
CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS

LAURENT BIENVENU, ROD DOWNEY, NOAM GREENBERG, ANDRÉ NIES,
AND DAN TURETSKY

Abstract. We show the existence of noncomputable oracles which are low for
Demuth randomness, answering a question in [16] (also Problem 5.5.19 in [36]).

We fully characterize lowness for Demuth randomness using an appropriate

notion of traceability. Central to this characterization is a partial relativization
of Demuth randomness, which may be more natural than the fully relativized

version. We also show that an oracle is low for weak Demuth randomness if

and only if it is computable.

1. Introduction

Tools from computability theory are used to answer the question “when is an
infinite binary string random?”. By either using effective betting strategies, effec-
tively presented null sets, or effective descriptions of initial segments, definitions
such as Martin-Löf’s, Schnorr’s and others’ give rise to a hierarchy of notions of
randomness. The rich field of algorithmic randomness classifies the levels of this
hierarchy and, among other pursuits, attempts to understand the behaviour of the
Turing degrees of random sets. Prominent examples are the theorem, indepen-
dently proved by Kučera [28] and Gács [21], that every set is Turing-reducible to a
random set and, in contrast, Stephan’s result [40], showing that random sets with
high information content are atypical.

The interaction between computability and randomness, though, is bidirectional:
it is used not only to understand randomness, but also to understand computability
itself. Starting with Kučera’s seminal work [28], in which he used randomness to
give an injury-free solution to Post’s problem, the study of randomness has been
used to directly answer questions about Turing degrees and computability in gen-
eral. Furthermore, it has yielded new notions, such as traceability, which turned
out to be essential ingredients in our understanding of the Turing degrees. For
example, the notion of strong jump traceability, which arose from algorithmic ran-
domness, was used in [13] to answer a long-standing question regarding the inversion
of pseudojump operators to c.e. degrees. Another example is Ishmukhametov’s use
of traceability [25] to classify the c.e. degrees which have strong minimal covers.

Central to this interaction is the notion of lowness for a randomness notion C.
An oracle A is said to be low for C if every C-random set is also C-random relative
to A. This is a notion of computational weakness: it says that the oracle A cannot
detect regularities in any C-random set. The study of lowness for C gives, on the
one hand, an understanding of the notion of randomness C and its relativization to
an oracle; and on the other hand, gives us insight about what it means to have little
power as an oracle. When there are non-computable oracles which are low for C,
these can be viewed as ‘closed to computable’ and are usually very far from the
halting problem ∅′. When there are none, then the coincidence of computability
and lowness for C captures computability itself, using analytic means.

Downey, Greenberg, Nies and Turetsky were supported by Marsden grants from the Royal
Society of New Zealand, Turetsky as a postdoctoral fellow.

1

2 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

Given the potential benefits of the study of lowness, it is not surprising that a
lot of work has gone into characterizing lowness for randomness notions. The most
useful notion of randomness remains that given by Martin-Löf. Dually, lowness for
Martin-Löf randomness turned out to give a fascinating class of oracles, also known
as the K-trivials. The similarities between constructions of Kučera and Terwijn [29]
and of Mučnik’s (unpublished, see [15, Theorem 11.2.5]) led to Nies’s characteriza-
tion [35] of lowness for randomness in terms of K-triviality; the robustness of this
class was further exhibited by its coincidence with lowness for weak 2-randomness
(Downey, Nies, Weber and Yu [17]). In contrast, Nies [35] showed that the only
oracles that are low for computable randomness are the computable sets.

An important distinction, given a notion of randomness C, is between lowness
for C and lowness for C-tests. Most randomness notions studied in the literature
are defined by specifying that a C-random set is one which avoids a countable class
of null sets, the effectively-presented (in the sense of C) null sets. Usually, each such
null set is presented as the limit of a C-test, which is a sequence 〈Un〉 of open sets,
whose measure quickly tends to 0 1. The corresponding null set is the collection of
reals which belong to infinitely many sets Un. Such reals are said to be captured by
the test. Often, the sets Un are nested, in which case the corresponding null set is
simply the intersection

⋂
n Un.

We say that an oracle A is low for C-tests if every C-null set relative to A is
contained (or covered) by a C-null set. In other words, for every C-test

〈
UAn
〉

relative to A, there is a C-test 〈Vn〉 which covers
〈
UAn
〉
, in the sense that every real

which is an element of infinitely many sets UAn , is also an element of infinitely many
sets Vn. The point is that usually, the extra computational power of the oracles
allows it to design tests which capture more reals; an oracle is low for tests if the
tests relative to A do not in fact produce larger null sets than the ones which are
specified without access to an oracle.

Certainly, every oracle which is low for C-tests is also low for C. Equivalence
of these two notions is immediate if there is a universal C-test, that is, a greatest
C-null set, which captures precisely the non-C-random sets. Thus, for example, it
is immediate that lowness for Martin-Löf randomness is the same as lowness for
Martin-Löf tests. However, most notions of randomness (such as Schnorr, Kurtz
or computable randomness, as well as weak 2-randomness) do not admit universal
tests. Nonetheless, for every notion of randomness C studied so far, lowness for C
and lowness for C-tests coincide2. This intriguing phenomenon is observed empiri-
cally; we still do not have a deep unifying reason for all of these coincidences, even
though Bienvenu and Miller [6] gave such a unified view for a wide class of ran-
domness notions (including Martin-Löf randomness, computable randomness and
Schnorr randomness). This equivalence is usually not proved directly, but passes
through a third characterization of the two notions.

An exemplifying case is that of Schnorr randomness. First, Terwijn and Zam-
bella [42] characterized lowness for Schnorr tests by a property called computable
(or recursive) traceability. Only later, Kjos-Hanssen, Nies and Stephan [27] showed
that lowness for Schnorr randomness also coincides with computable traceability,
and so coincides with lowness for Schnorr tests. Unlike the case of K-triviality,
this characterization is purely computability-theoretic; the definition of computable

1There are some exceptions to this principle, for example for the notion of weak-2-randomness.
2Diamondstone and Franklin [19] recently gave an example of a randomness notion – difference

randomness – for which lowness for tests is strictly stronger than lowness for randomness. However,
the “tests” involved in difference randomness do not belong to the usual family of tests. A
difference test is indeed a sequence of sets 〈Un〉 whose measure tends to 0 quickly, but instead of
being open, each Un is the set-theoretic difference of two effectively open sets.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 3

traceability does not involve notions from randomness. The same applies to the
characterization, by Greenberg and Miller ([22], using work of Stephan and Yu
[41]) of lowness for Kurtz randomness and of lowness for Kurtz tests as the inter-
section of the hyperimmune-free (0-dominated) degrees with the degrees which do
not compute a function always avoiding the jump function e 7→ Φe(e) (the non-DNR
oracles).

Demuth randomness was first introduced by Demuth [8, 9]. It turned out to
be too strong for his original purpose by work of [4, 5]. Nonetheless, it has been
shown to be a very fruitful notion in algorithmic randomness by recent work of
Diamondstone, Greenberg and Turetsky [11, 23], and Kučera and Nies [30].

In this paper, we study the two lowness properties (for tests and for randomness)
associated to Demuth randomness. Most lowness properties for randomness can be
characterized by a combinatorial notion of traceability, and indeed we shall give such
a characterization for lowness for Demuth randomness (and show that it coincides
with lowness for Demuth tests). The techniques we use go well beyond the state of
the art in the study of lowness. For example, the forcing construction of Section 3.4
needs a much finer measure-theoretic analysis (with the use of Chernoff bounds)
than the arguments of the same type that previously appeared in the literature. We
hope that these techniques will be useful for eventually giving a unifying explanation
for the coincidence of lowness for randomness and lowness for tests. We use the
characterization to show the existence of non-computable oracles that are low for
Demuth randomness, answering a question in [16] (also Problem 5.5.19 in [36]).

Demuth randomness. Demuth was primarily interested in various kinds of ef-
fective null classes because of their role in constructive mathematical analysis. For
instance, he studied the differentiability of constructive functions defined on the
unit interval. (The functions he considered were constructive in the Russian sense;
in modern parlance they are referred to as Markov-computable). His notion of
randomness was sufficiently strong to ensure that every constructive function f
satisfies the Denjoy alternative at every Demuth-random point. See Kučera and
Nies [31, Def. 11] for a discussion of Demuth’s original definition, and [36, Section
3.6] for more background.

Compared to Martin-Löf’s, Demuth’s idea is to allow changing the whole nth

component Un of a test (this is an effectively open subset of Cantor space of measure
at most 2−n) a computably bounded number of times. A real is then captured by
the test 〈Un〉 if it lies in infinitely many of the final versions of the sets Un.

We give a formal definition. Recall that a function f : ω → ω is computable from
the halting problem ∅′ if and only if it has a computable approximation, that is,
a uniformly computable sequence of functions 〈fs〉 which pointwise converges to f
(i.e., for all but finitely many s, we have fs(x) = f(x)). Of course this means that
the number of mind-changes #{s : fs+1(x) 6= fs(x)} is finite for every x. If we
further require that this number of mind-changes, as a function of x, be bounded
by some computable function, then we get the notion of ω-computably approximable
functions (or ω-c.a.); this is the class ∆−1ω of the Ershov hierarchy.3

Definition 1.1. A Demuth test is an effective sequence 〈Un〉 of effectively open
(Σ0

1) subsets of Cantor space such that:

(1) For all n, the measure λ(Un) of Un is bounded by 2−n; and
(2) there is an ω-c.a. function mapping n to a Σ0

1 index for Un.

As mentioned above, the notion of test gives notions of null sets and of randomness.
A set (an element of Cantor space) X is captured by a Demuth test 〈Un〉 if X ∈ Un

3The popular but not quite standard term ω-c.e. was reserved by Ershov to denote the class

Σ−1
ω , which is the natural generalisation of the classes of n-c.e. sets.

4 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

for infinitely many n. A set is Demuth random if it is not captured by any Demuth
test.

While Demuth randomness is now known to be strictly stronger than is nec-
essary for characterizing the Denjoy alternative (Bienvenu, Hölzl and Nies [4, 5]),
Demuth randomness turns out to be of interest on its own. Lying between weak
2-randomness and Martin-Löf randomness, it shares some pleasing properties of
1-genericity. Unlike Martin-Löf random sets, Demuth random sets cannot compute
the halting problem; in fact they are all generalized low. Unlike weakly 2-random
sets, Demuth random sets can be ∆0

2. This allows Demuth random sets to interact
with c.e. degrees, in the style of Kučera. For instance, the strongly jump-traceable
c.e. sets were characterized (in one direction by Kučera and Nies [30], in the other
by Greenberg and Turetsky [23]) as the c.e. sets computable from a Demuth random
set.

Traceability. Traces for functions from ω to ω were first introduced in set theory
by Bartoszyński (see [2]), where he called them slaloms. He used them for forcing
results related to cardinal characteristics of the continuum.

In computability, traceability is a measure of weakness of an oracle. An oracle A
will be called traceable if the values of any function ψ in some class of functions
computed by A can be captured in finite sets of small size. Formally, a trace for
a partial function ψ is a sequence 〈Tn〉 of finite sets such that for all n ∈ domψ,
ψ(n) ∈ Tn. The point is that the complexity of the trace 〈Tn〉 is smaller than
the complexity of ψ; while we need A to compute ψ, the trace can be generated
computably, with no access to the oracle A. Traceability, then, would say that the
oracle A is so weak so that it cannot compute a function which escapes effective
traces.

The different notions of traceability vary as we specify:

(1) the class of functions computed by A which are all traced;
(2) the complexity of the trace; and
(3) the rate of growth required of the size of the components of the trace.

The rate of growth is usually calibrated by Schnorr’s order functions. Recall that
an order function is a computable function from ω to ω \ {0} (so it only takes
positive values) which is non-decreasing and unbounded. A trace 〈Tn〉 is bounded
by an order function h if for all n, #Tn 6 h(n). We also say that 〈Tn〉 is an h-trace.

For example, Terwijn and Zambella [42] called an oracle A computably traceable if
for some fixed order function h, each total function that A computes has an h-trace
〈Tn〉 such that a strong index for Tn can be effectively computed from n (the strong
index not only gives us a way to compute Tn, but also gives a bound on its elements).
In another example which was mentioned above, Figueira, Nies and Stephan [18]
defined an oracle A to be strongly jump traceable if for every order function h, every
A-partial computable function has a uniformly c.e. h-trace (so unlike computable
traceability, here from n we only have a method for enumerating the elements of
Tn, but not for computing the set Tn). For more background see [36, Sections 8.2
and 8.4].

We introduce a notion of tracing, Demuth traceability, which will be instru-
mental in characterizing lowness for Demuth randomness. In an analogue to the
move from Martin-Löf randomness to Demuth randomness, Demuth traceability
is a modification of computable traceability which allows finitely many changes to
both the values of the functions being traced and the components of the trace, but
the number of changes in both needs to be computably bounded. To formalize this
notion, we recall a generalization of the notion of ω-c.a. functions due to Cole and
Simpson [7].

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 5

Definition 1.2. Let A be an oracle (an element of Cantor space). A function
f : ω → ω is bounded limit-recursive in A, in short BLR〈A〉, if there is a uniformly
A-computable sequence 〈fs〉 of functions converging to f , such that the mind-change
function n 7→ #{s : fs+1(n) 6= fs(n)} is bounded by a computable function.

Equivalently, f is BLR〈A〉 if it is computable from A′ ≡T A′ ⊕ A, where the
A′-use is bounded by a computable function, but there is no such restriction on the
A-use.

Note that a function is BLR〈∅〉 if and only if it is ω-c.a.

