can create a new illegal
root
� Thus� only one of the token circulation actions is executed in�nitely many times� � would
be �nite if TC� is not executed by r� After the execution of CE�� the system reaches a state where
Token	r
 holds� Thus� � does contain an in�nitely many states where Token	r
 holds� �

Theorem ��
 A� � A��

Proof
 If Token	r
 holds� the legal branch is color consistent� The token circulation actions ensure
that a processor creating a child takes the same color as that of the parent� In A�� after the exe�
cution of CE
� the legal branch becomes dead and color consistent 	Remark D�

� IB� changes the
color of a processor inside the legal branch� i� it is executed by r� After IB� is executed� the legal
branch becomes color consistent� Other actions do not change the color� Thus� the legal branch�
once color consistent� preserves the same property� �

E Destructions of Cycles

We de�ne A� � A� 	 	�i � i � f
� ng ��
StrictCycle	i

�

Lemma E��
StrictCycle is a trap in A��

Proof
 In A�� no action creates a new cycle� and a non�strict cycle cannot become a strict cycle� �

After the execution of CE
� the legal branch may contain processors in E � � and E status�
A processor in the legal branch may execute CE� and create a new illegal branch 	dead
� Thus�

InIllegalBranch is not a trap in A�� But� all processors in this branch held IllegalProcessor
before executing CE�� Therefore� we can prove that
IllegalProcessor is a trap in A��

Lemma E�� IllegalProcessor	i
 	
StrictCycle	i
 cannot hold forever�

�

Proof
 By fair scheduling of IB�� CE�� and CE�� the non�strict cycles will be broken into dead
branches� The illegal branches are all dead and will eventually destroy themselves� After the exe�
cution of CE
� the legal branch ends in a non�strict cycle or a dead leaf� �

Lemma E��
IllegalProcessor is a trap in any state of A� reached by any computation where
Token	r
 has held�

Proof
 Assume that IllegalProcessor	i
 is false and after the execution of some action� IllegalPro�
cessor	i
 holds� �i� Assume i joined the legal branch by CE
� But� before this step� i was inside a
dead branch or a cycle� Thus� IllegalProcessor	i
 was true� �ii� Assume that a new illegal branch is
created by the execution of CE�� But� the processors in this new branch satis�ed IllegalProcessor
before the step� Once Token	r
 is true� all processors that joined the legal branch by executing
TC� or TC�� except the leaf� have the Ok status and have at most one parent� Thus� none of them
can execute CE�� Therefore� only processors that satisfy IllegalProcessor� may execute CE�� �

We prove that starting from an arbitrary state in A�� the system is guaranteed to reach a state
in A�� We prove this by contradiction� We assume the contrary� i�e�� there exists a computation
� starting from a state in A� such that it does not reach A�� Let mathcalN� denote the non�
empty set of processors which are in a strict cycle in every state in �� Let mathcalD� indicate
the minimal distance between r and a processor in mathcalN�� We de�ne A�� as a global state
where all processors in mathcalN� are inside a cycle and other processors are not inside any cycle�
A�� � A��	 	IllegalProcessor	i
 � StrictCycle	i

� Once Token	r
 holds� the system will reach
a state in A�� in the computation � and A�� will continue to hold in � 	Lemmas E�� and E��
� In
A��� CE
 breaks a strict cycle into a non�strict cycle� Therefore� CE
 cannot be executed in A�� in
the computation �� As in the proof of Theorem ���� we can prove that the system will eventually
have only the token circulation actions executed in ��

Lemma E�� Let i be a neighbor of r� If Dis� �
� then in A��� Token	i
 holds in�nitely many
times in the computation ��

Proof
 After TC� is executed once in r� TC� will be enabled again only after all its neighbors
change their color� We know that TC� is executed in�nitely many times by r� Moreover� i can
change its color only if Token	i
 holds� �

Similarly� we prove the following lemma�

Lemma E�	 Let i be a processor such that Disi � Dis��
 and Token	i
 holds in in�nitely many
states in the computation �� Let k be a neighbor of i� Then in A��� Token	k
 holds in�nitely many
times in the computation ��

Lemma E�
 All computations starting from a state in A�� reach a state in A��

Proof
 Let i be a processor such that Dis� � Disi �
 and StrictCycle	k
 holds� where k is a
neighbor of i� By induction on the distance between the processors i and r� we can show that �
contains an in�nitely many states where Token	i
 holds 	by Theorem ���� and Lemmas E�� and
E��
� When Token	i
 holds� either C�i � C�k�
 or C�i � C�k ��� If C�i � C�k�
� the next time
Token	i
 holds� i�s color will become C�k � �� The reason is that i executes TC
 or a sequence
TC�TC�nTC�� and k does not change its color� When Token	i
 holds and C�i � C�k��� i satis�es
the guard of CE
� CE
 is the only action which can be executed in the protocol� Thus� CE
 is
executed in �� proving the contradiction� �

The following theorem follows from Lemmas E�
 and E���

Theorem ��� A� � A��

�

F Fair Token circulations

Theorem ��� A	 � A� 	 	�i � i � f
� ng �� i is inside the legal branch or Detached	i
 holds
�
A	 � A��

Proof
 The processors that are not detached� are inside the legal branch� or satisfy the IllegalPro�
cessor predicate 	they are in a non�strict cycle or a dead branch
� Therefore� A	 � A� 	 	�i �
i � f
� ng ��
IllegalProcessor	i

�

As every computation contains in�nitely many global states where Token	r
 holds 	Theo�
rem ���
� the
IllegalProcessor predicate is a trap in A� 	Lemma E��
� So� A	 is closed�

In A�� a processor i which satis�es IllegalProcessor	i
 is not in a a strict cycle! By Lemma E���
IllegalProcessor	i
 will not hold forever� �

Theorem ��� A
 � A	 	 	�i � i � f
� ng �� S�i � Ok 	NPi �

� A
 � A	�

Proof
 Action CE
 is not executed by any computation in A	� So� no new processor can have
several parents� All computations will eventually reach a state where all processors have at most
one parent� Once this state is reached� no new processor will get the E � � status� Thus� by
fair scheduling of IB�� IB�� and CE�� the system will will reach a state� where no processor has
the E � � status� So� the actions IB
� CE
� CE�� CE�� CE�� and ER
 are no more executed�
All the illegal branches delete themselves by executing IB�� and no new one will be created 	only
CE� can create a new illegal root
� No more processor will have the E status� Eventually� the sys�
tem will reach A
� In A
� only the token circulation actions may be executed� Thus� A
 is closed� �

�

