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Abstract. We show that every non-low c.e. set joins all ∆0
2 diagonally non-

computable functions to ∅′. We give two proofs: a direct argument, and a proof

using an analysis of functions that are DNC relative to an oracle, extending

work by Day and Reimann. The latter proof is also presented in the language
of Kolmogorov complexity.

1. Introduction

Computability theorists often identify classes of oracles that are considered either
weak or strong. In this paradigm, the computable sets are the ultimately weak sets,
as they contain no information, and the halting problem ∅′ is a paragon of strength,
certainly when comparing it to other computable enumerable (c.e.) sets. Thus, an
oracle that shares some of the properties of the computable sets is considered weak
(and we think of the oracle as “close to being computable”), while on the other hand,
an oracle that in some way resembles the halting problem is considered strong.

A canonical example is given by the jump operator. Soare [?] defined a set A
to be low if A′ ≡T ∅′: the Turing degree of the halting problem relative to A is
as low as possible. A low set is indistinguishable from computable sets as far as
the jump operator is concerned, and so is considered weak. Dually, a set A is high
if A′ >T ∅′′, equivalently, by a result of Martin’s, if it computes a function that
dominates all computable functions. This is an example of a notion of strength: a
high set is a set that can solve a problem (dominate computable functions) that the
halting problem can solve, but computable sets, and sets close to being computable,
cannot solve.

In this paper we consider another notion of strength: computing a diagonally
non-computable (DNC) function. A function g : ω → ω is DNC if for a fixed
universal partial computable function J , for all e ∈ dom J , we have g(e) 6= J(e). A
Turing degree is a DNC degree if it contains a DNC function; it is not difficult to
see that the DNC degrees are closed upwards, as we can find infinite computable
sets disjoint from the domain of J , and use them for coding.
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Certainly the Turing degree 0′ of the halting problem is a DNC degree, since
∅′ can tell whether e ∈ dom J or not. The study of DNC degrees (started by
Jockusch in [?]) was originally motivated by their coincidence with those degrees
that can compute a fixed-point-free function, a function f such that Wf(e) 6= We for
all e. Thus, the recursion theorem shows that computable sets do not have DNC
degree. Another important aspect of DNC degrees is that they are a superclass
of a more restrictive notion of oracular strength, that of having PA degree. For
the connection, we mention that a Turing degree is a PA degree if and only if it
contains a DNC set, i.e., a {0, 1}-valued DNC function.

Often, notions of strength and weakness that measure different aspects of com-
putational power do not cohere. For example, there is a low PA degree; this degree
is weak in one sense and strong in another. Thus, it is interesting when we observe
meaningful interactions between notions of strength, in particular when these in-
teractions involve Turing reducibility. In this way, we make a connection between
relative and absolute notions of strength and weakness. This is certainly the case
when considering how PA and DNC degrees interact with the c.e. sets. As a first
example, in contrast with the low PA degree mentioned above, Arslanov [?] showed
that among the c.e. degrees, only the top one 0′ is a DNC degree. This was extended
to the n-REA hierarchy in [?], see also [?].

On the other hand, ∆0
2 DNC degrees resemble 0′ also in that each of them lies

above a nonzero c.e. degree ([?],[?]). The methods that are behind this phenomenon
provide an alternative approach (priority-free) to a solution to Post’s problem and
some other finite injury priority constructions. The basic idea is to guarantee some
properties of a c.e. set by properties of some set of PA degree in which the c.e.
set is coded. Incompleteness and avoiding an upper cone are illustrative examples.
However, in some aspects, ∆0

2 PA degrees are limited compared to all PA degrees.
For example, there is no minimal pair of ∆0

2 PA (or even DNC) degrees [?]. Oracles
slightly stronger than ∅′ are required to construct minimal pairs of PA degrees;
in [?] it was shown that 0′ is the greatest lower bound of the set of joins of minimal
pairs of PA degrees.

All of this led to a question whether given an incomplete c.e. set A there is a
PA set X, or more generally, a DNC function f , such that A <T X <T ∅′, or
A <T f <T ∅′. In other words, can the incompleteness of a c.e set A be witnessed
by an incomplete ∆0

2 PA set or DNC function? And if not, which incomplete c.e.
sets have this property?

A negative answer for the first question was given by Kučera and Slaman (un-
published), who constructed an incomplete c.e. set that joins all ∆0

2 DNC functions
to ∅′. Their proof used the ∅(3)-priority method. The focus thus turns to the
characterization of c.e. degrees with that property. Recently, Day and Reimann [?]
solved the problem for the class of PA degrees.

Theorem 1.1 (Day and Reimann). A c.e. set A is low if and only if A is com-
putable from an incomplete, ∆0

2 PA degree.

By the low basis theorem, every low c.e. set is computable from a low PA de-
gree, and so the dichotomy is sharp. We extend their result to the wider class of
diagonally non-computable functions.

Theorem 1.2. If A is a non-low c.e. set and f is a ∆0
2 diagonally non-computable

function, then ∅′ 6T A⊕ f .
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This result can be thought of another version of Arslanov’s completeness cri-
terion. The criterion says that being c.e. and being DNC are mutually exclusive
properties; the theorem states that when non-lowness is added, these properties are
complementary. Another interpretation of this theorem is that relativizing to a ∆0

2

DNC function f eliminates the difference between all non-low c.e. degrees; to f ,
they all look like 0′.

Theorem 1.2 gives the solution of the problem mentioned above for DNC degrees.

Corollary 1.3. A c.e. set A is low if and only if A is computable from an incom-
plete, ∆0

2 diagonally non-computable function.

The corollary is also of interest because very few characterizations of lowness are
known, even among the c.e. degrees.

A weak version of Theorem 1.2 was first proved by Bienvenu, Greenberg, Kučera,
Nies and Turetsky during a stay at the mathematics research institute in Oberwol-
fach (see Theorem 4.5). They gave two arguments: a direct one, and one using
Kolmogorov complexity. Miller then proved Theorem 1.2. Kučera then found how
to adapt the direct argument to prove the theorem. Below, we give both proofs, and
also give a third proof, similar to the first, but which uses Kolmogorov complexity.

We note that all proofs are uniform: effectively, given a c.e. index for a non-low
c.e. set A, and a ∆0

2 index for a DNC function f , we can compute an index of a
Turing functional Ψ such that ∅′ = Ψ(A, f).

1.1. Definitions and notation. Some of the following definitions were also given
in the introduction.

We fix a universal partial computable function J . The most common definition
of J is J(e) = ϕe(e), where 〈ϕe〉 is an acceptable enumeration of all partial com-
putable functions. What is important is the acceptability of J : for every partial
computable function ψ there is an injective, total computable function α such that
ψ = J ◦ α. An index for α is obtained effectively from an index for ψ.

A function f ∈ ωω is diagonally non-computable if for all e ∈ dom J we have
f(e) 6= J(e). The class of diagonally non-computable functions is denoted DNC. We
say that a set D ∈ 2ω has DNC-degree if D computes a diagonally non-computable
function.

All of these notions can be relativized to an oracle. For an oracle A, we fix a
universal A-partial computable function JA. A function f is DNC relative to A if
f(e) 6= JA(e) for all e ∈ dom JA. We identify J with J∅.

For any set A, we let A′ = dom JA. This is a universal A-c.e. set. A c.e. set A
is low if A′ ≡T ∅′.

We let DNC2 = DNC ∩ 2ω. This is the collection of DNC functions with values
in {0, 1}. Recall that a Π0

1 class is an effectively closed subset of 2ω—the collection
of infinite paths of a computable tree T ⊆ 2<ω. The class DNC2 is a Π0

1 class. A
set A ∈ 2ω has PA degree if every nonempty Π0

1 class contains an A-computable
element. There are several equivalent definitions of PA degrees: a set A has PA
degree if and only if it computes a consistent completion of Peano arithmetic, if
and only if it computes some DNC2 set.

If f and g are natural-valued functions, then we write f 6+ g if for some con-
stant c we have f(x) 6 g(x) + c for all x in the common domain of f and g. We
write f =+ g if f 6+ g and g 6+ f .
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From algorithmic randomness we use the notion of prefix-free Kolmogorov com-
plexity K (we sometimes drop the term “prefix-free” for concision). We denote a
universal prefix-free machine by U, and a universal oracle prefix-free machine by
UZ . A set Z ∈ 2ω is 1-random if and only if K(Z �n) >+ n, where Z �n denotes the
prefix of Z of length n.

We use Lachlan’s square bracket convention for evaluating compound expressions
at a given stage. For example, if 〈As〉 is an effective enumeration of a c.e. set A and
KZ
s denotes the stage s-approximation of oracle prefix-free complexity KZ , then

we write KA[s] for KAs
s .

2. Relatively DNC degrees

Using work by Day and Miller [?] that connects Levin’s neutral measures to PA
degrees, Day and Reimann [?] proved the following surprising theorem.

Theorem 2.1 (Day and Reimann). Suppose that X ∈ 2ω has PA degree and that C
is a c.e. set. Then either X ⊕ C >T ∅′, or X >T C.

Later, Kučera and independently Miller found direct proofs of this theorem. We
give one such proof.

Proof. Fix effective enumerations 〈∅′s〉 and 〈Cs〉 of ∅′ and of C. We let A be the
set of pairs (e, i) of numbers such that e enters ∅′, and if i enters C, it does not do
so at an earlier stage. That is, (e, i) ∈ A if there is a stage s such that e ∈ ∅′s but
i /∈ Cs−1. Let B be the set of pairs (e, i) such that for some s, i ∈ Cs but e /∈ ∅′s.
The sets A and B are disjoint c.e. sets. Sets of PA degree compute separators for
disjoint c.e. sets: there is a set E 6T X that contains B and is disjoint from A.
There are two cases.

Case 1. Assume that there is an e /∈ ∅′ such that for all i /∈ C we have (e, i) /∈ E.
Then i ∈ C if and only if (e, i) ∈ E, so E >T C, indeed E >m C.

Case 2. Otherwise, for all e /∈ ∅′, there is an i /∈ C such that (e, i) ∈ E. Note that
if e ∈ ∅′ and i /∈ C, then (e, i) ∈ A and so (e, i) /∈ E. So we can enumerate ω r ∅′
with oracle E⊕C by searching for e ∈ ω and i /∈ C such that (e, i) ∈ E. Therefore,
E ⊕ C >T ∅′. �

As we noted in the proof, in Case 1 we actually get E >m C. If X ∈ DNC2 then
for any pair A, B of disjoint c.e. sets there is a separator E (E ⊇ B and E∩A = ∅)
that is many-one reducible to X. For we can find an injective computable function
α such that J(α(n)) = 1 if n ∈ A and J(α(n)) = 0 if n ∈ B; we let E = α−1X.
Thus, we get:

Porism 2.2. If X ∈ DNC2 and C is c.e., then either X ⊕ C >T ∅′ or X >m C. In
particular, if X is Turing incomplete and X >T C then X >m C.

Day and Reimann gave the following corollary of their theorem.

Theorem 2.3 (Day and Reimann). Assume that X has PA degree and C is a c.e.
set. Either X ⊕ C >T ∅′ or X has PA degree relative to C.

Proof. Apply Theorem 2.1 to X and C. If X ⊕ C >T ∅′, we are done. Otherwise,
X >T C and X �T ∅′. The Π0

1 class of pairs of sets (A,B) such that A ∈ DNC2

and B ∈ DNC2(A) is nonempty, and so we can find a Y 6T X of PA degree
such that X has PA degree relative to Y (this argument was noted by Simpson [?,
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Theorem 6.5]). Since X >T Y , Y ⊕ C 6T X and so Y ⊕ C �T ∅′. Applying
Theorem 2.1 to Y and C gives Y >T C. Therefore, X has PA degree relative
to C. �

We cannot replace the condition that X has PA degree in Theorem 2.1 with
the weaker assumption that X has DNC degree. To see this, we recall that every
1-random set has DNC degree.

Proposition 2.4 (Kučera [?]). Every 1-random set computes a DNC function.

Proof. It is convenient to fix an effective bijection between strings and natural
numbers: identify σ ∈ 2<ω with n ∈ ω if 1σ is the binary expansion of n+1. Let X
be 1-random and define g(n) = X �n.

If g(n) = J(n), then K(X �n) =+ K(g(n)) = K(J(n)) 6+ K(n) 6+ 2 log(n),
where the constant does not depend on n. So the fact that X is 1-random implies
that g(n) 6= J(n) for all but finitely many n. By changing at most finitely many
values of g, we get an X-computable DNC function. �

Now let C be a low c.e. set that is not K-trivial (for K-triviality see [?] or [?]).
For example, one can take a low c.e. set that is not superlow; all K-trivial sets are
superlow (Nies [?]). By the low basis theorem relative to C, there is a 1-random
set Z such that Z ⊕ C is low. So Z ⊕ C �T ∅′, and by Proposition 2.4, Z has
DNC degree. However, Z �T C, because a c.e. set computable from an incomplete
random set must be K-trivial (Hirschfeldt, Nies and Stephan [?]). Therefore, we
see that in Theorem 2.1 we cannot replace PA with DNC. Overall, the low sets that
are not K-trivial form an interesting “grey zone”: they are joined to 0′ by some but
not all ∆0

2 random degrees. On the other hand, every c.e. degree is low-cuppable in
the ∆0

2 degrees, and so by relativizing the low basis theorem, is also PA-cuppable.
Note, however, that the application above of the relativized low basis theorem

yielded a set that is random relative to C, and so has DNC degree relative to C.
This is necessary, because in Theorem 2.3 we can replace PA by DNC.

Theorem 2.5. Assume that X ∈ 2ω has DNC degree and that C is a c.e. set.
Then either X ⊕ C >T ∅′ or X has DNC degree relative to C.

The same theorem with 1-random instead of PA or DNC was proved by Hirschfeldt,
Nies and Stephan [?].

Proof. Let g : ω → ω be an X-computable DNC function. By the recursion the-
orem, we may assume that we control the values of the diagonal function J at a
computable sequence of positions {kn,m}n,m∈ω. That is, we define an auxiliary par-
tial computable function h, and by the recursion theorem we obtain an index for a
total injective computable function α such that h = J ◦ α. We let kn,m = α(n,m),
and instead of saying that we define h(n,m) we say that we define J(kn,m).

If n enters ∅′ at stage s, then let

J(kn,m) = JCs
s (m),

for each m 6 s such that JCs
s (kn,m) converges. If there is an n such that the

function m 7→ g(kn,m) is a DNC function relative to C, then we are done. If not,
define f 6T X ⊕ C by letting f(n) be the least stage s such that for some m 6 s,
g(kn,m) = JCs

s (m) via a C-correct computation. By assumption, f is total.
Suppose that n ∈ ∅′; say n enters ∅′ at stage t. Let m witness that f(n) = s.

If t > s then g(kn,m) = JC(m) = J(kn,m), contradicting the fact that g is a DNC
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function. Thus, f dominates the settling-time function for ∅′, and so ∅′ 6T f 6T

X ⊕ C. �

The proof of Theorem 2.5 could be used, with only superficial modification, to
give a direct proof of Theorem 2.3. We also note that Theorem 2.5 directly implies
Arslanov’s completeness criterion.

Corollary 2.6 (Arslanov [?]). If D is a c.e. set of DNC degree, then D ≡T ∅′.

Proof. No set has DNC degree relative to itself, so by Theorem 2.5, D ≡T D⊕D >T

∅′. �

Day and Reimann noticed that Theorem 2.3, together with a relativized version
of Arslanov’s completeness criterion, shows that every non-low c.e. set joins every
∆0

2 set of PA degree to ∅′, and thus proved their Theorem 1.1. The same argument
holds if we replace PA by DNC.

First proof of Theorem 1.2. Let C be a c.e. set, let X 6T ∅′ have DNC degree, and
suppose that ∅′ 
T X ⊕ C. By Theorem 2.5, X has DNC degree relative to C.
Since X 6T ∅′, ∅′ has DNC degree relative to C. Since ∅′ is c.e. relative to C, the
relativization to C of Arslanov’s completeness criterion gives

∅′ ≡T ∅′ ⊕ C >T C ′,

i.e., C is low. �

The proof used Arslanov’s completeness criterion to show that if X ∈ ∆0
2 has

DNC degree relative to a ∆0
2 set A then A is low. We note that the assumption

that A be ∆0
2 is not necessary. Recall that a set A is generalized low (denoted GL1)

if A′ ≡T A ⊕ ∅′. That is, if when considering the join with ∅′, the Turing jump of
A has lowest degree possible. A ∆0

2 set is generalized low if and only if it is low.
By relativizing Arslanov’s completeness criterion, we get the following:

Proposition 2.7. If some X ∈ ∆0
2 has DNC degree relative to a set A ∈ 2ω, then

A is generalized low.