Definition 1.3. An oracle A is Demuth traceable if there is an order function h,
such that every function f which is BLR〈A〉 has an h-trace 〈Tn〉 such that there is
an ω-c.a. function taking n to a c.e. index for Tn.

In passing, we remark that Cole and Simpson characterized the oracles A such
that BLR〈A〉 = BLR〈∅〉 as those which are both superlow and jump traceable. The
equation BLR〈A〉 = BLR〈∅〉 is the same as saying that A is Demuth traceable, but
with the bound h not being an order function but the constant function 1. For
more, see Section 5.

Although there are uncountably many Demuth traceable sets (Theorem 1.5),
some of our results (see Section 4) indicate that the class of Demuth traceable sets
is small, especially if we intersect them with the hyperimmune-free (computably
dominated) sets, those sets which only compute functions which are bounded by
computable functions. This class in fact characterizes lowness for Demuth random-
ness:

Theorem 1.4. The following are equivalent for an oracle A:

(1) A is low for Demuth tests.
(2) A is low for Demuth randomness.
(3) A is both Demuth traceable and computably dominated.

The first step toward Theorem 1.4 was taken by Downey and Ng [16], who showed
that every oracle which is low for Demuth randomness is computably dominated.
As we shall shortly see, we make use of their result in the proof of Theorem 1.4.
Theorem 1.4, however, also helps to settle the question of the existence of non-
computable oracles which are low for Demuth randomness, a fact which has eluded
researchers up to now. To this end, we prove the following theorem:

Theorem 1.5. There is a Π0
1 class consisting of noncomputable oracles which are

all Demuth traceable.

A Π0
1 class with no computable elements is necessarily perfect, and so we get

2ℵ0 -many Demuth traceable sets. We get even more:

Corollary 1.6. There is a perfect set of noncomputable oracles, all of which are
low for Demuth randomness.

Proof of Corollary 1.6, assuming Theorem 1.5. Let P be a Π0
1 class with no com-

putable elements, consisting of sets which are all Demuth traceable. The hyperimmune-
free basis theorem of Miller and Martin [32], performed carefully so as to preserve
splittings, yields a perfect subclass Q ⊂ P consisting of computably dominated
oracles. Theorem 1.4 ensures that Q is as required. �

Partial relativization. A key concept underlying much of this work is that of
partial relativization. As the name suggests, this is the result of relativizing to
an oracle only some aspect of a computable notion, while leaving other aspects
unrelativized. In effect, we study what happens under restricted access to the

6 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

oracle. The idea originated implicitly in [7], was further developed in [38], and
studied in [1].

An example of a partial relativization was already given in the notion of bounded
limit-recursive functions, Definition 1.3. A full relativization to an oracle A of the
notion of ω-c.a. functions would be similar to the definition of BLR〈A〉, except
that the number of mind-changes would be required only to be bounded by an
A-computable function, not by a computable function. Partial relativizations are
also used to define so-called weak reducibilities associated with lowness notions, a
prime example of which is the notion of LR-reducibility, the reducibility associated
with lowness for Martin-Löf randomness.

It turns out that partial relativization of randomness notions themselves is often
useful as well. While all reasonable relativizations of Martin-Löf randomness coin-
cide, this is not the case for other notions of randomness. For example, Miyabe [33],
following work of Downey, Griffiths and LaForte [14], examined a partial relativiza-
tion of Schnorr randomness with only truth-table access to the oracle. Here we
suggest a partial relativization of Demuth randomness.

Definition 1.7. Let A be an oracle. A DemuthBLR〈A〉-test, or a Demuth test
by4A, is a sequence

〈
UAn
〉

of Σ0
1(A) subsets of Cantor space such that for all n,

λ
(
UAn
)
6 2−n, and there is a BLR〈A〉-function taking n to a Σ0

1(A)-index for UAn .

A set is DemuthBLR〈A〉-random if it is not captured by any DemuthBLR〈A〉-test.5

So the difference between DemuthBLR〈A〉 tests and (fully relativized) DemuthA

tests is that in the former, the number of changes of a component UAn of the test is
bounded by a computable function, and in the latter by an A-computable function.
In both, though, the function which takes a pair (n, s) to the index for the version
of UAn at stage s, is A-computable. It is easy to see that every DemuthBLR〈A〉-test

is also a DemuthA-test, and so every set which is Demuth random relative to A
is also DemuthBLR〈A〉-random. If A is computably dominated, then bounding by
A-computable functions and bounding by computable functions are the same, and
so the notions coincide. In particular, the DemuthBLR〈∅〉-random sets are precisely
the Demuth random sets.

There are two ways to think about the different relativizations of a notion of
randomness. One is to accept that a randomness notion should specify its rela-
tivizations. That is, we extend our understanding of what a notion of randomness
is, from a mere class of random reals, to a binary relation between reals and oracles,
saying which reals are random relative to which oracle. Under this interpretation,
Demuth randomness and DemuthBLR randomness are two distinct notions of ran-
domness, which coincide on the computable oracles. It then makes sense to speak
of lowness for DemuthBLR and for DemuthBLR-tests. Namely, an oracle A is low
for DemuthBLR if every Demuth random set is DemuthBLR〈A〉-random, and low for
DemuthBLR tests if every DemuthBLR〈A〉-test can be covered by a Demuth test.

Another line of thinking still tries to choose, among the various possible rela-
tivizations of a notion of randomness, the most useful or natural one. Miyabe [33],
for example, showed that the truth-table version of Schnorr randomness, which we
mentioned above, satisfies van Lambalgen’s theorem, while the theorem is known
to fail for the full relativization of Schnorr randomness. Miyabe suggested that

4While full relativization of a notion to an oracle A is indicated with the phrase “relative to

A” or “in A”, or simply prefixed by A, partial relativization is often indicated with the phrase

“by A”. So for example, the functions which are BLR〈A〉 are the functions which are ω-c.a. by A.
5We remind the reader that for the capturing / passing criterion we take Solovay’s, as we do

not assume that the sequence is nested. Weak passing — avoiding the intersection
⋂

n Un — gives

rise to a weaker notion of randomness, discussed later.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 7

satisfying van Lambalgen’s theorem is a criterion for identifying the “correct” rela-
tivization of a notion of randomness. In this context, recently Bienvenu, Diamond-
stone, Greenberg and Turetsky [3] showed that van Lambalgen’s theorem holds for
DemuthBLR, while it fails for the full relativization of Demuth randomness. Further
evidence for the usefulness of DemuthBLR is the simpler characterization of lowness:

Theorem 1.8. The following are equivalent for an oracle A:

(1) A is low for DemuthBLR tests.
(2) A is low for DemuthBLR randomness.
(3) A is Demuth traceable.

Indeed, Theorem 1.8 seems to be the fundamental one, and Theorem 1.4 is an
easy corollary of Theorem 1.8, using Downey and Ng’s result mentioned above:

Proof of Theorem 1.4, given Theorem 1.8. (1)→(2): As with every notion of ran-
domness, every oracle which is low for Demuth tests is also low for Demuth ran-
domness.

