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Abstract. In this paper, we consider the problem of fault-tolerant dis-
tributed BFS spanning tree construction. We present an algorithm which
requires only O(1) bits of memory per incident network edge on an uni-
form rooted network (no identi�er, but a distinguished root). The al-
gorithm works even in the case of worst transient faults (i.e., it is self-
stabilizing).
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1 Introduction

In this paper, we are interested in the self-stabilizing construction of a BFS
(Breadth-First Search) spanning tree on an uniform rooted network (no identi-
�er, but a distinguished root). A spanning tree is breadth-�rst provided that
each processor at (shortest) distance d from the root in the original graph appears
at depth d in the tree (i.e., at a distance d from the root in the tree). The span-
ning tree construction is a fundamental task in communication networks. Many
crucial network tasks, such as network reset (and thus any input/output task),
leader election, broadcast, topology update, and distributed database mainte-
nance, can be e�ciently carried out in the presence of a spanning tree. Thus,
improving the e�ciency of the underlying spanning tree algorithm usually also
means the improvement of the e�ciency of the particular task.

Self-stabilizing spanning trees have been presented in [AKY90], [CYH91],
[HC92], [SS92], [DIM93], and [TH94]. Dolev presented a time optimal BFS tree
protocol in [Dol93]. In [BLB95], Butelle, Lavault, and Bui reported a minimum
diameter spanning tree algorithm. A BFS spanning tree algorithm on unidi-
rectional network is presented by Afek and Bremler in [AB97]. In all these
algorithms, each processor has a distance variable which keeps track of the cur-
rent level of the processor in the BFS tree. Thus, these BFS spanning tree
construction algorithms have the space complexity of at least O(log(N)) bits
per processor, N being the number of processors.

There are two main parameters to measure the e�ciency of self-stabilizing
algorithms: stabilization time, and memory requirement per processor. In large



distributed networks (containing several millions of processors) managed by sev-
eral organizations, the properly functioning of network management protocols
should not depend on global properties (such as network size) which can be mod-
i�ed at any time. Therefore, we propose an algorithm whose space complexity is
independent of the network size (O(1) bits per edge). When, the network grows,
the code does not need to be changed. The code at a processor needs be mod-
i�ed only when the degree increases (a locally checkable property). Awerbuch
and Ostrovsky [AO94] proposed a log�(N) data structures in a distributed man-
ner. Itkis and Levin presented, in the appendix of [IL94], another data-structure
which is based on Thue-Morse sequence requiring O(1) bits per edge.

We develop a completely new approach to design our algorithm where the
distance variable is not required (BFS trees are built in phases). Also, the space
complexity of our algorithm is intrinsically O(1) bits per edge without using any
special data structures.

The paper is organized as follows: The formal model is described in Section
2. A detailed description of the algorithm is given in Section 3, its correctness
is discussed in Section 4.

2 Model

The chosen computation model is an extension of Dijkstra's original model for
rings to arbitrary graphs [Dij74]. Consider a symmetric connected graph G(V,
E), in which V is a set of processors and E is a set of symmetric edges. We use
this graph to model a distributed system with N processors, N = jVj. In the
graph, the directly connected processors are called neighbors. Each processor i
maintains a set of neighbors, denoted as NBi. A processor state is de�ned by
its variable values. Each processor has a single-writer, multi-reader register. A
processor only communicates with its neighbors by using its register which it
writes its state into and all its neighbors read from. The system state is de�ned
by the set of processor states.

The proposed self-stabilizing algorithm consists of a set of rules. Each rule
has two parts: the privilege (condition) and the move. The privilege is de�ned
as a boolean function of the processor's own state and the state of its neighbors.
When the privilege of a rule on a processor is true, we say that the processor
has the privilege. A processor having a privilege may then, but it does not need,
make the corresponding move which changes the processor's state into a new
one (and updates its register). The rules are assumed to be executed atomically:
processors cannot evaluate their privilege and then make the corresponding move
later in another atomic step.

A computation is de�ned to be a sequence of system states (s1, s2, ... ,
sn, ... ) where every pair of states (si, si+1) is a computation step. In a
computation step, several processors (at least one) execute a move (and update
their registers). During a step, a processor may execute at most one move (non-
deterministically chosen) even if it satis�es several privileges. When a processor



holds a privilege without executing its rule forever, the computation is said to
be unfair. An unfair computation may lead to a situation where a section of
the code of a processor is no more executable. As self-stabilizing systems do not
cope with program corruptions, we exclude unfair computations in this work.

