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Abstract. In the theory of algorithmic randomness, one of the central
notions is that of computable randomness. An infinite binary sequence X

is computably random if no recursive martingale (strategy) can win an
infinite amount of money by betting on the values of the bits of X. In
the classical model, the martingales considered are real-valued, that is,
the bets made by the martingale can be arbitrary real numbers. In this
paper, we investigate a more restricted model, where only integer-valued
martingales are considered, and we study the class of random sequences
induced by this model.

1 Gambling with or without coins

One of the main approaches to define the notion of random sequence is the so-
called “unpredictability paradigm”. We say that an infinite binary sequence is
“random” if there is no effective way to win arbitrarily large amounts of money
by betting on the values of its bits. The main notion arising from this paradigm is
computable randomness, but other central notions such as Martin-Löf random-
ness, Schnorr randomness, and Kurtz randomness, can be formulated in this
setting. For all of these notions, we consider models of games where the player
can, at each turn, bet any amount of money between 0 and his current capital.
In “practice” however, one cannot go into a casino and bet arbitrarily small sums
of money: there is always a unit value, and any bet made has to be a multiple of
this value. Some casinos (and games) also impose upper limits on the amount of
capital the one can gamble in each round of play. In the following exposition, we
examine the consequences of restricting betting amounts to integers and finite
sets.

To formalize the unpredictability paradigm, we need the central notion of
martingale. A martingale is a betting strategy for a fair game and is formally
represented by a function that corresponds to the gambler’s fortune at each
moment in time. Let {0, 1}∗ denote the set of all finite binary sequences, and
{0, 1}ω is the set of all countably infinite binary sequences (a.k.a reals). Any



function M : {0, 1}∗ → R
+ which satisfies the fairness condition

M(σ) =
M(σ0) + M(σ1)

2
(1.1)

for all σ ∈ {0, 1}∗ is called a martingale. M(σ) corresponds to the gambler’s cap-
ital after having already bet on the finite sequence σ. The fairness condition (1.1)
says that the amount of money gained from an outcome of “0” is the same that
would be lost from an outcome of “1”. It is important to note that our definition
of martingale is a very restricted version of what is usually referred to as “mar-
tingale” in probability theory, where it is defined to be a sequence X0, X1, . . .
of real-valued random variables (possibly taking negative values) such that for
all n

E[Xn+1|X0, X1, . . . , Xn] = Xn

To make the distinction, we call such a sequence a martingale process. A martin-
gale is called recursive if M is a recursive function. Throughout this exposition,
“martingale” and “recursive martingale” will be used synonymously.

For any A ∈ {0, 1}ω, A ↾↾ n is the finite binary sequence, or initial segment,
consisting of the first n digits of A. We also identify sets with their characteristic
sequences. A martingale M succeeds on A ∈ {0, 1}ω if M achieves arbitrary sums
of money over A, that is, lim supn M(A ↾↾ n) = ∞. Otherwise A defeats M . M
Schnorr-succeeds on a set A if M succeeds on A and there exists a recursive,
non-decreasing, unbounded function f such that f(n) < M(A ↾↾ n) for infinitely
many n. M Kurtz-succeeds on a set A if M succeeds on A and there exists a
recursive, non-decreasing, unbounded function f such that f(n) < M(A ↾↾ n) for
all n. We can now define the main classical notions of randomness in terms of
martingales.

Definition 1. A sequence A ∈ {0, 1}ω is called computably random if A defeats
every martingale. If no martingale Schnorr-succeeds on A, then A is Schnorr
random. If no martingale Kurtz-succeeds on A, then A is Kurtz random (equiv-
alently, A is Kurtz random if and only if A does not belong to any Π0

1 subset of
{0, 1}ω of measure 0).

In this paper, we shall consider games where the player can only make bets of
integer value. For M a martingale and σ ∈ {0, 1}∗, |M(σ0)−M(σ)| is called the
wager at σ. Now, given a set V of non-negative integers, we say that a martingale
is V -valued if for all σ the wager of M at σ belongs to V , unless M does not
have enough capital in which case the wager at σ is 0. Formally, M is V -valued
if for all σ ∈ {0, 1}∗ and a ∈ {0, 1}, M(σ) < min(V ) ⇒ M(σa) = M(σ) and
M(σ) ≥ min(V ) ⇒ |M(σa) −M(σ)| ∈ V . We call any such martingale integer-
valued. In case V is finite we say that M is finitely-valued and if V is a singleton,
that M is single-valued.

Definition 2. A real α is V -valued random if no V -valued martingale succeeds
on α. A real α is a finitely-valued / integer-valued / single-valued random if no
finitely-valued / integer-valued / single-valued martingale succeeds on α.



The rest of the paper studies how these new notions of randomness interact
with the classical ones. We will prove the implications of the following diagram:

computably random
ւ ↓

integer-valued random Schnorr random → law of large numbers
↓ ↓

finitely-valued random Kurtz random
↓ ցւ ↓

single-valued random bi-immune

and we shall further see that no other implication than those indicated (and
their transitive closure) holds.

If we were to ask someone what the absolute minimum one could expect from
a set called “random,” you might receive one of the following two responses:

1. The set obeys the law of large numbers.
2. The set is bi-immune.

The person who says “1” believes that a set which does not follow the law of
large numbers exhibits a probabilistic bias in its distribution of 0’s and 1’s. The
person who says “2” believes that a set with an infinite recursive subset of 0’s
or 1’s yields algorithmic bias. There exists, however, a third possibility:

3. The set is single-valued random.

“3” closely matches our intuition in the sense that one should not be able to pre-
dict successive outcomes resulting from a “random” process. From a practical
point-of-view, single-valued randomness also makes sense. If you have to sit out
21000 rounds of roulette before placing a sure bet, as might occur when gambling
on a non-bi-immune set, then with probability 1 the casino has already closed
while you were waiting for this opportunity. In Section 3, we shall prove that
notion “3” indeed differs from notions “1” and “2.”

