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Abstract

The most common depictions of graphs are node-link di-

agrams (NLDs) and matrix-based diagrams (MBDs). Mak-

ing valid comparisons between these two visualisation

techniques is difficult because they are each subject to a

variety of representation parameters with respect to graph

layout (NLD) and node ordering (MBD), meaning that any

given choice of layout and order (even if they fulfil some

aesthetic criteria) may influence experimental results. To

overcome this problem, we propose a MBD-based tech-

nique which hybridises the entity visual encoding of a MBD

with the edge visual encoding of a NLD. Using a typical

MBD, we propose three edge visual encoding evolutions

to ultimately render edges like in a NLD while preserving

nodes depiction and order. Such encoding evolutions al-

low us to perform an experimental evaluation of user per-

formances for a path finding task without the above limita-

tions. We show that for a path finding task, our edge visual

encoding evolutions tend to improve the user experience

when analysing and interacting with a MBD.

1 Introduction

In modern contexts, visual analytics of social-like re-

lationships has become increasingly more popular. In bi-

ology, epidemiology, sociology and marketing for exam-

ple, the need for effective visualisation tools has increased,

and finding connections between entities and/or groups is

therefore a common task. Popular approaches for visually

exploring such relational data include the use of node-link

diagrams (NLDs) and matrix-based diagrams (MBDs). In

a NLD, each entity is represented as one shape, whereas a

relationship between two entities is represented as a poly-

line (link) between the corresponding shapes. MBDs are

square matrices in which entities are displayed twice, on

the abscissa and on the ordinate, and a relationship between

two entities is represented by a shape in the corresponding

row and column.

Improving NLDs and MBDs often corresponds to op-

timising aesthetic criteria. Some criteria are common to

both diagrams, such as symmetry, while others are specific

to one representation technique. For example, reducing

the number of edge crossings is one of the most impor-

tant criteria for NLDs [17]. For MBDs, one of the main

aesthetic criteria is to represent close-proximity entities (in

terms of graph distance) as close as possible in the repre-

sentation [15]. Both techniques have been improved using

different layouts or ordering algorithms. The graph draw-

ing community focuses on the design of efficient graph

layout algorithms. Among these algorithms, one can find

force-directed, linear algebra, constraint-based, topologi-

cal decomposition of the graph or space-filling techniques

(e.g., [14, 10, 4, 1, 2]). For MBDs, node ordering optimi-

sation relates to the minimum linear arrangement problem,

which is well-known to be NP-Hard. Therefore the com-

munity mainly focuses on the design of heuristic meth-

ods. The main approaches are spectral sequencing, hill-

climbing heuristics, a combination of both or partial or-

ders that arise from clustering technique (e.g., [11, 19, 16]).

Mueller and Ma [15] compared the effects of different node

ordering algorithms on the readability of a MBD for con-

nectivity models. Instead of focusing on the improvement

of a particular technique, other methods attempt to take ad-

vantage of both representation techniques and to introduce

hybrid visualisation techniques (e.g., [8, 7, 20]).

Some researchers have also attempted to determine

when to use NLD or MBD [5, 9]. Ghoniem et al. [5] com-

pared a force-directed layout algorithm for NLDs and an

alphabetical ordering for MBDs. When considering large

and dense graphs, user evaluations showed that MBDs per-

form better than NLDs for almost all tested tasks, i.e., es-

timate the number of nodes and links, find the given nodes

and find the most connected nodes and node neighbours.

However, in case of small and/or sparse graphs, NLDs sta-

tistically outperform MBDs. Keller et al. [9] confirmed

these results by comparing these two visualisation tech-

niques with the same experimental settings. These stud-

ies provide interesting findings for improving user per-

formance. However, the differences between MBDs and

NLDs in terms of user performance are difficult to deter-

mine. The manner in which entities and relations are visu-

ally encoded in MBDs and NLDs introduce a limitation in

such studies because no algorithm for positioning the en-

tities/relations is common to both visualisation techniques.

The node position and order actually induce variations in
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the visual quality of both NLDs and MBDs (e.g., edge-

crossing number or average/maximum edge length); thus,

variations are induced in the experimental results.

