
SPACE�EFFICIENT DISTRIBUTED

SELF�STABILIZING DEPTH�FIRST TOKEN

CIRCULATION

Colette Johnen� Jo�roy Beauquier
L�R�I��C�N�R�S�

Universit�e de Paris�Sud
Bat� �	
� Campus d�Orsay

F�	��

 Orsay Cedex� France�
tel � ����� � �	 �� �� �	
fax � ����� � �	 �� �
 ��
colette�lri�fr� jb�lri�fr

Abstract

The notion of self�stabilization was introduced by Dijkstra� He de�ned a system as self�

stabilizing when �regardless of its initial state� it is guaranteed to arrive at a legitimate state in

a �nite number of steps�� Such a property is very desirable for any distributed system� because

after any unexpected perturbation modifying the memory state� the system eventually recovers

and returns to a legitimate state� without any outside intervention�

In this paper� we are interested in a distributed self�stabilizing depth��rst token circulation

protocol on an uniform rooted network �no identi�ers� but a distinguished root��

As already noted� a search algorithm together with a deterministic enumeration of the
node	s neighbors yields an algorithm determining a spanning tree�

Our contribution is improving the best up to now known space complexity for this problem�

from O�log�N�� to O�log�D�� where N is number of nodes and D is the network	s degree�

Moreover� we give a full proof of the algorithm correctness assuming the existence of a dis�

tributed demon�

Keywords � fault�tolerant distributed algorithms� self�stabilization� spanning tree� mutual�

exclusion� distributed demon�

�

� Introduction

The notion of self�stabilization was introduced by Dijkstra ���� He de�ned a system as self�stabilizing
when �regardless of its initial state	 it is guaranteed to arrive at a legitimate state in a �nite
number of steps�� Such a property is very desirable for any distributed system	 because after any
unexpected perturbation modifying the memory state	 the system eventually recovers and returns
to a legitimate state	 without any outside intervention� Self�stabilizing has been since studied by
various researchers and Dijkstra
s original notion	 which had a very narrow scope of application	 has
proved to encompass a formal and uni�ed approach to fault�tolerance	 under a model of transient
failures for distributed systems�

In this paper	 we are interested in the construction of a distributed Self�stabilizing for depth��rst
token circulation in an uniform rooted network �no identi�er	 but a distinguished root�� As a token
circulation algorithm	 our algorithm provides a fair mutual�exclusion protocol �the node having the
token is the one authorized to enter into critical section��
Several authors ���	 �
�	 and ��� have presented token circulation algorithm on ring networks � Brown	
Gouda	 and Wu ��� have presented one on linear chains � Kruijer ���� have presented one on tree
networks� Huang and Chen have presented an algorithm ���� on general networks with a distributed
demon�

As noted in ����	 a token circulation algorithm together with a deterministic enumeration of the
node
s neighbors yields an algorithm determining a spanning tree� The task of spanning tree
construction is a basic primitive in communication networks� Many crucial network tasks	 such as
network reset �and thus any input�output task�	 leader election	 broadcast	 topology update	 and
distributed database maintenance	 can be e�ciently carried out in the presence of a tree de�ned on
the network nodes spanning the entire network� Improving the e�ciency of the underlying spanning
tree algorithm usually also correspondingly improves the e�ciency of the particular task at hand�

Note that other constructions of spanning trees in a self�stabilizing way are known� Some authors
�as in ��� and ���� have presented algorithms with a central demon� Huang and Chen ��� construct
a minimal spanning tree with a distributed demon� Sur and Srimani ���� have presented a similar
algorithm but the correctness proof is substantially simpler	 based on graph theoretical reasoning�
Dolev	 Israeli	 and Moran ��� have reported a minimal spanning tree construction with read�write
atomicity �then the system is fully asynchronous�� Finally	 Tsai	 and Huang ���� have presented an
algorithm that constructs a minimal spanning tree with a fully distributed demon�

There are two principal measures of e�ciency for self�stabilizing algorithms � stabilization time	
which is the maximum time taken for the algorithm to converge to a legitimate state	 starting from
an arbitrary state and the space required at each node �e�g� size of local memory needed�� We are
interested here in reducing the value of the second parameter� The goal of producing systems with
a small number of states per processor�node is of particular interest because such processors may
have direct implementations in hardware�

The existing solutions for token circulation or spanning tree construction on general network topol�
ogy have a space complexity in O�log�N��	 N being the number of nodes� Our contribution is a new
algorithm that achieves the goal in O�log�D�� states per node	 D being the upper bound of node
s
degree�

On the other hand	 Burns and Pachl ��� showed that does not exist uniform self�stabilizing token
circulation on a composite ring� The best that can be proposed is a semi�uniform algorithm	 as our
algorithm�

Moreover	 our protocol does not need to know the number of nodes in the network� Therefore	
it works for any connected network and even for dynamic networks	 in which the topology of the
network may change during the execution �nevertheless	 the upper bound of the node
s degree
should not increase to keep constant the required memory space at each node��

We give the extensive proof of our algorithm within the distributed model where several nodes can
simultaneously perform a move�

The remainder of the paper has been organized as follows � an informal description of the proposed
protocol is provided in section �� The formal model is described in section � � protocol formal
description is given in section � � its correctness is proven in section ��

� Informal description of the protocol

As a model of computation	 we choose the following model	 that is an extension of Dijkstra
s original
model for rings to arbitrary graphs� Consider a connected graph G�V	 E�	 in which V is a set of
nodes and E is a set of edges� Such a graph is used to model a distributed system with N nodes	 N
� jVj	 in which each node represents a processor� In the graph	 directly connected nodes are called
each other
s neighbors� Our goal is to design a self�stabilizing algorithm that performs a depth��rst
search on the graph�

The proposed self�stabilizing algorithm is encoded as a set of rules� Each processor has several
rules� Each rule has two parts � the privilege �condition� part	 and the move part� The privilege
part is de�ned as a boolean function of the processor
s own state and of the states of its neighbors�
When the privilege of a rule on a processor is true	 we say that the processor has the privilege� A
processor having the privilege may then make the corresponding move which changes the processor
state into a new one that is a function of its old state and of the states of its neighbors�

We assume the existence of a distributed demon and we assume that the computation proceeds in
steps� The distributed demon ��� chooses several privileged nodes and one enabled rule on each
chosen node at a time� Hence	 in each computation step	 several processors make a move� The
privileges for the next move depend on the states resulting from the previous moves� The rules are
atomic � the processors cannot evaluate their privilege at a time and then make the move later with
in between other moves�
To ensure the correctness of the protocol	 the demon is regarded as an adversary and the protocol
is required to be correct in all possible executions� Nevertheless	 the demon is fair	 a node does not
hold forever a privilege on a rule without being chosen by the demon�

The proposed algorithm has two parts� One circulates the token among the nodes in an indeter�
ministic depth��rst order� This part is identical to the one in the Huang�Chen algorithm ����� The
other part handles abnormal situation due to unpredictable initial states or transient failures�

We name r the distinguished node that initiates the depth��rst circulation rounds	 and chooses the

round color �� or ��� Each node has a color among three values � �	 �	 and E �for error�� The node
having the token	 takes the round color and searches among its neighbors one which has not been
visited during this round �an isolated node having the color di�erent of the round color and of E
color�� If it �nds a suitable node then it passes to this node the token � else it backtracks the token
to its parent� When the token has backtrack to r � the round is over� r initiates a new round with
the other color�

There are two error�handling strategies � one for destroying the illegal branches that are not cycles
and the other for the cycles� The treatment of illegal branches �branches which are not cycles and
which are not rooted to the legal root� is similar to the one used by Huang and Chen� The illegal
roots detect their abnormal situation and color themselves to E� The E color is propagated to their
leaf � then	 the E�colored leaves are dropped � and the detached E�colored nodes are recovered by
changing color� The repetition of dropping and recovering processes will correct all nodes inside
illegal branches �there is a �nite number of creations of new illegal branches�� The cycle destruction

The cycle is broken : the parent/descendant
of the node having 2 parents dropped its son.

The node with 2 parents took
itself the E-color.

root node root node root node

has the token
The token detected the cycle :

a node inside the cycle has now two parents.

root node root node

The E-color has been propagated
to all nodes inside the cycle.

Network before detection of the cycle

Figure �� Destruction of a cycle

strategy is completely di�erent from the one used in ����� Our solution does not use a variable
level� The key point is the detection of cycles by outside nodes that will provoke the correction�
The root initializes successive depth��rst searches alternatively colored � and �� Note that	 due to
a bad initialization	 such a depth��rst search can only be partial�
During a ��colored round	 all nodes inside the branch are ��colored� If during a ��colored round	
the leaf has an ��colored neighbor which is inside a cycle	 there must be an error somewhere� Then
the leaf chooses the faulty node as son ��gure ��� The faulty node detects that it has two parents	
and then colors itself E� The E color propagates to the descendant�parent of the faulty node� At
this point	 this node can drop its son �the faulty node� and break the cycle�
Obviously	 the same holds if a node inside a cycle during an ��colored round is ��colored�

The nodes inside a cycle can change their color only to become E�colored �by a R� move�� This
move can be performed at most once on a node inside a cycle� Thus	 such nodes stop changing
color� We can also prove that the cycles are eventually destroyed�

� Formal model

Let S be a system de�ned by a set of states and a set of transitions where each transition is an
ordered pair of states�

A computation is a sequence of system states �s�	 s�	 ��� 	 sn	 ��� � where each couple �si	 si��� is a
system transition�
A system state is de�ned by the local variable values of each node� If the simultaneous moves of
several rules modify the system state from s� to s� then �s�	 s�� is a system transition in the case
where �i� at most one move by a node is performed � �ii� and in s� the rule privileges are satis�ed
on the nodes which perform the corresponding rule moves�

A region of a system is a subset of system states� A region REG is closed if for every transition �s�	
s�� where s� in REG then s� is in REG�
A computation C leads to a region REG	 if C has a state in REG�
A region REG is an attractor of a computation �s�	 s�	 ��� � if there is an integer n such that for all
i � n	 si belongs to REG�
A region REG is an attractor if it is closed and all computations lead to REG�
A predicate P over system states de�nes the region REG�P� as the set of states where P is satis�ed�
Shorten	 we said that P is closed �resp� attractor� if and only if REG�P� is closed �resp� an
attractor��
A predicate Pn over node states is a trap if for any node i	 the predicate �Pn�i� � true� over system
states is closed�

A legitimate states set veri�es several properties ��� � �i� it is closed	 �ii� in each legitimate state	
one and only one node holds one privilege	 �iii� each legitimate state is reachable from any other
legitimate state	 and �iv� each node has a legitimate state where it holds a privilege�

We call a system self�stabilizing if and only if regardless of the initial state and regardless of the
computation	 the system is guaranteed to reach the legitimate states set after a �nite number of
moves�

� Protocol formal speci�cation

Notation X�i is read X of i � notation X�Y�i � X of Y of i�
Each node i maintains the following variables �

� D�i � a pointer pointing to one of its neighbors �called i
s son� or pointing to NULL�

� C�i � the color of node i taking value in the set f�	 �	 Eg�

The required space at each node can be evaluated� Under the hypothesis that the graph under
consideration has a �xed upper bounded degree D	 independent from the number N of nodes	 the
size of son variable is log�D� � the color variable has also a �xed size �� bits�� Then	 the space
complexity of the algorithm at each node is O�log�D���

Other used notations are �

� P�i � the set of i
s parents�

� NB�i � the set of i
s neighbors with r excluded�

� NP�i � the number of i
s parents�

��� Token circulation rules

We de�ne some predicates used in the de�nition of the token circulation rules �
Token�i holds if i is a live leaf and i
s color is not the same as i
s parent color� A live leaf is a leaf
whose color is not E�
BToken�i holds if i
s son is a live leaf whose color is the same as i
s color�
Anomalous�i�k� holds if k has a parent and does not have the expected color for an inside node with
respect to i �the expected color is either C�i if BToken�i or C�i�� mod� if Token�i��
Detached�i holds if i is a node without son and without parent�
PotentialFirstSon�i�k� holds if Token�i holds	 there is no anomalous node with respect to i	 and k is
a potential �rst i
s son �k is a detached node with the right color � i
s color��
DeadEnd�i holds if Token�i holds	 there is no anomalous node with respect to i	 and it does not
exist a potential �rst i
s son�
PotentialNewSon�i�k� holds if BToken�i holds	 there is no anomalous node with respect to i	 and k
is a potential new i
s son� �k is a live detached node with the right color � di�erent from i
s color��
Backtrack�i holds if BToken�i holds	 there is no anomalous node with respect to i	 and it does not
exist a potential new i
s son�

We formally de�ne the predicates �

� Token�i � ���i � r� � �C�i �� E� � �D�i � NULL�� � � �i �� r� � �D�i � NULL� �
�NP�i � �� � �C�i �� E� � �C�P�i �� E� � �C�P�i �� C�i���

� BToken�i � ��D�i �� NULL� � �D�D�i � NULL� � �C�D�i � C�i� � �C�i �� E��

� Anomalous�i	k� � �� k � NB�i j �NP�k � �� �

��Token�i � �C�k �� C�i�� mod��� � �BToken�i � �C�k �� C�i� ���
� Detached�i � ��D�i � NULL� � �NP�i � ���

� PotentialFirstSon�i	k� � �Token�i � �	 j � NB�i j
Anomalous�i	k�� �
�� k � NB�i j Detached�k � �C�k � C�i���

� DeadEnd�i � �Token�i � �	 j � NB�i j
Anomalous�i	k� �
PotentialFirstSon�i	k���
� PotentialNewSon�i	k� � �BToken�i � �	 j � NB�i j
Anomalous�i	k�� �

�� k � NB�i j Detached�k � �C�k � C�i�� mod����
� Backtrack�i � �BToken�i � �	 j � NB�i j
Anomalous�i	k� �
PotentialNewSon�i	k���

On a node i	 the token circulation rules are �

R� � PotentialFirstSon�i	k� � �i � r� � C�r � C�r�� mod� � D�r � k

R� � PotentialFirstSon�i	k� � �i �� r� � C�i � C�P�i � D�i � k

R� � DeadEnd�i � �i �� r� � C�i � C�P�i � D�i � NULL

R� � PotentialNewSon�i	k� � D�i � k

R� � Backtrack�i � D�i � NULL

11 11

root node

0

Network state after R2 move

root node
0

0
00

Network state after R2 move

1
1

root node

Network state after R0 move

1
1

root node
1

11

Network before a 0-round

root node
0

0
01

Network state after R1 move

root node
0

0
00

Network state after R4 move

root node

0
0

and before a 1-round

Network state after a 0-round

00

1

root node

0

Network state after R3 move

R0 privilege

R2 privilege

0 0 0

R1 privilege

R4 privilege R2 privilege

R3 privilege

Figure �� Token circulation

The rule R� initiates a regular circulation round � the node r changes the round color and chooses
a son that gains the token� By a R� move	 the token passes from the previous leaf to its new son
�that is now the leaf�� So	 the branch lengthens� If the leaf cannot �nd a suitable son �a neighbor
that had not been visited during the current round� the leaf drops its token	 by a R� move� A
R� move	 substitutes a new leaf �a node that had not been visited during the current round� for
the current one �that does not have the token� � this new leaf gains the token� If the current leaf
does have the token and a new suitable leaf cannot be found	 the branch is shrunk by a R� move�
When the branch is completely destroyed �e�g� the round is over�	 the node r has the token	 and
can perform a R� move�

Evaluation of any privilege necessitates two communications round � each node has to get the two
local variable values from its neighbors� Then	 each node can compute its number of parents and
transmit this value to all its neighbors�

��� Error handling rules

A self�stabilizing system has an unpredictable initial state� In such a state	 the D pointers point to
any neighbors or NULL� Thus	 illegal branches or cycles can exist in the initial state� The following
rules delete illegal branches and transform cycles into branches� Thus	 the system eventually reaches
a legitimate state�

����� Illegal branch destruction

We de�ne some predicates used in the de�nition of the illegal branch destruction rules �

� FBToken�i � ��D�i �� NULL� � �D�D�i � NULL� � �C�D�i � E��

� IllegalRoot�i � ��i �� r� � �D�i �� NULL� � �NP�i � ���

FBToken�i holds if i
s son is a dead leaf �an E�colored leaf��
IllegalRoot�i holds if i is a branch root without being the node r�

On a node i	 the rules that destruct the illegal branches are �

R� � FBToken�i � C�i � E � D�i � NULL

R	 � � k � NB�i j D�k � i � C�k � E � C�i �� E � C�i � E

R
 � Detached�i � C�i � E � C�i � �

R�� � IllegalRoot�i � C�i �� E � C�i � E

The illegal branch destructions are processed as follows � R�� colors illegal roots E� R� propagates
the E color toward the leaf �the E color is propagated only from parent to son�� R� drops the
E�colored leaf �the new leaf will have also the color E�� R� recovers the detached erroneous nodes�

R7 privilege

1

1
 R10 privilege

Illegal live branch Illegal dead branch

E

1
 R8 privilege

E

E 0

0
 R9 privilege

E

E
 R9 privilege

Without illegal branch

0 0 0 0 0

root node root node root node root node root node

Figure �� Destruction of an illegal branch

����� Cycle destruction

R� � Anomalous�i	k� � D�i � k

R�� � NP�i � � � C�i �� E � C�i � E

R�� � NP�D�i � � � C�i � E � C�D�i � E � D�i � NULL

The cycle destructions are done as follows � R
 detects an anomalous node	 and becomes its new
parent �an anomalous node has a parent and does not have the expected color for a node having a
parent�� Now	 R�� can color E the anomalous node �R�� colors E a node having several parents��
The E color is propagated to the descendants of the anomalous node by R� moves� Either the
anomalous node is inside a branch �see above�	 or the anomalous node is inside a cycle� Then a
R�� move on the parent�descendant of the anomalous node breaks the cycle �R�� disconnects an
E�colored node with its son if its son has several parents and is also E�colored�� After that	 we have
a branch whose leaf is E�colored�

����� Miscellaneous error handling

R� � DeadEnd�i � �i � r� � C�r � C�r�� mod� � D�r � NULL

R�� � D�i � r � D�i � NULL

The rule R� initiates a quick round �the only move is the r
s color changing�� R�� breaks the links
parent�son with the node r �r should not have parent��

Network state before R8 movesNetwork state after R6 moveNetwork state before R6 move

1EE

E

E

E

0
root node

Network state after R12 move

EE

E

E

E root node

Network state after R7 moves

E
E

1

root node
1

1

1

E 1

0

1

1

1

1

1 1

0
root node

1

1

1

11

1 root node
0

EE

E

E

E

1

0
root node

Network state after R8 moves

 R6 privilege R11 privilege R8 privilege

 R12 privilege
 R7 privilege

Figure �� Cycle destruction rules

1

1

1

1

root node

Before R13 move

1

R13 privilege 1

1

1

1

root node

After R13 move

1R4 privilege

1

1

1

1

After R5 move

1

1

1

1

0

1

Before R5 move

root node R5 privilege root node R0 privilege

Figure �� Miscellaneous error handling rules

� Correctness of the protocol

We name LS the set of states where �i� only one node holds a privilege �ii� the satis�ed privilege is
R�	 R�	 R�	 R� or R� �iii� there is no cycle and no illegal branch�

We will prove that LS is a valid legitimate states set	 and that	 in LS	 the token circulates in
depth��rst order�

To prove the correctness of our algorithm	 we use the convergent stair ��� method� We show that
there is a sequence of predicates on the system states such that all computations lead to the regions
de�ned by these predicates step by step �w�r�t� each region is an attractor	 and each region is a
subset of the previous one��

First	 we prove that all computations are in�nite� Then	 we establish that there is a �nite number of
creations of illegal and live branches �e�g� branch whose root is r and whose leaf is not E�colored�	 in
any computation� The fairness scheduling of the rules R�� and R� provokes the dead of the illegal
branches �e�g� their leaves get the E color�� At this point	 we show that no more node will join an
illegal branch � and the illegal branches will eventually destroy themselves �by fairness scheduling
of the rule R��� We prove that the legal branch will unavoidably become and stay sound �see the
following predicate de�nition�� We demonstrate that after the legal branch is sound	 no more cycle

is created � and that the cycles are eventually destroyed�

We conclude in showing that in LS the protocol provides a token circulation in depth��rst order�

��� Predicate de�nitions

We de�ne some predicates used in the correctness proofs �
Cycle�i holds if i belongs to a cycle � one of i
s descendant is a i
s parent�
StrictCycle�i holds if i belongs to a cycle and all nodes in this cycle have only one parent�
IllegalNode�i holds if i belongs to a branch whose root is not r�
IllegalLiveRoot�i holds if i is an illegal root whose branch ends in a dead leaf�
DeadLeaf�i holds if i is an erroneous leaf�
Unsound�i holds if i is an inside node �no leaf� of the legal branch that does have the same color
as its parent and the legal branch ends in a live leaf� If a such node i exists	 we said that the legal
branch is unsound�

� Cycle�i � �there is a series of nodes p�	 ��� 	 pn such that p� � i � pn �
�	 j such that � � j � n j D�pj � pj����

� StrictCycle�i � �there is a series of nodes p�	 ��� 	 pn such that p� � i � pn �
�	 j such that � � j � n j D�pj � pj�� � NP�pj � ���

� IllegalNode�i � �there is a series of nodes p�	 ��� 	 pn such that IllegalRoot�p� � pn � i �
�	 j such that � � j � n j D�pj � pj����

� IllegalLiveRoot�i � �IllegalRoot�i � there is a series of nodes p�	 ���	 pn such that
p� � i � D�pn � NULL � C�pn �� E � �	 j such that � � j � n j D�pj � pj����

� DeadLeaf�i � ��D�i � NULL� � �C�i � E� � ��i � r� � �N�P�i � ����
� Unsound�i � �there is a series of nodes p�	 ��� 	 pn such that p� � r � D�pn � NULL � C�pn �� E

� �	 j such that � � j � n j D�pj � pj��� � �� j j � � j � n � i � pj� � C�i �� C�P�i�

����� Algorithm Liveness

Theorem � In any system state� at least one node holds a privilege�

Proof
 There are two kinds of con�gurations � either there is a leaf	 or no� In these two con�gu�
ration kinds	 a move is possible� �

��� Destruction of illegal branches

����� Destruction of illegal and live branches

We present how all illegal and live branches are eventually destroyed	 whatever computation is
performed�

Lemma � REG� � f NP�r � 	 g is an attractor�

Let us de�ne CorrectLegalBranch as a boolean function of the system state� This function is true
if there is a series of nodes p�	 ���	 pn such that

p� � r � �	 i such that � � i � n j D�pi � pi��� � �DeadLeaf�pn � �� i j � � i � n � pi � pn� �

��NP�pn � � � D�pn � NULL� � �	 i such that � � i � n j C�pi �� E���

CorrectLegalBranch is true when the branch whose root is r ends in a dead leaf or in a cycle	 or
when all nodes of this branch between the root and a suitable node are not E�colored �a node is
suitable if it is a leaf or if it has several parents��

Let us de�ne the number X as following �if CorrectLegalBranch is false then IncorrectLegalBranch � �
otherwise IncorrectLegalBranch � �� �

X � number of illegal and live roots � IncorrectLegalBranch

First	 we will prove that X value decreases at each creation of an illegal live root � then we will
establish that X value never increases� We will conclude that there is a �nite number of illegal live
root creations	 in any computation� At this point	 we will be able to prove that each computation
is attracted by system states where there is no live and illegal branch�

Lemma � In REG�� at each creation of an illegal and live root� X decreases�

Proof
 There is creation of an illegal root	 only when all parents of one node perform a R�� move�
This node becomes a new illegal root by losing all its parents� This node was inside a cycle	 inside
a dead branch	 inside several illegal live branches	 or inside only one illegal and live branch� In all
cases	 we prove that X decreases� �

Lemma � In REG�� X never increases�

Proof
 There is only two cases where X increases � Either the number of illegal and live roots
increases � thus a new illegal and live root has been created� The lemma � establishes that X does
not increase in this case� Or	 the legal branch reaches an incorrect state from a correct one� But in
this case	 the number of illegal live roots decreases� Thus X does not increase� �

Theorem � REG
 � REG�
 f 	 i
IllegalLiveRoot�i g is an attractor�

Proof
 X decreases at each creation of illegal and live root �lemma �� and X never increases� At
some point	 there will be no more creation of illegal and live roots� Then	 by fairness scheduling of
the R� and R�� moves	 REG
 will be reached� �

In REG
 there is at most one live leaf �the leaf of the legal branch�� There are some illegal branches
but all of them are dead�

����� Destruction of illegal and dead branches

We present how all illegal and dead branches are eventually destroyed	 whatever computation be
performed�

Lemma � REG� � REG

 f X � 	 g is an attractor�

Proof
 REG� is closed �lemma ��� By fairness scheduling of the R� moves	 the legal branch will
end in a dead leaf �X � ��� �

Lemma � In REG�� the predicate
IllegalNode is a trap�

Proof
 The illegal branches cannot be extended because they are dead� The only way that nodes
become illegal is the creation of a new illegal branch whose root was not already an illegal node�
This can only append when the legal branch is an incorrect state� �

Theorem � REG� � REG�
 f 	 i
IllegalNode�i g is an attractor�

Proof
 By fairness scheduling of the R� moves	 the illegal branches will destroy themselves� �

��� Destruction of cycles

We show that in all computations	 the cycles are eventually destroyed�

����� Soundness of the legal branch

We show that whatever computation be performed	 it leads to system states where the legal branch
is and stays sound �when the legal branch ends in a live leaf	 all inside nodes of the legal branch
have the same color��

Lemma � In REG�� The predicate
Unsound is a trap�

Proof
 Any move does not change a sound node into an unsound one� �

Remark � REG
 � REG�
 f 	 i �
Unsound�i g is closed�

In order to prove that any execution leads to REG
 � we will prove that all computations have to
lead to REG
�

Let C be a computation which does not reach REG
� Thus	 there is a no�empty set of nodes which
are unsound all along C� Let is name NC this set� These nodes are and stay in the legal branch
along C� We call REG� the subregion of REG� where all nodes of NC are unsound and others are
not�

In REG�	 R
 privilege holds only on the live leaf of the legal branch� As described in the proof of
the lemma
	 after a R
 move on the legal leaf	 the legal branch is sound� Therefore	 C does not
contain a R
 move�

Lemma � REG�a � REG�
 f 	 i � NP�i � � g is an attractor of C�

Proof
 In REG�	 there is only one leaf� At a time	 only one node can pick up a new son� Thus	
any node cannot gain several parents	 in one step� Only after a R
 move	 a node having a parent
get a second one� A R
 move is never performed by C � thus REG� is closed� By fairness scheduling
of the rules R��	 R�	 or R��	 REG�a will be reached by C� �

Lemma 	 REG�b � REG�a
 f 	 i � Cycle�i � C�i �� E g is an attractor of C�

Proof
 By fairness scheduling of R�	 R� and R� rules	 REG�b will be reached in C� Any rule
moves that can be performed in REG�b does not color E a node outside cycles� �

Remark
 in REG�b	 C does not contain R
	 R�	 R�	 R��	 R��	 R��	 and R�� moves� in REG�b	
the move R� is performed a �nite number of times �at most one time on each node inside a cycle��
After a R�	 or R� move the legal branch is sound� C contains only an in�nity of R�	 R�	 R�	 or R�
moves in REG�b�

Let Ii be an integer function of system states de�ned as �
Ii � � x number of detached nodes of color di�erent from C�i

� � x number of nodes in legal branch after i that have a son
� � x number of leaf whose color di�ers from C�i
� � x number of leaf whose color is C�i

Lemma
 Let i be the farthest node of NC on the legal branch� In REG�b� the C computation
contains a R� move on i�

Proof
 All nodes inside the legal branch after i have the same color as i	 except the leaf� Until
a R� move on i	 Ii is strictly decreased by R�	 R�	 R�	 and other R� moves� Assume that C does
not contain a R� move on i	 the C computation would be �nite	 in contradiction with the theorem
�� �

After this R� move	 the farthest node of NC is the leaf and is sound� Thus	 there is a contradiction
with the hypothesis the nodes NC are unsound all along C� We conclude that all computations
reach REG
� The following theorem is a consequence of the lemmas
 and ��

Theorem � REG
 is an attractor�

����� Destruction of strict cycles

We show that in all computations	 the strict circles are eventually destroyed�

Lemma �� In REG
� the predicates
Cycle and
StrictCycle are traps�

Remark
 REG� � REG�
 f	 i �
StrictCycle�ig is closed �lemma ����

In order to prove that any execution lead to REG�	 we prove that it does not exist a computation
not leading to REG��
Let C be a computation which does not lead to REG�� Thus there is a no�empty set of nodes which
are and stay inside a strict cycle along C � let us name NC this set� We call REG
 the subregion of
REG
 where all nodes of NC are inside a cycle and others nodes are not inside a cycle� In REG
	
after a R
�i	k� move	 k which was previously inside a strict cycle	 is no more within a strict cycle�
Therefore	 C cannot contain R
 move in REG
�
The proof of the following lemma is similar to the proof of the lemmas � and ��

Lemma �� REG
b � REG

 f 	 i � NP�i � � g
 f 	 i � Cycle�i � C�i �� E g is an attractor
of C�

Remark
 C contains only an in�nity of R�	 R�	 R�	 R�	 R� moves in REG
b�

Lemma �� In REG
b� the C computation contains an in�nity of R	 moves�

Proof
 Between two R� moves on r	 there is a R� move� Assume that C contains a �nite number
of R� moves on r� At some point	 C does not contain R� and R� move on r� After that Ir is strictly

decreased by all possible moves� Thus the C computation would be �nite	 in contradiction with the
theorem �� �

Let Di be the the minimal distance between r and i de�ned as �
Di � Min f n � N j � a node series p�	 ��� 	 pn such that

p� � r � pn � i � �	 j such that � � j � n j pj�� � NB�pj� g

Let DC be the minimal distance between r and a node of NC � Formally	 we de�ne DC as �
DC � Min f n � N j � a node series p�	 ��� 	 pn such that p� � r � StrictCycle�pn �

�	 j such that � � j � n j
StrictCycle�pj � pj�� � NB�pj� g

Lemma �� If DC � �� then in REG
b� the C computation contains an in�nity of R� or R
 moves
performed on each r�s neighbor�

Proof
 After a R� move	 r cannot perform a new R� move until all its neighbors have the same
color as its own� �i� There are an in�nity of R� moves � �ii� the R� moves are the only moves to
change the color of r � �iii� and the only moves which change the r
s neighbors color are R� and R�
moves� �

Similarly	 we prove the following lemma�

Lemma �� Let i be a node such that DC � Di and such that the C computation contains an in�nity
of R� or R
 moves performed by i� C contains also an in�nity of R� or R
 moves performed by
each i�s neighbor�

Lemma �� There does not exist a computation which does not lead to REG��

Proof
 Let i be a node such that DC � Di�� and such that i has a neighbor k verifying Strict�
Cycle�k� In REG
b	 system states where Token�i is satis�ed	 are in�nity often reached along C� At
some point	 k cannot change its color �the moves that are performed in�nitely often along C cannot
be performed on a node inside a cycle�� After that	 i will eventually performed a R
 move� �

The following theorem is a consequence of the lemmas �� and ���

Theorem � REG� is an attractor�

����� Destruction of un�strict cycles

The strict cycle have been deleted � Thus	 the is at most one �un�strict� cycle� Now	 we establish
that the last circle is eventually destroyed�

Theorem � REG� � REG�
 f 	 i �
Cycle�ig is an attractor�

Proof
 The lemma �� establishes that the region REG� is closed� Let i be a node belonging to
a cycle� i does not belong to a strict cycle� Thus	 a node of its cycle holds the R��	 R� or R��
privilege� At each system state of REG�	 only one node holds a privilege� At each step	 the only
enable move �R��	 R� or R��� is performed until the cycle is destroyed by the R�� move� �

��� Legitimate state set

The proof of the following theorem is similar to the proof of lemma ��

Theorem � LS � REG�
 f 	 i � C�i �� Eg is an attractor�

In LS	 �i� only one node has a privilege � �ii� only the R�	 R�	 R�	 R�	 or R� moves are performed �
and �iii� any node does not verify Cycle or IllegalNode predicates�
From any state of LS	 we can reach the system state s� where all nodes are detached and have the
color �� It is quite obvious that from s�	 any state of LS can be reached�

The lemmas ��	 ��	 and �� establish that each node i has several legitimate states where Token�i is
true� In these states	 i holds the R�	 R�	 or R� privilege�

The privilege of R�	 the rule that stops the branch growing is held if and only if the branch cannot
lengthen� The privilege of R�	 the rule that shrinks the branch	 is held if and only if the branch
cannot lengthen and cannot change its way �e�g� to change leaf�� Thus	 as long as it is possible	
the current branch lengthens and the token goes further o� r� In LS	 the token circulation is done
in a depth��rst order�

We have proved that �i� LS is a valid legitimate state set � �ii� LS is an attractor � and �iii� in LS	
our protocol provides a token circulating in the network in depth��rst order�

References

��� Yehuda Afek	 Shay Kutten	 and Moti Yung� Memory�e�cient self�stabilization on general
networks� In Proc� �th Int� Workshop on Distributed Algorithms	 volume ��
	 pages ������
Springer�Verlag	 �����

��� Geo�rey M� Brown	 Mohamed G� Gouda	 and Chuan lin Wu� Token systems that self�stabilize�
IEEE Transactions on Computers	 ���
���������	 �����

��� James E� Burns and Jan Pachl� Uniform self�stabilizing rings� ACM Trans� on Programming
Languages and Systems	 �������������	 �����

��� Nian�Shing Chen	 Hwey�Pyng Yu	 and Shing�Tsaan Huang� A self�stabilizing algorithm for
constructing spanning trees� Information Processing Letters	 ����������	 �����

��� Edsger W� Dijkstra� Self�stabilizing systems in spite of distributed control� Com�munications
of the A�C�M�	 �������
���
��	 �����

�
� Edsger W� Dijkstra� A belated proof of self�stabilization� Distributed Computing	 ����
	 ���
�

��� Shlomi Dolev	 Amos Israeli	 and Shlomo Moran� Self�stabilization of dynamic systems assuring
only read�write atomicy� Distributed Computing	 �����
	 �����

��� Mohamed G� Gouda and Nicholas J� Multari� Stabilizing communication protocols� IEEE
Transactions on Computers	 �������������	 �����

��� Shing�Tsan Huang and Nian�Shing Chen� A self�stabilizing algorithm for constructing breadth�
�rst trees� Information Processing Letters	 ����������	 �����

���� Shing�Tsan Huang and Nian�Shing Chen� Self�stabilizing depth��rst token circulation on net�
works� Distributed Computing	 ��
��

	 �����

���� H�S�M� Kruijer� Self�stabilizing �in spite of distributed control� in tree�structured systems�
Information Processing Letters	 ��������	 �����

���� Sumit Sur and Pradip K� Srimani� A self�stabilizing distributed algorithm to construct bfs
spanning trees on a symetric graph� Parallel Processing Letters	 ��������������	 �����

���� Ming�Shin Tsai and Shing�Tsaan Huang� A self�stabilizing algorithm for the shortest paths
problem with a fully distributed demon� Parallel Processing Letters	 �����
����	 �����

A Appendix

We give some proofs that we did not detail in the paper to keep the presentation short�

Theorem � In any system state	 at least one node holds a privilege�

Proof of the theorem �
We consider the two possible global con�gurations �

� there is a leaf i �D�i � NULL � �N�P�i �� � � i � r��� Either	 the leaf holds the R�	 R�	
R�	 R�	 R
	 R�	 R�	 or R�� privilege� Or	 the parent of the leaf holds the R�	 R�	 R
	 R� or
R�� privilege�

� There is no leaf�
� NP�r �� � � all r
s parents hold the R�� privilege�

� NP�r � � � Let the series p�	 ��� pn such that p� � r � �	 j such that � � j � n there is �
D�pj � pj���� There is no leaf	 thus the series is in�nite� But	 there is a �nite number
of nodes � thus some nodes are several times in the series� Let be p�	 ��� pk the smaller
pre�x of the series with a node appearing twice� It exists � � i � k such that pi � pk�
pk has two parents �pk�� and pi����

� C�pk �� E � pk holds R�� privilege�

� � j such that i � j � k � C�pj�� � E � C�pj �� E � pj holds R� privilege�

� 	 j such that i � j � k there is C�pj � E � pi�� and pk�� holds R�� privilege� �

Lemma � REG� � f NP�r � � g is an attractor�

Proof of the lemma � �
� REG� is closed � The rules R�	 R�	 R��	 and R�� have no e�ect on parent�son relationships� The
move of the rules R�	 R�	 R�	 R�	 R�� and R�� on i put D�i value to NULL� The move of R�	 R�	
R� and R
 on i changes the i
s son value � the new son belongs to NB�i �thus it cannot be r��

� Every computation leads to REG� � A R�� move decreases the number of r
s parents � and as
long as REG� is not reached	 a node satis�es the R�� privilege� By fairness scheduling	 REG� will
be reached� �

Lemma � In REG�	 at each creation of an illegal and live root	 X decreases�

Proof of the lemma �

There is creation of an illegal root	 only when all parents of one node perform a R�� move� This
node becomes a new illegal root by losing all its parents� Let us name i this node�

� i was inside a cycle� A parent of i was also a i
s descendant� After the R�� moves	 this
descendant is a dead leaf and it is still a i
s descendant� i is an illegal and dead root�

� i was inside a dead branch� After the R�� moves	 the i
s branch still ends in dead leaf� i
is an illegal and dead root�

� i�s branch ended in a cycle� After the R�� moves	 the i
s branch still ends in a cycle�

� i�s was inside several illegal and live branches� After the R�� moves	 all these branches

Before R12 moves

E

E

i

After R12 moves

E

E

i

E

E
l neq r

r

E i

branchs and not inside the legal branch

i was inside several illegal and live

E E

EE

E
l neq r

i
h neq r

After R12 movesBefore R12 moves

i was inside a dead branch

After R12 moves

E

E

i

Before R12 moves

E

E

i

E

EE

l neq r

h neq r

E

i
E

i was inside one illegal and live

branchs (and inside the legal branch)

E

i was inside a branch ending in a circle

i was inside a cycle

E E

Before R12 moves After R12 moves

i

E E

i
E E

E
l neq r

After R12 moves

r

E i

Before R12 moves

Figure
� All cases where a node i lost all its parents

end in a dead leaf �one of i
s parents�� Several illegal and live branches are replaced by one
illegal and live branch whose root is i� X decreases�

� i�s was inside one illegal and live branch and was not inside a cycle or a dead

branch� i was also inside the legal branch �because i had several parents�� We had Incor�
rectLegalBranch � � �the legal branch ended in a live leaf	 all nodes between r and i had only
one parent	 and at least one of them was E�colored�� After the R�� moves	 the number of
illegal and live branches did not change �we substituted i for one root�� But nevertheless	 X
decreased because now IncorrectLegalBranch � � � �

Lemma � In REG�	 X never increases�

Detailed Proof of the lemma � �
There are only two cases where X increases � Either the number of illegal and live roots increases �

thus a new illegal and live root has been created� The lemma � establishes that X does not increase
in this case� Or	 the legal branch reaches an incorrect state from a correct one�

� The legal branch ends in a cycle� The only move that changes that is the R�� move on a
node of this cycle� The legal branch get a dead leaf�

� The legal branch ends in a dead leaf� The only move that changes that is the R� move on
r� After this move the legal branch is reduced to r�

� �i� The legal branch ends in a live leaf � �ii� all inside nodes have only one parent and are
not E�colored� Only a R
 move changes that �and gives several parents to a node that we call
i��

� All nodes between r and i are not E�colored and have only one parent� i has several parents�
Several cases are possible �

� The legal branch ends in a cycle �as above� �

� The legal branch ends in a dead leaf �as above� �

� The legal branch still ends in a live leaf � Thus	 i is inside one illegal and live branch�
Either	 after a R
 move the legal branch will end by a cycle or a dead leaf� Or	 a series
of R� moves will give a dead leaf to the legal branch� Or all i
s parents except the parent
inside the legal branch will perform a R�� move� The legal branch will be in an incorrect
state� But all illegal branches that contained i will end in a dead leaf� The number of
illegal and live root will decrease � thus X will not increase� �

Lemma � In REG�	 the predicate
IllegalNode is a trap�

Proof of the lemma � �

Before R12 moves After R12 moves

i
E E

r

i
E E

r

Figure �� A node inside the legal branch and inside a cycle

The illegal branches cannot be extended because they are dead� The only way that nodes become
illegal is the creation of a new illegal branch whose root was not already an illegal node� The new
root was inside the legal branch and was inside a cycle � and its both parents performed a R��
moves �see �gure ��� But in this case	 the legal branch was in an incorrect state � all nodes between
r and i had one parent	 and at least one was E�colored� We have a contradiction � the legal branch
is always in a correct state in REG�� �

Lemma � In REG�	 The predicate
Unsound is a trap�

Proof of the lemma

� If the legal branch ends in a cycle � a R�� move will be performed that will give an E�colored leaf
to the legal branch�

� If the legal branch ends in a dead leaf � only the R� move on r gives to the legal branch a live
leaf �the legal branch is reduced to r��
� The legal branch ends in a live leaf �All inside nodes have the same color ��� E� and all of them
have only one parent�� The nodes of the legal branch cannot perform a R�	 R�	 R�	 R��	 R��	 R��
or R�� move� R� colors the new inside node like its parent� R�	 R�	 and R� do not change the
color of the inside nodes� After R� or R�	 the legal branch is sound� R
�i	k� can only be performed
if i is the live leaf of the legal branch and if �

� k is inside a cycle� After the R
 move	 the legal branch ends in a cycle�

� k is inside the legal branch� After the R
 move	 the legal branch ends in a cycle� �remark �
before this move	 the legal branch was unsound�� �

Lemma �� In REG�	 the predicates
Cycle and
StrictCycle are traps�

Proof of the lemma �� �
A R�	 R�	 R��	 or R�� move does not modify the previously existing parent�son relations� After a
R�	 R�	 R�	 R�	 R�� or R�� move on i	 i is not within a cycle �D�i � NULL�� After a R�	 R�	 or
R��i	k� move on i	 i and k are not within a cycle �D�D�i � NULL� and �D�k � NULL��

The R
�i	k� privilege holds in REG
 if k is within a strict cycle and i is the leaf� After the R
 move	
k is still within the cycle but not within a strict cycle	 and i is not within a cycle� �

Lemma �� Let i be a node such that DC � Di and such that the C computation contains an
in�nity of R� or R� moves performed by i� C contains also an in�nity of R� or R� moves performed
by each i
s neighbor�

Proof of the lemma �� �
Assume that inREG
b	 C containso nly a �nite number of k
s R� and R� moves �k is an i
s neighbor��
After the last k
s R� or R� move	 k will never change of color� There are several cases �

� After a R� or R� move on i	 k and i have the same color� After the next R� move on i	 k and
i does not have the same color �k did not change of color in the mid�time��

� After a R� or R� move on i	 k does not have the same color as i� i must drop its last son
�perform a R� move� before its next R� or R� move� i cannot drop its last son as long as k
does not change its color� There is a contradiction �by hypothesis � i performs an in�nity of
R� or R
 move�� �

Lemma �� There does not exist a computation which does not lead to REG
�

Proof of the lemma ��
By induction on the distance between the node i and r	 the lemmas �� and �� establish that C
contains an in�nity of i
s R� or R� moves if DC � Di�
Let i be a node such that DC � Di�� and such that i has a neighbor k verifying StrictCycle�k� In
REG
b	 system states where Token�i is satis�ed	 are in�nity often reached along C �because a R�
or R� move on i is performed only from a system state where Token�i is satis�ed�� At some point	
k cannot change the color � the only move �R� move� that could change k
s color had been already
performed� After that	 when Token�i is satis�ed	 two cases are possible �

� C�k � C�i�� mod�	 R� or R� privilege is satis�ed� After the R� or R� move on i	 C�k ��
C�i�� mod�� Until Token�i is satis�ed	 k and i do not change their color� �see second case��

� C�k �� C�i�� mod�	 the R
 privilege on i is satis�ed� This R
 move is the only move which
can be performed at that time� C computation contains a R� move in REG�b	 in contradiction
with the hypothesis� �

