
Cross-over Composition - enforcement of
fairness under unfair adversary

Joffroy Beauquier, Maria Gradinariu, and Colette Johnen

Laboratoire de Recherche en Informatique, UMR CNRS 8623,
Université de Paris Sud, F91405 Orsay cedex, France

{jb,mariag,colette}@lri.fr

Abstract. We study a special type of self-stabilizing algorithms com-
position : the cross-over composition (A�B). The cross-over composition
is the generalization of the algorithm compiler idea introduced in [3].
The cross-over composition could be seen as a black box with two entries
and one exit. The composition goal is to improve the qualities of the first
algorithm A, using as medium the second algorithm B. Informally, the
obtained algorithm is A after the transfer of B’s properties.
Here, we provide a complete analysis of the composition, when the algo-
rithms (A and B) are deterministic and/or probabilistic algorithms.
Moreover, we show that the cross-over composition is a powerful tool in
order to enforce a scheduler to have a fair behavior regarding to A.

1 Introduction

The idea of composing self-stabilizing algorithms in order to improve their adapt-
ability was introduced by Gouda and Herman in [8]. In their approach an al-
gorithm is composed by a number of k layers such that the layer i, 1 < i ≤ k
depends on the variables which stabilize due to the actions of the layers from 1 to
i− 1. The proof of convergence of the composed algorithm follows by induction.

In the same paper, the authors present another type of composition which uses
a selection predicate. The two modules which enter in the composition do not
inter-communicate, but they are allowed to modify the same output variables.
At a given time, the selection predicate is true only for one module (module that
is allowed to modify the output variables) while the other module is waiting the
flipping of predicate value.

Another type of independent module composition was defined by Varghese in
[12]. The entities interact by means of their outputs. The obtained algorithm is
the composition of the modules.

A special form of composition was defined by Dolev and Herman in [5]. The goal
of this composition is to accelerate the self-stabilization of an algorithm P . P
will pick up the result of the fastest self-stabilizing algorithm of (Si), i ∈ I in
order to perform its own task. This technique needs some fair scheduler.

The cross-over composition A�B goal is to improve the qualities of the algorithm
A, using as medium the second algorithm B. Informally, the obtained algorithm
is the algorithm A after the transfer of B’s computation properties. The main
use of the cross-over composition is the transformation of a self-stabilizing al-
gorithm A under weak scheduler (central, alternating, k-fair, fair, ...) into an
algorithm (A �B) which maintains the self-stabilization property under any un-
fair scheduler.

Moreover, we guarantee that the composed algorithm will satisfy the conjunction
of the properties of the algorithms as in the Varghese composition. We show that
all liveness and safety properties of A and B are also conveyed by A �B iff B is
fair when A and B are deterministic and/or probabilistic algorithms.

In Sec. 2, the model and self-stabilization definitions for deterministic and prob-
abilistic algorithm are given. The cross-over definition is presented in Sec. 3. In
Sect. 4, we study the propagation of the self-stabilization property. We explain
how to use the cross-over composition to transform any self-stabilizing algorithm
under some specific scheduler into an algorithm that converges under any unfair
scheduler in Sec. 5.

2 Model

Distributed Systems. A distributed system can be modeled by a transition sys-
tem. A transition system is a three-tuple S = (C, T , I) where C is the collection
of all configurations, I is a subset of C called the set of initial configurations,
and T is a function from C to the set of C subsets. A C subset of T (c) is called a
c transition. An element of a c transition t, is called an output of t. In a proba-
bilistic system, there is a probabilistic law defined on the output of a transition;
in a deterministic system, each transition has only one output. In Fig. 2, we can
see the C00 transition called CH00 that has four outputs : C11, C12, C21 and
C22.

The abstract model defined above is a mathematical representation of the reality.
In fact, the distributed system is the collection of processors that communicate
only with theirs processor neighbors to execute a distributed algorithm.

A computation of a distributed system DS is a sequence of computation steps.
A maximal computation is a sequence such that it is either infinite, or with a
deadlock terminal configuration. The computations set of a distributed system
DS is denoted by EDS . A maximal computation e is fair if and only if any
processor performs infinity often an action. A fair computation e is k-fair if and
only if between two actions of a processor, any other processor performs at most
k actions. A maximal computation e is k-bounded if and only if along e, till a
processor p is enabled to perform an action, another processor can perform at
most k actions. A k-fair computation is k-bounded; but the converse is not true.