The separation of Kurtz randomness and Schnorr randomness is folklore
(we will see in a moment how it can be proven). A somewhat more difficult
result is the separation of computable randomness and Schnorr randomness.
The separation of these two notions was proven by Wang who constructed a
Schnorr random sequence X together with a martingale d that succeeds on X .
It turns out that in Wang’s construction, the martingale d is already {0, 1}-
valued, hence it immediately follows that Schnorr randomness (a fortiori Kurtz
randomness) does not imply finitely-valued randomness (and a fortiori integer-
valued randomness).

Theorem 3 (Wang [16]). There exists a Schnorr random X ∈ {0, 1}ω and an
{0, 1}-valued martingale d such that d succeeds on X.

In Section 2 we shall see that conversely, integer-valued randomness does not
imply Schnorr randomness, and a fortiori computable randomness.



2 Integer-valued martingales and genericity

There is an essential difference between rational-valued and integer-valued mar-
tingales. The latter can always be permanently defeated while in general the
former cannot be. Consider the example of a player starting with an initial cap-
ital of 1 who at each turn bets half of its capital on the value 1 (that is, the
corresponding martingale d satisfies d(σ0) = d(σ)/2 and d(σ1) = 3d(σ)/2 for
all σ ∈ {0, 1}∗). This is a rational-valued martingale with the following prop-
erty. Pick a stage s of the game; no matter how unlucky the player has been
before that stage, she always has a chance to recover. More precisely, for any
finite sequence of outcomes σ ∈ {0, 1}∗, no matter how small d(σ) is, the player
can still win the game if the remaining of the outcomes contains a lot of 0’s (for
example the player wins against the sequence σ0000 . . .). This phenomenon no
longer holds for integer-valued martingales, and in fact the opposite is true, that
is, no matter how lucky the player has been up to stage s, there is always a risk
for her to see her strategy permanently defeated at some stage s′ > s. This is
expressed by the following lemma.

Lemma 4. Let d be an integer-valued martingale. For any σ ∈ {0, 1}∗, there
exists an extension τ(σ, d) ∈ {0, 1}∗ of σ such that d(τ ′) = d(τ(σ, d)) for all
extensions τ ′ of τ(σ, d) (in particular the strategy d does not succeed on any
X ∈ {0, 1}ω extending τ(σ, d)).

From a topological perspective, the above result shows that any integer-valued
martingale d is defeated on a dense open set. Indeed, for any σ, d is defeated by
every sequence X ∈ [τ(σ, d)] hence d is defeated by any sequence in the dense
open set

Ud =
⋃

σ∈{0,1}∗

[τ(σ, d)]

(it is dense as for any σ, [τ(σ, d)] ⊆ [σ] by construction). Therefore, the set of
integer-valued random sequences contains the intersection over all integer-valued
martingales

⋂Ud. This is a countable intersection of dense open sets, hence the
following corollary.

Corollary 5. The set of integer-valued random sequences is co-meager.

This shows that as a notion of randomness, integer-valued randomness is quite
weak. Indeed, the one of the most basic properties that we can expect from a
random sequence X is that it satisfies the law of large numbers, that is, that the
number of 0’s in X ↾↾ n is n/2+o(n). It is a routine exercise to show that the set
of sequences X satisfying the law of large numbers is a meager set (contained
in a countable union of closed set with empty interior). Therefore, in the sense
of Baire category, most sequences there are integer-valued random but do not
satisfy the law of large numbers. On the other hand, it is well-known that any
Schnorr random sequence must satisfy the law of large numbers, which yields a
further corollary.



Corollary 6. There exists a sequence X ∈ {0, 1}ω which is integer-valued ran-
dom but not Schnorr random.

If we now want to compare integer-valued randomness and Kurtz random-
ness, the above results are insufficient, as the set of Kurtz random sequences
is also a co-meager set. We will prove that Kurtz randomness does not imply
integer-valued randomness by looking at the classical counterpart of Baire cat-
egory, namely genericity. Recall that a set W ⊆ {0, 1}∗ is dense if the open set
⋃

σ∈W [σ] is dense or equivalently if for any string τ there exists σ ∈ W extend-
ing τ . We say that X ∈ {0, 1}ω is weakly n-generic if for any dense Σ0

n set of
strings W , X has a prefix in W . We further say that X is 1-generic if for any
Σ0

n set of strings W (not necessarily dense), either X has a prefix in W or there
exists a prefix σ of X which has no extension in W . For all n ≥ 0 it holds that

weakly (n+1)-generic ⇒ n-generic ⇒ weakly n-generic.

Kurtz showed that weakly 1-genericity is enough to ensure Kurtz randomness.

Proposition 7 (Kurtz [8]). Any weakly 1-generic sequence X ∈ {0, 1}ω is
Kurtz random.

The next two theorems show that more genericity is needed to ensure integer-
valued randomness. That is, weak 2-genericity is sufficient, but 1-genericity is
not.

Theorem 8. Let X ∈ {0, 1}ω be any weakly 2-generic sequence. Then X is
integer-valued random.

