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Abstract. Merkle et al. [13] showed that all Kolmogorov-Loveland stochas-
tic infinite binary sequences have constructive Hausdorff dimension 1. In
this paper, we go even further, showing that from an infinite sequence of
dimension less than H( 1

2
+ δ) (H being the Shannon entropy function)

one can extract by an effective selection rule a biased subsequence with
bias at least δ. We also prove an analogous result for finite strings.

1 Introduction

In 1919 R. von Mises gave the first definition of algorithmic randomness, which
was inspired by the law of large numbers. According to his definition, an infi-
nite binary sequence α of zeroes and ones is said to be “random” (instead of
“random sequence”, von Mises used the term collective) if it is not biased, i.e.
the frequency of zeroes goes to 1

2 , and if every sequence we can extract from
α by an “admissible” selection rule is not biased. The second condition is im-
portant. Indeed, the infinite sequence 01010101010.... is not biased; however,
and this is why no one would call it “random”, the selection rule consisting in
selecting the bits of even positions will select the subsequence 0000000...., which
this time is biased. R. von Mises never made completely precise what he meant
by admissible selection rule. When computability theory emerged two decades
later, Church proposed a formal definition: he defined an admissible selection
rule to be a (total) computable process which, having read the first n bits of
an infinite binary sequence α, decides if it wants to select the next bit or not,
and then reads it (of course, it is crucial that the decision to select the bit or
not is made before reading the bit). The sequence of selected bits is the selected
subsequence w.r.t. to the selection rule. Later, Kolmogorov and Loveland pro-
posed a more permissive definition of an admissible selection rule: they argued
that in Church’s definition, the bits are read in order, which is too restrictive.
Hence, they defined an admissible selection rule to be a (partial) computable
process which, having read any n bits of an infinite binary sequence α, picks a
bit that has not been read yet, decides whether it should be selected or not, and
then reads it. Nowadays, the sequences α which are collectives w.r.t. to this last
definition are called Kolmogorov-Loveland stochastic (KL-stochastic for short).



It turns out that even with this improvement, KL-stochasticity is too weak a
notion of randomness. A method developed by van Lambalgen [17], which relies
on randomness w.r.t. non-uniform probability measures, was used by A. Shen
[16] to show that there exists a KL-stochastic sequence all of whose prefixes
contain more zeroes than ones (this event has probability 0 for the uniform mea-
sure). In 1966, P. Martin-Löf introduced a notion of randomness which is now
called Martin-Löf randomness and considered by many as the most satisfactory
notion of algorithmic randomness. Its original definition involved effective mea-
sure theory, but after the work of Levin, Chaitin and Schnorr, we know that
Martin-Löf randomness can be characterized in terms of Kolmogorov complex-
ity (we assume that the reader is familiar with this notion; if not, see [8]): an
infinite binary sequence α is Martin-Löf random if K(α0...αn) > n + O(1) (K
being the prefix Kolmogorov complexity).

Now that we have this good notion of randomness, it is worth looking back
at KL-stochasticity in the light of Kolmogorov complexity. For example:

Question 1. Do the initial segments of a KL-stochastic sequence have to be of
high Kolmogorov complexity?

Question 2. Conversely, given a string α with some randomness deficiency (i.e.
in the case where K(α0...αn) 6 n − f(n) for some unbounded function f), can
we quantify the maximal bias we can get by selecting a subsequence from α?

Concerning Question 1, the following two central theorems give a good pic-
ture of the situation:

Theorem 1 (Muchnik et al. [14]) Let f : N → N be a computable function.
If f(n) = o(n), there exists a KL-stochastic sequence α such that

K(α0...αn) 6 n− f(n) +O(1)

Theorem 2 (Merkle et al. [13]) Let α be an infinite binary sequence. If

lim inf
n→+∞

K(α0...αn)
n

< 1

then α is not KL-stochastic.

(as we will see later, the quantity lim inf K(α0...αn)
n is called the constructive

Hausdorff dimension of α).

Question 2 has been adressed in the case of finite binary sequences by Asarin [2],
Durand and Vereshchagin in [5], who gave lower and upper bounds for the max-
imal bias one can extract from a sequence with a given randomness deficiency.
However, not much is known in the case of infinite binary sequences. For exam-
ple, Theorem 2 says nothing about the relation between the lim inf term and the
maximal bias one can obtain by selecting a subsequence.



Both papers [13] and [5] use the same main three techniques, which are
already present in [14] (where they were used to prove a weaker version of The-
orem 2):

1. Splitting technique. Any sequence (finite or infinite) which has a linear
randomness deficiency can be split into a finite number of subsequences such that
at least two of the subsequences have a linear randomness deficiency relatively
to the other ones.

2. Competing strategies. Given two finite sequences u and v with known
randomness deficiencies (say, respectively K(u) = |u| − d1 and K(v) = |v| − d2),
one can construct (the construction depending only on d1 and d2, not on (u, v))
two strategies (the concept of strategy is formalized below) S1 and S2 such that:
S1 reads v and bets on u, S2 reads u and bets on v, and either S1 multiply its
initial capital by a least 2d1 or S2 multiply its initial capital by at least 2d2 .
Hence, a good way to predict the bits of a string w with some random deficiency
is to use the above technique 1 to split w into pieces such that two of them have
some randomness deficiency and apply technique 2.

3. Converting a strategy into a selection rule. If a betting strategy wins on
a sequence (finite or infinite) an amount of money which is expontential in the
number of bets, one can construct from this strategy a selection rule which se-
lects a biased subsequence.

In this paper, we address Question 2 for both the finite and infinite cases.
In section 2, we introduce some game-theoretic notions, and in particular the
notion of (selective) betting strategy. We prove a refinement of the conversion of
a strategy into a selection rule (Theorem 6), which will be of crucial use in the
sequel.

In section 3, we start with an account of effective Hausdorff dimension. This
is a well-known approach of algorithmic randomness, which was first introduced
by Lutz [10], where he defines constructive Hausdorff dimension. We will also
define computable Hausdorff dimension, which was introduced by Downey et
al. [4]. We then present our main result —Theorem 11— which is a quantitative
version of the above Theorem 2, i.e. it relates explicitly the constructive Haus-
dorff dimension of a sequence to the maximal bias one can obtain by selecting
a subsequence. More precisely, we provide a lower bound on this maximal bias,
which we will prove to be optimal. We also give an interpretation of this result
purely in terms of effective Hausdorff dimension.

Finally, in section 4, we will prove an analogous result in the framework of
finite binary sequences, answering a question of Durand and Vereshchagin.

Before we move on to our discussion, we present the basic definitions and
notation we will need in the sequel. We denote by 2∗ the set of finite binary
sequences, and by 2ω the set of infinite ones. For every element α = α0α1α2...
of 2ω, and every n,m ∈ N, we denote by α[n,m] the string αnαn+1...αm. For all
u ∈ 2∗, we denote by u2ω the set of infinite sequences of which u is a prefix. We
denote by |u| the length of u.



We denote by ]0(α, n) and ]1(α, n) respectively the number of 0’s and 1’s
among α0..αn−1. We set

Bias(α) = lim sup
n→+∞

∣∣∣∣ ]0(α, n)
n

− 1
2

∣∣∣∣
We denote by H(p) the entropy of the Bernoulli random variable with pa-

rameter p. Recall that for p ∈ [0, 1], H(p) = −p log p − (1− p) log(1− p), and
that x 7→ H( 1

2 + x) is a decreasing bijection from [0, 1
2 ] to [0, 1].

If Z is a subset of N, and α, β are two elements of 2ω, we call Z-join of α and
β, and denote by α⊕Z β, the element of 2ω we get by merging α and β, placing
the bits of β in positions i’s such that i ∈ Z. Formally,

(α⊕Z β)i =
{
α|Z̄∩{0..i−1}| if i /∈ Z
β|Z∩{0..i−1}| if i ∈ Z

If Z = 2N + 1, we have α⊕Z β = α0β0α1β1..., and we abbreviate α⊕Z β by
α⊕ β.

If a set A ⊆ N is recursively enumerable, we denote by A[τ ] the finite set
containing the elements of A that appear during the first τ steps of a fixed
enumeration of A.

2 Selection rules vs Strategies

2.1 Selection rules

We formalize the notion of selection rule we discussed above. A selection rule is
a (partial) function σ : 2∗ → N× {selects, scans}.

We run a selection rule σ on a sequence α as follows. Let s0 and h0 be empty
words, and p0 be the empty set. We define sn, hn and pn by induction. Informally,
sn represents the selected bits after n moves, hn represents the history, i.e. the
bits that have been read during the first n moves, and pn the positions in α of
these bits. At n-th move (by convention, there is a 0-th move):
- If σ(hn) = (k, selects) and k /∈ pn, set sn+1 = snαk, hn+1 = hnαk and
pn+1 = pn ∪ {k}.
- If σ(hn) = (k, selects) and k ∈ pn, or σ(hn) = (k, scans), set sn+1 = sn,
hn+1 = hnαk, and pn+1 = pn ∪ {k}.
(if for some n, σ(hn) is not defined, the selection process is immediately stopped).
If infinitely many selections are performed, i.e. if the set {s0, s1, s2, ...} is infinite,
the si’s are prefixes of an infinite sequence β. In this case, we say that β is the
subsequence of α selected by σ, which we write β = σ[α].

We say that α is Kolmogorov-Loveland stochastic if for every β ∈ 2ω that
can be selected from α by a computable selection rule, β satisfies the law of large
numbers (i.e. lim ]0(β,n)

n = 1
2 ).



As we want to quantify the bias one can extract from a sequence by a com-
putable selection rule, we will focus our attention on the quantity:

δselmax(α) = sup
{
Bias

(
σ[α]

)
: σ computable selection rule

}
Remark 3 We made the choice to define selection rules by partial functions
(and hence, by computable selection rule we mean partial computable selection
rule). It turns out that, by an argument of W. Merkle [12], defining them to be
total functions would not change the notion of KL-stochasticity nor would affect
the quantity δselmax.

2.2 Strategies

In [14], Muchnik et al., trying to improve on the notion of KL-stochasticity,
suggested to adopt a game-theoretic point of view. We follow their approach.

Let us consider the following game, where Player plays against a sequence
α ∈ 2ω. The goal for Player is to make money while trying to guess the bits of
α. Initially, all the bits are hidden. At each move, Player selects a bit that is not
yet revealed. He can either scan it, or bet on its value some (rational) fraction ρ
of his current capital. If his guess is correct, his stake is doubled (i.e. his capital
is multiplied by (1 + ρ)). If not, his stake is lost (i.e. his capital is multiplied by
(1− ρ)).

Formally, a selective strategy is a (partial) function S : 2∗ → (N×{scans})∪(
N×{0, 1}×(Q∩ [0, 1])

)
. If the range of S is contained in N×{0, 1}×(Q∩ [0, 1])

(i.e. S never scans), it is said to be a strategy.

We run a (selective) strategy S on a sequence α as follows: let h0 be the
empty word, and p0 the empty set. Set W0 = 1 (initial capital), and N0 = 0
(number of bets). At n-th move:
- If S(hn) = (k, b, ρ) and k /∈ pn, set hn+1 = hnαk, pn+1 = pn ∪ {k}, Nn+1 =
Nn+ 1. Also set Wn+1 = (1 +ρ)Wn if αk = b and Wn+1 = (1−ρ)Wn otherwise.
- If S(hn) = (k, b, ρ) and k ∈ pn, or S(hn) = (k, scans), set hn+1 = hnαk,
pn+1 = pn ∪ {k}, Nn+1 = Nn. Also set Wn+1 = Wn.

We denote by Vm Player’s capital after the m-th bet, that is: Vm = Wn with
n = min{i : Ni = m}. We denote by Vm(α, S) Player’s capital after the m-th
bet, when playing against α according to the selective strategy S (note that this
could be undefined). We finally call a triple (k, b, ρ) a bet.

Muchnik et al. defined an infinite sequence α to be unpredictable (we now
say Kolmogorov-Loveland random) if there exists no computable strategy S
such that lim supVn(α, S) = +∞ (here again, by Merkle’s argument, it does
not matter whether we take the strategies to be partial computable or total
computable). While Kolmogorov-Loveland randomness is a priori weaker than
Martin-Löf randomness, the two notions have been shown to be close ([14], [13]),
and their equality remains a fundamental open question. We will not discuss



Kolmogorov-Loveland randomness here, but we will use extensively the notion
of selective strategy.