When the distributed algorithm prevents the fairness because some processors
are no more enabled, the k-bounded property guarantees the fairness between
“enabled” processor. On a network of 4 processors (p1, p2, p3, p4), the following
computation is not 1-fair (p1′s action, p3′s action)∗ but it is 1-bounded if along
this computation p2 and p4 are never enabled to perform any action.

Scheduler. In this model, a scheduler is a predicate over the system computa-
tions. In a computation, a transition (ci, ci+1) occurs due to the execution of a
nonempty subset of the enabled processors in the configuration ci. In every com-
putation step, this subset is chosen by the scheduler. At a computation step, a
central scheduler chooses an enabled processor to execute its action; A distributed
unfair scheduler chooses any nonempty subset of the enabled processors at each
computation step. A k-bounded scheduler produces only k-bounded computa-
tions : it ensures the k-fairness between processors that are enabled to perform
an action. An alternating scheduler produces only alternating computations :
between two actions of a processor p each p’s neighbor performs one and only
one action.

An algorithm under a scheduler D is fair (resp. k-fair) if any computation of
the algorithm under D is fair (resp. k-fair). When the property of fairness (resp.
k-fairness) is verified by an algorithm under any scheduler then the algorithm is
simply called fair (resp. k-fair).

Built on previous works on probabilistic automata (see [11, 13, 10]), [4] present-
ed a framework for proving self-stabilization of probabilistic distributed systems
based on the notion of strategy. A strategy is the set of computations that can
be obtained under a specific scheduler choice. At the initial configuration, the
scheduler “chooses” one set of enabled processors (it chooses a transition). For
each output of the selected transition, the scheduler chooses a second transition,
and so on. The formal strategy definition is based on the tree of computations.
Let c be a configuration. A TS-tree rooted in c, T ree(c), is the tree-representation
of all computations beginning in c. Let nd be a node in T ree(c) (i.e. a config-
uration), a branch rooted in nd is the set of all T ree(c) computations starting
in nd with a computation step of the same nd transition. The degree of nd is
the number of branches rooted in nd. A sub-TS-tree of degree 1 rooted in c is a
restriction of T ree(c) such that the degree of any T ree(c)’s node (configuration)
is at most 1. Figure 2 contains a strategy rooted in C00. A strategy may have a
non-countable number of infinite computations. A strategy is defined as follows :

Definition 1 (Strategy). Let DS be a distributed system, let D be a scheduler
and let c be a configuration. We call a strategy of DS under D rooted in c a
sub-TS-tree of degree 1 of T ree(c) such that any computation of the sub-tree
satisfies the scheduler D.

Let st be a strategy of the distributed system DS, an st-cone Ch is the set of all
possible st-computations with the same prefix h (for more details see [10]). The
last configuration of h is denoted last(h).

We have equipped a strategy with a probabilistic space (see [4] for more details).
The measure of an st-cone Ch is the measure of h (i.e., the product of the
probability of every computation step occurring in h). An st-cone Ch′ is called
a sub-cone of Ch if and only if h is a prefix of h′. Let st be the strategy of Fig.
2; let h be the prefix (C00, ch00, C12)(C12, ch12, C56); in st, the probability of
Ch is p2

A · (1− pB)2.

Deterministic self-stabilization. In order to define self-stabilization for a dis-
tributed system, we use two types of predicates : the legitimate predicate (defined
on the system configurations and denoted by L) and the problem specification
(defined on the system computations and denoted by PS). To prove the self-
stabilization to SP , one has to prove that all computations reach a legitimate
configuration and that from a legitimate configuration any computation satisfies
the predicate SP . For instance, the leadership problem specification is “there is
one leader in the network, called p, and p stays the only leader forever”. In this
case, a legitimate configuration would be a configuration where there is one and
only one leader. The correctness proof consists in ensuring that the system does
not diverge from a legitimate configuration : once p is the only leader, no other
processor becomes leader and p keeps its leadership.

Let X be a set and Pred be a predicate defined on X . The notation x ` Pred
means that the element x of X satisfies the predicate Pred.

