
D
R

A
FT

Adjasankey: Visualization of huge hierarchical weighted and directed graphs

Joris Sansen, Frédéric Lalanne, David Auber and Romain Bourqui
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Abstract

Visualization of hierarchical weighted and directed

graphs are usually done with node-link or adjacency ma-

trix diagrams. However, these representations suffer from

various drawbacks: low readability in a context of Big

Data, high number of edge crossings, difficulty to effi-

ciently represent the weighting. With the stated goal of

reducing these drawbacks, we designed Adjasankey, a hy-

brid visual representation of weighted and directed graphs

using hierarchical abstractions. This technique combines

adjacency matrices readability of large graphs and flow

diagrams visual design efficiency for weighting depiction.

Associated to Big Data computing and light-weight web

rendering, our tool allows to depict and interact in real

time on huge dataset and supports user multi-scale explo-

ration and analysis. To show the efficiency of Adjasankey,

we present a case study on the analysis of a Customer to

Customer website.

1 Introduction

In various fields, analysing how data flow through a sys-

tem is central to monitor, understand and predict variations

of this system. For example determining in social network,

how rumors spread and fade, who starts or stops rumors

and if they are transmitted to different communities are im-

portant questions. In the same way, in web analytics, users

navigation information is valuable and its analysis brings

plenty of information on buying habits, fashionable arti-

cles, what leads a customer to a purchase or on the contrary,

what hinders him/her. Due to improvement in data acquisi-

tion techniques, the size and complexity of such data pro-

hibit manual representation. This is particulary true in the

era of Big Data as dataset size can exceed Mega/Giga/Tera

bytes. Information visualization therefore focuses on the

design of automatic, fast and efficient techniques.

A common approach consists in modeling such data

with a directed weighted graph where the nodes represent

the network entities, the edges and their associated weight

represent the information flowing between entities. Vari-

ous techniques have been proposed during the last decades

to visualize such directed weighted graphs. Among these

techniques, the most popular are node-link diagrams and

adjacency matrices. In node-link diagrams (e.g. [13, 16]),

nodes are visually encoded with a shape (usually a square

or a circle) and an edge between two nodes is represented

as a poly-line between the corresponding shapes. In adja-

cency matrices (e.g. [8, 17]), nodes are displayed twice, on

the abscissa and on the ordinate, and an edge between two

nodes is represented by a shape in the corresponding row

and column. These visualization techniques have been ex-

perimentally evaluated [9, 12] in order to determine which

depiction performs better in different cases. These studies

showed that adjacency matrix outperforms node-link dia-

gram when the considered graph becomes large and dense.

Other researches defined hybrid encodings that try to take

advantage of several methods (e.g. [6, 10, 20]).

To highlight interesting parts of the network, a hierar-

chical partition of the graph can be used. Such a hierarchi-

cal partition can either be inherent to the data or computed

with a clustering algorithm (e.g [5, 18]). In that case, the

main idea is to emphasize each set of the partition as well

as the relationships within and between them. Again, both

node-link diagram and adjacency matrix have been used to

show this hierarchical partition (e.g. [7, 11, 14]).

Even if the techniques mentioned above can scale up

to millions of elements, three importants issues still re-

main: i) clutter ii) lack of efficiency for weighting repre-

sentation, and iii) slow rendering. The clutter (node-node

overlaps, node-edge overlaps and edge-edge crossings) in-

creases with the size and the complexity of the graph, re-

sulting in unreadable visualizations. Moreover, depicting

weighting of the graph increases this effect. Also, a large

number of elements to be displayed may lead to slow ren-

dering and therefore hinder interactive exploration.

To reduce visual clutter and speed up the rendering, a

common approach is to build an abstraction of the origi-

nal graph. It allows to guide the user in his/her analysis

by identifying interesting parts of the network and reduces

the focus of his/her study. This is usually done by replac-

ing each subset of a partition of the nodes by a single node

(called metanode); and replacing all edges linking two of

these subsets by one single edge (called meta-edge), link-

ing the corresponding metanodes. This operation reduces

the number of displayed nodes and edges and therefore re-
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duces visual clutter and increases rendering speed. This

abstraction is usually called a compound graph, associated

with the original graph and the partition. If repeated iter-

atively, this process allows to build abstractions of higher

and higher levels. This use of such method have already

been widely studied during the last decade and applied to

various depiction techniques [1, 3, 4, 8].