(2)→(3): Suppose that A is low for Demuth randomness. Then A is also low for
DemuthBLR randomness, and so is Demuth traceable. By Downey and Ng’s [16],
A is also computably dominated.

(3)→(1): Suppose that A is both Demuth traceable and computably dominated.
Then A is low for DemuthBLR tests. Because A is computably dominated, every
Demuth test relative to A is actually a DemuthBLR〈A〉-test, and so is covered by a
Demuth test. Hence A is low for Demuth tests. �

The following observation is due to D. Diamondstone and Nies. We say that an
oracle A is Demuth cuppable if there is a Demuth random Y such that ∅′ 6T A⊕Y .

Corollary 1.9. Suppose A is Demuth traceable. Then A is not Demuth cuppable.

Proof. In [36, Thm. 3.6.26] it is shown that each Demuth random set Z is gener-
alized low, that is, Z ′ 6T Z ⊕ ∅′. Actually the proof yields an ω-c.a. function f
dominating JZ , the jump of Z.

If Y is Demuth random, then Y is DemuthBLR〈A〉-random by Theorem 1.8.
The proof of [36, Thm. 3.6.26] builds a Demuth test with at most 2m changes to
the m-th version. Hence we may “partially relativize” to A this proof in order to
obtain a function f in BLR〈A〉 dominating JA⊕Y . Since A is Demuth traceable,
this function has a ∆0

2 upper bound. So A⊕Y 6>T ∅′. (In fact, this argument shows
that A⊕ Y is generalized low.) �

The BLR transform. The main concepts in this paper are obtained by applying
what we call a BLR-transform to a computability theoretic concept. We replace cer-
tain computable functions (but not size bounds) by ω-c.a. functions. For instance,
the BLR-transform of computable traceability is BLR traceability. We replace the
condition f 6T X in its definition by the condition f ∈ BLR〈X〉, which by the
nature of BLR yields a partial relativization. With a slight adjustment of defini-
tions, the BLR-transform of Schnorr randomness is Demuth randomness. This may
explain that a lot of our results on BLR traceability and Demuth randomness are
parallel to the investigations of computable traceability and Schnorr randomness
[42, 27] we discussed above. The methods are also parallel but get more complex
because we are dealing with more involved concepts.

1.1. The content of the paper. We start, in Subsection 1.2, with reviewing
notation and simplifying the tests we work with. In Section 2 we prove Theorem 1.5.

In Section 3 we prove Theorem 1.8. One of the main tools we use is forcing
with Demuth closed sets. This is analogous to the characterization by Kautz of

8 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

weak 2-randomness in terms of generic filters for forcing with Π0
2 closed sets of

positive measure (see [15, Theorem 7.2.28]), and gives further evidence for the ease
of working with Demuth randomness.

In Section 4 we give evidence for the thesis that the class of Demuth traceable
oracles is small. In particular, we discuss the relationship between jump traceability
and Demuth traceability. We show that the latter is strictly stronger; indeed we sep-
arate Demuth traceability from jump traceability in both the ω-c.a. degrees, and in
the computably dominated degrees. This shows that in some sense, the computably
dominated Demuth traceable sets are an analogue of the strongly jump traceable
sets, outside the ∆0

2 degrees. Note that in turn, the computably dominated, jump
traceable sets are contained in the computably traceable sets (see [27]), and the
containment is strict, because the jump traceable sets are always generalized low,
while computably traceable sets need not be generalized low; see [36, after Cor.
8.4.7].

An argument of Terwijn and Zambella easily holds for Demuth traceability, show-
ing that for the uniform bound h in the definition of Demuth traceability we may
choose any bound we like. However, unlike all other traceability notions, we can
strengthen Demuth traceability by requiring that the bound h be constant. In
Section 5 we show that we get a strict hierarchy as the constant bound changes;
as mentioned above, the first level of this hierarchy, the sets which are traceable
with bound 1, are the superlow and jump traceable sets investigated by Cole and
Simpson.

Finally, in Section 6 we consider a weakening of Demuth randomness, called weak
Demuth randomness. Lowness in this context is starkly different from lowness for
Demuth randomness: we show that the only oracles that are low for weak Demuth
randomness are the computable ones.

1.2. Clopen tests. We fix some notation. Recall that a set of binary strings
W ⊆ 2<ω defines an open subset of Cantor space

[W]≺ = {Z ∈ 2ω : ∃n (Z �n∈W)}.
Let (WX

e)e∈ω be an effective listing of sets of strings that are c.e. in an oracle X. For
each index e and oracle X, we letWX

e = [WX
e]≺ be the eth Σ0

1(X) subset of Cantor
space. Thus, for an oracle A, a DemuthA test is a sequence

〈
UAn
〉
n<ω

= 〈WA
g(n)〉n<ω,

where λ(WA
g(n)) 6 2−n and g is a function which is ω-c.a. relative to A; while such

a sequence is a DemuthBLR〈A〉-test (a Demuth test by A) if g is a BLR〈A〉 function.
If 〈gs〉 is an A-computable approximation to the function g which witnesses that g
is ω-c.a. in A, or BLR〈A〉, then for any t and n, we let UAn [t] =WA

gt(n)
, the version

of UAn at stage t.6

Unlike Schnorr or Martin-Löf randomness, the fact that we are allowed to change
the components of a test allows us to simplify the structure of these components.
Namely, we may assume that they are all clopen subsets of Cantor space, and
moreover, that we have a strong index for these clopen sets. We fix an effective list
〈Cn〉 of finite subsets of 2<ω, given by strong indices; we then let Cn = [Cn]≺. So
〈Cn〉n<ω is an effective list of all clopen subsets of Cantor space.

Definition 1.10. A clopen Demuth test is a sequence
〈
Cg(n)

〉
n<ω

, where λ(Cg(n)) 6
2−n and g is an ω-c.a. function.

Hölzl, Kräling, Stephan and Wu noticed that by passing excess measure to
later test components, and (computably) increasing the number of changes allowed,
clopen Demuth tests are sufficient to determine Demuth randomness.

6We do not require this to be clopen: we do not mean WA
gt(n),t

.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 9

Proposition 1.11 (Thm. 11, (a)↔(b), of [24]). Every Demuth test is covered by
some clopen Demuth test.

For a more detailed argument see [23].

In fact, the argument for Proposition 1.11 relativizes in both ways. For an oracle
A, a clopen DemuthA test is a test

〈
Cg(n)

〉
as above, with g being ω-c.a. in A; and

a clopen DemuthBLR〈A〉 test is one with g being BLR〈A〉. Then every DemuthA

test is covered by a clopen DemuthA test, and every DemuthBLR〈A〉 test is covered
by a clopen DemuthBLR〈A〉 test. Note that in passing from clopen Demuth tests to
either form of clopen A-tests, the only ingredient which is changed is the complexity
of the index function g. Contrast this with passing from Demuth tests to A-tests,
where we also allow to increase the complexity of the test components, from Σ0

1

open sets to Σ0
1(A) open sets; covering by clopen sets shows that this increase in

complexity is not fundamental, and that the real extra power given by an oracle
resides wholly in the complexity of the function giving the indices of the components
of the test.