Remark 4 One may think at first that the notions of selective strategy and
strategy are equivalent, since scanning a bit is the same as betting 0 on it. This
is true if we just want to define Kolmogorov-Loveland randomness (and indeed
Muchnik et al. did not make our distinction between strategy and selective strat-
egy). However, this would not be suitable for our purposes, as we will be inter-
ested in strategies which succeed exponentially fast in the number of bets, and
non-necessairly in the number of moves.

It is a well-known fact that if a sequence α is biased, there exists a computable
strategy S which makes money exponentially when betting on its bits. More
precisely:

Proposition 5 Let α ∈ 2ω, and δ = Bias(α). There exists a strategy S, com-
putable with oracle δ, such that for all t > H( 1

2 + δ):

lim sup
n→+∞

Vn(α, S)
2(1−t)n = +∞

Proof. Without loss of generality, suppose that lim sup ]0(α,n)
n = 1

2 +δ. Using the
oracle δ, let us compute a sequence {δn}n∈N of rational numbers, converging to
δ. Let S be the strategy which at the n-th move bets (n, 0, 2δn). We then have,
for all n:

Vn(α, S) =
∏

06i6n−1
αi=0

(1 + 2δi)
∏

06i6n−1
αi=1

(1− 2δi)

Hence,

log Vn(α, S)
n

=
1
n

∑
06i6n−1
αi=0

log(1 + 2δi) +
1
n

∑
06i6n−1
αi=1

log(1− 2δi)

It follows that:

lim sup
n→+∞

log Vn(α, S)
n

=
(

1
2

+ δ

)
log(1+2δ)+

(
1
2
− δ
)

log(1−2δ) = 1−H
(1

2
+δ
)
ut

Schnorr [15] proved conversely that if there exists a selective strategy S which,
playing against α, makes money exponentially in the number of bets, then there
exists a computable selection rule which selects from α a biased subsequence
(although he did not quite use the same terminology as ours). However, Schnorr
proved this in a purely qualitative way. We strengthen Schnorr’s theorem by
proving the converse of Proposition 5.



Theorem 6 Let α ∈ 2ω. Suppose that there exists a real number s and a selective
strategy S such that lim sup Vn(α,S)

2(1−t)n = +∞ for all t > s. Then, there exists a
selection rule σ, computable with oracle s, such that the bias δ = Bias

(
σ[α]

)
is

large enough to satisfy H( 1
2 + δ) 6 s.

Proof. The basic idea of the proof is the following: by an argument of Ambos-
Spies et al. [1], the above theorem would be easier to prove if S was only allowed
to play moves of type (k, scans) or (k, 0, q), where q is a fixed constant. Indeed,
in this case, let σ be the computable selection rule which simulates S, scanning
a bit if S scans it, and selecting a bit if S bets on it. We then have for all n:

Vn(α, S) = (1 + q)]0(σ[α],n)(1− q)]1(σ[α],n)

i.e.
log Vn(α, S)

n
=
]0(σ[α], n)

n
log(1 + q) +

]1(σ[α], n)
n

log(1− q)

Setting δ = Bias
(
σ[α]

)
, it follows that

lim sup
n→+∞

log Vn(α, S)
n

6

(
1
2

+ δ

)
log(1 + q) +

(
1
2
− δ
)

log(1− q)

By definition of S:

lim sup
n→+∞

log Vn(α, S)
n

> 1− s

It follows that

1− s 6

(
1
2

+ δ

)
log(1 + q) +

(
1
2
− δ
)

log(1− q)

The function x 7→
(

1
2 + δ

)
log(1 + x) +

(
1
2 − δ

)
log(1 − x) taking its maximum

for x = 2δ, we then have

1− s 6

(
1
2

+ δ

)
log(1 + 2δ) +

(
1
2
− δ
)

log(1− 2δ)

i.e.
s > H(

1
2

+ δ)

Of course, our notion of strategy is not restricted as above. However, since the
couples (value,stake) of the bets are contained in the compact set {0, 1}× [0, 1],
we argue by a dichotomy technique that there must be some some condensation
point (b, ρ̄) in the neighbourhood of which bets are often successfull.

Let us denote by (ki, bi, ρi) the i-th bet made by S while playing against α.
We also denote by ρ̃i Player’s reward for this bet (i.e. ρ̃i = ρi if αki

= bi, and
ρ̃i = −ρi otherwise). By assumption, we have for all t > s:

lim sup
n→+∞

n∏
i=0

2t−1(1 + ρ̃i) = +∞



It is then clear that at least one of the following holds:

lim sup
n→+∞

∏
06i6n
bi=0

2t−1(1 + ρ̃i) = +∞ for all t > s

or
lim sup
n→+∞

∏
06i6n
bi=1

2t−1(1 + ρ̃i) = +∞ for all t > s

Without loss of generality we assume the first holds. Hence, we can assume
that S never predicts a bit of α to have value 1 (replacing such bets by scans).
Now, let η ∈ [0, 1

2 ] be such that H( 1
2 + η) = s. Using s as an oracle, let us

compute a sequence {[s−m, s+
m]}m∈N of interval with rational bounds such that

for all m, s ∈ [s−m, s
+
m]. Also, since H is computable, η is computable with oracle

s. Let then {ηm}m∈N be a sequence of rational numbers, computable with oracle
s, such that for all m, η ∈ [η−m, η

+
m]. We distinguish two cases:

Case 1: for all m ∈ N,

lim sup
n→+∞

∏
06i6n−1

ρi∈[2η−m,2η
+
m]

2t−1(1 + ρ̃i) = +∞ for all t > s (1)

In this case, let S′ be the selective strategy which plays on the same bits as
S, proceeding by stages. During the stage m, at the i-th move:

– if S plays (ki, 0, ρi), with ρi ∈ [2η−m, 2η
+
m], S′ plays the same thing.

