Poster **Patch-based DTI grading: Application to #PatchMI12 Alzheimer's disease classification**

<u>K. Hett^{1,2}, V.-T. Ta^{2,3}, R. Giraud^{1,2}, M. Mondino^{1,2}, J. V. Manjón⁵, P. Coupé^{1,2} and ADNI</u>

¹ Univ. Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France ² CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France ³Bordeaux INP, LaBRI, UMR 5800, PICTURA, F-33600 Pessac, France ⁴ Universitat Politécnia de Valencia, ITACA, 46022 Valencia, Spain

Contributions

- Application of the grading-based framework on the different DTI parameters (FA, AD, RD, MD)
- Comparison of basic DTI-based hippocampal features and volume of hippocampus
- Comparison of the advanced DTI-based and anatomical MRI-based features in the hippocampus

Materials

Results

Database: ADNI2

Characteristic / Group	CN	eMCI	lMCI	AD
Number of subjects	60	74	36	48
Age (years)	73.3 ± 5.9	72.9 ± 8.0	73.5 ± 6.7	75.2 ± 8.6
Gender $(male/female)$	31/29	45/29	22/14	28/20

Subject "s"

- Leave-one-out cross validation procedure
- Binary classification of CN/AD, CN/MCI, AD/MCI, eMCI/IMCI groups

Results (AUC/ACC)

Average on the hippocampus

Age correction and normalization

Classification

Grading framework

• Searching of a set K of the closest patches Grading at each voxel is given by,

$$y(x_i) = \frac{\sum_{x_{j,t} \in K_i} w(x_i, x_{j,t}) p_t}{\sum_{x_{j,t} \in K_i} w(x_i, x_{j,t})}$$
$$w(x_i, x_{j,t}) = e^{-\frac{d(P(x_i), P(x_{j,t}))^2}{h^2}}$$

Where p_t is the pathological status of the template t, $P(x_i)$ is the patch surrounding the voxel x_i and h is given by,

 $h = \min d(P(x_i), P(x_{j,t})) + \epsilon$

Features	CN vs. AD	CN vs. MCI	AD vs. MCI	eMCI vs. lMCI
Volume	88.4 / 83.1	$69.5 \ / \ 63.9$	$71.1 \ / \ 67.2$	$67.2 \ / \ 63.7$
Mean FA	$\overline{64.2~/~59.2}$	$\overline{57.7~/~56.1}$	$54.0 \ / \ 52.7$	38.2 / 43.1
Mean MD	$85.7 \ / \ 80.3$	$66.0 \ / \ 62.6$	$75.0 \ / \ 72.5$	$67.6 \ / \ 62.8$
Mean AxD	$83.5 \ / \ 81.4$	$63.5 \ / \ 58.0$	$\overline{74.3 \ / \ 70.2}$	$68.9 \ / \ 66.8$
Mean RD	86.2 / 79.2	$66.5 \ / \ 62.3$	$74.8 \ / \ 70.5$	$\overline{66.0 \ / \ 61.5}$
T1 grading	93.4 / 87.8	71.3 / 64.1	82.0 / 73.4	68.7 / 66.2
FA grading	85.0 / 80.1	63.5 / 60.1	$74.9 \ / \ 70.3$	$63.0 \ / \ 60.7$
MD grading	$90.6 \ / \ 86.5$	$68.8 \ / \ 60.7$	80.4 / 76.3	$70.4 \ / \ 65.8$
AxD grading	$91.1 \ / \ 85.8$	$68.7 \ / \ 59.6$	80.2 / 73.1	$71.8 \ / \ 67.6$
RD grading	$90.3 \ / \ 85.1$	$68.9 \ / \ 61.0$	80.0 / 76.5	69.3 / 65.4

Comparison (ACC)

Features	CN vs AD	eMCI vs lMCI
T1 grading	87.8	66.2
AxD grading	85.8	67.6
ODF-brain connectivity $[3]$	78.2	63.4

Conclusions

- Novel fast grading framework
- Application on different diffusion parameters extracted from DTI

$C_s \in \{0; 1\}$

Summary

- Analysis on the hippocampus structure
- Capturing alterations of the micro-structures with DTI modality
- Application of the grading framework introduced in [1]
- Fast patch searching method with OPAL [2]
- Classification performed with LDA

DTI grading-based features provide competitive results **Perspectives**

 Study the complementarity of the grading based on T1w and DTI Multi-modality framework to use this complementarity

Fundings

IDEX Bordeaux (ANR-10-IDEX-03-02), CPU, TRAIL (HL-MRI ANR-10-LABX-57) and CNRS multidisciplinary project "Défi imag'In"

[1] P. Coupé et al. NeuroImage: clinical 1.1 (2012): 141-152. [2] R. Giraud et al. NeuroImage 124 (2016): 770-782. [3] G. Prasad et al. Neurobiology of aging 36 (2015): S121-S131.

LaBRI de BORDEAUX	CRIS	LaBRI	Université de BORDEAUX	Bordeaux INP AQUITAINE	THE STISSEMENTS
-------------------	------	-------	---------------------------	---------------------------	-----------------

kilian.hett@labri.fr