Similarly, we observe that we may use strong indices, rather than c.e. indices,
in the definition of Demuth traceability. For brevity, call a trace 〈Tn〉 an ω-c.a.
trace if Tn = Wg(n) for some ω-c.a. function g. So an oracle A is Demuth traceable
if there is an order function h such that every function which is BLR〈A〉 has an
h-bounded ω-c.a. trace.

Let 〈Dn〉 be an effective sequence of all finite subsets of ω, given by strong indices.
A strong ω-c.a. trace is a trace of the form

〈
Df(n)

〉
for some ω-c.a. function A. For

any order function h, every function which has an h-bounded ω-c.a. trace also
has a strong h-bounded ω-c.a. trace; we simply allow more changes to the trace
components Tn, and each time a new element is enumerated into Tn we declare a
new strong index for Tn[s]. The number of extra changes is bounded by the product
of h and the original bound on the number of changes in the indices of Tn. In short,
the notion of Demuth traceability can be defined using strong ω-c.a. traces.

We will make use of a fact, mentioned above, which is proved by the same
argument given by Terwijn and Zambella’s [42] – that in the definition of Demuth
traceability, the choice of order function does not matter. That is, if A is Demuth
traceable, then for every order function h, every BLR〈A〉 function has an h-bounded
ω-c.a. trace.

2. A perfect class of Demuth traceable sets

In this section we prove Theorem 1.5: we show that the class of noncomputable
Demuth traceable sets contains a nonempty Π0

1 class. As we shall see later (Section
4), this strengthens a theorem of Nies (see [36, Thm. 8.4.4 and Exercise 8.4.6])
stating that the jump traceable sets contain a perfect Π0

1 class. As noted above,
any Π0

1 class with no computable elements (also called a special Π0
1 class) is perfect.

Proof of Theorem 1.5. We will build a class P. To ensure that every X ∈ P is
Demuth traceable, we will build a trace for every f ∈ BLR〈X〉. To do this, we will
need an enumeration of all such functions f , which we obtain by enumerating the
functionals which generate them from the oracles X.

Specifically, we fix a computable enumeration of pairs {(Γe, ge)}e∈ω such that
for each e,

• ge is a partial computable function;
• Γe is a functional and ΓXe is total for every oracle X ∈ 2ω;
• #{t | ΓXe (n, t) 6= ΓXe (n, t + 1)} < ge(n) for every n such that ge(n)↓ and

every oracle X.

10 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

We let fXe (n) = limt ΓXe (n, t). We arrange this enumeration such that if f ∈
BLR〈X〉 for some X, then f = fXe for some e.

We will build ω-c.a. traces {〈T en〉n∈ω}e∈ω. For all i, we need to meet the require-
ment:

Ri: φi is not a computable description of a set in P.

For every pair (e, n) with e < n, we need to meet the requirement:

Qe,n: If ge(n)↓, then fXe (n) ∈ T en for all sets X ∈ P.

These requirements will suffice to prove the theorem.

The basic idea: To trace fXe with a sequence 〈T en〉n∈ω we use restraint. When we
see a σ0 ∈ 2<ω such that Γσ0

e (n, t0) = c0 converges for some t0 and c0, we require
that all elements of P extend σ0 by removing all elements which do not, and we
put T en = {c0}. When we later see a σ1 extending σ0 which makes Γσ1

e (n, t1) = c1
converge for some t1 > t0 and some c1 6= c0, we then require that all elements of P
extend σ1. We make T en = {c1}, changing its index. In this fashion, we will not
change T en more than ge(n) times, so it will be an ω-c.a. trace, as required.

Of course, following this strategy for every e and n will make P contain only
a single element, which would then be computable. So at some point we must
relax the construction a little to allow multiple elements. Note also that the basic
strategy above would ensure that Tn is a singleton, which is far stronger than we
require. So instead of having only a single string σ, which all elements of P must
extend, our strategy will keep some finite number of strings σ0, . . . , σm−1, and all
elements of P must extend one of them. Whenever we see an extension γ of one of
these σi that causes a new value of Γγe (n, t), we restrict to extensions of γ, just as
in the basic strategy, but we only do so above σi.

In this way, the set T en will have size at most m, and will change at most m ·ge(n)
times (in the full construction the number of changes will be higher, because of the
interaction of strategies, but it will still be computable). We will arrange to keep
m 6 2n, and so this will be an ω-c.a. 2n-trace. The strategies which contribute to
the growth of m are the non-computability strategies; each will potentially double
the value of m. So we will need to arrange the priorities of the strategies such
that there are at most n non-computability strategies with higher priority than the
Qe,n-strategy.

However, as mentioned above, the actual number of changes to T en will depend
on the interaction of strategies. Specifically, it will depend not just on ge(n), but
also on the ge′(n

′) of higher priority strategies. To ensure there is a computable
bound on the number of changes, it is essential that these ge′(n

′) all converge. So
we assign priorities to these strategies as the construction runs; initially, the Qe,n-
strategy will not have a priority and will not be attended to by the construction.
When ge(n) converges, the Qe,n-strategy is assigned a priority lower than every
previously assigned priority. In this way, we can calculate the bound on the number
of changes to T en as soon as the Qe,n-strategy is assigned a priority.

Now, however, we must revisit our earlier commitment to have at most n non-
computability strategies with higher priority than the Qe,n-strategy. Since the Qe,n-
strategy could be assigned an arbitrarily late priority, to meet this commitment we
must be prepared to drop the priority of non-computability strategies when the
Qe,n-strategy is assigned a priority. It will be the case, however, that every non-
computability strategy eventually stops dropping in priority.

Formalizing the above:
Each strategy will receive from the previous strategy some finite collection of

strings {αj}, all of the same length, and it will create some finite extensions {βk}

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 11

(all of the same length) such that for every j there is at least one k with αj ⊆ βk,
and all sets in

⋃
k[βk] meet the strategy’s requirement.

Ri-strategies will initially define exactly two βk for every αj , but may later
remove one.
Qe,n-strategies will define exactly one βk for every αj . They may need to rede-

fine βk some finite number of times, but each new definition will be an extension
of the previous.

At the end of every stage s, we let {β̂k} be the outputs of the last strategy to act

at stage s, and define the tree Ps to be all strings comparable with one of the β̂k.
P will be

⋂
s[Ps].

Description of Ri-strategy:
This is the standard non-computability requirement on a tree.

(1) Let {αj}j<m be the output of the previous strategy. For every j < m, let
βj,0 = αj 0̂ and βj,1 = αj 1̂.

(2) Wait for φi(|α0|) to converge; while waiting, let the outputs be {βj,0, βj,1}j<m.
(3) When φi(|α0|) converges. . .