– if S plays (ki, 0, ρi) with ρi /∈ [2η−m, 2η
+
m] or plays (ki, scans), S′ plays

(ki, scans).

S′ stays in stage m until, for some n, Vn(α, S′) > 2(1−sm)n (this will eventu-
ally happen by (1)). When this happens, S′ enters stage m+ 1 and so on.

By construction, the selective strategy S′ also satisfies lim supn
Vn(α,S′)
2(1−t)n =

+∞ for all t > s. Let then σ be the selection rule which simulates S′, and selects
a bit if S′ bets on it, and scans a bit if S′ scans it. Denoting by ρ′i the stake of
the i-th bet S′ makes, we have:

Vn(α, S′) =
∏

06i6n−1
σ[α]i=0

(1 + ρ′i)
∏

06i6n−1
σ[α]i=1

(1− ρ′i)

hence,

log Vn(α, S′)
n

=
1
n

∑
06i6n−1
σ[α]i=0

log(1 + ρ′i) +
1
n

∑
06i6n−1
σ[α]i=1

log(1− ρ′i)



Set δ = Bias
(
σ[α]

)
. Since ρ′i → 2η and

∣∣∣{i 6 n−1 : σ[α]i = 0}
∣∣∣ 6 ( 1

2 + δ)n+
o(n), we get:

lim sup
n→+∞

log Vn(α, S′)
n

6 (
1
2

+ δ) log(1 + 2η) + (
1
2
− δ) log(1− 2η)

It follows by (1) that

1− s 6 (
1
2

+ δ) log(1 + 2η) + (
1
2
− δ) log(1− 2η)

But since 1 − s = ( 1
2 + η) log(1 + 2η) + ( 1

2 − η) log(1 − 2η), it follows that
δ > η, as wanted.

Case 2: If Case 1 does not hold, there exists m0 such that

lim sup
n→+∞

∏
06i6n

ρi /∈[2η−m0
,2η+

m0
]

2t−1(1 + ρ̃i) = +∞ for all t > s

Thus, at least one of the following holds:

lim sup
n→+∞

∏
06i6n

ρi∈[0,2η−m0
)

2t−1(1 + ρ̃i) = +∞ for all t > s

or

lim sup
n→+∞

∏
06i6n

ρi∈(2η+
m0
,1]

2t−1(1 + ρ̃i) = +∞ for all t > s

Choosing one that holds, we split the betting interval, [0, 2η−m0
) or (2η+

m0
, 1],

into two, and repeat the argument infinitely. By compactness, we get the ex-
istence of some ρ̄ such that there exits arbitrarily small intervals [q1, q2) (or
(q1, q2] if in the above we chose (2η+

m0
, 1], which does not change the proof) with

q1, q2 ∈ Q+ containing ρ̄ and such that:

lim sup
n

∏
06i6n

ρi∈[q1,q2)

2t−1(1 + ρ̃i) = +∞ for all t > s (2)

Note that since ρ̄ ∈ [0, 2η−m0
] ∪ [2η+

m0
, 1], we have ρ̄ 6= 2η. Moreover, the

function x 7→ ( 1
2 + η) log(1 + x) + ( 1

2 − η) log(1− x) takes its only maximum for
x = 2η, it follows that:

(
1
2

+ η) log(1 + ρ̄) + (
1
2
− η) log(1− ρ̄) < (

1
2

+ η) log(1 + 2η) + (
1
2
− η) log(1− 2η)



Hence, taking them close enough to ρ̄, we can find q1, q2 ∈ Q+ satisfying (2)
and such that:

(
1
2

+η) log(1+q2)+(
1
2
−η) log(1−q1) < (

1
2

+η) log(1+2η)+(
1
2
−η) log(1−2η)

Let then S′ be the selective strategy which runs S and whenever S plays
(ki, 0, ρi):

– If ρi ∈ [q1, q2), S′ plays the same thing.
– Otherwise, S′ plays (ki, scans).

Here again, we define σ to be the selection rule which runs S′ and selects a
bit if S′ bets on it, and scans it if S′ scans it.

For all n, we have

Vn(α, S′) > (1− q1)]0(σ[α],n)(1 + q2)]1(σ[α],n)

hence

log Vn(α, S′)
n

>
]0(σ[α], n)

n
log(1 + q2) +

]1(σ[α], n)
n

log(1− q1)

Setting δ = Bias
(
σ[α]

)
, we have:

1− s 6 lim sup
n

log Vn(α, S′)
n

6 (
1
2

+ δ) log(1 + q2) + (
1
2
− δ) log(1− q1)

By definition of q1, q2 this implies that δ > η, as wanted. ut

3 Effective Hausdorff dimension and stochasticity

In this section, we investigate the relationship between stochasticity and effective
Hausdorff dimension. Hausdorff dimension was defined by Hausdorff in [7] as a
measure of dimension in an arbitrary metric space. In the sequel, we will restrict
ourselves to the Hausdorff dimension of subsets of 2ω. For a detailed survey of
classical Hausdorff dimension, see [6].

Let X be a subset of 2ω, and s > 0. X is said to be an s-nullset if there exists
a sequence (Cn)n∈N of subsets of 2∗ such that for all n:

X ⊆
⋃
u∈Cn

u2ω and
∑
u∈Cn

2−s|u| 6 2−n (3)

The classical Hausdorff dimension of X is defined by:

dimH(X) = inf{s : X is a s-nullset}

We now look at Hausdorff dimension from a computability viewpoint, ef-
fectivizing the above definition as Lutz [10] (for constructive dimension) and
Downey et al. [4] (for computable dimension) did:



Definition 7 A subset X of 2ω is a constructive s-nullset if there exists a com-
putable sequence (Cn)n∈N of computably enumerable subsets of 2∗ satisfying (3).

A subset X of 2ω is a computable s-nullset if there exists a computable sequence
(Cn)n∈N of computably enumerable subsets of 2∗ satisfying (3) and such that the
real numbers

∑
u∈Cn

2−s|u| are uniformly computable.

The constructive Hausdorff dimension dim1(X) and the computable Haus-
dorff dimension dimcomp(X) are then defined by:

dim1(X) = inf{s : X is a constructive s-nullset}

dimcomp(X) = inf{s : X is a computable s-nullset}

Merkle et al. used the term Schnorr dimension instead of computable dimen-
sion, but we believe the latter is more appropriate.