Proof. A ⊕ ∅′ computes X (since X is ∆0
2), which has DNC degree relative to A.

Thus, A⊕∅′ has itself DNC degree relative to A. But A⊕∅′ is also c.e. relative to A.
By Arslanov’s completeness criterion relativized to A, we get A⊕ ∅′ >T A′. �

Nies, Stephan and Terwijn [?] showed that Proposition 2.7 holds if we assume
that X is random relative to A.

3. A direct argument

We give a proof of Theorem 1.2 by direct construction. Let A be a non-low c.e.
set, and let f be a ∆0

2 DNC function; let 〈As〉 be an effective enumeration of A,
with As 6= As+1 for all s. Let 〈fs〉 be a computable approximation for f . Also let
〈∅′s〉 be an effective enumeration of ∅′.

To show that ∅′ is reducible to A⊕ f , we need to enumerate, with oracle A⊕ f ,
the complement of ∅′; we build a c.e. operator (also known as an enumeration
functional) Θ for this task. Technically, this is a c.e. set of axioms, which will be
triples of the form (σ, (a, b); e) with the intended interpretation that if σ ≺ A and
f(a) = b then e ∈ Θ(A, f). So formally, we let Θ(A, f) be the collection of numbers
e for which there are σ ≺ A and a < ω such that (σ, (a, f(a)); e) ∈ Θ. Thus,
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Θ(A, f) is a set c.e. in A⊕ f , and we intend it to equal the complement of ∅′. We
let Θs be the collection of axioms enumerated into Θ by the end of stage s. At
stage s we only enumerate into Θ axioms that pertain to As and fs; if (σ, (a, b); e)
is enumerated into Θ at stage s, then σ ≺ As and fs(a) = b. We say that we
enumerate e into Θ(A, f)[s] with A-use |σ| and f -use {a}.

The very basic plan is the following. While a number e is not in ∅′, at various
stages s we will want to enumerate e into Θ(A, f). Of course, sometimes this will
be done and then at a later stage t, e will enter ∅′; we then need to undo the
enumeration we made at stage s. In other words, we need to ensure that either A
disagrees with As or f disagrees with fs on the use of that enumeration. We have
one way of forcing such a difference for f : if the f -use of the axiom is {a}, then we
can set J(a) = fs(a). Each such input a must correspond to only one stage s < t.
We do not have to worry about every stage s < t, only about those stages s < t for
which As agrees with At up to the A-use, and of course, only about stages s < t at
which we enumerated e into Θ(A, f).

For every stage s, let ws be the least number in As \ As−1. At stage s we see
that previous versions Ar of A were mistaken about A �ws+1. Hence at stage s we
are only willing to commit to guessing that A�ws+1 is an initial segment of A. The
stage s seems to be true at a later stage t > s if that guess was not yet found to be
incorrect by stage t: if As �ws= At �ws . We note that if r < s < t and r seems true
at stage t, then r seems true at stage s as well. A stage s is true if As �ws

= A�ws
;

there are infinitely many true stages.
We will only enumerate e into Θ(A, f)[s] if e /∈ Θs−1(As, fs). This implies that

for all t, if e ∈ Θ(A, f)[t], then there is a unique stage s 6 t at which we enumerate
e into Θ(A, f)[s] with an axiom that pertains to At, ft. We say that s is the stage
at which we enumerated e into Θ(A, f)[t]. When we enumerate e into Θ(A, f)[s]
then we set the A-use of this enumeration to be ws. This implies:

Claim 3.1. Suppose that e ∈ Θt−1(At, ft), and let s < t be the stage at which this
enumeration was made. Then s seems to be true at stage t. Indeed, e ∈ Θt−1(At, ft)
if and only if there is a stage s < t that seems to be true at t, at which we enumerate
e into Θ(A, f)[s], such that ft(a) = fs(a), where {a} is the use of that enumeration.

For now, denote by {as} the f -use of an enumeration of e into Θ(A, f)[s]. We
need to ensure that if e enters ∅′ at some stage t, then the numbers as are distinct,
as s ranges over the stages s < t that appear to be true at stage t and at which we
enumerated e into Θ(A, f). This is equivalent to requiring that if r seems true at
stage s and at both stages r and s we enumerate e, then ar 6= as.