• . . . if φi(|α0|) = 0, let the outputs be {βj,1}j<m.
• . . . if φi(|α0|) 6= 0, let the outputs be {βj,0}j<m.

Description of Qe,n-strategy:
Until ge(n) converges, this strategy takes no action. We ignore for the moment

the computable bound on the number of times the index of Tne changes.
Let {αj}j<m be the output of the previous strategy. We will keep several values

to assist the strategy: `s will be the number of times the output has been redefined
by stage s; cs(j) will be the current guess for fe(n) on an extension of αj . We
initially have `s = 0 and cs(j) = −1 for all j. Unless otherwise defined, `s+1 = `s
and cs+1(j) = cs(j).

For every j, let β0
j = αj . We initially let the outputs be {β0

j }j∈ω and define T en =
∅. We run the following strategy, where s is the current stage:

(1) Wait for a string γ ∈ Ps with γ extending one of the β`sj and Γγe (n, s) 6=
cs(j).

(2) When such a string is found for β`sj :

(a) Define β`s+1
j = γ and cs+1(j) = Γγe (n, s).

(b) For every k < m with k 6= j, choose β`s+1
k ∈ Ps extending β`sk of the

same length as β`s+1
j .

(c) Redefine T en = {cs+1(k) | k < m}.
(d) Define `s+1 = `s + 1.

(3) Return to Step 1.

Full construction:
We make the assumption that for every s, there is precisely one pair (e, n)

with e < n and ge,s+1(n)↓ but ge,s(n)↑. We give the Qe,n-strategies priority based
on the order in which the ge(n) converge: if ge(n) converges before ge′(n

′), then
the Qe,n-strategy has stronger priority than the Qe′,n′ -strategy. If ge(n) never
converges, then Qe,n never has a priority, but this is fine because it never acts.

We prioritize the Ri-strategies based on the priorities of the Qe,n-strategies: Ri
has weaker priority than Ri′ for any i′ < i, and also weaker priority than any
Qe,n-strategy with n 6 i. It is given the strongest priority consistent with these
restrictions.

Since we only consider n > e > 0, the R0-strategy will always have strongest
priority. It receives α0 = 〈〉 as the “output of the previous strategy”.

12 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

At stage s, let (e, n) be the pair such that ge(n) has newly converged. We
initialize Rn and all strategies which had weaker priority than Rn. The priorities of
the various Ri are then redetermined. We then let all Q-strategies with priorities
and all Ri-strategies with i < s act, in order of priority.

Whenever a strategy redefines its output, all weaker priority strategies are ini-
tialized.

Verification:
We proceed as a sequence of claims.

Claim 2.1. For each i, the priority of the Ri-strategy changes at most i(i + 1)/2
many times.

Proof. The priority of the Ri-strategy is only changed when some ge(n) converges
with e < n 6 i. There are at most i(i+ 1)/2 many such pairs (e, n). �

Claim 2.2. Let {αj}j<m be the strings which the Ri-strategy receives from the
previous strategy. Then m is at most 2i.

Proof. Induction on i. For i = 0, the only received string is the empty string.
For i + 1, we observe that the Q-strategies output the same number of strings

as they receive, and so the number of strings received by the Ri+1-strategy is the
same as the number of strings in the output of the Ri-strategy. But the Ri-strategy
either outputs the same number of strings as it receives or twice as many, depending
on whether it reached Step (3) or not. �

Claim 2.3. Suppose ge(n)↓, and let {αj}j<m be the strings which the Qe,n-strategy
receives from the previous strategy. Then m is at most 2n.

Proof. The Qe,n-strategy has stronger priority than the Rn-strategy, and by con-
struction the number of strings received can only increase for weaker priority strate-
gies. �

Claim 2.4. Fix e, n, s0 and s1 such that ge,s0(n)↓, s0 < s1, and the Qe,n-strategy
was never initialized at a stage between s0 and s1. Then the strategy redefines its
output at most (ge(n))2

n

many times between stages s0 and s1.

Proof. Suppose not. Since one of the c(j) changes each time the output is redefined,
by the pigeon-hole principle, there must be stages s0 < t0 < · · · < tge(n) < s1 and a

j < m with ctk(j) 6= ctk+1(j) for every k 6 ge(n). Then for any set X ∈ [β
`tge(n)

j],

|{t | ΓXe (n, t) 6= ΓXe (n, t+ 1)}| > ge(n), contrary to assumption. �

Claim 2.5. Suppose ge(n) converges at stage s0. Let {(ek, nk)}k<s0 be those pairs
such that the Qek,nk -strategy has stronger priority than the Qe,n-strategy. Then

the Qe,n-strategy can be initialized at most 3n
∏
k(1 + gek(nk))2

nk many times.

Proof. There are at most n many Ri-strategies of stronger priority. Each Ri-
strategy can cause initialization twice without being initialized itself: once by
changing its output, and once when its priority weakens. Note that if the priority
of an Ri-strategy weakens after stage s0, the new priority is necessarily weaker than
that of the Qe,n-strategy.

Each Qek,nk -strategy can cause initialization (gek(nk))2
nk many times without

being initialized itself. The result follows. �

Claim 2.6. At every stage, #T en 6 2n.

Proof. By construction, T en contains at most m many elements. By a previous
claim, m is at most 2n. �

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 13

Claim 2.7. If ge is total, {T en}n∈ω is an ω-c.a. trace.

Proof. Let s0 be the stage at which ge(n) converges, and let {(ek,mk)}k<s0 be those
pairs such that the Qek,mk -strategy has stronger priority than the Qe,n-strategy.
By construction, T en only changes when the Qe,n-strategy redefines its output. By
previous claims, this happens at most

(ge(n))2
n

· 3n
∏
k<s0

(1 + gek(mk))2
mk

many times. Note that this value is uniformly computable in n. �

Claim 2.8. The Ri-strategy is only initialized finitely many times.

Proof. By induction. Wait for a stage such that the priority of the Ri-strategy
has finished changing, and all stronger priority strategies have will never again be
initialized or change their outcomes. Then the Ri-strategy will never again be
initialized. �

It is immediate from the construction that all strategies ensure their require-
ments. This completes the proof of the theorem. �

3. Lowness for DemuthBLR randomness

In this section we prove Theorem 1.8, the equivalence of:

(1) Lowness for DemuthBLR tests;
(2) Lowness for DemuthBLR randomness; and
(3) Demuth traceability.

Now two of the implications are easy, and we dispose of them swiftly. The
implication (1)→(2) holds for any notion of randomness.

We prove that (3)→(1): let A be a Demuth traceable set; we show that every De-
muth test by A (a DemuthBLR〈A〉 test) is covered by a Demuth test. By the discus-
sion following Proposition 1.11, it suffices to show that every clopen DemuthBLR〈A〉
test is covered by a Demuth test. Let

〈
Cf(n)

〉
n∈ω be a clopen DemuthBLR〈A〉 test,

so f is BLR〈A〉. By replacing Cf(n) with Cf(2n+1) ∪ Cf(2n+2), we may assume that

λ(Cf(n)) 6 4−n for each n.
Now, let 〈Tn〉n∈ω be an ω-c.a. trace for f , bounded by h(n) = 2n. There is an

ω-c.a. function q such that Cq(n) =
⋃
i∈Tn Ci. Then

〈
Cq(n)

〉
n∈ω is a Demuth test

covering the given test
〈
Cf(n)

〉
n∈ω.