Remark that, by the above definitions, for all X ⊆ 2ω:

0 6 dimH(X) 6 dim1(X) 6 dimcomp(X) 6 1

For a single sequence α ∈ 2ω, we abbreviate dim1({α}) by dim1(α) and dimcomp({α})
by dimcomp(α). The effective dimension of a singleton is not a trivial notion:
although every singleton has classical Hausdorff dimension 0, the effectivity
requirement can make a singleton have positive constructive (or computable)
dimension. In particular, Mayordomo proved an elegant characterization of con-
structive Hausdorff dimension in terms of Kolmogorov complexity (there had
been some earlier results in this direction, see the discussion in [3]):

Theorem 8 (Mayordomo [11]) For all α ∈ 2ω:

dim1(α) = lim inf
n→+∞

K(α[0,n])
n

Hausdorff dimension and its effective versions have a game-theoretic charac-
terization. It involves the notion of martingale. A (normed) martingale is a total
function d : 2∗ → [0,+∞) such that d(∅) = 1 (here ∅ is the empty word) and for
all u ∈ 2∗, d(u) = d(u0)+d(u1)

2 .

A martingale is said to be s-successful on a sequence α if

lim sup
n→+∞

d(α[0,n])
2(1−s)n = +∞

We have the following result, whose first part is due to Lutz [9] and second
part to Downey et al. [4].



Theorem 9 For all X ⊆ 2ω:

dimH(X) = inf{s : ∃d martingale which s-succeeds on every α ∈ X}

dimcomp(X) = inf{s : ∃d computable martingale which s-succeeds on every α ∈ X}

Constructive dimension can also be characterized by game-theoretic concepts
(see [10]), but we will not need such a characterization.

The first thing one should remark is that a martingale can be interpreted
as the capital of a strategy which bets on every bit (in order). Indeed, if d is a
martingale, define Sd by

Sd(u) =

{
(|u|, 0, d(u0)

d(u) − 1) if d(u0) > d(u1)

(|u|, 1, d(u1)
d(u) − 1) if d(u0) < d(u1)

We then have, for all α ∈ 2ω and all n:

Vn(α, Sd) = d(α[0,n−1])

Obviously, d is computable if and only if Sd is. Hence, given a computable
martingale and a computable selection rule, one can canonically construct a
computable selective strategy corresponding to their composition. This remark,
together with Proposition 5 and Theorem 6, yields a characterization of KL-
stochasticity in terms of computable dimension:

Proposition 10 A sequence α is KL-stochastic iff for every sequence β selected
from α by a computable selection rule, dimcomp(β) = 1

We now turn our attention to the relation between constructive Hausdorff
dimension and KL-stochasticity. We shall prove the main theorem of this section:

Theorem 11 For all α ∈ 2ω, H( 1
2 + δselmax(α)) 6 dim1(α)

The proof follows the three steps we mentioned in the introduction. First, we
use a splitting argument:

Lemma 12 Let α ∈ 2ω and s be such that dim1(α) 6 s. There exists a recursive
co-infinite Z ⊆ N such that, writing α = (β ⊕ β′)⊕Z γ, we have:

dim(γ)
1 (β) 6 s and dim(γ)

1 (β′) 6 s

(dim(γ)
1 is the dimension relative to the oracle γ).

Proof. In order to prove this lemma, we need the following result:



Lemma 13 (Merkle et al. [13]) For all β′, β′′ ∈ 2ω, we have:

dim1(β′ ⊕ β′′) >
1
2

dim1(β′) +
1
2
dim

(β′)
1 (β′′)

and symmetrically:

dim1(β′ ⊕ β′′) >
1
2

dim1(β′′) +
1
2

dim(β′′)
1 (β′)

To obtain Lemma 12 from Lemma 13, let α ∈ 2ω and s with dim1(α) 6 s.
Let us set t = inf{dim(γ)

1 (β) : ∃ Z recursive s.t. α = β⊕Z γ}. We distinguish two
cases:

Case 1: t = s. We then write α = α′ ⊕ α′′. By Lemma 13, we have

s = dim1(α) > 1
2 dim1(α′) + 1

2 dim(α′)
1 (α′′)

s = dim1(α) > 1
2 dim1(α′′) + 1

2 dim(α′′)
1 (α′)

But by definition of t: dim(α′)
1 (α′′) > t = s, and dim(α′′)

1 (α′) > t = s.
Thus, dim1(α′) 6 s and dim1(α′′) 6 s. We then get the desired result writing
α = (α′ ⊕ α′′)⊕∅ 0ω.

Case 2: t < s. In this case, let β, γ ∈ 2ω and Z recursive be such that α =
β⊕Zγ and dim(γ)

1 (β) 6 s+t
2 . Then write β = β′⊕β′′, and let X1, X2, Y1, Y2 be the

recursive subsets of N such that α = β′⊕X1 (β′′⊕X2 γ) and α = β′′⊕Y1 (β′⊕Y2 γ).
Relativizing Lemma 13 to the oracle γ, we get:

s+t
2 > dim(γ)

1 (β) > 1
2 dim(γ)

1 (β′) + 1
2 dim(β′⊕Y2γ)

1 (β′′)
s+t
2 > dim(γ)

1 (β) > 1
2 dim(γ)

1 (β′′) + 1
2 dim(β′′⊕X2γ)

1 (β′)

By definition of t, dim(β′⊕Y2γ)
1 (β′′) > t and dim(β′′⊕X2γ)

1 (β′) > t. Hence,
dim(γ)

1 (β′) 6 s and dim(γ)
1 (β′′) 6 s, as wanted. ut

The above splitting result allows us to apply the competing strategies tech-
nique, to get:

Lemma 14 Let α, β, γ ∈ 2ω and s such that dim(γ)
1 (α) 6 s and dim(γ)

1 (β) 6 s.
There exists a selective strategy S, computable with oracle (s, γ), such that for
all t > s, lim sup Vn(α⊕β,S)

2(1−t)n = +∞.

Proof. We in fact prove the following proposition, which, relativized to oracle γ,
implies Lemma 14.