Depicting weighting of relations is possible for most of

the above techniques but they suffer from important draw-

backs (e.g. lack of efficiency, clutter, readability). A com-

mon and effective weighting depiction relates on represen-

tation inspired from flow diagrams. Since the first dia-

grams to modern works [2,15,19,21] its visual design kept

its efficiency. Such technique emphasizes major trends

while depicting quantities and thus allows to locate dom-

inant contribution to the overall flow. However, it faces

the problem of scalability and clutter when the number of

elements to represent increases. In our knowledge of the

visualization domain, there is a lot of publications focus-

ing either on directed graphs, or on weighting depiction, or

on hierarchical depiction and usability as a tool but very

little on efficient depiction of the three all together.

In this paper, we present Adjasankey, a new visu-

alization technique for representing weighted directed

graphs together with a hierarchical partition. To do so,

Adjasankey takes advantages of compound graph visual-

ization, adjacency matrix layout and Sankey’s diagram that

supports the visualization of flows between entities. The

aim of Adjasankey is to help the user to answer the follow-

ing questions: i) Which entities are connected to impor-

tant flows? ii) Does information mainly flow between or

within clusters ? iii) How many flows start from or end to

a particular cluster/entity?

The remainder of this paper is structured as follows.

In Section 2, we present Adjasankey: design and techni-

cal aspects. Then we describe it’s implementation in Sec-

tion 3. We provide some results with a case study based on

the analysis of a website in Section 4. Finally, we present

conclusions and discuss possible future work.

2 Adjacency matrix layout for Sankey dia-

gram : Adjasankey
This section presents the design of Adjasankey which

uses a node positionning method similar to adjacency ma-

trices combined to Sankey’s diagram design for edges. As

mentioned in Section 1, we consider the data as a directed

and weighted graph together with a hierarchical tree. One

can see in Fig. 2(a) an example of a clustered directed

graph and the associated hierarchy tree as used as input

for our representation.
2.1 Positioning and sizing

In Adjasankey, such as in an adjacency matrix, nodes

are displayed on rows and columns. As for matrices that

Figure 1: Visualization of the highest level of abstrac-

tion with Adjasankey obtained on a dataset of 46, 500, 000
clicked hyperlinks in a C2C website.

(a) (b)

Figure 2: Example of directed weighted graph (a) and as-

sociated hierarchical partition (b).

represent a directed graph, source nodes are laid out on or-

dinate and target nodes on abscissa. A well-known matrix

issue lies in nodes ordering which can reveal or hide vari-

ous information. Such node ordering problem is known to

be NP-hard and is not the aim of this study. In our method,

the height of a node row (resp. width of a node column)

is set according to its weight (sum of weights of its inci-

dent edges). It helps to identify nodes (and clusters) that

are incident to edges with high weights. Since node height

(resp. width) is set according to its weight, a node having

an out-degree (resp. in-degree) equal to 0 is not displayed

on abscissa (resp. on ordinate) which reduces the matrix

size. In Fig. 3(a), one can see that the height of E on ordi-

nate is set to 1 while the width of E on abscissa is set to 3.

One can also notice that node B is not drawn on ordinate
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Figure 3: (a) Nodes and edges positionning on matrix lay-

out according to the input graph Fig. 2; (b) resulting visu-

alization with node and edge coloring.

as its out-degree equal to 0. The same observation can be

done for nodes A and D on abscissa.

In adjacency matrix, node column and row contains

multiple connections to depict all its incident edges. As a

node height or width has been set according to its out- and

in-degree, it can be split to provide a complete row/column

to each of its incident edge and to set their size proportion-

ally to their weight. In Fig. 3(a), the column of node E have

been split into two row of width 1 and 2 as node E has two

in-coming edges of weight 1 and 2.

Such node and edge positioning allows to bundle to-

gether edges having the same source or target without

misrepresentation of weights. In order to strengthen this

bundling, edges are ordered according first to the in-degree

nodes order and then to the out-degree nodes order.

2.2 Coloring

Figure 4: H-range of HSV colorspace distribution for node

coloring.

In order to emphasize the hierarchical partition of the

graph, we designed an algorithm which tries to affect sim-

ilar colors to nested clusters. The main idea of that algo-

rithm is to assign to each node of the hierarchy tree, a H-

range of value from the HSV colorspace. First an H-range

of [0, 360] is assigned to the root node of the hierarchy tree.