Proof. We have shown in Lemma 4 that for any martingale d ∈ D, the set of
strings

Wd = {σ : d(σ′) = d(σ) for all extensions σ′ of σ}

is dense. It is also easy to see that this set is recursive in 0′, in particular Wd is
Σ0

2 . By definition, a weak-2-generic sequence X must have a prefix in Wd for all
integer-valued martingales d, and it is clear that if X has a prefix in Wd, d does
not succeed on X . ⊓⊔

Theorem 9. There exists a 1-generic sequence X ∈ {0, 1}ω and a {0, 1}-valued
martingale d such that d succeeds on X.

Corollary 10. There exists a sequence X ∈ {0, 1}ω which is Kurtz random but
not integer-valued random.

The converse of this result is also true, that is there exists a sequence X which
is integer-valued random but not Kurtz random. To prove this, we will need a
different approach, via measure-theoretic arguments, which we will outline in
Section 4.



3 Finitely-valued martingales

We now consider the effects of imposing betting limits on martingale strategies.
First we separate integer-valued randomness from finitely-valued randomness.

Theorem 11. There exists an integer-valued martingale which succeeds on a
finitely-valued random.

Schnorr showed that for any set A, a real-valued martingale succeeds on A if
and only if a rational-valued martingale succeeds on A (see [13], or [11] p.270).
His proof, however, does not carry over to the finitely-valued case.

Open question 12. If we allow finitely-valued martingales to bet real values
instead of rationals, do we get the same class of finitely-valued randoms?

3.1 On single-valued randoms

For the following discussion, it is useful to keep in mind that a real is single-valued
random if and only if it is {1}-valued random; the particular dollar amount
which is bet each round is immaterial. For comparison with Kurtz randomness,
we appeal directly to a theorem of Doob ([5] p.324). The following version for
“non-negative” martingales appears in Ross’s book ([12], p.316).

Theorem 13 (Doob’s Martingale Convergence Theorem). For every mar-
tingale M , the set of reals on which M succeeds has measure zero. Furthermore,
the capital of M converges to some finite value with probability 1.

Later, in Theorem 25, we shall use a more general version of Doob’s Martingale
Convergence Theorem (see Billingsley [3] p.468):

Theorem 14. Let X0, X1, . . . be a martingale process (where each Xi is a ran-
dom variable). If for some m ∈ R, we have Xn ≥ m for all n, then almost surely
limn→∞ Xn exists and is finite.

Proposition 15. Every Kurtz random is single-valued random.

Proof. Suppose that some single-valued martingale M succeeds on a real X . Let
F denote the set of reals on which M converges to some finite value. Then α
does not belong to F , and F has measure one by Doob’s Martingale Convergence
Theorem. Hence α belongs to the measure zero set F .

By definition of single-valued, M is required to bet at every position of the
input real. Hence the only way for M to converge to a finite value is to reach the
value 0 and become constant. Therefore F is, in fact, the set of reals on which
M eventually goes broke. Thus F is the set of all infinite paths through the tree
{σ : M(σ) > 0}. It follows that F is a recursive Π0

1 class. In summary, X belongs
to a recursive Π0

1 class of measure zero and therefore is not Kurtz random. ⊓⊔

Remark. The above argument shows even more: every Kurtz random is V -valued
random for any positive set of integers V .



We now separate the incomparable notions of bi-immunity, single-valued ran-
dom and law of large numbers.

Theorem 16. There exists a single-valued random which is neither immune nor
co-immune.

Theorem 17. There exists a 0′-recursive, bi-hyperimmune set which is not
single-valued random.

Proof. Let ϕ0, ϕ1, ϕ2, . . . be a list of the partial recursive functions. Define a
0′-recursive function f satisfying

(∀e < n) [ϕe(f(n)) ↓ =⇒ f(n + 1) > ϕe(f(n)) + 2]

and let
A = {x : (∃n) [f(2n) ≤ x < f(2n + 1)]}.

Now A = {a0, a1, a2, . . . } is bi-hyperimmune because for any recursive ϕk,

ϕk[f(2k + 1)] < f(2k + 2)− 2 ≤ af(2k+1) − 1,

and a similar inequality holds for the complement of A. On the other hand,
the single-valued martingale strategy which bets on A(n + 1) what the gambler
saw at A(n) will succeed on A. This strategy indeed succeeds because each time
A(n + 1) disagrees with A(n), we have that A(n + 2) and A(n + 3) agree with
A(n+1). So over each three consecutive rounds of betting, the gambler increases
his capital by at least $1. ⊓⊔

Finally, we note that it is possible to separate single-valued randomness from
finite-valued randomness using an argument along the lines of Theorem 16.

Proposition 18. There exists a {1, 2}-valued martingale which succeeds on a
single-valued random.

3.2 On {0,1}-valued randoms

We can also separate single-valued randomness from finite-valued randomness.

Proposition 19. Let V be any set containing 0 and at least one other number n.
Then any V -valued random is bi-immune.

Proof. Let A be a set which is not bi-immune; without loss of generality assume
that A contains an infinite recursive set B. Then a V -valued martingale strategy
which bets n dollars on members of B and 0 on A−B will succeed on A. ⊓⊔

The following corollary is a consequence of the definition of finitely-valued ran-
dom and Proposition 19.

Corollary 20. finitely-valued random =⇒ {0, 1}-valued random =⇒ bi-
immune.



Since single-valued random does not imply bi-immune (Theorem 16), we obtain
from Corollary 20:

Corollary 21. There exists a {0, 1}-valued random which is not single-valued
random.

Although we were able to separate single-valued randomness from {1, 2}-valued
randomness (Proposition 18), the comparison between {0, 1}-valued randoms
and {0, 1, 2}-valued randoms seems less clear. We leave the reader with the fol-
lowing interesting question.

Open question 22. Is {0, 1}-valued random the same as finitely-valued ran-
dom?