In this study, we propose three edge visual encodings

that smoothly transform edges from a MBD visual encod-

ing to a NLD-like visual encoding while preserving node

depictions and ordering. The second contribution is an

experimental evaluation which compares MBD and NLD

edge visual encoding efficiencies for a path-finding task

without the bias of node positioning/ordering. As far as we

know, this is the first experimental evaluation that makes it

possible to compare NLDs and MBDs without the bias in-

herent in choosing a NLD layout or a MBD node ordering.

The remainder of this paper is structured as follows. In

Section 2, we first introduce the three evolutions of edge

visual encoding in MBDs. Then in Section 3, we present

the design and setup of the experimental evaluation to com-

pare the efficiencies of these encodings for a path-finding

task. We provide and discuss the results in Sections 4 and

5. Finally, we present conclusions and discuss possible fu-

ture work in Section 6.

2 Edge Visual Encodings

In a MBD, a relation between two entities is represented

by a shape at the intersection of the row and column of the

two entities. Henry et al. [8] consider that these rows and

columns are part of the entity visual encoding, while an

edge is only represented by a shape at their intersection. In

this study, we make the opposite assumption and consider

the row and the column as part of the edge visual encod-

ing, i.e., an edge is encoded as two rectangles (one for each

row and column) and a shape at their intersection (see Fig.

1(a)). This assumption is supported by the fact that rectan-

gles ease the identification of edge extremities, particularly

when considering medium and large matrices.

In this study, the key idea is to reduce the space neces-

sary to encode edges as much as possible and therefore to

reduce the visual complexity. We propose three variations

of edge visual encoding to smoothly transform traditional

MBD visual encoding into link encoding through different

simplification processes (see Fig. 1).

The first variation consists of pulling out unused rows

and columns and shortening the two rectangle representing

a connection to their essential components (see Fig. 1(b)).

Using this visual encoding, the rectangles do not span the

entire row/column but rather stop at their intersection. In

a typical MBD, the grid formed by the intersections of

all rectangles contains empty cells (except for complete

graphs) which display no-relation information. This pro-

cess reduces the number of such cells and therefore reduce

visual complexity. The next variation consists of reducing

the two rectangles into a single polyline with an orthogo-

nal bend at their intersection (see Fig. 1(c)). To distinguish

bends from crossings, the shape of the edges are conserved

and their sizes are reduced to help distinguish segments be-

tween contiguous shapes. Such encoding reveals some vi-

sual similarities to DAGView [12] which aims to combine

advantages of both techniques to produce a NLD. Rather

than duplicating nodes, Kornaropoulos and Tollis lay the

nodes out within the matrix using two orders (one for each

axis) and edges are routed in an orthogonal manner. The

last variation consists of replacing both the polyline and the

shape with a single curved polyline (Fig. 1(d)). Similar to

the previous variation, the curve is needed to prevent ambi-

guities between bends and crossings. This edge encoding

has been introduced by Henry et al. [8] as a potential tran-

sitional states to transform a MBD into a NLD.

Notably, the four variations are visually similar because

entity visual encoding is preserved at each step of the trans-

formation. However, we can certainly consider the two

latter encodings as NLDs because the edges are encoded

as links between the entities they connect. This statement

is the starting point for the bias-free comparison between

MBD and NLD edge visual encodings presented in this

study. In the remainder of the paper, we refer to the origi-

nal matrix as Encoding 1 and the variations respectively as

Encoding 2, Encoding 3 and Encoding 4.

3 Experimental Evaluation
We design an experimental evaluation based on 3 inter-

mediate research questions: (i) Which of the 4 encodings

eases task completion (completion time and error rate)?

; (ii)Which of the 4 encodings makes it possible to find

shorter paths? and (iii) Which of the 4 encodings induces

fewer errors (number of selections to build a path)?