Proposition 15 Let α and β be in 2ω and s be such that dim1(α) 6 s and
dim1(β) 6 s. There exists a selective strategy S, computable with oracle s, such
that for all t > s, lim sup Vn(α⊕β,S)

2(1−t)n = +∞.



To do so, we will need the following lemmas:

Lemma 16 (Muchnik et al. [14]) Let {(u0, q0), ..., (un, qn)} be a finite subset
of 2∗ × Q>0 such that:

∑
i6n qi 6 1. There exists a computable martingale d

such that for all i 6 n, d(ui) > qi2|ui|. As we have seen, we can associate to d a
strategy Sd. We denote this strategy by Strat({(u0, q0), ..., (un, qn)})

Lemma 17 (Merkle et al. [13]) Let α ∈ 2ω such that dim1(α) = s < 1. Let
{sm}m∈N be a decreasing sequence converging to s. For all N, l,m ∈ N, there
exists an N ′ such that N ′ > N + l and K(α[N :N ′]) 6 sm(N ′ −N).

Now, let α, β be in 2ω, with dim1(α) 6 s and dim1(β) 6 s. Using s as
an oracle, let us compute a decreasing sequence {sm}m∈N of rational numbers
converging to s. Let also D be a computable integer-valued function such that
lim D(n)

n = +∞. Let S1 and S2 be the selective strategies which, on α⊕ β, work
as follows:

We proceed by stages. At he beginning of stage m, S1 and S2 have both read
the first pm bits of α, and the first pm bits of β (we set p0 = 0, the sequence
{pm}m∈N will be defined inductively during the game), and nothing else. At stage
m, S1 (resp. S2) first enumerates Am = {u : |u| > D(pm) and K(u) 6 sm|u|}
and finds the smallest τm (resp. τ ′m) such that β[pm,+∞) (resp. α[pm,+∞)) has
a prefix in Am[τm] (resp. Am[τ ′m]), reading exactly as many bits of β (resp.
α) as necessary. The existence of τm and τ ′m is asserted by Lemma 17. We set
Lm = max{|u| : u ∈ Am[τm]} and L′m = max{|u| : u ∈ Am[τ ′m]}.

Then, S1 (resp. S2) saves half of its current capital, and uses the rest to apply
Strat({(u, 2−sm|u|) : u ∈ Am[τm]}) (resp. Strat({(u, 2−sm|u|) : u ∈ Am[τ ′m]}) to
α[pm,+∞) (resp. β[pm,+∞)) during Lm (resp. L′m) moves. Notice that
Strat({(u, 2−sm|u|) : u ∈ Am[τm]}) is well-defined since:∑

u∈Am[τm]

2−sm|u| 6
∑

u∈Am[τm]

2−K(u) 6
∑
u∈2∗

2−K(u) 6 1

The first inequality is due to the definition of Am, and the third one is a well
known fact in Kolmogorov complexity (see for example [8]).

Finally, S1 (resp. S2) computes pm+1 = pm + 1 + max(Lm, L′m), reading
exactly as many bits of α (resp. β) as necessary. Finally, both S1 and S2 read
those of the first pm+1 bits of α and β they have not read yet. This finishes stage
m.

It is clear that either τ ′m 6 τm infinitely often, or τm 6 τ ′m infinitely often.
Without loss of generality, assume the first holds.

Notice that whenever τ ′m 6 τm, α[pm,+∞) has a prefix α[pm,pm+Nm] in Am[τm].
S1, by definition, applies Strat({(u, 2−s|u|) : u ∈ Am[τm]}) to α[pm,+∞) during
Lm moves, with Lm > Nm. After pm +Nm moves:

– The capital of S1 is at least 2−(m+1)2(1−sm)Nm . Indeed, S1 lost at most
half of its capital during each previous stage, hence the term 2−(m+1). The
term 2(1−sm)Nm is an application of Lemma 16: it represents the factor



by which the capital is multiplied when playing on α[pm,Nm] according to
Strat({(u, 2−s|u|) : u ∈ Am[τm]}) during Nm moves.

– The number of bets made up until then is at most pm+Nm (since the number
of bets cannot be greater than the number of moves!)

Thus, the ratio log(capital)
number of bets is at that point greater than (1−sm)Nm−(m+1)

pm+Nm
.

But by definition of Am, pm = o(Nm) (and a fortiori m = o(Nm)). It follows
that

lim sup
m

(1− sm)Nm − (m+ 1)
pm +Nm

> 1− s

And thus

lim sup
n

log Vn(α⊕ β, S1)
n

> 1− s

which completes the proof. ut

Lemma 12 and Lemma 14 yield:

Proposition 18 Let α ∈ 2ω and s such that dim1(α) 6 s. There exists a selec-
tive strategy S, computable with oracle s, such that for all t > s,

lim sup
n→+∞

Vn(α, S)
2(1−t)n = +∞

Proof. Let α ∈ 2ω such that dim1(α) 6 s. Let β, β′, γ be as in Lemma 12. By
Lemma 14 there exists a strategy S, computable with oracle (s, γ) and playing
on β′⊕β′′ such that lim sup Vn(β′⊕β′′,S)

n = +∞. From S we can deduce a strategy
S′, computable with oracle s, and playing on α such that lim sup Vn(α,S)

n = +∞.
Indeed, let S′ be defined as follows: it makes exactly the same moves as S i.e.
scans and bets on the same bits of β′ and β′′ as S, except that whenever S uses
oracle γ, S′ scans the corresponding bits of γ in α = (β′ ⊕ β′′) ⊕Z γ, to get
the same information. Since no extra bet is made this way, we have for all n,
Vn(β′ ⊕ β′′, S) = Vn(α, S′), hence the result. ut

Finally, converting the strategy S into a selection rule according to Theorem
6, the above proposition can be rephrased as follows:

Proposition 19 Let α ∈ 2ω and s such that dim1(α) 6 s. There exists a se-
lection rule σ, computable with oracle s, such that, setting δ = Bias

(
σ[α]

)
, we

have H( 1
2 + δ) 6 s.