A region of a system is a subset of system states. A region A is closed if no
move allows the system to quit the region. A computation C reaches a region
A, if C has a state in A. A region A1 is an A0-attractor, if A1 is closed and all
computations whose initial state is in A0, reach A1. A system self-stabilizes to
A if and only if regardless of the initial state and regardless of the computation,
the system is guaranteed to reach A, after a �nite number of moves and A is
closed. In fact, A is an A0-attractor of the system (A0 being the set of system
states).

3 Algorithm Speci�cation

We present an anonymous algorithm that builds a BFS spanning tree. Angluin
[Ang80] has shown that no deterministic algorithm can construct a spanning
tree in an anonymous (uniform) network. The best that can be proposed is
a semi-uniform deterministic algorithm, as ours, in which, all processors except
one execute the same code. We call r, the distinguished processor, the legal root,
which will eventually be the root of the BFS tree.

During the stabilization period, illegal branches or cycles may exist, and
a tree construction may only be partial. Therefore, the algorithm is non-
terminating| at the end of a tree construction, the legal root initiates the same
process. It builds 0-colored and 1-colored BFS spanning tree alternately The
color is used to distinguish the processors of the tree from those that are not
part of the tree: the processors in the tree only have the tree color, named :
r color.

The main di�culty to build a BFS tree without using the distance variable
is to ensure that the path of each processor to r in the tree is minimal. Our
approach is to build the tree in phases: during the kth phase, all processors at
a distance of k from r join the tree (by choosing a processor at a distance k � 1
from r as parent) r detects the end of a phase and initiates new phases. Our
algorithm actually implements a centralized algorithm, requiring the knowledge
of all processor states by the legal root to decide the initiation of a new tree
construction or of a phase, in a distributed fashion where processors have only
a partial view of the system state.

There are two major error handling tasks: one to remove the illegal branches
and the other to break the cycles. Our approach to handling the illegal branches
(which are not cycles and are not rooted at the legal root) is similar to the ones
in [HC93] and [JB95]. The illegal roots detect their abnormal situation and take
Erroneous status. Erroneous status is propagated to their leaves. Erroneous
leaves are detached from their branch. Finally, these detached processors are
recovered.



The cycle elimination strategy is similar to the one proposed in [JB95]. Typ-
ically, a distance variable is used for this purpose. But, we do not use such a
variable. The basic idea is that the process of tree construction will create an
abnormal situation in the neighborhood of cycles, and the abnormal situation
will be detected by a processor inside the cycle which then initiates the cycle
destruction process.

We have four sets of rules : the rules R0-R6 designed to ensure the tree
constructions, presented in section 3.2; the rules R7-R11 designed to ensure the
illegal trees destruction, explained in section 3.3; the rules R12 and R13 designed
to break cycles are detailed in section 3.3; and �nally, the rule R14 designed to
handle faulty processors, in section 3.3.

3.1 Variables

Each processor i maintains the following variables (X:i denotes X of i and X:Y:i
denotes X of Y of i):

TS:i The parent pointer pointing to one of its neighbors or contain-
ing NULL. TS variables maintain the tree structure in a dis-
tributed manner.

P:i The parent pointer pointing to one of its neighbors or containing
NULL. When P:i 6= NULL, P:i = TS:i. When a correct tree
is created, P:i = NULL. The variable P is used to decide
whether the tree construction is complete or not|if at end of a
phase, i has no child, (i.e., a neighbor whose P variable points
to i), then the tree construction is done in i's subtree.

C:i The color which takes value from the set f0; 1g. Once the system
stabilizes, the processors in the current tree have r color while
other processors have the complement of r color.

S:i The status which takes value from the set fIdle;Working; Po-
wer;Erroneousg. The processors having Power status only
can create new children. The processors at a distance of k � 1
from r only will acquire this status during the kth phase. Once
the system stabilizes, if the current phase is begun in its subtree
and not yet terminated, then a processor has Working status.
A processor is Idle, if it is not inside the tree, or if its subtree
�nished a phase, but did not start the next phase. Erroneous
status is used during the error recovering process.

ph:i The phase which takes value from the set fa; bg. The value
of S does not indicate if the current phase is done or not. A
processor in the tree is Idle when it has completed or has not
started the current phase. In order to distinguish between these
two cases, we use the phase variable. If the phase value of an
Idle processor is the same as that of its parent, then the Idle
processor has �nished the current phase. Otherwise, it has not
initiated the current phase.