For the rest of this section, we prove (2)→(3): that lowness for DemuthBLR ran-
domness implies Demuth traceability. Given a set A which is not Demuth traceable,
we need to construct a set Z which is Demuth random but not Demuth random by
A (not DemuthBLR〈A〉-random).

We will define a particular type of open sets, namely Demuth open sets, and
their complements, Demuth closed sets, that reflect the behavior of Demuth tests.
The forcing argument has two parts:

(a) Firstly, we show that passing a Demuth test can be interpreted as being
in some appropriate Demuth closed set of positive measure. We will there-
fore use the family of Demuth closed sets of positive measure (ordered by
inclusion) as our notion of forcing PDem. Once we have proved that a fi-
nite intersection of Demuth closed sets is again Demuth closed, we will be
able to argue that any sufficiently generic filter G in PDem determines a
set ZG ⊆ ω that passes all Demuth tests, i.e., a Demuth random set.

14 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

(b) Thereafter, we will use the hypothesis that A is not Demuth traceable in
order to show that any sufficiently generic filter G of PDem determines a
set Z ⊆ ω that is not DemuthBLR〈A〉-random. To do so, for every function
f which is BLR〈A〉 we devise a clopen DemuthBLR〈A〉 test 〈Un〉 =

〈
Bn,f(n)

〉
,

with the property that if up to null sets, almost all the components Un are
contained in some Demuth open set with measure smaller than 1, then f
has an ω-c.a. trace with some fixed bound. This construction will require
a probability-theoretic argument involving Chernoff’s upper tail bound.
Once this is established, we see that if f witnesses that A is not Demuth
traceable, then we can generically meet infinitely many components Un,
and so the Demuth random set we construct will not be DemuthBLR〈A〉
random, witnessing that A is not low for Demuth randomness.

3.1. Demuth open sets and their basic properties.

Definition 3.1. An open set U ⊆ 2ω is Demuth open if there is an ω-c.a. function
ε 7→ Dε such that for all rational ε > 0, Dε is a clopen subset of U such that

λ(U \ Dε) 6 ε.

Lemma 3.2. Let 〈Cn〉n<ω be a clopen Demuth test. Then for all m < ω,⋃
n>m

Cn

is Demuth open.

As an immediate corollary we see that any clopen set is Demuth open.

Proof. Let U =
⋃
n>m Cn.

Let ε > 0 be rational. We can compute the least k < ω such that 2−k 6 ε. We
then let

Dε =
⋃

n∈(m,k]

Cn.

Certainly Dε is clopen, the map ε 7→ Dε is ω-c.a., and since

U \ Dε ⊆
⋃
n>k

Cn,

we have

λ(U \ Dε) 6
∑
n>k

λ(Cn) 6
∑
n>k

2−n = 2−k 6 ε. �

Lemma 3.3. The union of finitely many Demuth open sets is Demuth open.

Proof. By induction, it suffices to verify that if U and V are both Demuth open,
then so is U ∪ V. Let ε 7→ Dε and ε 7→ Cε witness, respectively, that U and V are
Demuth open. Then the map ε 7→ Dε/2 ∪ Cε/2 is ω-c.a., and for any rational ε > 0,
we have

(U ∪ V) \ (Dε/2 ∪ Cε/2) ⊆ (U \ Dε/2) ∪ (V \ Cε/2),

so

λ
(
(U ∪ V) \ (Dε/2 ∪ Cε/2)

)
6 ε. �

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 15

3.2. Obtaining a trace from a Demuth open cover. We now show how De-
muth open sets relate to Demuth traceability. We code a given function f into a
sequence of sets such that any Demuth open set of measure < 1 covering almost all
of these sets yields an ω-c.a. trace for f .

We fix an array of independent clopen sets which will be used to code functions.
For n < ω and k < ω, let

Bn,k =
{
X ∈ 2ω : ∀x < n [X(n, k, x) = 0]

}
.

Since for distinct pairs (n, k) and (n′, k′), the sets Bn,k and Bn′,k′ mention distinct
locations, the collection of all sets Bn,k is independent. Of course it is important
that for all k, λ(Bn,k) = 2−n.

For subsets A and B of Cantor space, we write A ⊆∗ B to denote that λ(A\B) =
0.

Lemma 3.4. Let U be a Demuth open set such that λ(U) < 1. Let f : ω → ω, and
suppose that Bn,f(n) ⊆∗ U for almost all n. Then f has an ω-c.a. trace, bounded by

h(n) = 24n+5.

Proof. Fix an ω-c.a. function ε 7→ Dε witnessing that U is Demuth open.
For n < ω, let

Tn =
{
k < ω : λ (Bn,k \ D2−3n) 6 2−3n

}
.

Since ε→ Dε is ω-c.a., there is an ω-c.a. function g such that Tn = Wg(n). We will

show that f(n) ∈ Tn and #Tn 6 24n+5 for almost all n.
Let n < ω such that Bn,f(n) ⊆∗ U . Let ε = 2−3n. Since

λ (U \ Dε) 6 ε,

and since

Bn,f(n) \ Dε ⊆
(
Bn,f(n) \ U

)
∪ (U \ Dε) ,

we must have

λ
(
Bn,f(n) \ Dε

)
6 ε,

so f(n) ∈ Tn.

To finish the proof of Lemma 3.4, it remains to show #Tn 6 24n+5 for almost
all n. This follows from the next proposition which is true for any probability
measure µ on a space X . In our application the space will be Cantor space with
the usual product measure λ.

For any measurable non-null set R ⊆ X , we let µR be the conditional probability
µ given R holds: for all measurable E ,

µR(E) =
µ(R∩ E)

µ(R)
.

Informally, the proposition says that if µ(R) > 1/2 and localizing to R increases
the measure of every member of an independent collection of sets that have measure
2−n even slightly, then this collection is small.

Proposition 3.5. Let n > 0. Let B be a µ-independent collection of subsets of X ,
each of which has µ-measure 2−n. Let R ⊆ X such that µ(R) > 1/2. Suppose that
for all B ∈ B, µR(B) > 2−n + 2−2n. Then #B 6 24n+5.

The proof of Proposition 3.5 is somewhat technical and appeals to probability-
theoretic arguments. We postpone it until Subsection 3.5. Here we show how to
complete the proof of Lemma 3.4 assuming this proposition.

16 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

Suppose that n < ω, and as before let ε = 2−3n. Let B be the collection of sets
Bn,k where k ∈ Tn. For k ∈ Tn, because Dε ⊆ U , we have

Bn,k \ U ⊆ Bn,k \ Dε,

and hence

λ (Bn,k \ U) 6 2−3n.