Definition 2 (Deterministic self-stabilization). Let DS be a distributed
system. DS is self-stabilizing for a specification PS if and only if the follow-
ing two properties hold :

• convergence — all computations of DS reach a configuration that sat-
isfies the legitimate predicate denoted L. Formally, ∀e ∈ EDS :: e =
((c0, c1)(c1, c2) . . .) : ∃n ≥ 1, cn ` L;
• correctness — all computations starting in configurations satisfying the
legitimate predicate satisfy the problem specification PS. Formally, ∀e ∈
EDS :: e = ((c0, c1) (c1, c2) . . .) : c0 ` L ⇒ e ` PS.

Probabilistic self-stabilization. Let DS be a distributed system. A predicate P is
closed for the computations of DS if and only if when P holds in a configuration
c, P also holds in any configuration reachable from c.

Notation 1 Let DS be a distributed system, D be a scheduler and st be a strat-
egy of DS under D. Let CP be the set of all system configurations satisfying a
closed predicate P (formally ∀c ∈ CP, c ` P). The set of st-computations that
reach configurations of CP is denoted by EP and its probability by Prst(EP).

Definition 3 (Probabilistic Stabilization). A distributed system DS is self-
stabilizing under a scheduler D for a specification PS if and only if there exists
a closed legitimate predicate L defined on configurations such that in any strategy
st of DS under D, the following conditions hold :

• convergence — The probability of the set of st-computations, that reach
a configuration satisfying L is 1. Formally, ∀st, Prst(EL) = 1.
• correctness — Any computation starting in a configuration satisfying
L satisfies the specification PS.

3 Cross-over Composition

3.1 Definitions

In the sequel, we define the cross-over composition A�B. The cross-over compo-
sition could be seen as a black box with two independent entries (two algorithms
that do not share any variable) and one exit. The composition goal is to improve
the qualities of the first Alg. A, using as medium the second Alg. B. The two
algorithms which enter in the composition have different parts. A, referred in
the following as the weak algorithm is the target of the transformation. B re-
ferred as the strong algorithm is the transformation medium which transfers its
properties to the weak algorithm.

The actions of A are synchronized with the actions of B : when an A action
is performed then a B action is performed too. Thus, the computations of the
composite algorithm under any scheduler have the same properties as the com-
putations of B in term of fairness.

• when a processor p performs an action of A it performs simultaneously
an action of B (both action guards were satisfied on p);

• a processor p may perform an action of B without performing an action
of A (in this case all action guards of A are disabled on p).

The strong algorithm B acts as a computation filter for the weak algorithm A :
A will only deal with computations that can be obtained by B under the current
scheduler: D. The obtained algorithm A � B has the properties of B under D
and the properties of A under a scheduler that produces “B’s computations”.

Definition 4.
Let A be an algorithm with n actions as follows :
∀i ∈ {1, . . . , n} < guard ai > ⇒ < action ai >

Let B be an algorithm with m actions as follows :
∀j ∈ {1, . . . ,m} < guard bi > ⇒ < action bj >

Assume that A and B do not share any variable. The cross-over composition
A �B is the algorithm with the m.(n+ 1) following actions :
∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}
< guard ai > ∧ < guard bj > ⇒ < action ai >;< action bj >

∀j ∈ {1, . . . ,m}
¬ < guard a1 > ∧ . . .∧¬ < guard an > ∧ < guard bj > ⇒ < action bj >

Example 1. Let r be a unidirectional ring of n processors. Algorithm B has one
integer variable v and one action : on any processor p (lp being the left neighbor
of p), vp ≤ vlp ⇒ vp := vlp + 1. Any computation of B has a suffix that is
alternating. Algorithm A has two variables Currentlist and BackupList (list of
processor ids) and one action (without guard) : ⇒ p copies the content of
CurrentList of its left neighbor into its own CurrentList; then it concatenates
its own id at the end of the list. If p id appears two times in this list, p copies
the segment between its ids into the backupList. If in p’s CurrentList, p’s id
appears three times then p empties its CurrentList. The cross-over composition
A � B has three variables : one integer and two lists of processors id; and the
following action :

b1. vp ≤ vlp ⇒ vp := vlp + 1; p copies the content of CurrentList of its
left neighbor into its own CurrentList; then
As the computations of A � B have an alternating suffix; one may prove that
the algorithm stabilizes : every BackupList list will contain the ordered list of
processors id on the ring.

A probabilistic self-stabilizing leader election algorithm on anonymous ring is
presented in [3]. This algorithm is the cross-over composition of three algorithms
(L�RTC)�DTC : DTC ensures that the computations are k-fair, RTC provides
a token circulation on the ring if the computations are k-fair, and L manages
the leadership under the assumption that a token circulates in the ring.