To get Theorem 11 from Proposition 19, remark that in Proposition 19, if s
is a rational number, σ is computable. Hence, let us take a decreasing sequence
{sm}m of rational numbers converging to s. For all m, by Proposition 19, there
exists a computable strategy σm selecting a subsequence β with bias δm such
that H( 1

2 + δm) 6 sm. Setting δ = supm δm, it follows that H( 1
2 + δ) 6 s, and



hence H( 1
2 + δselmax(α)) 6 s.

The bound we give for δselmax(α) in Theorem 11 is optimal. Indeed, let us
generate a sequence α by choosing its bits at random and independently, in such
a way that for all i, the probability of αi to be 1 is 1

2 +δ. Then, with probability 1:

– Every sequence β selected from α by a computable selection rule has bias
exactly δ (see van Lambalgen [17], Shen [16])

– lim
K(α[0,n])

n = H( 1
2 + δ) (see Zvonkin and Levin [18])

Hence, for all α satisfying these two conditions, we have δselmax(α) = δ and
dim1(α) = H( 1

2 + δ).

Note that although the bound of Theorem 11 is optimal, there are some cases
where H( 1

2 + δselmax(α)) is much smaller than dim1(α): take a Martin-Löf random
sequence α and consider β = α ⊕Z 0ω with Z = {n2 : n ∈ N}. In this case,
δselmax(β) = 1

2 (one just needs to select the bits whose position is in Z) which
means H( 1

2 + δselmax(β)) = 0, whereas dim1(β) = 1.

The martingale characterization of computable Hausdorff dimension, together
with Proposition 19, provides the following relation between the two notions of
effective dimension:

Proposition 20 Let α ∈ 2ω. There exists a selection rule σ, computable with
oracle dim1(α), such that dimcomp

(
σ[α]

)
6 dim1(α).

4 Kolmogorov-Loveland stochasticity for finite binary
sequences

The study of Kolmogorov-Loveland stochasticity for finite sequences was initi-
ated by E. Asarin [2]. The extension of Kolmogorov-Loveland stochasticity to
finite sequences is more quantitative, i.e. contrary to infinite sequences, there is
no clear separation between stochastic and non-stochastic. Rather, for each finite
sequence u of length N , and each selection rule σ, there are three key-parameters:

– the Kolmogorov complexity of σ: K(σ|N)
– the size of the selected subsequence:

∣∣σ[u]
∣∣

– the bias of the selected subsequence: Bias
(
σ[u]

)
=
∣∣∣ ]0(σ[u],N ′)

N ′ − 1
2

∣∣∣ (where
N ′ = |σ[u]|)

The smaller the first, and the bigger the two others, the less stochastic u
is. Asarin [2], Durand and Vereshchagin [5] proved respectively an upper bound
and a lower bound of the bias one can obtain by selecting a subsequence of
a sequence with some randomness deficiency, these bounds depending on the



randomness deficiency, the Kolmogorov complexity of the selection rule and the
size of the selected subsequence. Moreover, these bounds are very general as they
require (almost) no restriction of their three parameters. We instead focus on a
particular case, which we believe is very natural given the above discussion on
infinite sequences: for a finite sequence u with randomness deficiency (1− s)|u|,
what bias can we obtain if we require the Kolmogorov complexity of the selection
rule to be O(1), and the size of the selected subsequence to be Ω(|u|)? This
question was raised by Durand and Vereshchagin (open question 1 of [5]). The
following two theorems provide an answer to this question and show that in the
case of finite sequences too, the constant δ such that H( 1

2 + δ) = s is a threshold
for the extraction of biased subsequences.

Theorem 21 For all s ∈ [0, 1] and all δ such that H( 1
2 + δ) > s, there exist real

constants c1, c2 such that for all large enough N and every finite sequence u of
length N satisfying K(u) 6 sN , there exists a selection rule σ such that

K(σ|N) 6 c1,
∣∣σ[u]

∣∣ > c2N and Bias
(
σ[u]

)
> δ

Proof. The idea of the proof is very similar to the one of Proposition 19. However,
it requires some extra care as we want the selected subsequence to be compara-
ble in length to the initial sequence. Indeed, in the proof of Proposition 19, the
selection rule we construct might possibly select a very sparse subsequence of the
initial sequence, and hence the construction cannot be modified in a straigthfor-
ward way to prove Theorem 21.

We start with a lemma, which is a slightly modified version of the lemma 7
of [5].

Lemma 22 Let s ∈ [0, 1] and ε > 0. For all large enough N , the following holds.
Every finite sequence u of length N such that K(u) 6 s|u| can be chopped into
2k (with k 6 d2s/εe) blocks w1, ...w2k of length N

2k + O(log k), such that there
exist two consecutive blocks wi and wi+1 which satisfying

K(wi|v, v′) 6 (s+ ε)|wi|

K(wi+1|v, v′) 6 (s+ ε)|wi+1|

where v, v′ are such that u = vwiw+1v
′

Proof of Lemma 22: We prove this by induction on the quantity d2s/εe.
If d2s/εe = 1, then split u into two halves of equal (up to 1) length u = u1u2.

We have, up to an additive constant K(u1) 6 K(u) +O(1) 6 s|u| 6 2s|u1|. But
since by the hypothesis 2s/ε 6 1 (i.e. ε > 2s) this yields K(u1) 6 ε|u1|+ O(1).
Similarly, K(u2) 6 ε|u2|+O(1), hence the result.

Induction step: we first recall the Levin-Kolmogorov identity. For all finite
sequences u, v holds K(uv) = K(u) +K(v|u) +O(log |uv|). Let u be a finite se-
quence such that K(u) 6 s|u|. Here again, split u into two halves u = u1u2.
If K(u1) 6 (s + ε)|u1| and K(u2) 6 (s + ε)|u2|, we are done. If not, but
the Kolmogorov-Levin identity, it follows that either K(u1|u2) 6 (s − ε)|u1|



or K(u2|u1) 6 (s − ε)|u2| + O(log |u1|). Without loss of generality, suppose
that the first holds. If |u1| is big enough, we have K(u1|u2) 6 (s − ε

2 )|u1|. By
the induction hypothesis, conditionned by u2, u1 can be chopped into 2k (with
k 6 d2(s− ε

2 )/εe = d2s/εe−1) blocks w1, ..., w2k of length n
2k +O(log k) such that

there exist two consecutive blocks wi, wi+1 satisfying K(wi|v, v′, u2) 6 (s+ε)|wi|
and K(wi+1|v, v′, u2) 6 (s+ ε)|wi+1|. This completes the induction.