Näıvely, while e /∈ ∅′, we would enumerate e into Θ(A, f) at every stage s at
which e /∈ Θs−1(As, fs). But this would force the numbers as to grow fast. If
e /∈ ∅′, we need to ensure that e ∈ Θ(A, f), and this is equivalent to finding a true
stage s at which we enumerate e into Θ(A, f) such that fs(as) = f(as). Roughly,
we need the f -uses as, along the true stages, to not grow faster than the modulus of
f ; if fs does not “catch up” then no enumeration into Θ(A, f) will be permanent.

So we need to be selective about the choice of stages s at which we enumerate
e into Θ(A, f). This is where we use non-lowness of A. We only make such an
enumeration at s if we see a new number i ∈ A′s.

We use the “hat trick” for the Σ2/Π2 approximation 〈A′s〉s<ω for A′. At stage s,
for enumerating A′s, we only use the part of A that we believe: A′s consists of those
numbers i for which JAs(i)↓ with use at most ws. As a result:
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(∗) If s appears true at stage t then A′s ⊆ A′t, and A′ is the union of A′s where s
ranges over the true stages.

We only enumerate e into Θ(A, f)[s] if A′s 6= A′r for every stage r < s that seems
true at s and at which we enumerated e into Θ(A, f)[r]. Of course it suffices to
check only the last such stage. Roughly, this means that the f -uses as (which in
the construction below are actually called ae,is) will grow inversely to the modulus
of A′. Since A′ >T ∅′ the modulus for f is slower than the modulus for A′, and
so will be able to catch up with the use. This will be formalised by a permitting
argument (between A′ and ∅′).

Construction. As in the proof of Theorem 2.5, for each e < ω we obtain a com-
putable subset {ae,i : i < ω} of dom J that we control.

There is no interaction between the parts of the construction that deal with
different e < ω. So we fix e and describe the part of the construction that codes
∅′(e) into A⊕ f .

We let S = S(e) be the set of stages r at which we enumerate e into Θ(A, f).
With every stage s ∈ S we will associate a number is = is(e), which we define
during the construction; this number will determine the f -use of the enumeration
we make at stage s.

For s < ω, we let Ss = Ss(e) be the set of stages r < s in S that seem true at
stage s.

Stage s: If e /∈ ∅′s but e /∈ Θs−1(As, fs), let r = maxSs (r = 0 if Ss is empty). If
A′s 6= A′r, let is = minA′s \ A′r. Enumerate e into Θ(A, f)[s] with A-use ws and
f -use {ae,is}.

If e ∈ ∅′s \ ∅′s−1 then for all r ∈ Ss we set J(ae,ir ) = fr(ae,ir ). The following
claim shows that following this instruction is possible.

Claim 3.2. Let s < ω, and let r0 < r1 be two stages in Ss. Then ir0 6= ir1 .

Proof. The stage r0 appears to be true at stage r1, so r0 ∈ Sr1 . Let r = maxSr1 .
Note that r0 seems true at stage r as well, so r0 ∈ Sr ∪ {r}. We have A′r0 ⊆ A′r (
A′r1 , and ir1 ∈ A′r1 \A

′
r while ir0 ∈ A′r0 . �

Verification. We show that Θ(A, f) is the complement of ∅′.
Fixing e, we observe that Claim 3.1 says that for s < ω, e ∈ Θs−1(As, fs) if and

only if there is an r ∈ Ss such that fr(ae,ir ) = fs(ae,ir ).
We let Sω be the collection of true stages in S. Similarly to what we have

at finite stages, e ∈ Θ(A, f) if and only if there is a stage r ∈ Sω such that
fr(ae,ir ) = f(ae,ir ).

Lemma 3.3. If e ∈ ∅′ then e /∈ Θ(A, f).

Proof. Suppose, for a contradiction, that e ∈ Θ(A, f); let r ∈ Sω be such that
fr(ae,ir ) = f(ae,ir ).

Let s be the stage at which e enters ∅′. So r < s, and r seems true at stage s, so
r ∈ Ss. Let i = ir(e). At stage s we set J(ae,i) = fr(ae,i). Then fr(ae,ir ) = f(ae,ir )
contradicts f being diagonally non-computable. �

Lemma 3.4. If e /∈ ∅′ then e ∈ Θ(A, f).