Observation 1 One may notice that the algorithm A2 � (A1 � B) is not the
algorithm (A2�A1)�B. To prove that one may study the cross-over composition
of three simple algorithms (i.e. each algorithm has one action).

3.2 Deterministic Properties Propagation

In the following, we study the propagation of deterministic algorithm properties
on the obtained algorithm.

Lemma 1 (propagation of properties on computations). Let A�B be the
cross-over composition between the algorithms A and B. Let P be a predicate
on B’s computations. If any maximal computation of B under the scheduler D
satisfies the predicate P then any maximal computation of A�B under D satisfies
P .

Proof. Assume that there is at least one maximal computation of A�B, e, under
D which does not satisfy the predicate P . The projection of e on B is unique
and maximal. Let eB be this projection. Since e does not satisfy the predicate
P then eB does not either which contradicts the Lemma hypothesis.

Corollary 1 (propagation of fairness). Let A � B be the cross-over compo-
sition between the algorithms A and B. If Alg. B is fair under D then A �B is
a fair algorithm under D.

Corollary 2 (propagation of k-fairness). Let A�B be the cross-over compo-
sition between the algorithms A and B. If B is k-fair under a scheduler D then
A �B is k-fair under D.

The proof of the following Lem. is similar to the proof of the Lem. 1.

Lemma 2 (propagation of convergence properties). Let A�B be the cross-
over composition between the algorithms A and B. Let P be a predicate on the B’s
configurations. If any maximal computation of B under the scheduler D reaches
a configuration which satisfies the predicate P then any maximal computation of
A �B under D reaches a configuration which satisfies P .

Corollary 3 (propagation of liveness). Let A � B be the cross-over com-
position between the algorithms A and B. If B is without deadlock under the
scheduler D then A �B is without deadlock under D.

Lemma 3 (maximality of the weak projection). Let A � B be the cross-
over composition between A and B. If B is fair under the scheduler D then the
projection on A of any maximal computation of A �B under D is maximal.

Proof. Let e be a maximal computation of A�B. Let eA be the projection of e on
A. Assume that eA is not maximal. Hence eA is finite and its last configuration
is not a deadlock. Let e be e = e1e2 where the projection of e1 on A is eA and
the projection of e2 is a maximal computation which does not contain any action
of A. Let c be the last configuration of e1. The projection of this configuration
on A is not a deadlock, then there is at least one processor, p, which satisfies a
guard of A in c. Using the fairness of B and Corollary 1 we prove that p executes
an action of B in e2. According to the definition of the cross-over composition,
during the computation of p’s first action in e2, it executes an action of A. There
is a contradiction with the assumption that no action of A is executed in e2.

3.3 Propagation on a Simple Probabilistic Cross-over Composition

In this section, we study the properties of a strategy of A � B when X (= A or
B) is a probabilistic algorithm and the other one is a deterministic algorithm.
Figure 1 displays an example of such a cross-over composition.

Lemma 4. Let X be a probabilistic algorithm, let Y be a deterministic one,
and let Z = X � Y and W = Y � X be their cross-over composition. Let st be
a strategy of Z or W under the scheduler D. Let stX be the projection of st on
the algorithm X. stX is a strategy of X under D.

Proof outline : Let c be the initial configuration of st, and cX its projection
on X. Let T S(cX) be the tree representation of X computations beginning at
cX . Let st′ be the sub-tree of T S(cX) that contains all computations that are st
projections. st′ is a strategy : all computation steps beginning at n (a node) in
st′, belong to the same transition : nd; and all computation steps of nd transition
are in st′.

Fig. 1. The projection of a strategy of A � B on A (B being a deterministic
algorithm)

Theorem 1. Let X be a probabilistic algorithm, let Y be a deterministic one,
and let Z = X � Y and W = Y � X be their cross-over composition. Let st be
a strategy of Z or W under the scheduler D. Let stX be the projection of st
on X. Let PCX be a predicate over the X ′s configurations, then Prst(EPCX) =
PrstX (EPCX). Let PEX be a predicate over the X ′s computations, then Prst{e ∈
st | e ` PEX} = PrstX{e′ ∈ stX | e′ ` PEX}.

Proof outline : Let Ch be a cone of st. The projection of Ch on X is a cone of
stX : Ch′ where h′ is the projection of h on X.