The root r maintains the same variables, except P and TS|r does not have
a parent. And S:r cannot have the value Idle.

The size of P and TS of a processor i is log(4i) where 4i is the degree of i.
The color, status, and phase variables have a constant size (total 4 bits). Thus,
the space complexity of the algorithm is O(log(4)) (i.e., O(1) bits per edge).

During each computation step, a processor computes its children set (i 2
Child:i , P:i = j) according to the value of P of its neighbors.

3.2 Tree construction rules

The rules R0 to R6 have been designed to ensure the tree constructions. A R0
move initiates the tree constructions; a R1 move initiates the phases (R0 and
R1 may only be performed by r). R3 and R4 moves propagate the phase wave
from r to the processors in tree. Processors joint the legal tree by a R2 move.
R5 and R6 move propagates the termination signal of the current phase to r.

Fig. 1. A computation step during the 3rd phase of a 0-colored tree construction
(after stabilization).
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After the execution of R2, R3, R4, R5, and R6 moves.

In the beginning of the kth phase (see Figure 1), all processors in the tree
take Working status and r's phase value (by a R3 move), except the leaves



(processors at a distance of k � 1 from r) which take Power status (by a R4
move). All processors at a distance of k from r join the tree by choosing a Power
status neighbor as a parent (update their P and TS variables, but also take the
phase value and color of the new parent) by a R2 move. The processors with
Power status will �nish the kth phase (change their status to Idle) when the
current phase is over in their neighborhood: all their neighbors are in the tree
(they have r color) by a R5 or R6 move. The Working processors will �nish
the phase when their children have �nished the current phase (they are Idle and
have the same phase value as theirs) by a R5 or R6 move.

Fig. 2. An 0-colored tree construction
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The rule R0 initiates a tree construction (see Figure 2). r changes its color
and initiates the �rst phase (by taking the Power status). All r's neighbors join
the tree by executing R2. When the current phase (say k� 1) is over, r initiates
the next one by changing its phase value by executing R1. R3 propagates the
phase value in the tree. R4 assigns Power status to the processors at a distance
of k-1 from r. By R2 moves, all the neighbors of the current leaves join the tree
(which are at a distance of k from r). R5 propagates the termination signal of



the current phase to r. When the kth phase is over (i.e., the processors at a
distance of k from r are in the tree, and the processors inside the tree are Idle
and have the same phase as that of r's), r initiates the k+1 phase by executing
R1. When the subtree rooted at a processor is complete (i.e., its Child set is
empty), the processor sets its P variable to NULL by executing R6. Thus, when
r becomes childless (child.r = �), the tree construction is complete. The tree is
stored locally in the TS variables. r initiates a new tree construction, by a R0
move.

We de�ne some predicates which are used in the algorithm.
� Conict(i, k) � [ (P:i 6= NULL)^(k 2 NBi)^(S:k = Power)^(C:k 6= C:i)^

( (S:i 6= Erroneous) _ (P:i 6= k) ) ]
The processor i has a neighbor k which has an \unexpected" color with respect
to i. Since i has a parent and k has the Power status, both should be in the
legal tree and should have the r color. But, in this case, i has a neighbor k
with Power status and with a di�erent color than of i. Moreover, i does not
have Erroneous status or is not a child of k. Thus, i may be inside a cycle.

� Connection(i, k) � [ (S:i = Idle) ^ (P:i = NULL) ^ (Child:i = �)^
(k 2 NBi) ^ (C:k 6= C:i) ^ (S:k = Power) ]

k has Power status and does not have the color of i. i is an Idle processor
with no parent and no child. Therefore, i assumes that k is a leaf of the
current legal tree with Power status. Thus, i will eventually join the tree
during the current phase by choosing k as the parent and taking r color as
its color.

� NewPhase(i) � [ (i 6= r) ^ (P:i 6= NULL) ^ (S:P:i =Working)^
(C:P:i = C:i) ^ (ph:i 6= ph:P:i) ^ (S:i = Idle) ]

i's parent has begun a phase, but i has not. i is an Idle processor, it has a
parent with Working status, and i's phase di�ers from its parent phase, but
they have the same color.