Then, for each internal node, its H-range is split according

to the weight of its sons in the hierarchy tree and the result-

ing ranges are assigned to them. For instance in Fig. 4, the

H-range [0, 360] of the root node is equally split and assign

to C1,C2 and E as their total weight are all equal to 4. Fi-

nally, the hue value of each node of the hierarchy tree is

set to the middle of its H-range. The positioning of nodes

and edges allows to preserve for each edge an entire row

and column. These row and column can therefore be col-

ored to emphasize edges source and target. Edges color are

set according to their source and target colors with a pro-

gressive and reversed interpolation. On the source (resp.

target) side, edges are colored with target (resp. source)

color. Such interpolation results in a cumulative histogram

that shows the distribution of weights over the successors

(resp. predecessors). For instance, in Fig. 3(b), we can

see that in-coming flows of node E on abscissa are emit-

ted from node C and D. Furthermore, the colors emphasize

the contribution of node C and D (resp. one third and two

third). So as to guarantee the visibility of edges and his-

togram, a spacing is kept near the entities.

2.3 Rendering

Due to node placement, adjacent edges are bundled to-

gether. In order to emphasize these bundles of edges, they

are depicted with a luminance texture that creates a tubular

effect. Furthermore, it eases the distinction between edges

crossings and edges bends. Indeed crossings identification

without such tubular effect can be tedious (see Fig. 3(b))

even when edge borders are drawn. However, we are aware

that such design have the side effect to modify color inten-

sity which is a limitation of the technique.

2.4 Interaction

The first depiction of the graph is the highest level of ab-

straction provided by the hierarchical partition (see Fig. 1).

We provide together with Adjasankey an interaction tool

that allows to modify the diplayed level of detail. Us-

ing that interaction tool, the user can request more (resp.

less) details on a given cluster. It induces the appearance

of descendant nodes and the break up of meta-edges in

the corresponding edges, potentially metanodes and meta-

edges themselves. In addition to that interaction tool, we

also provide a classical zoom-and-pan as well as a neigh-

bor identification interaction tools. The latter allows to

highlight in the representation the neighborhood of a given

node but also the source and target of a given edge/bundle

of edges (see Fig. 7).

3 Implementation

The size of the data that Adjasankey have to handle

makes impossible to store and manipulate them on a sin-

gle computer. In this section, we present some technical

aspects of Adjasankey, and explain how we combined a

cloud architecture for the pre-processing of the data and a

light-weight client that make possible to visualize an ab-

straction in real-time in web browser.
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(a) (b)

Figure 5: Nodes having both ingoing and outgoing edges

in the graph of Fig. 2 are duplicated in both the graph (a)

and the hierarchy (b).

Pre-processing on a cloud architecture To request

more or less detail on a particular metanode in reasonable

time, the first pre-processing step consists in duplicating

the graph and hierarchy tree nodes. For instance in Fig. 5,

one can see the result of that duplication step on the graph

and hierarchy of Fig. 2. During this process, entities E and

C are duplicated since they emit and receive flows while A,

B and D are not (see Fig. 2(b)). The hierarchy tree is also

updated and clusters containing both sources and targets

are duplicated as well. As C1 and C2 contain both emit-

ing and receiving entities (A and B for C1, C for C2), they

are duplicated into C1’/C1” and C2’/C2”. The second step

consists in generating the meta-edge connecting each node

of the duplicated hierarchy tree to all other possible neigh-

bors. These two steps are achieved using Apache Spark (a

distributed data processing framework) and then stored in

an HBase database.

A web service finally manages access requests and con-

nection to HBase for data transmission. To improve query

response time, our system also keep in memory nodes and

metanodes that have already been requested. Using such

an architecture, the system can answer in reasonable time

when the user requests more (or less) details on the cluster

of the hierarchy.

Graphic User Interface Once the duplicated graph and

hierarchy tree have been computed, the visualization pro-

gram is only responsible for the rendering of the coum-

pound graph. The rendering program is implemented in

C++ associated to openGL shader programming. It is then

transformed into Javascript and WebGL using the llvm-

based project Emscripten [22]. The generated program is

integrated within the visualization client written in html.