3.4 Propagation on a Double Probabilistic Cross-over Composition

In this section, we study the properties of a strategy of A �B when A and B are
probabilistic algorithms. The projection of a strategy on an algorithm is not a
strategy (Fig. 3 is the projection on B of the strategy of Fig. 2). The projection
is decomposed in strategies.

Definition 5 (derived strategies). Let st be a strategy of A�B and let stprojX
be the projection tree obtained after the projection of the computations in st on

X (X = A or X = B). A derived strategy of stprojX is a subtree of stprojX
whose degree equals 1.

Observation 2 Let st be a strategy of A � B. Let stprojX be the projection of
st on X (X = B or A). For the sake of simplicity, we assume that X = B. Let
stB be a strategy derived from stprojB. Each cone of computations in stB, Ch|B,
is the projection of a cone of st, Ch, which probability is given by the probability
of Ch|B in stB multiplied by δhB. The weight of the cone of history h|B in stB
(denoted by δhB) is the probability of the A computation steps executed in the
history of Ch. Hence, Prst(Ch) = δhB · PrstB (Ch|B).

Definition 6 (projection strategies on X). We call a projection strategy
stX a derived strategy of stprojX such that all cones of stX having the same
length have the same weight. We note δstXn the weight of n-length cones of stX .

For instance, Fig. 4 and Fig. 5 contain 4 projection strategies on B of the strategy
st (Fig. 2). Each strategy has a different δ2 value.

Observation 3 Let N be an integer. Let st be a strategy of A�B. Let stprojX be
the projection of st on X (X = B or A). For the sake of simplicity, we assume
that X = B. Let MB be the set of projection strategies of stprojB. There is a
finite subset of MB, denoted MB

N such that
∑
stB∈MB

N
δstBN = 1. Such a subset of

M is called a N -length B picture of st.
Each N -length cone of st has one and only one projection on B in MB

N .
There are several subsets of MB that are “N -length B pictures of st”.

The 4 strategies of Fig. 4 and Fig. 5 constitute a MB
2 set. We have

∑i=4
i=1 δ

sti
2 = 1

We show that if any strategy of an algorithm for which the set of computations
reaching a configuration satisfying a predicate P has the probability 1, then in
any strategy of the composed algorithm, this set has the probability 1.

Lemma 5 (probabilistic propagation). Let L be a predicate over the X’s
states (X = A or X = B). Let st be a strategy of A � B under a scheduler
D. If for every strategy stX , being a projection strategy of st on X, we have
PstX (EL) = 1 then Pst(EL) = 1.

Proof. Let st be a strategy of A�B. Let stprojX be the projection of st on X (X
= B or A). We assume that X = B. Let MB be the set of projection strategies
of stprojB .

We denote by ELN the union of the cones of a given strategy that have the
following properties : (i) their history length is N and (ii) they have reached a
legitimate configuration.

Let ε be a real inferior to 1. By hypothesis, there is an integer N such that
on any strategy stB of MB

N (a N -length B picture of st) we have PrstB (ELN)
≥ 1− ε.
Prst(ELN) =

∑
sti∈MB

N
[Prsti(ELN) · δstiN] ≥ (1− ε).

∑
sti∈MB

N
δstiN ≥ 1− ε. In st,

the set of computations reaching legitimate configurations in N ′ ≤ N steps has
a probability greater than 1− ε.

Therefore, for any sequence ε1 > ε2 > ε3... there is a sequence N1 ≤ N2 ≤ N3...
such that Prst(ELNi) ≥ 1 − εi. Then, limn→∞ Pst(ELn) = Pst(computations
reaching a legitimate configuration) = 1.

4 Cross-over Composition and Self-Stabilization

In the sequel, we study the propagation of the self-stabilization property from
an algorithm to the resulting algorithm of a cross-over composition. The propa-
gation with self-stabilization (in the deterministic case) is a direct consequence
of Lem. 1 and 2 when the strong algorithm (B) is the propagation initiator.

Lemma 6. [self-stabilization propagation to the deterministic Alg. A �
B from Alg. B] Let A �B be the cross-over composition between the determin-
istic algorithms A and B. If Alg. B self-stabilizes for the specification SP under
the scheduler D then A �B is self-stabilizing for SP under D.

Proof. The proof is a direct consequence of the Lem. 1 and 2. In order to prove
the convergence we apply Lem. 1 for the property which characterizes the legit-
imate configurations. The correctness proof results from Lem. 2 applied for the
specification SP .