4 Integer-valued martingales and Bernoulli measures

In this last section, we present a proof of the fact that integer-valued randomness
does not imply Kurtz randomness. We will get a counter example by choosing
a sequence X at random with respect to some carefully-chosen probability mea-
sure.

Intuitively speaking, the Lebesgue measure λ on the space {0, 1}ω corre-
sponds to the random trial where all bits are obtained by independent tosses of
a balanced 0/1-coin. An interesting generalization of Lebesgue measure is the
class of Bernoulli measures, where for a given parameter δ ∈ [−1/2, 1/2] we con-
struct a sequence X by independent tosses of a coin with bias δ (that is, the coin
gives 1 with probability 1/2+δ and 0 with probability 1/2−δ. This can be further
generalized by considering an infinite sequence of independent coin tosses where
the nth coin tossed has bias δn. This leads to the notion of generalized Bernoulli
measures. Formally, on the space {0, 1}ω, given a sequence (δn)n∈N of numbers
in [−1/2, 1/2], we call generalized Bernoulli measure of parameter (δn)n∈N is the
unique measure µ such that for all σ ∈ {0, 1}∗:

µ([σ]) =
∏

n : σ(n)=0

(1− pn)
∏

n : σ(n)=1

pn.

One can expect that if the δn are very small (that is, δn tends to 0 quickly),
then the generalized Bernoulli measure of parameter (δn)n∈N will not differ much
from Lebesgue measure. This was made precise by Kakutani.

Theorem 23 (Kakutani [7]). Let µ be the generalized Bernoulli measure of
parameter (δn)n∈N. If the condition

∑

n∈N

δ2
n <∞ (4.1)

holds, then µ is equivalent to Lebesgue measure λ, that is, for any subset X of
{0, 1}ω, µ(X ) = 0 if and only if λ(X ) = 0. If condition (4.1) does not hold, then
µ and λ are inconsistent, that is, there exists some Y such that µ(Y) = 0 while
λ(Y) = 1.



If we want to work in a computability setting, we need to consider computable
generalized Bernoulli measures, that is, those for which the parameter (δn)n∈N

is a recursive sequence of reals. Vovk [15] showed a constructive analogue of
Kakutani’s theorem for computable generalized Bernoulli measures in relation
with Martin-Löf randomness (perhaps the most famous effective notion of ran-
domness, but we do not need it in this paper). The Kakutani-Vovk result has
been used many times in the literature [2, 9, 10, 14]. In particular, Bienvenu and
Merkle proved the following.

Theorem 24 (Bienvenu and Merkle [2]). Let µ be a computable generalized
Bernoulli measure of parameter (δn)n∈N. If

∑

n δ2
n = +∞, then the class of Kurtz

random sequences has µ-measure 0.

To prove that integer-valued randomness does not imply Kurtz randomness, we
will construct a computable generalized Bernoulli measure µ whose parameter
(δn)n∈N converges to 0 sufficiently slowly to have

∑

n δ2
n = +∞ (hence by the

above µ-almost all sequences X are not Kurtz random, which we will make even
more precise) but sufficiently quickly to make µ close to Lebesgue measure and
ensure that µ-almost all sequences are integer-valued random.

Theorem 25. There exists a sequence X ∈ {0, 1}ω which is integer-valued ran-
dom but not Kurtz random.

Proof (Sketch). We obtain X by choosing a random sequence with respect to
the generalized Bernoulli measure of parameter (δn) with

δn =
1√

n lnn

By Theorem 24 we obtain almost surely a sequence X that is not Kurtz random.
The difficulty is to show that X is almost surely integer-valued random. The
argument goes as follows. When a bit has probability 1/2 + δn to be 0, the
player’s best move (when there is no restriction on how much can be bet) is to
bet a fraction 2δn of her capital on the value 0 (e.g. if δ = 0.1, the player should
bet 20% of her capital). Using this strategy, the player can roughly expect to
have O(

∑n
i=0 δ2

n) after stage n. However, if the player plays too risky, i.e. bets at
each turn a fraction ρn of her capital such that ρn/δn →∞, then almost surely
the player will lose the game.

With the value of the δn we have chosen, the optimal strategy will yield a
gain of O(

∑n

i=0 1/(n lnn)), i.e. O(ln lnn). But then, if the player is forced to
make bets of integer value, even a bet of $1 will represent a fraction ρn of her
capital of at least 1/ ln lnn, which is much bigger than δn, hence the player would
lose the game almost surely if making such bets. But the only alternative is to
bet 0, which also causes the player to lose the game.

Open question 26. Do there exist other characterizations for integer-valued,
finite-valued, or single-valued randoms in terms of Kolmogorov complexity or
Martin-Löf statistical tests?
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Appendix

Proof of Lemma 4

Let d, σ be fixed. We construct the string τ = τ(σ, d) via the algorithm:

1. Set τ ← σ
2. While there exists an extension τ ′ of τ such that d(τ ′) < d(τ)

Choose any such τ ′ and set τ ← τ ′ (and go back to step 2.)
3. Return(τ)

Note that this is algorithm in a general sense, that is, we do not claim that
it can be implemented in a computable way (and indeed it cannot be, because
the condition of the “While” loop needs to check the values d(τ ′) for all exten-
sions of τ and there are infinitely many of them), but only that it outputs a
correct value of τ . First, to see that the algorithm terminates, notice that after
each execution of the While loop, the value of d(τ) is decreased, and because d
has integer values, this means that d(τ) is decreased by at least 1. Therefore the
While loop is executed at most k = d(σ) times. We also claim that the output
τ is correct: indeed it must fail the condition of the While loop, that is, for all
extensions τ ′ of τ one has d(τ ′) ≥ d(τ). But the fairness condition of martin-
gales implies that in that case, d(τ ′) = d(τ) for all extensions τ ′ of τ (this can
be checked by a straightforward induction).