Proof. The set Sω is finite if and only if e ∈ Θ(A, f). In one direction, this is
immediate: if there is an r ∈ Sω with fr(ae,ir ) = f(ae,ir ) then once ft(ae,ir )
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stabilises to f(ae,ir ), for every true stage s we will have e ∈ Θs−1(As, fs) and so
s /∈ S, hence not in Sω.

In the other direction, suppose that Sω is finite; we argue that for some r ∈ Sω
we have fr(ae,ir ) = f(ae,ir ). If not, from some stage on we have ft(ae,ir ) 6= fr(ae,ir )
for all r ∈ Sω. For any true stage s > maxSω we have Ss = Sω. So for sufficiently
late true stages s we have e /∈ Θs−1(As, fs). Because A′ is infinite, for sufficiently
late true stages s we have A′s 6= A′r for r = maxSs. So a sufficiently late true stage
will be in Sω, for a contradiction.

Suppose that e /∈ ∅′; we show that e ∈ Θ(A, f). Suppose for a contradiction that
e 6∈ Θ(A, f), and thus that Sω is infinite. Fix a j ∈ A′, and let t ∈ Sω be least with
j ∈ A′t. Then it 6 j, and since e 6∈ Θ(A, f), we see that ft(ae,it) 6= f(ae,it).

Since ∅′ can compute Sω and can tell if there is a future change in fs(ae,k), for
any j, ∅′ can effectively locate a stage s ∈ Sω such that ft(ae,k) = f(ae,k) for all
t > s and all k 6 j. By the argument of the previous paragraph, j ∈ A′ if and only
if j ∈ A′s. Thus ∅′ can compute A′, a contradiction.

�

4. Kolmogorov complexity

It is easy to see that there is a function g ≡T ∅′ such that every function that
dominates g computes ∅′; for example, we can take g to be the settling-time function
for ∅′. We can also take a so-called “busy-beaver” function.

Lemma 4.1. Let g(n) = min{t ∈ N : ∀s > t (K(s) > n)}. Any function dominat-
ing g computes ∅′.

Proof. If n enters ∅′ at stage s then K(s) 6+ K(n). Let c be the constant witnessing
this inequality. Then n ∈ ∅′ if and only if n ∈ ∅′g(n+c). �

Kjos-Hanssen, Merkle and Stephan [?] showed an elegant characterization of
DNC degrees in terms of Kolmogorov complexity.

Proposition 4.2 (Kjos-Hanssen, Merkle, Stephan). A set A has DNC degree if
and only if it computes a sequence 〈xn〉n<ω such that K(xn) >+ n.

Proof. Kjos-Hanssen, Merkle and Stephan actually show this result with plain Kol-
mogorov complexity C instead of prefix-free Kolmogorov complexity. The argument
given in [?] applies to prefix-free complexity as well. For completeness of presenta-
tion we recall that argument.

First suppose that A computes a sequence 〈xn〉n<ω with K(xn) > n − c for
some c. As we discussed in the proof of Proposition 2.4, if J(n) is defined, then
K(J(n)) < 2 log n + d for some fixed constant d. Let e be a constant such that
n− c+ e > 2 log n+d for all n. The function f defined by f(n) = xn+e satisfies, by
assumption on the sequence 〈xn〉n<ω, K(f(n)) > n − c + e > 2 log n + d and thus
f(n) 6= J(n) for all n.

Conversely, let A be of DNC degree and f 6T A a DNC function. By the
recursion theorem, we control a computable subset {aσ : σ ∈ 2<ω} of the domain
of the universal function J . Let U be the universal prefix-free machine, and now
we think of the elements in the range of U as strings in ω<ω. For σ ∈ domU, if
|U(σ)| > aσ then let J(aσ) = (U(σ))(aσ); otherwise, J(aσ)↑.
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For n < ω, take τn ≺ f such that |τn| > aσ for all |σ| < n. Then K(τn) > n,
because we diagonalized against descriptions of length below n: if |σ| < n is in
domU, then either |U(σ)| < |τn|, or

τn(aσ) = f(aσ) 6= J(aσ) = U(σ)(aσ);

in either case, τn 6= U(σ). �

Using Proposition 4.2, we can translate the arguments of Section 2 to the lan-
guage of Kolmogorov complexity. The proofs we obtain have a different flavor. The
following proposition is essentially equivalent to Theorem 2.5.