In order to ensure the liveness of the weak algorithm, the strong algorithm must
be fair.

Lemma 7. [self-stabilization propagation to the deterministic Alg. A �
B from Alg. A] Let A�B be the cross-over composition between the determin-
istic algorithms A and B (B is a fair algorithm). If A is self-stabilizing for the
specification SP under the scheduler D then A�B stabilizes for the specification
SP under D.

Proof. Let e be a maximal computation of A �B.
• convergence of Alg. A �B. Let P be the predicate which characterizes
the legitimate configurations of A and let eA be the projection of e on A.
According to Lem. 3, eA is a maximal computation of A and eA reaches
a legitimate configuration (A is self-stabilizing).

• correctness of Alg. A � B. Let e be a computation of A � B which
starts in a configuration satisfying P . Let eA be its projection on A.
The computation eA is maximal and starts in a configuration which
satisfies P . A is self-stabilizing then eA satisfies the specification SP ,
hence e satisfies also the specification SP .

Lemma 8. [self-stabilization propagation to the probabilistic Alg. A�B
from Alg. B] Let A �B be the probabilistic cross-over composition between the
algorithms A and B. If the algorithm B self-stabilizes for the specification SP
under the scheduler D then A �B is a probabilistic self-stabilizing algorithm for
SP under D.

Proof. Let us study the propagation in the two possible cases : B is a determin-
istic algorithm or is a probabilistic one. The idea of the proof is to analyze an
arbitrary strategy st of A �B under D.

• B is deterministic. The projection on B of every computation of the
strategy st is maximal. Every computation of st reaches a legitimate
configuration; and then, it satisfies the specification SP . A � B is self-
stabilizing for SP under D.
• B is probabilistic. Let st be a strategy of A � B. Let L be the legit-
imate predicate associated with SP . According to Lem. 5 or to Theo.
1. Pst(EL) = 1. Moreover, according to Lem. 1, all computations of st
that reach L have a suffix that satisfies SP .

The self-stabilization propagation from the weak algorithm is possible only if
the strong algorithm is fair.

Lemma 9. [self-stabilization propagation to the probabilistic Alg. A�B
from Alg. A] Let A �B be the probabilistic cross-over composition between the
algorithms A and B. If Alg. A self-stabilizes for the specification SP under the
scheduler D and Alg. B is a fair algorithm under D then A �B is a probabilistic
self-stabilizing algorithm for SP under D.

Theorem 2. [self-stabilization propagation from A and B] Let A � B be
the probabilistic cross-over composition between the algorithms A and B. If Alg.
A self-stabilizes for the specification SP under the scheduler D and Alg. B is
self-stabilizing for the specification SR and is fair under D then A � B is a
probabilistic self-stabilizing algorithm for SP ∧ SR under D.

Note that in both cases — deterministic and probabilistic — the strong algorithm
will propagate the self-stabilization property to the result of composition without
any restriction, while the propagation initiated by the weaker one can be realized
if and only if the strong algorithm is fair.

5 Application : Scheduler Transformation

In this section, we present the main application of the cross-over application,
the scheduler transformation. We show how to use the cross-over composition
to transform any self-stabilizing algorithm under some specific scheduler into an
algorithm that converges under any unfair scheduler.

Definition 7 (fragment of owner p). Let e be a computation of a distributed
system and let p be a processor such that p executes its actions more than one
time in e. A fragment of e of owner p, fpp is a fragment of e such that :

• fpp starts and finishes with a configuration where p executes an action;
• along fpp, p executes exactly two actions (during the first and the last
step of fpp).

Lemma 10 (from k-fairness to the k-bound property). Let us consider
the cross-over composition A � B. Let e be a computation of A � B under an
arbitrary scheduler. If B is k-fair then the projection of e on A is k-bounded.

Proof. Suppose that eA is not k-bounded. Hence, there is a fragment fA of eA
such that a processor q performs k+ 1 actions during fA and such that another
processor p performs no action and it is always enabled along fA. fA is the
projection of a fragment of e called f . According to the definition of A � B, f
has the following properties (i) p performs no action in f (ii) q performs at least
k + 1 actions in f . f is part of a fragment owned by p called fpp such that q
performs at least k + 1 actions in fpp. fpp does not exist because A �B is k-fair
(Cor. 2).