4 Case study: website user navigation

This section presents the results that we have obtained

on a website user navigation dataset. More precisely,

the dataset contains a set of 46, 500, 000 clicked hyper-

links in a Customer To Customer website containing ap-

proximatively 50, 000 webpages and 823, 000 hyperlinks.

The dataset have been modeled as an oriented (hyperlinks

direction) and weighted (number of clics per hyperlink)

graph. The hierarchical tree associated to the graph is given

by the hierarchical partition in categories (sub-categories

and so on) of products for sale. After the duplication

pre-process and the computation of the meta-edges, we

obtain a set of 96, 300 nodes/metanodes and 1, 291, 300
edges/meta-edges.

Fig. 1 shows the representation in Adjasankey of the

highest level of abstaction of the data, i.e. the represen-

tation of the main categories of products for sale on the

website. One can easily notice that the website contains

five main categories (or webpages) and that the flows are

mainly within category. Among these categories, the Pro-

fessional equipment category (in blue in Fig. 1) represents

approximatively 50% of the visited webpage while the

House equipment represents approximatively 30%. Sur-

prisingly, the home page of the website only represents 4%

of the visited pages. Two factors can explain that phenom-

ena, first many users enter on the website using search en-

gines that redirect them directlty on particular webpages

and second, the number of times the homepage is visited is

low compared to the number of visited webpages per visit.

Within the Professional equipment category (see

Fig. 6(b) and 7(a)), most of the flows are again within their

sub-categories which means that, at this level of organiza-

tion, the website seems also well-structured. One can also

notice that the Agricultural equipment sub-category repre-

sents about 50% of the visited webpages of Professional

equipment (in yellow in Fig. 7(a)). Other sub-categories

either refer to other kinds of equipement or to territorial re-

gions. Two type of behaviours can be observed: i) Users

who navigate in territorial regions sub-categories, ii) Users

who navigate in semantic sub-categories and then, at lower

levels, in territorial regions categories. Such behaviours

reveal a distinction between users who wants to promote

either territorial proximity or accuracy of their search. As

no offer can appear in two categories, it also indicates that

users can obtain different results if they choose to follow a

territorial strategy or not.

Considering the House equipment category (see

Fig. 6(c) and 7(b)), one can observe two major sub-

categories (Gardening and Shoes), one medium category

(Baby clothes) and two small categories (Luggage and

Tools). While major part of the flows are within categories,

two interesting behaviors can be noticed: i) almost all of

the flows connected to Tools are emitted from and toward

Gardening, ii) almost all of the flows connected to Luggage

are emitted from and toward Shoes. Fig. 7(c) and 7(d) show
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(a) (b) (c)

Figure 6: Focus on the home page (a) and on the Professional equipment (b) and House equipment (c) categories.

(a) (b) (c) (d)

Figure 7: Different levels of detail and zoom levels. (a) Expansion of Professional equipment metanode; (b) Expansion

of and zoom on the House equipment metanode; (c) Flows emitted from the Gardening category ; (d) Details of Tools (in

green) and Gardening (in yellow) flows: most of the flow emitted from Tools is emitted toward Gardening.

the case of Tools and Gardening, when approximatively

90% of the flows from Tools are emitted toward Gardening.

We assume that this is the result of a miss-classification of

the offers and that the Gardening category should be in-

cluded in the Tools one. Indeed many offers of the Gar-

dening category refers to gardening tools offers. The same

reasoning applies to the flows between Luggage and Shoes

flows case.

5 Conclusion and future work
We have presented Adjasankey, a novel visualization

technique designed for weighted directed graphs associ-

ated to an hierarchical partition. Our visualization method

combines Sankey’s diagram visual design with an adja-

cency matrix layout and thus emphasizes edge weight-

ing while optimizing overall readability. To scale to huge

dataset, Adjasankey supports the multi-scale exploration of

various levels of abstraction. We have implemented our

solution in a Big Data infrastructure with cloud computing

for data pre-processing and a light-weight client for visu-

alization. This system allows a time-responsive interaction

and visualization of various abstractions of large network.

A trial of this system was made with a case study on web-

site user navigation and was positively received by domain

experts.

As future work, we plan to extend Adjasankey to path

or sequence visualization as a combination of our depic-

tion and of space-filling curves. We also plan to perform

an experimental evaluation for comparing classical adja-

cency matrix diagram and Adjasankey for the depiction of

directed and weighted graphs.
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