Proposition 4.3. Let A be a c.e. set. Suppose that for every ∆0
2 sequence 〈xn〉n<ω

we have KA(xn) �+ n. Then A joins every ∆0
2 DNC function to ∅′.

Proof. Let f be a ∆0
2 DNC function. By Proposition 4.2, f computes a sequence

〈xn〉n<ω such that K(xn) > n for all n. We fix such a sequence.

We show how to use the oracle A⊕〈xn〉 to dominate the function g of Lemma 4.1.
As the overgraph of KA is A-enumerable, given e < ω, we can A⊕ 〈xn〉-effectively
find an n = n(e) such that KA(xn) < n−e. Having found n, we let t(e) be the least
stage t at which we see that KA(xn)[t] < n− e via an A-correct computation. We
claim that for some constant d, which does not depend on e, we have K(s) > e− d
for all s > t(e). Since e 7→ t(e + d) is (A ⊕ X)-computable and by the above
dominates the function g of Lemma 4.1, this will be sufficient to get A⊕X >T ∅′.

Let s > t(e), and let n = n(e). Then KA(xn)[s] < n − e. We claim that
K(xn) 6+ (n − e) + K(s), with the constant not depending on s or e. Suppose
that UA(σ)[s]↓= xn with |σ| < n − e. Then effectively, given a description for s
concatenated with σ, we first find s and σ, and output UA(σ)[s].

Finally, since K(xn) > n, we see immediately that K(xn) 6+ (n − e) + K(s)
implies that K(s) >+ e as required. �

Combining Proposition 4.3 with the following proposition gives us, essentially,
the first proof of Theorem 1.2. The proposition is very similar to Proposition 2.7.
However, here we give a direct argument, inspired by the one in Section 3.

Proposition 4.4. Let A ∈ 2ω be a set that is not generalized low. Then for any
∆0

2 sequence 〈xn〉n<ω, KA(xn) �+ n.

Proof. Fix a ∆0
2 sequence 〈xn〉n<ω. We need to show that for all e there is an n

such KA(xn) 6 n − e. Via the coding theorem, it is equivalent to build a lower
A-c.e. discrete measure m such that for all e there is an n such that m(xn) > 2e−n.
This is done independently for each e. That is, uniformly in e, we define a lower
A-c.e. discrete measure me, whose total weight

∑
k<ωme(k) is bounded by 2−e; we

then let m =
∑
e<ωme. Fulfilling the requirement for e will be done by ensuring

that me(xn) > 2e−n for some n. We use permitting between A′ and A⊕∅′ to show
that attempts at compression must sometimes succeed.

Let 〈xn,s〉 be a computable approximation for 〈xn〉. Also, fix an A-computable
enumeration 〈A′s〉s<ω of A′.

We define me as follows. If n > 2e enters A′ at stage s, then we increase me(xn,s)
by 2e−n.

First we observe that indeed the total mass of me is bounded by 2−e. Each num-
ber n enters A′ at most once, and so the total mass is bounded by 2e ·

∑
n>2e 2−n 6

2e−2e as required.
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Next we show that there is an n such that me(xn) > 2e−n. Suppose not; we
show how to compute A′ from A⊕ ∅′. To decide if n ∈ A′, find a stage s such that
xn,t = xn for all t > s. We claim that n ∈ A′ if and only if n ∈ A′s. For if n enters
A′ at a stage t > s, then at that stage we add a mass of 2e−n to me(xn), which
contradicts our assumption. �

Weaker variants of Theorem 1.2 can be proved quickly using Proposition 4.3.
We give an example. Recall that a set A is LR-hard if and only if KA 6+ K∅

′
.

There are incomplete, LR-hard c.e. sets.

Theorem 4.5. Every LR-hard c.e. set joins every ∆0
2 DNC function to ∅′.

Proof. Let A be LR-hard. We verify the condition of Proposition 4.3. Let 〈xn〉 be

∆0
2. Since ∅′ computes the sequence 〈xn〉, we have K∅

′
(xn) 6+ K∅

′
(n) 6+ 2 log2 n.

Hence KA(xn) 6+ 2 log2 n; and limn→∞(n− 2 log n) =∞. �

A similar argument can be extended to all superhigh sets, and a bit more. The
condition we use is KA 6+ h(K∅

′
) for a computable or even ∆0

2 function h.
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