Proof of Theorem 9

We will build the sequence X by constructing an increasing (for the prefix order)
sequence (γn) of strings, then taking X to be the unique element of {0, 1}ω having
all of the γn as prefixes.

Let (We)e∈N be an effective enumeration of all Σ0
1 sets of strings. For all e,

set

Fe = {τ : ∃σ ∈We,|τ | and τ extends σ}

and Fmin
e the set of minimal elements of Fe, that is, the set of τ such that τ ∈ Fe

and no strict prefix of τ is in Fe. Note that whenever a string σ is in Fe, then so
are all strings that extend σ, and whenever a string σ is Fmin

e , then no strict ex-
tension of σ is. It is clear that the Fe and Fmin

e are (uniformly) recursive sets, and
also easy to see that a sequence Y ∈ {0, 1}ω is 1-generic if and only if for all e, ei-
ther Y has a prefix in Fe (resp. Fmin

e ) or some prefix of Y has no extension in Fe.

We start by defining the martingale d which will succeed on the sequence X .
It is defined by d(ǫ) = 12 and for all σ ∈ {0, 1}∗ and a ∈ {0, 1}:

d(σa) =







d(σ) + 2 if d(σ) ≥ permit(σ) and a = 1
d(σ) − 2 if d(σ) ≥ permit(σ) and a = 0
d(σ) if d(σ) < permit(σ)



where the function permit is defined inductively by permit(ǫ) = 4 and for
any σ ∈ {0, 1}∗ and a ∈ {0, 1}, permit(σa) is the minimum of permit(σ)+1 and
all values 4e+4 such that σa ∈ Fmin

e . It is also easy to see that permit and d are
recursive, and d is integer-valued (its values are positive because permit(σ) ≥ 4
for all σ, hence d is never allowed to make a bet if its capital is less than 4).

We now define the sequence of strings (γn), and an auxiliary sequence (ζn)
by setting γ0 = ǫ, ζ0 = ǫ and inductively, for all n:

(a) if there exists an extension of γn in Fn then let ζn+1 be a shortest such
extension (chosen effectively), and

(b) if there exists no such extension, let ζn+1 = γn

Finally, define γn+1 = ζn+111111111.

Note that ζn can be determined from γn using the oracle 0′, hence the se-
quence X obtained in this construction (by taking the limit of the γn, or equiv-
alently the limit of the ζn) is also recursive in 0′. We now prove that X is as
wanted by a series of claims.

(i) X is 1-generic. Indeed, at stage n of the construction, either ζn is in Fn (in
fact in Fmin

n ) or no extension of ζn is in Fn.

(ii) In both cases (a) and (b) of the construction, we ensure that no strict ex-
tension of ζn is in Fmin

n . Indeed either case (a) holds, and ζn is itself in Fmin
n

in which case no strict extension of ζn is, or case (b) holds, in which case no
extension of ζn is in Fn, and fortiori no extension is in Fmin

n . Additionally,
for all n, ζn is a strict extension of all ζk for k < n, therefore we conclude by
induction that for all n and all k ≤ n, no strict extension of ζn is in Fmin

k .

(iii) For all n, permit(ζn) ≥ 4n + 4, and moreover, any string σ extending ζn by
at least 4 bits satisfies permit(σ) ≥ 4n+8. This is shown by induction. First,
this holds for n = 0: all values of the function permit are greater or equal
to 4, in particular, permit(ζ0) ≥ 4. Now suppose that permit(ζn) ≥ 4n + 4
for some n. As we have seen in claim (ii) above, no strict extension of ζn is
in Fk for any k ≤ n. Thus, for any extension ζ′ of ζn and a ∈ {0, 1} we have
by definition of permit: permit(ζ′a) ≥ min(permit(ζ′) + 1, 4n + 8). From
this, we see by a straightforward induction that string σ extending ζn by 4
bits or more satisfies permit(σ) ≥ 4n + 8. In particular, ζn+1 extends ζn by
at least 8 bits, hence permit(ζn+1) ≥ 4n+8, which concludes the induction.

(iv) Similarly, for all n, permit(γn) ≥ 4n + 4. This is true for n = 0, and for
n > 0, since γn is an extension of ζn−1 by 8 bits, it follows from (iii) that
permit(γn) ≥ 4(n− 1) + 8 = 4n + 4.

(v) For all n, d(γn) ≥ permit(γn) + 8. This is true for n = 0. For the induction
step, we need to distinguish two cases depending on how γn+1 was con-
structed from γn. If we are in the above case (a), then γn+1 = γn11111111,



and since d(γn) > permit(γn), d bets and wins 8 consecutive times, and thus
d(γn+1) = d(γn) + 16. Also, in that case permit(γn+1) ≤ permit(γn) + 8
by definition of permit (adding one bit to a string can only increase the
value of permit by 1). From these two facts we can conclude that d(γn+1) ≥
permit(γn+1) + 8. Suppose now that γn+1 was constructed according to
case (b) above. In that case, we need to precisely analyze the behavior of d
and permit between γn and ζn, i.e. on strings of type γnη with 0 ≤ |η| ≤
|ζn|− |γn|. First, γn is an extension of ζn−1 hence by (ii) no strings γnη is in
Fmin

k for k < n. Additionally, since ζn belongs to Fmin
n , no prefix of ζn does.