3.1 The task

The task consists of selecting edges one by one to find

a path between two highlighted nodes (called start nodes)

within a time limit. A path can be built from either of the

start nodes at the same time. If the path is built from both

start nodes, then the aim is to join each sub-path to ulti-

mately connect the two start nodes. Three rules are in-

troduced to maintain a reasonable difficulty level: (i) it is

possible to select an edge only if it extends one of the sub-

path extremities; (ii) self-loops are forbidden, and (iii) if

two sub-paths are created, then one path can join the other

only by its extremity. To complete the task, the user has to

select a path and to validate it within the time limit.

3.2 Preliminary hypotheses

Our hypothesis is that it is possible to enhance user per-

formances for a path-finding task in a MBD by reducing

visual clutter and simplifying visual reading rules using a

hybrid edge visual encoding. Our expectation is that En-

coding 3 would demonstrate a real difference in user per-

formance, as it seems to be easier to follow a single line

than to keep one’s eyes between two lines. Furthermore, a
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(a) Encoding 1 (b) Encoding 2 (c) Encoding 3 (d) Encoding 4

Figure 1: Evaluated edge visual encodings. (a) An edge is encoded as two rectangles and a black square. (b) Rectangles do

not span the entire row/column. (c) The edge is encoded with a polyline and a black square. (d) Both the polyline and shape

are replaced by a single curved polyline.

path-finding task necessarily relates to neighbour identifi-

cation. Our hypothesis is that such an identification would

be easier with Encoding 3. Similar results could be ex-

pected for Encoding 4. However, the distinction between

bends and crossings seems easier with shapes than with

curves, and it should induce distinction issues. Thus, we

expect that this encoding would make matrix reading more

difficult and induce more errors.

3.3 Datasets

We extracted experimental data from the graph of co-

occurrence relation of actors of the Infovis Contest 2007

dataset [13]. It has been achieved using a breadth first

search (BFS) algorithm from a random starting node. The

extraction algorithm has two parameters n and k, where n

is the desired number of nodes and k is the number of vis-

ited neighbours at each step of the BFS. The input param-

eter k can also be interpreted as the community size in the

resulting network. The BFS stops once the desired graph

size has been reached, and the extracted graph is induced

in the entire network by the visited nodes. In the exper-

iment, we used two graph sizes (50 and 100 nodes) and

two community sizes (5 and 10) which led to 4 categories

of graphs. The limit of 100 nodes was set to maintain an

adequate level of readability. Two graphs for each combi-

nation of n and k were generated. For each of these graphs,

we randomly extracted two start nodes with a shortest path

length of 4.

3.4 Edge orientation and node ordering

The unoriented graphs can be represented in two ways

using a MBD, either with a double display of each edge

that results in symmetric matrices, or with a single-edge

display, that results in half-matrices. Pilot experiments

revealed that a double-edge display induces clutter and

reduces matrix readability; half-matrices were therefore

choosen.

To compute a node ordering, we combine a graph clus-

tering algorithm [3] and visit orders during the graph ex-

traction process (e.g., communities are ordered in the same

order as they appeared during the BFS).

3.5 Protocol

We followed the recommendations of Purchase [18] and

designed a 4 practice trials and 32 experimental trials eval-

uation. From a participant’s point of view, the practice

trials are indistinguishable from the experimental trials.

Practice trials are performed first to ensure that users are

well settled into the trials and are at their peak perfor-

mance. Different experimental trials order were possible,

by blocks of encodings or on the contrary, avoiding an en-

coding to appear twice in a row. We chose to use the lat-

ter order but both methods present their own advantages

and drawbacks. We ask users to perform the task in a lim-

ited amount of time. During the experiment, the remaining

time is always displayed. We included this time limit to

encourage users to complete the tasks as quickly as possi-

ble. Furthermore, we expect that it will avoid any transfor-

mation of the path-finding task into a shortest path-finding

task. Preliminary tests reveal that 3 minutes to complete a

task is a good compromise as it gives users enough time to

complete the major part of the tasks while keeping the total

time of the evaluation at an acceptable level. A maximum

break of 20 seconds between tasks is offered and a no-limit

break is available after 20 tasks. Once all tasks are com-

pleted, the user has to fill in a questionnaire about her/his

favourite encoding and the pros and cons of each encoding.