The following theorem gives a tool for transforming an algorithm A that self-
stabilizes under a k-bounded scheduler into an algorithm A′ that self-stabilizes
under an unfair scheduler. Let B be an algorithm whose computations are k-fair,
the transformed is A′ = A �B.

Theorem 3. Let A �B be the cross-over composition between A and B. A is a
self-stabilizing algorithm for the specification SP under a k-bounded scheduler. B
is a k-fair algorithm. The algorithm A �B is self-stabilizing for the specification
SP under an unfair scheduler.

Proof. Let e be a maximal computation of A � B and let eA be its projection
on the weak module. Since B is k-fair, according to Lem. 10, eA is a k-bounded
computation.
correctness proof: Let L be the legitimate predicate associated with SP . Once eA
has reached a legitimate configuration (a configuration that satisfies the predi-
cate L), it satisfies the specification SP .
convergence proof:

• A is a deterministic algorithm : eA reaches a legitimate configuration.

• A is a probabilistic algorithm. Let st be a strategy of A � B under a
distributed unfair scheduler. Let stA be a projection strategy of st on
A. According to Lem. 10 any execution of stA is k-bounded. According
to the hypothesis, PstA(EL) = 1. According to Lem. 5 or to Theo. 1,
Pst(EL) = 1.

Note that the transformation depends directly on the properties of the strong al-
gorithm of a cross-over composition. The main question is “are-there algorithms
able to satisfy the k-bound property under any unfair scheduler ?” The answer
is positive and in the following we show some examples :

Protocol Topology Network type Scheduler transf.
[7] general networks, bidir. with id central to unfair
[1] general networks, bidir. with id central to unfair
[1] general networks, bidir. with id X1-bounded to unfair
[3] rings, unidir. anonymous X1-bounded to unfair
[6] rings, unidir. anonymous alternating to central
[2] general networks, unidir. anonymous X2-bounded to unfair

X1 = n− 1; and X2 = n.MaxOutDiam where MaxOut is the maximal network
out-degree and Diam is the network diameter.

The procotols [1] and [7] are working in the id-based networks. In the case of
anonymous networks an algorithm which ensures the transformation of a central
scheduler to a distributed scheduler could be the algorithm of [1] executed on
top of an algorithm which ensures an unique local naming (neighbor processors
do not have the same id; but distant processors may have the same id).

6 Conclusion

We have presented a transformation technique to transform self-stabilizing al-
gorithms under weak scheduler (k-bounded, central, alternating, ...) into algo-
rithms which maintain the self-stabilizing property under unfair and distributed
schedulers.

The key of this transformation is the cross-over composition A � B : roughly s-
peaking, the obtained computations are the computations of A under a scheduler
that provides the B’s computations. The cross-over composition is a powerful
tool to obtain only specific computations under any unfair scheduler. Indeed, if
all B’s computations have “the D properties” then A only needs to be a self
stabilizing algorithm for the specification SP under the weak scheduler D to
ensure that A � B is a self stabilizing algorithm, for the specification SP under
any unfair scheduler.

References

1. Beauquier J., Datta A., Gradinariu M., and Magniette F.: Self-stabilizing Local
Mutual Exclusion and Daemon Refinement. DISC’2000, 14th International Sym-
posium on Distributed Computing, LNCS:1914 (2000) 223-237

2. Beauquier J., Durand-Lose J., Gradinariu M., Johnen C.: Token based self-
stabilizing uniform algorithms. tech. Rep. no. 1250, LRI, Universit Paris-Sud;
to appear in The Chicago Journal of Theoretical Computer Science (2000)

3. Beauquier J., Gradinariu M., Johnen C.: Memory Space Requirements for Self-
stabilizing Leader Election Protocols. PODC’99, 18th Annual ACM Symposium
on Principles of Distributed Computing (1999) 199-208

4. Beauquier J., Gradinariu M., Johnen C.: Randomized self-stabilizing optimal lead-
er election under arbitrary scheduler on rings. Tech. Rep. no. 1225, LRI, Universit
Paris-Sud (1999)

5. Dolev S., Herman T.: Parallel composition of stabilizing algorithms. WSS’99,
fourth Workshop on Self-Stabilizing Systems (1999) 25-32

6. Fich F., Johnen C., A space optimal deterministic, self-stabilizing, leader election
algorithm for unidirectional Rings. DISC’2001, 15th International Symposium on
Distributed Computing (2001)