This shows by definition of permit that for |η| ≤ 4 one has permit(γnη) =
permit(γn) + |η| and for |η| ≥ 4 one has permit(γnη) ≥ 4n + 8. On the
other hand, d(γn) ≥ permit(γn) + 8 ≥ 4n + 12 (by (iv)). Since d can only
decrease by 2 at each move, we have d(γnη) ≥ 4n + 6 for any |η| ≤ 3. But if
|η| ≥ 4, as we just saw, the value of permit(γnη) is at least 4n + 8, and the
martingale d is never allowed to bet if its capital is below permit. Hence, it
follows that d(γnη) ≥ 4n + 6 whenever 0 ≤ |η| ≤ |ζn| − |γn|. In particular,
d(ζn) ≥ 4n + 6, and since we are in case (b), permit(ζn) = 4n + 4, thus d
is allowed to bet and wins 8 times consecutively, and d(γn+1) ≥ 4n + 22.
Finally, we have permit(γn+1) ≤ permit(ζn) + 8 ≤ 4n + 12. This finishes
the induction.

We have seen in (i) that X is 1-generic, and from (iv) and (v), it follows that
lim supn d(γn) = +∞, hence d succeeds on X .

Proof of Theorem 11

Partition the natural numbers into finite intervals, with 2n intervals of length n
followed by 2n+1 intervals of length n + 1 for every n. In a picture:

I0,1I1,1I1,2I2,1 . . . I2,22I3,1 . . . I3,23I4,1 . . . I4,24I5,1 . . .

where each interval In,· has length n. Consider the class of all sets A which
guarantees that at least one “1” lies in each of these intervals. An integer-valued
martingale can succeeds on any set in this class by using the “classic” martingale
strategy: in each interval bet $1 on outcome “1”, then bet $2 on outcome “1”,
then bet $4 on outcome “1”, etc. until the bet is successful and then stop betting
until the next interval. In this way, the gambler nets $1 income over each interval.
After doing this for each of the 2n intervals of length n, he has enough money
to continue this strategy on the next intervals of length n + 1. Therefore some
integer-valued martingale succeeds on every member of A.

On the other hand, we now find a B ∈ A on which no finitely-valued mar-
tingale succeeds. Let M0, M1, M2, . . . be a list of all finitely-valued martingales.
Let B(0) = 1. For induction assume B has been defined up through In, and try
to define B on In+1 so that

– for some e, Me loses some money over In+1, and
– for every j < e, Mj gains no money over In+1.



If all the intervals B are chosen so as to satisfy these requirements, then all
finitely-valued martingales will be obliterated. Indeed each index can only be
chosen finitely many times to play the role of e before all the capital of Me is
destroyed, and therefore the choice of e must go to infinity.

While it is impossible to choose values for B so that these requirements
are satisfied on every interval, we can satisfy them often enough to defeat ev-
ery finitely-valued martingale. Assuming that In−1 has been built, we describe
how to build In. Recall that a finitely-valued martingale always wagers integer
dollar amounts. For each finitely-valued martingale M , let max(M) denote the
maximum possible bet for M , and let

L(e) =
∑

j≤e

[max(Mj) + 1] .

Claim: Values for B can be chosen in In so that Me loses money if she makes
a nonzero wager before the last L(e) positions of the interval and is the
lowest-indexed martingale to do so. Furthermore for all j < e, Mj does not
gain any money over In with these values for B.

Thus if M0 bets before the last L(0) positions of In, B can force M0 to lose money,
thereby satisfying the construction requirements. So we need only consider the
case where M0 bets no money before the last L(0) positions of In. By applying
the claim above inductively, we may assume that

– each successive Me bets no money prior to the last L(e) positions of In, and
– for each j ≤ e, Mj earns no profit over In.

Eventually B must encounter some martingale Ms which is stupid enough to
bet money at the beginning of the interval, at which point the requirements for
In can be satisfied (assuming In is sufficiently long to have such a “beginning.”)
If In is not longer than L(s) then the requirements are not satisfied on In. But
we do not worry about this failure because for all e such that L(e) < |In|, the
way of choosing intervals prevents Me from ever earning money again on any
interval In+k (k ≥ 0). Thus for every e, there is a sufficiently large N so that for
all n > N , e gains no money from betting on In. So B defeats all finitely-valued
martingales.

It remains to prove the claim. We argue by induction. Suppose that M0

makes a nonzero wager prior to the last L(0) positions of the interval In, say at
position x0. We show how B can force M(0) to lose money over In. B can act
adversarially throughout the interval except for the constraint inherited from
the class A. It follows that M0’s betting amounts must be nondecreasing from
position x0 until the end of the interval. If not, then B can spend its obligatory
“1” at the position where M0 decreased her bets. M0 already has a net loss at
this point of decrease, and B can continue to act adversarially until the end.
Therefore a decrease in betting amounts after x0 would cause M0 to lose. Hence
M0 is forced to bet at least $1 each of L(0) times. By the final bet in In, M0 is
already behind by at least max(M0)+1, so this bet is irrelevant; M0 has already
lost.



Since we have already proved the claim when M0 bets before the last L(0)
positions, we can now focus on the case where M0 bets only during the last L(0)
positions. Now it is easy to prevent M0 from winning any money: B places a “1”
anywhere before the |In|−L(0) position and then B can act adversarially on the
last L(0) positions. Any nonzero wager from M0 will now instantly result in a
loss for M0 because B is free to everywhere disagree with M0. Hence it suffices
to consider the case where M0 does not bet anywhere and B is obligated to post
a “1” somewhere before the last |In| − L(0) positions.