� EndFirstPhase(i) � [ (S:i = Power)^ ( 8j 2 NBi; C:j = C:i )^
( 8j 2 Child:i; (S:j = Idle) ^ (ph:j = ph:i) ) ]

When i has the Power status, all its neighbors must join the tree, and thus,
take r color (which is also the color of i). Therefore, i terminates this phase
when its neighbors have its color. For error-recovering purpose, i will only
�nish this phase when its children are Idle and they have the same phase
value.

� EndPhase(i) � (S:i =Working)^
[ ( 8j 2 Child:i; (S:j = Idle) ^ (ph:j = ph:i) ) ]

i has �nished a phase where it did not have Power status. The children of
i have �nished the current phase| they are Idle and have the same phase
value as i.

� EndLastPhase(i) � [ (Child:i = �)^ ( EndFirstPhase(i) _ EndPhase(i) ) ^
( 8j 2 NBi;:Conict(i, j) ) ]

i has �nished a phase and i has no more child. The current tree construction
terminates in the subtree of i.



� EndIntermediatePhase(i) � [ (Child:i 6= �)^
( EndFirstPhase(i) _ EndPhase(i) ) ]

i has �nished a phase and it still has some children. The tree construction is
not over in its subtree.

Fig. 3. Rules for the tree construction.

R0 : EndLastPhase(i) ^ i = r ! C:r = (C:r + 1)mod2 ; S:r = Power.
R1 : EndIntermediatePhase(i) ^ i = r ! r changes its phase value ;

S:r =Working.
R2 : Connection(i, k) ^ i 6= r ! C:i = C:k ; ph:i = ph:k ; S:i = Idle ;

P:i = k ; TS:i = k.
R3 : NewPhase(i) ^ Child:i 6= � ! ph:i = ph:P:i ; S:i =Working.
R4 : NewPhase(i) ^ Child:i = � ! ph:i = ph:P:i ; S:i = Power.
R5 : EndIntermediatePhase(i) ^ i 6= r ! S:i = Idle.
R6 : EndLastPhase(i) ^ i 6= r ! S:i = Idle ; P:i = NULL.

3.3 Error Handling Rules

A distributed system has an unpredictable initial state. Initially, the parent
pointers may point to any neighbor or NULL. Thus, illegal trees (trees whose
roots are not r) and cycles (paths without a root) may exist in the initial state.
We propose two error-handling strategies: one for eliminating the illegal trees
and the other for breaking the cycles.

Illegal Tree Elimination Rules The rules R7 to R11 have been designed to
ensure the illegal trees destruction. R7 detects the illegal roots (processors that
are root of an illegal tree). R8 (R11) propagates the Erroneous status forward
in the trees (backward). R9 detaches Erroneous leaves from their branch. R10
recovers processors having the Erroneous status.

The elimination of illegal trees has been reported in [HC93] and [JB95]). The
illegal roots detect the abnormal situation and take Erroneous status by a R7
move. Erroneous status is propagated to their leaves by a series of R8 moves.
Then, Erroneous leaves quit their branch by a R9 move and become detached
(the illegal trees still have Erroneous leaves though). Finally, the detached (i.e.,
without a parent and child) Erroneous processors are recovered: the change
their status by executing R10. The repetition of detaching and recovering process
will correct all processors inside the illegal trees (see an example in Figure 5).

The current phase never ends on the branches having an Erroneous proces-
sor. Therefore, when the legal tree has an Erroneous processor, its construction
is locked: the legal tree has to be destroyed to avoid a deadlock. In this case, by



R11 moves the legal root will get the Erroneous status. Then by R8, R9, and
R10 moves, the tree will delete itself.

We will de�ne some predicates which will be used in the of illegal tree elimination
rules.
� Detached(i) � [ (Child:i = �)^(P:i = NULL) ] i has no child and no parent.
� IllegalRoot(i) � [ (i 6= r) ^ (P:i = NULL)^

( (Child:i 6= �)_ (S:i =Working)_ (S:i = Power) ) ]
� ErroneousLeaf(i) � [ (Child:i = �) ^ (P:i 6= NULL) ^ (S:i = Erroneous)^

(S:P:i = Erroneous)^ ( 8j 2 NBi;:Conict(i, j) ) ]

Fig. 4. Rules for Illegal Tree Elimination.