Lemma 23 Let s ∈ [0, 1], and δ such that H( 1
2 + δ) > s. For all large enough

N , and every finite sequence u of length N , the following holds. For every selec-
tive strategy S which, playing against u, multiplies its initial capital by at least
2(1−s)N , there exist a selection rule σ such that K(σ|N) 6 K(S|N) + O(1),∣∣σ[u]

∣∣ = Ω(N), and Bias
(
σ[u]

)
> δ.

Proof of Lemma 23: Fix ε > 0. Let ρi be the stake of S during the i-th bet.
As in the proof of Theorem 6, we can assume that S always predicts the value
of a bit to be 0 (up to replacing the other bets by bets with stake 0). We can
also assume that the strategy bets on every bit. We have

N∏
i=1

(1 + ρ̃i) > 2(1−s)N

and thus
N∏
i=1

(1 + ρ̃i)2(s−1+ε) > 2εN

Let us split the interval [0, 1] into m subintervals [ak, bk] such that for all k,
log(1 + bk) 6 log(1 + ak) + ε. We then have:∏

16k6m

∏
16i6N
ρi∈[ak,bk]

(1 + ρ̃i)2(s−1+ε) > 2εN

Hence, there exists some j such that∏
16i6N
ρi∈[aj ,bj ]

(1 + ρ̃i)2(s−1+ε) > 2εN/m

Let us first estimate the size of Ij = {i : ρi ∈ [aj , bj ]}. Since for all i, ρ̃i 6 1, by
the last inequality above:

2εN/m 6
∏

16i6N
i∈Ij

(1 + ρ̃i)2(s−1+ε) 6 2(s+ε)|Ij |

and hence

|Ij | >
εN

(s+ ε)m



Now, let σ be the selection rule which selects a bit whenever S bets on it a
fraction ρ ∈ [aj , bj ] of its capital. Notice that K(σ|N) 6 K(S|N) +O(1) since σ
can be specified using S, m and j. Let n = |Ij | = |σ[u]| (notice that n = Ω(N)),
and δ = Bias

(
σ[u]

)
. Similarly to the proof of Theorem 6, we have:

2(1−s−ε)n 6 (1 + bj)( 1
2 +δ)n(1− aj)( 1

2−δ)n

hence

1− s− ε 6 (
1
2

+ δ) log(1 + bj) + (
1
2
− δ) log(1− aj)

6 (
1
2

+ δ) log(1 + aj) + (
1
2
− δ) log(1− aj) + ε

6 1−H(
1
2

+ δ) + ε

(The second inequality is a consequence of the definition of the ai’s and bi’s, the
third inequality is a consequence of the fact that the function x 7→ ( 1

2 +δ) log(1+
x)+( 1

2 −δ) log(1−x) reaches its maximum for x = 2δ). Finally, the above yields
H( 1

2 +δ) 6 s+2ε. Since ε can be taken arbitrarily small, we get the desired result.

The proof of Theorem 21 now goes as follow. Fix ε > 0. Let u be a fi-
nite sequence of length N such that K(u) 6 s|u|. By Lemma 22, one can chop
u into at most 2d2s/εe blocks of equal (up to a constant independant on N)
length N ′, with N ′ = Ω(N), such that there exist two consecutive blocks wi
and wi+1 such that, writing u = vw1w2v

′, one has K(w1|v, v′) 6 (s+ ε)N ′ and
K(w2|v, v′) 6 (s+ ε)N ′.

Then, as in the proof of Theorem 6, one can construct two strategies S1, S2

such that:

– S1 scans v, v′, wi+1, and bets on wi
– S2 scans v, v′, wi, and bets on wi+1

– either S1 or S2 multiplies its capital by 2N
′

Moreover, the strategies are of complexity O(1), as they are specified by the
positions of wi and wi+1, which are of complexity O(d2s/εe)).

Then, apply Lemma 23 to the successful strategy to get a selection rule σ
of complexity O(1) which selects a subsequence of length Ω(N ′) = Ω(N) which
is biased with bias δ such that H( 1

2 + δ) 6 s + 2ε. Once again, since ε can be
chosen arbitrarily small, this completes the proof of Theorem 21. ut

Theorem 24 There is no tuple (s, δ, c1, c2), with s ∈ [0, 1], H( 1
2 + δ) < s and

c1, c2 positive real constants such that for all large enough N and all finite se-
quence u of length N satisfying K(u) 6 sN , there exists a selection rule σ
satisfying:

K(σ|N) 6 c1,
∣∣σ[u]

∣∣ > c2N and Bias
(
σ[u]

)
> δ



Proof. We here again use a probabilistic argument. Let (s, δ, c1, c2) be such a
tuple. Recall that if a finite binary sequence of u length N is chosen at random
using N independant Bernoulli random variables of parameter 1

2 + η, we have
(see Zvonkin and Levin [18])

E(K(u)) = H
(

1
2

+ η

)
N + o(N)

Let η > 0 be such that H( 1
2 + δ) < H( 1

2 + η) < s, and choose a finite binary
sequence uN of length N at random using N independant Bernoulli random
variables of parameter η. By the above, we have

lim
N→+∞

Prob
[
K(uN ) 6 sN

]
= 1 (4)

Moreover for each selection rule σ:

lim
N→+∞

Prob
[
|σ[uN ]| > c2N and Bias

(
σ[uN ]

)
> δ
]

= 0

Indeed, the Bernoulli variables being independant, the selected subsequence
σ[uN ] can itself be seen as a sequence obtained with independant Bernoulli
random variables of parameter η. And since δ > η, by the law of large numbers
we get the above identity. Finally, since for all N there are at most 2c1 selection
rules such that K(σ|N) 6 c1, it follows that

lim
N→+∞

Prob
[
∃σ : K(σ|N) 6 c1 and |σ[uN ]| > c2N and Bias

(
σ[uN ]

)
> δ
]

= 0

(5)
By (4) and (5), the theorem is proved. ut
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