3.6 The evaluation user interface

The evaluation GUI consists of a single view of an ad-

jacency matrix, using one of the 4 edge visual encodings

within a standard web browser in full-screen mode (see

Fig. 2). A reminder of the experiment question is displayed

on top of the evaluation interface; and below, is an interac-

tive view of the matrix and two buttons. The first button
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(bottom left) centres the view on the matrix and the other

(bottom right) validates the task. To perform the evalua-

tion, the interface provides two interaction tools: a classi-

cal zoom-and-pan and a selection interaction tool that ad-

heres to the rules described in Section 3.1.

Figure 2: Screenshot of the evaluation GUI.

3.7 The participants

The participants consist of undergraduate students, PhD

students and researchers in various fields of computer sci-

ence. All subjects are familiar with graphs, NLDs and

MBDs but do not manipulate these tools on a daily basis.

A total of 33 persons volunteered for the pilot tests and

evaluations (6 and 27 respectively).

4 Results

We observe four different parameters during this evalu-

ation: error rate, response time, path length and total num-

ber of selected edges. Because of high error rates, we fil-

tered out 7 of the 27 volunteers, 4 (resp. 3) of whom had a

nearly 50% rate of incomplete task (resp. 33%).

4.1 Quantitative results

Because the data are not normally distributed, we used

non-parametric statistical tests. For the error rate, we used

a Friedman test, as all data from the 20 participants are

used. For response time, path length and number of se-

lected edges, only correct answers have to be considered

and we therefore use a Kruskal-Wallis test. A standard sig-

nificance level α = 0.05 is used to test whether significant

differences occur.

The results (Fig. 3) show that no significant difference

exists between the 4 visual encodings for any parameter

considered (error rate, response time, path length and num-

ber of selections). Some trends are however noticeable.

Encoding 3 seems to be the most efficient in terms of the

error rate. In contrast, Encoding 1 has the poorest results.

If we consider the mean response time and path length,

Encoding 1 has the shortest path length but the highest re-

sponse time. Finally, Encoding 4 has the smallest number

of selections. These trends are consistent with the prelimi-

nary hypotheses, despite the lack of significant differences.

Analysing the results by graph category, as a combina-

tion of n and k, we obtain statistically significant differ-

ences for all observed parameters (see Fig. 3) as the cor-

responding p-values are lower than the significance level

α = 0.05. Such analysis confirms our expectation that

among the dataset, some categories induce harder (resp.

easier) tasks. The graph categories can thus be split into

3 levels of difficulty: low (n100k10), medium (n50k5 and

n50k10) and high (n100k5).

We further investigate and split our data to analyse the

performance of each encoding per graph category (Fig. 3).

We apply a Bonferoni correction with a new significant

level α = 0.025. Again, no significant differences are

seen but trends exist. For the high-difficulty graph category

(n100k5), linked encodings (Encoding 3 and Encoding 4)

seem to work best. For medium- and high-difficulty graph

categories, MBD encoding (Encoding 1) has the most er-

rors. Concerning the low-difficulty graph category, there is

almost no difference between the 4 encodings.

4.2 Qualitative results

We asked all participants which visual encoding they

preferred. As expected, Encoding 3 is preferred by the

majority (47.6%), followed by Encoding 2 (21.4%), En-

coding 1 (7.1%) and Encoding 4 (4.8%). The remaining

participants (19.1%) did not express a preference. These

values are consistent with our preliminary hypotheses and

the trends revealed by the quantitative results.

An analysis of the participant comments revealed that

Encoding 1 generally appears more intuitive and easier to

use for small graphs. The majority of participants found

that Encoding 2 was better than Encoding 1 because it

improves the readability of edges and communities. En-

coding 3 appeared to be the best for visualising edges, al-

though it reduces the identification of communities. Users

also felt that the interaction area was smaller compared to

that of Encodings 1 and 2. Encoding 4 was the least ap-

preciated. Users described it as unsuitable for large graphs

and un-intuitive with a reduced interaction area (for edge

selection). They also mentioned that it makes difficult the

distinction between bends and crossings and the identifi-

cation of communities. These results confirm the hypoth-

esis that edge simplification and clutter reduction would

increase matrix readability and that Encoding 4 would not

be easy to use because of the lack of contrast and the cross-

ing/bend distinction issue.
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Analysis per visual encoding Analysis per graph category
Mean error rate per encoding

for each graph category

Mean error rate

(p-value = 0.248)