Curiously, M1 now finds herself in exactly the same situation that M0 started
with. By same argument as above, B can force M1 to lose money if M1 bets prior
to |In|−L(1). Therefore we can reduce to the case where M1 never bets and B is
obligated to provide a “1” somewhere before L(2). The same argument holds for
M2, M3, . . . . Eventually some martingale Me has money and is stupid enough
to bet before L(e). At this point, the claim is proved.

Proof of Theorem 16

Let G0, G1, . . . be a list of all possible {1}-computable “gamblers,” namely a list
of pairs consisting of martingales and their respective initial capital. Define a set
A such that

– A(n) = 1 if n ≡ 0 mod 6, and
– A(n) = 0 if n ≡ 3 mod 6.

The remaining values of A work adversarially against the Gi’s. Since the gamblers
must bet exactly $1 on each value of A, the remaining values of A can be chosen
so as to force any particular gambler to decrease his capital by a dollar over the
course of any three consecutive rounds of play. We define the first initial segment
of A so as to exhaust the capital of G0, the following interval of A so as to exhaust
the capital of G1, etc. Since each gambler has only finite capital at any moment,
each gambler’s capital is exhausted after a finite period of time. Therefore no
{1}-valued martingale succeeds on A. Furthermore, by the values assigned at
multiples of 3, A contains an infinite recursive set as does its complement.

Proof of Proposition 18

Similar to Theorem 16, we partition the natural numbers into intervals of length
5. For the first two numbers n in each interval (that is, n congruent to 0 or 1 (mod
5)), set A(n) = 0 so that gambler can win at these places. The last three spots
in each interval are adversarial against the single-valued martingales. A will be
able to defeat the {1}-valued martingale since the best single-valued martingale
strategy would first gain $2 and then lose $3 on each interval, for a net loss of
$1 per interval. Eventually the single-valued martingale will run out of money.
On the other hand, there exists a {1, 2}-valued martingale which always bets
$2 on each of the first two numbers and $1 on the last three numbers in each
interval, for a net gain of at least $4 - $3 = $1 per interval (regardless of any
adversarial action that may occur in the last 3 places). Thus the money for this
{1, 2}-valued martingale on A goes to infinity.



Proof of Theorem 25

We consider the computable generalized Bernoulli measure µ of parameter (δn)n∈N

with

δn =
1√

n lnn

for all n > 1 (the values of δ0 and δ1 can be set arbitrarily). We have
∑n

i=2 δ2
i ∼

ln lnn (this because
∫

(t ln t)−1dt = ln ln t, in particular
∑

i δ2
i = +∞). By Theo-

rem 24, a sequence X chosen at random according to the measure µ will not be
(with probability 1) Kurtz random. We can even exhibit a martingale d which
wins against µ-almost all sequences X . It is defined by d(ǫ) = 1 and for any
string σ of length n:

d(σ0) = (1− 2δn)d(σ) and d(σ1) = (1 + 2δn)d(σ)

this martingale is in fact the optimal martingale: when playing against a se-
quence X that is chosen at random with respect to a measure ν, the optimal
martingale is defined by d(σ) = ν([σ])/λ([σ]). It is optimal in the sense that
for any other martingale d′, we have for µ-almost all X ∈ {0, 1}ω: d′(X ↾↾ n) =
O[d(X ↾↾ n)] (see for example [2]). Here, if we take for ν our generalized Bernoulli
measure µ, the optimal martingale is exactly the martingale d. By Theorem 24,
for µ-almost all X , X is not Kurtz random, that is, there exists a real-valued mar-
tingale d′ and a recursive order h such that d′(X ↾↾ n) ≥ h(n). But by optimality,
for any real-valued martingale d′ and µ-almost all X , d′(X ↾↾ n) = O[d(X ↾↾ n)].
Putting all this together, this shows that for µ-almost all X , there exists a re-
cursive order h such that d(X ↾↾ n) ≥ h(n) for all n.

However (and this will be crucial for the rest of the argument), d succeeds
quite slowly on average.

Lemma 27. Let r > 0 be a real number. Then for µ-almost all X ∈ {0, 1}ω,
one has d(X ↾↾ n) = o(nr).

In order to prove this, we now see X as a random variable with distribution µ.
We set for all n:

Vn = d(X ↾↾ n) (4.2)

which is a martingale process. Then set

Ln = ln(Vn) (4.3)

By definition of d we have for all n

Vn+1 =

{

(1 + 2δn)Vn with probability 1/2 + δn

(1− 2δn)Vn with probability 1/2− δn
(4.4)

thus

Ln+1 =

{

Ln + ln(1 + 2δn) with probability 1/2 + δn

Ln + ln(1− 2δn) with probability 1/2− δn
(4.5)



Setting

en = E[Ln+1 − Ln] = (1/2 + δn) ln(1 + 2δn) + (1/2− δn) ln(1− 2δn) (4.6)

(note en passant that en ∼ 2δ2
n by same method as (4.19)) we see that

L′
n = Ln −

n−1
∑

i=0

ei (4.7)

is a martingale process. For all n we have |L′
n+1−L′

n| ≤ en+2δn (here we use the
fact that ln(1 + x) ≤ x for all x > −1). We can thus apply Azuma’s Inequality
to L′

n: for all integers n and positive real a one has

µ{L′
n ≥ a} ≤ exp

(

− a2

∑n−1
i=0 (ei + 2δi)2

)

(4.8)

Taking a = r ln n (for an arbitrarily small real r > 0) in (4.8) we get

µ{L′
n ≥ r lnn} ≤ exp

(

− r2(lnn)2
∑n−1

i=0 (ei + 2δi)2

)

(4.9)

Since ei ∼ 2δ2
i , we have ei = o(δi), so

n−1
∑

i=0

(ei + 2δi)
2 ∼

n−1
∑

i=0

(2δi)
2 ∼ 2 ln lnn (4.10)