7. Gouda M., Haddix F.: The alternator. WSS’99, Fourth Workshop on Self-
Stabilizing Systems (1999) 48-53

8. Gouda M., Herman T.: Adaptive programming. IEEE Transactions on Software
Engineering 17 (1991) 911-921

9. Kakugawa, H., Yamashita, M.: Uniform and Self-stabilizing Token Rings Allowing
Unfair Daemon. IEEE Transactions on Parallel and Distributed Systems 8 (1997)
154-162

10. Segala R.: Modeling and Verification of Randomized Distributed Real-time Systems.
PhD thesis, MIT, Departament of Electrical Engineering and Computer Science
(1995)

11. Segala R., Lynch N.: Probabilistic simulations for probabilistic processes. CON-
CUR’94, 5th International Conference on Concurrency Theory, LNCS:836, (1994)

12. Varghese G.: Compositional proofs of self-stabilizing protocols. WSS’97, Third
Workshop on Self-stabilizing Systems (1997) 80-94

13. Wu S. H., Smolka S. A., Stark E. W.: Composition and behaviors of probabilis-
tic I/O automata. CONCUR’94, 5th International Conference on Concurrency
Theory, LNCS:836, (1994) 513-528

A B
C11=(C1 , C1) A B

C12=(C1 , C2) A B
C21=(C2 , C1) A B

C22=(C2 , C2)

p . p
A B

p .1-p

1-p .p 1-p .p 1-p .p

1-p .1-p 1-p .1-p 1-p .1-p 1-p .1-p

p .1-p p .1-p p .1-p p .1-p

p .p p .p p .p p .p

C33 C34 C43 C44 C55 C56 C65 C66 C77 C78 C87 C88 C99 C910 C109 C1010

A B
C00=(C0 , C0)

ch11

ch00

ch12 ch21 ch22

ch33 ch34 ch43 ch44 ch55 ch56 ch66ch65 ch77 ch78 ch87 ch88 ch99 ch910 ch109 ch1010

A

A

A

A A

A
A

A

A

A
A

A

A

A
A

A

B

B

B

B
B

B

B

B

B

B
B

B

B

B

B
B

B

1-p .1-p
B1-p .p

A B

A
A

1-p .p

Fig. 2. The beginning of the strategy st of A �B

Bch12

ch44B

Bch87
Bch78Bch34

ch77
B

ch33
B Bch88

ch43
B Bch65

ch66
B

ch55B

ch56B
ch99B

Bch109
ch910B

Bch1010

B

B B
ch11

ch00

ch22

C0 B

1-p
B

C2BC1
B

p
B

.1-p
B

B
.p

1-p

p
B

B

C33 =C43B C34 = C44
B BB

1-p

B
p

B

C77 = C87B B C78 = C88

B
.p

1-p
B

B
C55 =C65

B
C56 =C66

B B B B
C99 = C109 C910

B

Bch21

Fig. 3. The beginning of the projection of the strategy st on B

Ch00B

p
B

1-p
B

1-p
B

p
B

p
B

1-p
B

C00 =C0
B B

BB BB
C11 =C1 C12 =C2

C3 C4B B C5 C6B B

Ch12
BB

Ch11

2-length cones of st1 is p 2
A

st1 : the weight of the

p
B 1-p

B

p
B 1-p

B

B
ch66B

ch65
B

ch44B
ch43

C12 =C2BBC11 =C1B B

C6C5C4C3B B B B

Ch12
BB

Ch11

p
B

1-p
B

Ch00B

C00 =C0
B B

2-length cones of st3 is p (1-p)
A A

st3: the weight the

Fig. 4. 2-length beginning of projection strategies on B

2-length cones of st2 is p (1-p) A A

p
B

1-p
B

p
B

1-p
B

Ch00B

B
C22 =C2

B

1-p

B
p

B
Ch22Ch21

B

C7 C8 C9 C10B B B B

B
C00 =C0B

B BC21 =C1

B

st2: the weight of the

Ch00B

1-p

B
p

Ch22Ch21
B

p
B

1-p
B

1-p
B

p
B

B
ch87 B

ch88 ch1010B

B

C21 =C1BB C22 =C2 ,
B B

C10C9C8C8B B B

B
ch109

B

B B

B

C00 =C0

2-length cones of st4 is (1-p) 2
A

st4 : the weight of the

Fig. 5. 2-length beginning of projection strategies on B