Mean response time

(p-value = 0.558)

Mean path length

(p-value = 0.130)

Mean number of

selection

(p-value = 0.864)

Mean error rate

(p-value = 0.007)

Mean response time

(p-value = 0.033)

Mean path length

(p-value = 0.017)

Mean number of

selection

(p-value = 0.001)

graph n100k5

(p-value = 0.197)

graph n100k10

(p-value = 0.870)

graph n50k5

(p-value = 0.475)

graph n50k10

(p-value = 0.355)

not significant (α = 0.05) significant (α = 0.05) not significant (α = 0.025)

Figure 3: Statistical analyses performed in this experimental evaluation.

5 Discussion

An analysis of the quantitative data indicates no signifi-

cant user performance differences between the four encod-

ings even when taking graph categories into account. We

suggest that this is due to a floor effect where the tasks

were too easy for the given time period, and so any varia-

tion in the ease of understanding of the four encodings is

not revealed in the data. This is evidenced by the mean er-

ror rates, which all lie in a narrow band between 0.07 and

0.16. These results are surprising, but some trends are no-

ticeable. Simplifying visual encodings seems to reduce the

error rate for a path-finding task. The visual encodings ac-

cording to the mean error rates (Fig. 3) have the following

order (highest to lowest): Encoding 1, Encoding 4, Encod-

ing 2 and Encoding 3. These results tend to favour Encod-

ings 3 and 2 rather than Encodings 1 and 4. Concerning the

participant preferences, most of them ranked Encoding 3

as highest while Encoding 4 was least preferred. Users

slightly prefer Encoding 2 over Encoding 1. This finding

is in accordance with the preliminary hypotheses expressed

in Section 3.2.

Encodings 3 and 4 can be observed as standard NLDs

with node duplication’s. Using curved lines complicates

the distinction between edge bends and edge crossings in

Encoding 4. We believe that an extreme simplification of

the visual complexity makes the readability more difficult.

Because the other recorded parameters do not vary, rea-

sonably simplifying the visual complexity ease matrix us-

age without affecting user performances. We therefore as-

sume that the results of prior graph representation readabil-

ity studies were not only related to MBD and NLD edge

visual encodings but rather to node positioning/ordering

and/or node duplication. The latter has already been used

to untangle the network [6] and showed a strong impact on

user performances.

These results must be put into perspective because we

only evaluated user performances for a path-finding task in

social networks. Other classical graph analysis tasks (e.g.,

node degree, community size and node neighbourhood)

should also be evaluated to understand how edge visual

encoding can alter response times or error rates. Analyses

using weighted connections might also confirm our trends,

as weight can be mapped to both links and shapes on the

reduced encoding (Encoding 3), whereas only shapes or

links are available for traditional MBDs or NLDs.

6 Conclusion and future work

We have proposed a 3-step smooth transformation for

building a node-link diagram from a matrix-based diagram

by only modifying edge visual encoding. We also pre-

sented the results of an experimental evaluation that com-

pares each step of the process on a path-finding task. This

experiment attempted to remove the bias induced by node

positioning/ordering when comparing NLDs and MBDs.

In addition to these results, qualitative results revealed an
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important user preference for the simplified encoding (En-

coding 3). Although a lack of encoding-dependent varia-

tions existed in user performances during the experiment,

the encoding type had a significant impact on the user ex-

perience in completing the tasks.

For future works, we plan to evaluate user performances

in other tasks, such as neighbourhood identification or

graph connectivity, to determine whether one of the pro-

posed encodings may better facilitate particular tasks. Ad-

ditionally, the benefits of such encodings in the case of

multiscale visualisation would be interesting to evaluate.

An evaluation that aims to compare DAGView with En-

coding 3 should be a worthy thing to do.
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