Adaptive fusion of texture-based grading: Poster #PatchMI22 Application to Alzheimer's disease detection

K. Hett^{1,2}, V.-T. Ta^{2,3}, J. V. Manjón⁴, <u>P. Coupé^{1,2}</u> and ADNI

¹ Univ. Bordeaux, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
² CNRS, LaBRI, UMR 5800, PICTURA, F-33400 Talence, France
³ Bordeaux INP, LaBRI, UMR 5800, PICTURA, F-33600 Pessac, France
⁴ Universitat Politécnia de Valencia, ITACA, 46022 Valencia, Spain

Contributions

- Development of new texture-based grading framework.
- Innovative adaptive fusion strategy based on local confidence criterion.
- New weak-classifier aggregation based on histogram.
- Improvement of the patch-based methods to AD classification task.

Materials MRI data are from ADNI1. Characteristic / Group CN sMCI pMCI AD Number of subjects 226 223 186 165 75.1 ± 7.5 74.5 ± 7.2 Ages (Years) 75.3 ± 7.4 76.0 ± 5.0 27.1 ± 2.5 26.3 ± 2.0 29.0 ± 0.9 22.8 ± 2.9 MMSE

Methods

Texture extraction:

Texture Maps

Texture-based

The input images are filtered with Gabor filters within different directions.

2 Patch-based grading:

Each texture maps are processed with a patch-based grading method (1) focused to the hippocampus structure.

3 Adaptive fusion:

All grading maps of the same subject are fused by our adaptive fusion method (2).

$$g_{m}(x_{i}) = \frac{\sum_{x_{j,t} \in K} \omega(x_{i}, x_{j,t}) p_{t}}{\sum_{x_{j,t} \in K} \omega(x_{i}, x_{j,t})} \quad (1), \qquad g_{M}(x_{i}) = \frac{\sum_{m \in M} \alpha_{m} g_{m}(x_{i})}{\sum_{m \in M} \alpha_{m}} \quad (2)$$

4 Weak classifiers aggregation:

The distributions of the weak classifier values are estimated by a histogram.

5 Classification step:

A SVM method performs the classification results into a LOOCV procedure.

Input Image

ferent ading y our (2), nated hto a

Results

Comparison Intensity vs Texture.

Features	CN vs AD (AUC in %)	CN vs pMCI (AUC in %)	AD vs sMCI (AUC in %)	sMCI vs pMCI (AUC in %)
T1-w Grading	93.5	90.0	81.1	73.6
Proposed Method	<u>94.2</u>	<u>90.9</u>	<u>81.3</u>	<u>75.4</u>

Comparison to the state-of-the-art methods based on a hippocampus and whole brain analysis.

Methods	Registration	Features	CN vs AD (ACC in %)	sMCI vs pMCI (ACC in %)			
Hippocampus							
Original Grading [1]	Affine	Intensity	0.88	71.0			
Sparse-based Grading [4]	Affine	Intensity	-	66.0			
Sparse-based Grading [4]	Non Linear	Intensity	-	69.0			
Proposed Method	Affine	Texture	<u>91.3</u>	<u>71.1</u>			
Whole brain							
Ensemble Grading [3]	Non Linear	GM	_	75.6			
Sparse-based Grading [4]	Non Linear	Intensity	_	75.0			
Sparse Ensemble Grading [2]	Non Linear	GM	90.8	_			
Deep Ensemble Learning [5]	Non Linear	GM	91.0	74.8			

Conclusions

- We propose a new patch-based grading framework based on texture extraction.
- Textural informations improve classification performances.
- Our method is competitive especially for CN vs. AD comparison.
- Whole brain analysis provides better classification results for early stages of AD.

Perspectives:

Extension of our framework to a whole brain analysis to outperform the hippocampus analysis in the early stages comparison.

Fused Grading

Bibliography

Fundings

[1] Coupé et al. 2012, NeuroImage clinical
[2] Liu et al. 2012, NeuroImage
[3] Komlagan et al. 2014, MLMI

nical [4] Tong et al. 2017, IEEE TBE [5] Heung-II et al. 2017, MIA

Program IdEx Bordeaux (ANR-10-IDEX-03-02).
Cluster of excellence CPU and TRAIL (HL-MRI ANR-10-LABX-57).