R7 : IllegalRoot(i) ^ S:i 6= Erroneous ! S:i = Erroneous.
R8 : S:P:i = Erroneous ^ S:i 6= Erroneous ! S:i = Erroneous.
R9 : ErroneousLeaf(i) ! P:i = NULL.
R10a : Detached(i) ^ i 6= r ^ S:i = Erroneous ! S:i = Idle.
R10b : Detached(i) ^ i = r ^ S:i = Erroneous ! S:i =Working.
R11 : S:i 6= Erroneous ^ (9j 2 Child:i; S:j = Erroneous) !

S:i = Erroneous.

Fig. 5. Illegal Tree Elimination.
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Cycle destruction rules The rules R12 and R13 have been designed to ensure
the cycles destruction. The rule R12 detects the conicts (and thus cycles); the
rule R13 breaks the cycles.

A processor having a parent assumes that it is in the legal tree and its color is
equal to r color (even if it is inside a cycle). Based on this assumption, it detects
a conict when a Power neighbor does not have its color (both cannot be inside
the legal tree). When a processor detects a conict, it will eventually choose the
Power processor as the parent, and the cycle will be broken (transformed into
a branch of the legal tree). In terms of the rules, when a processor detects a



conict, it takes the Erroneous status by executing R12 (Figure 7). Erroneous
status is propagated to the descendants/ancestors of the processor by a series
of R8 moves. When it has an Erroneous parent and only Erroneous children,
it chooses the Power processor as the parent by a R13 move, and the cycle is
transformed into a branch of the legal tree. A series of R11 moves propagates the
Erroneous status toward the legal root. Once the legal root has the Erroneous
status, the legal tree will delete itself (just like the illegal trees).

During a 0-colored (1-colored) tree construction, the tree grows until it
reaches the �rst 1-colored (0-colored) cycle, if it exists. This cycle will transform
itself into a branch of the legal tree. Since the processors inside a cycle cannot
change their color, the cycles are eventually destroyed.

The following predicate is used in the cycle destruction rules:
� ErroneousConict(i, k) � [ Conict(i, k) ^ S:P:i = Erroneous ^

S:i = Erroneous^ ( 8j 2 Child:i; S:j = Erroneous ) ]
i is in conict with k. i, i's parent, and i's children have the Erroneous
status.

Fig. 6. Rules for Cycle Elimination.

R12 : Conict(i, k) ^ S:i 6= Erroneous ! S:i = Erroneous.
R13 : ErroneousConict(i, k) ! P:i = k.

Fig. 7. Cycle Elimination.
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Miscellaneous error recovering rule A processor is Faulty if it does not
have the right color, the right status, or the right phase according to its parent's



state. For instance, a processor veri�es the Faulty predicate if its color di�ers
from its parent's (except if the processor or its parent has Erroneous status).
In fact, all processors inside the legal tree should have color equal to r color.
Other rules are as follows: a Power or aWorking processor should have a parent
having Erroneous or Working status. If a processor and its parent are Idle or
Working, they should have the same phase value. A Power processor should
have the same phase value as its parent has. The Idle children of a Power
processor should have the same phase value as their parent has and should have
no children.
� Faulty(i) � [ (P:i 6= NULL)^

( [ (C:i 6= C:P:i) ^ (S:i 6= Erroneous) ^ (S:P:i 6= Erroneous) ] _
[ (S:P:i = Idle)^ ( (S:i =Working) _ (S:i = Power) ) ] _
[ (S:P:i = Power)^ ( (S:i =Working) _ (S:i = Power) ) ] _
[ (S:P:i = S:i)^ ( (S:i = Idle) _ (S:i =Working) ) ^

(ph:i 6= ph:P:i) ] _
[ (S:P:i =Working) ^ (S:i = Power) ^ (ph:i 6= ph:P:i) ] _
[ (S:P:i = Power) ^ (S:i = Idle)^ ( (Child:i 6= NULL) _

(ph:i 6= ph:P:i) ) ] ) ]

Fig. 8. Miscellaneous Rule.

R14 : Faulty(i) ! S:i = Erroneous ; P:i = NULL.

4 Correctness of the algorithm

For the lack of space, we give only the proof sketch.

LS is the region where the following conditions are true: (i) the satis�ed
privileges are R0, R1, R2, R3, R4, R5, or/and R6; (ii) there exist neither any
cycle nor any illegal tree; (iii) there exists no Erroneous processor.
We will prove that (i) all computations reach LS, (ii) LS is closed, and (iii) in
LS, our algorithm constructs a BFS spanning tree.

To prove the correctness of our algorithm, we use the convergent stair [GM91]
method. We exhibit a �nite sequence of regions A0, A1, ... , An where A0 is the
set of system states, An is LS and for all i < n Ai+1 is an Ai-attractor. First,
we establish that computations are in�nite.

Theorem1. In any system state, at least one processor holds a privilege.

We consider three global con�gurations: (i) there is a conict in the network (the
processor in conict holds R12 or R13 privilege, its parent holds R11 privilege,
or one of its children holds R8 privilege), (ii) there is an Erroneous processor
inside a tree (a processor inside its subtree holds R8, R9, or R11 privilege), and
(iii) there is no Erroneous processor inside a tree and there is no conict. In



con�guration (iii) , there are several situations: (iiia) the legal tree has an Idle
processor whose phase value di�ers from that of its parent, (this processor hold
the R3, R4, or R14 privilege); (iiib) the legal tree has a Power processor (one of
its neighbors holds R2, R7, R10, or R14 privilege; or it holds the R0, R1, R5, or
R6 privilege); (iiic) the legal tree has a Working leaf (this leaf holds the R6 or
R0 privilege); and (iiid) any con�guration other than (iiia), (iiib) and (iiic). In
situation (iiid), the legal tree has a Working processor whose children have the
Idle status. Either this processor holds R1 or R5 privilege, or one of its children
holds R14 privilege.

Theorem2. Let A0 be the set of system states.
A1 � fNo processor satis�es the Faulty predicateg is an A0-attractor.

As long as a processor satis�es the Faulty predicate, it holds R14 privilege.
Eventually, (by the fairness assumption) all processors will be in a correct state
(A1 will be reached). No move puts a processor in a faulty state.

Theorem3. A2 � A1 \ fIf a processor is inside an illegal tree, then it has
Erroneous statusg is an A1-attractor.

R14 is the only rule that can create a new illegal root. Therefore, in A1, the
creation of an illegal tree cannot happen. But, the illegal tree may gain new
processors by R2 or R13 moves, as long as they have Power processors. However,
by induction, we prove that all processors inside illegal tree will take Erroneous
status. As long as an illegal root does not have Erroneous status, this processor
holds R7 privilege. By fairness, all illegal roots will acquire the Erroneous
status. Assume that all processors inside an illegal tree and n-1-away from their
root have Erroneous status. They cannot have a new child (illegal trees cannot
gain new processors that are n-away from their root). All the illegal processors
n-away have Erroneous parent. By fairness scheduling of R8, these processors
will take Erroneous status.

Theorem4. A3 � A2 \ fThere exists no illegal treeg is an A2-attractor.

In A2, no more processor will join an illegal tree and the illegal trees will
eventually destroy themselves (by fairness scheduling of rule R9).

Theorem5. A4 � A3 \ fThe Erroneous-free cycles do not have an Inuential
processorg is an A3-attractor.

The di�culty is that the cycles (path without a root) may gain new proces-
sors. Indeed, the processors (called inuential) that have Power status or that
will possibly take Power status (by a series of R3 and R4 moves), may gain
children. The cycles may contain inuential processors.
Only R0 and R1 moves allow new processors to become inuential. These pro-
cessors are not inside any cycle. Nevertheless, a cycle may gain inuential pro-
cessors: a subtree of the legal tree may join a cycle by executing R13. After such
a move, the cycle has at least one Erroneous processor which is the processor



that executed R13 move.
Therefore, the cycles without an Erroneous processor cannot gain an inuential
processor without gaining an Erroneous processor. By the fairness assumption,
the inuential processors inside an Erroneous-free cycle will get Power status,
and will eventually change their status (thus, they will be no more inuential).

Theorem6. A5 � A4 \ fThere exists no irregular and no inuential processorg
is an A4-attractor.