Thus for any n large enough:

− r2(lnn)2
∑n−1

i=0 (ei + 2δi)2
≤ −2 lnn (4.11)

Putting (4.9) and (4.11) together, we get

µ{L′
n ≥ r lnn} ≤ 1

n2
(4.12)

for almost all n. By the Borel-Cantelli lemma, since
∑

n 1/n2 converges, with
µ-probability 1 the event [L′

n ≥ r lnn] happens only finitely often, that is, with
probability 1, for any r > 0 and almost all n, L′

n ≤ r lnn. Since

Ln = L′
n +

n−1
∑

i=0

ei

and
∑n−1

i=0 ei ∼ 2 ln lnn, it follows similarly that, with µ probability 1, for
any r > 0 and almost all n, Ln ≤ r lnn. And as Ln = ln[d(X ↾↾ n)], all this
entails that with µ-probability 1, d(X ↾↾ n) ≤ nr for any r > 0 and almost all n.



This proves Lemma 27.

Let D denote the class of integer-valued martingales. We now consider a re-
striction of integer-valued martingales: let D

′ be the subset of D, consisting of
the integer-valued martingales d that further satisfy d(σ) <

√

|σ| for almost
all σ. The following lemma shows that the martingales in D

′ are essentially as
powerful as martingales in D against sequences X chosen at random according
to µ.

Lemma 28. Let d ∈ D. For µ-almost all X, there exists d′ ∈ D
′ such that

d′(X ↾↾ n) = d(X ↾↾ n) for almost all n.

Let d ∈ D. We know from the previous discussion that for µ-almost all X ,
d(X ↾↾ n) = O(d(X ↾↾ n)) and by Lemma 27, d(X ↾↾ n) = o(

√
n). Hence, for

µ-almost all X , there exists some n0 and all n > n0, d(X ↾↾ n) ≤ √n/2. For such
a pair (X, n0), we call “invalid” all strings σ such that there exists a prefix τ of
σ such that |τ | ≥ n0 and either d(τ0) >

√

|τ | or d(τ1) >
√

|τ |, and “valid” any
string that is not invalid. Now, define the martingale d′ by d′(σ) = d(X ↾↾ n0)
for all σ with |σ| ≤ n0 and for all σ with |σ| > n0, set d′(σ) to be d(τ) with τ
the longest prefix of σ that is valid. In other words, d′ is the trimmed version of
d that stops betting forever whenever d makes at stage n > n0 a bet that gives
it a chance to get a capital >

√
n. It is easy to see that d′ is itself a martingale,

integer-valued as d is, and since d(X ↾↾ n) ≤ √n/2 for all n, all prefixes of X
are valid, hence d′(X ↾↾ n) = d(X ↾↾ n) for all n ≥ n0. This proves the lemma.

Finally, we prove that martingales in D
′ are almost surely defeated by a

µ-random X .

Lemma 29. Let d ∈ D
′. For µ-almost all X, d does not succeed on X.

Let n0 be such that d(σ) ≤
√

|σ| for all σ of length ≥ n0. Again, we see X
as a µ-random variable and define Vn by

Vn = d(X ↾↾ n) (4.13)

(note that by definition of D
′, we have Vn ≤

√
n for all n ≥ n0) and Ln by

Ln = ln(d(X ↾↾ n)) (4.14)

with the convention ln(0) = −1. For all n, define also

ρn =
d(X ↾↾ n + 1)− d(X ↾↾ n)

d(X ↾↾ n)
(4.15)

which is the fraction of its capital the martingale d bets on 1 at stage n. It can
be negative if d bets on 0 and is by convention 1 if d(X ↾↾ n) = 0. Similarly
to (4.5), we have for all n:

Ln+1 =

{

Ln + ln(1 + ρn) with probability 1/2 + δn

Ln + ln(1− ρn) with probability 1/2− δn
(4.16)



Thus we have:

E[Ln+1 − Ln] = (1/2 + δn) ln(1 + ρn) + (1/2− δn) ln(1− ρn) (4.17)

=
1

2
ln(1− ρ2

n) + δn ln(1 + ρn)− δn ln(1− ρn) (4.18)

≤ −ρ2
n

2
+ 2δnρn (4.19)

(for the last inequality, we use again that ln(1 + x) ≤ x for all x ≥ −1, which
is true even for x = −1 with our convention ln(0) = −1). Now, observe that
ρn is either 0, or of the form m

Vn

for some integer m as d is real-valued. In the

first case Ln+1 = Ln and in the second case, since Vn ≤
√

n for almost all n, we

have |ρn| ≥ 1/
√

n for almost all n, and therefore E[Ln+1 − Ln] ∼ − ρ2

n

2 < 0 as
δn = o(1/

√
n) = o(ρn). This shows that Ln is ultimately a supermartingale, and

it is bounded from below by ln(0) = −1. By Doob’s Martingale Convergence
Theorem Ln converges to a finite value µ-almost surely, hence the same is true
for Vn = exp(Ln). Therefore Vn is µ-almost surely bounded, hence d is µ-almost
surely defeated. This finishes the proof of Lemma 29.

Theorem 25 now easily follows. Take some X ∈ {0, 1}ω at random accord-
ing to µ. By Lemma 29, X defeats all d ∈ D

′ µ-almost surely, therefore by
Lemma 28, X defeats all d ∈ D

′ µ-almost surely. And finally, by definition of
µ and Theorem 24, X is µ-almost surely not Kurtz random. Therefore, X is
µ-almost surely as wanted, hence the existence of at least one X as wanted.