An irregular processor is inside a cycle, or it is inside the legal tree, but it
does not have color equal to the r color, or one of its ancestors had joined the
legal tree by a R13 move. Thus, a regular processor was initially inside the legal
tree or it joined the legal tree by a R2 move. A regular processor has color equal
to r color. Only R0 and R1 allow new processors, that are regular, to become
inuential. As mentioned before, the regular and inuential processors may be-
come irregular, when one of their ancestors executes a R13 move. After verifying
the EndFirstPhase predicate, a regular processor does not quit the legal tree by
a R13 move. Indeed, when the EndFirstPhase predicate is veri�ed by a regular
processor, all its neighbors have color equal to r color. Either its neighbors are
inuential (they cannot change their color while they are inuential), or they
change their color (they have become irregular but they cannot become inuen-
tial till they are irregular).
After the �rst R0 move, before satisfying the predicate EndFirstPhase, the regu-
lar processors may only execute a R13 move. Therefore, when a regular processor
executes a R13 move, its subtree contains only Erroneous processors (children).
As regular processors have only regular ancestors (after the �rst R0 move), the
regular and inuential processors cannot quit the legal tree by a R13 move.
Thus, after the �rst R0 move, there will be no new irregular and inuential
processor. As irregular and inuential processors have an Erroneous ancestor,
they will eventually take Erroneous status (by fairness scheduling of the rules
R8 and R11).
We need to prove that every computation contains a R0 move in order to prove
that A5 is an A4-attractor.

Theorem7. A computation cannot have a �nite number of R0 moves.

Assume that a computation, C, with a �nite number of R0 moves exists.
Along C, at some point, no R0 move will be executed, and the legal tree will
never have an Erroneous processor (otherwise it would eventually destroy itself
and a R0 move would be executed). Thus, after the last R0 move, no processor
inside the legal tree executes a R13 move. Therefore, the network will never
have new irregular and inuential processors, and eventually, the irregular and
inuential processors will be removed. Then, no processor may execute a R13
move. Otherwise, the legal tree would get an Erroneous processor (now, Power
processors are only inside the legal tree). At that point, the processors inside the
legal tree may only execute R0, R1, R3, R4, R5, and R6 moves. The processors
inside a cycle may execute R5, R6, R8, R9, R11, and R12 moves. The detached



processors may execute R2 and R10 moves. Now, each processor may execute
at most �ve moves, between two consecutive R1 moves. As C is an in�nite
computation, (theorem 1), there is an in�nite number of R1 moves after the
last R0 move. Between two consecutive R1 moves, the legal tree gains at least
one processor. Since the network is �nite, the legal tree cannot gain processors
forever. Therefore, there is a �nite number of R1 moves after the last R0 move.
We proved the contradiction.

Theorem8. A6 � A5 \ fThere exists no cycleg is an A5-attractor.

In A5, the cycles cannot gain a processor by a R2 or R3 move because they
do not have a Power processor. No new cycle may be created because Power
processors and their ancestors are regular (they have the color equal to r color).
We know that all computations contain an in�nite number of R0 moves. Thus,
all r's neighbors execute an in�nite number of R2 moves. Otherwise, one of r's
neighbors, say i, would keep its color forever, after a R0 move, i and r would not
have the same color, and then r would never satisfy the predicate EndFirstPhase.
Thus, it would not be able to execute any move.
Between two R2 moves, a processor must satisfy the predicate EndFirstPhase:
after a R2 move, a processor executes a R4 move. Then, it needs to satisfy the
predicate EndFirstPhase in order to execute its next move (R5 or R6).
Since we have established that all r's neighbors execute an in�nite number of R2
moves, we prove that if a computation contains an in�nite number of R2 moves
executed by a processor, then the computation contains also an in�nite number
of R2 moves executed by its neighbors. Therefore, by induction on the distance
between the processors and r, we can establish that each processor executes an
in�nite number of R2 moves in all computation. Only the detached processors
may execute a R2 move. Thus, no processor stays forever inside a cycle.

Theorem9. LS � A6 \ fNo processor has the Erroneous statusg is an A6-
attractor.

Clearly, LS is closed. If the legal tree has an Erroneous processor, it will
destroy itself and a R0 move will eventually be executed. After the R0 move,
only the detached processors have Erroneous status. These processors hold R10
privilege till they have Erroneous status. By fairness scheduling of the rule R10,
LS will be reached. Once LS is reached, no processor will get the Erroneous
status.

Let s0 (s1) be the global state where all processors are detached and are
0-colored (1-colored). At the end of a tree construction, more processors will
have the color equal to r color. Thus, in any computation in LS, s0 or s1 will
be eventually reached. Then, the construction will complete and be well-formed:
as no processor has initially the color equal to r color; a processor ends its �rst
phase after all its neighbors have joined the legal tree (and taken the color equal
to r color). The r's neighbors will join the legal tree during the �rst phase. By
induction, we can conclude that the processors at a distance of k from r will join
the legal tree during the kth phase.



We proved that (i) LS is an A0-attractor; and (ii) in LS, our algorithm
constructs a BFS spanning tree.
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