Since λ(U) < 1, if n is large enough we have λ(U) < 1 − 2−n. Since U is open,
there is a clopen set C disjoint from U such that λC > 2−n. Hence we can choose a
clopen set G ⊆ 2ω \ C such that, where R = U ∪ G, we have

1/2 6 µ(R) 6 1− 2−n.

Now let B ∈ B, and let δ = 2−n. By assumption, we have

µ(R∩ B) = µ(B)− µ(B \ R) > δ − δ3.

Since µ(R) 6 1− δ, we have

µR(B) =
µ(R∩ B)

µ(R)
>
δ − δ3

1− δ
= δ(1 + δ)

Thus for all B ∈ B, µR(B) > 2−n+2−2n. Since all the hypotheses of Proposition 3.5
are met, we may conclude that #Tn 6 24n+5 for almost all n. �

3.3. Forcing with Demuth closed sets. We now introduce the notion of forcing
which naturally generates Demuth random sets. As described above, we will later
show that the Demuth random sets generated by the notion of forcing are not
DemuthBLR〈A〉-random for any oracle A which is not Demuth traceable.

For background on forcing with closed sets of positive measure, recall that a set
is weakly 2-random if and only if it is 2-generic for forcing with Π0

2 classes of positive
measure, which may be taken to be closed (Kautz [26], see [15, Theorem 7.2.28]).
This is an effective version of Solovay’s random real forcing, much like the notion of
n-genericity is the effective version of Cohen forcing. The following section shows
that Demuth randomness resembles weak 2-randomness in this aspect as it has a
similar characterization.

Definition 3.6. A Demuth closed set is a complement of a Demuth open set.
Demuth forcing PDem is the notion of forcing consisting of Demuth closed sets of
positive measure, ordered by inclusion.

Lemma 3.7. If G ⊂ PDem is a sufficiently generic filter, then
⋂
G is a singleton.

Proof. Let G ⊂ PDem be a filter. Since G consists of compact subsets of 2ω and has
the finite intersection property,

⋂
G is nonempty.

For n < ω, consider the set

(1)
{
F ∈ PDem : ∃τ ∈ 2<ω [|τ | = n & F ⊆ [τ]]

}
.

It is easy to see that for all n, the set (1) is dense in PDem, and so if G is sufficiently
generic, for all n, there is some binary string τ of length n such that for all X ∈

⋂
G,

τ ⊂ X. �

For a sufficiently generic filter G of PDem, let ZG be the unique element of
⋂
G.

The next lemma is key to our construction.

Lemma 3.8. If G is a sufficiently generic filter of PDem, then ZG is Demuth
random.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 17

Proof. By Proposition 1.11, it suffices to show that if G is sufficiently generic, then
ZG passes every clopen Demuth test.

Let 〈Cn〉n<ω be a clopen Demuth test. We show that the set

(2)

{
F ∈ PDem : ∃m

[
F ∩

(⋃
n>m

Cn

)
= ∅

]}

is dense in PDem; the lemma then follows.
Let F ∈ PDem. Since λ(F) > 0, there is some m < ω such that

λ

(⋃
n>m

Cn

)
< λ(F),

so

λ

(
F \

⋃
n>m

Cn

)
> 0.

By Lemmas 3.2 and 3.3, F \
⋃
n>m Cn is Demuth closed. And so F \

⋃
n>m Cn is

an extension of F in the set (2). �

This completes the first part of the argument: if G is sufficiently generic, then
ZG is Demuth random. It remains to show that if A is not Demuth traceable,
then for a sufficiently generic G, ZG is not Demuth random by A (DemuthBLR〈A〉
random).

3.4. Forcing failure of lowness. Suppose that A is not Demuth traceable. As
mentioned in Subsection 1.2, for any order function h there is some function f
which is BLR〈A〉 but has no h-bounded ω-c.a. trace. Obtain such a function f for
the order function h(n) = 24n+5.

Recall the sets Bn,k from above. The fact that f is BLR〈A〉, and that λ(Bn,f(n)) =

2−n, means that
〈
Bn,f(n)

〉
n∈ω is a DemuthBLR〈A〉 test.

Lemma 3.9. If G is sufficiently A-generic, then there are infinitely many n such
that ZG ∈ Bn,f(n).

And so ZG fails the test
〈
Bn,f(n)

〉
, and so is not DemuthBLR〈A〉 random; this

completes the proof of Theorem 1.8.

Proof. For m < ω, we show that the set

(3)
{
F ∈ PDem : ∃n > m

[
F ⊆ Bn,f(n)

]}
is dense in PDem; the lemma would follow.

Fix m < ω, and let F ∈ PDem. By the assumption that f does not have an h-
bounded ω-c.a. trace, Proposition 3.4, applied to the Demuth open set U = 2ω \ F
tells us that there is some n > m such that

λ
(
Bn,f(n) ∩ F

)
> 0.

As was noted above, every clopen set is Demuth closed, and so by Lemma 3.3,
Bn,f(n) ∩ F is Demuth closed. It follows that Bn,f(n) ∩ F is an extension of F in
the set (3). �

18 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

3.5. Independent sets and Chernoff bounds. We complete the proof of The-
orem 1.8 by establishing Proposition 3.5 which we had postponed.

Proof of Proposition 3.5. Let δ = 2−n and N = #B which we may assume to be
finite. For a set E ⊆ X , we let 1E be the characteristic function of E . Define a
function h : X → R by

h =
∑
B∈B

1B.

We let

K = {x ∈ X : h(x) > δ(1 + δ/2)N} .
By the assumption on the measure of the elements of B in R, we have∫

hdµR =
∑
B∈B

∫
1B dµR =

∑
B∈B

µR(B) > δ(1 + δ)N.

On the other hand, of course,∫
hdµR =

∫
K
hdµR +

∫
X\K

hdµR.

For all x ∈ X \ K, we have h(x) 6 δ(1 + δ/2)N , so∫
X\K

hdµR 6 µR(X \ K)δ(1 + δ/2)N.

For all x ∈ X , we have h(x) 6 N , so∫
K
hdµR 6 µR(K)N.

Let p = µR(K), so µR(X \ K) = 1− p. The inequalities established so far yield

δ(1 + δ)N 6 pN + (1− p)δ(1 + δ/2)N,

whence we obtain

p >
δ2

2(1− δ − δ2/2)
;

as δ 6 1/2 we have 1− δ − δ2/2 ∈ (0, 1), so

p > δ2/2 = 2−(2n+1).

Chernoff’s upper tail bound [39] states that for any ε ∈ (0, 1), letting a =
∫
hdµ,

we have

µ
({
x ∈ X : h(x) > (1 + ε)a

})
< e−ε

2a/4.

Applying the bound to ε = δ/2, since∫
hdµ =

∑
B∈B

µ(B) = δN,

we obtain

µ(K) < e−δ
3N/16.

Of course,

µ(K) > µ(K ∩R) = µR(K) · µ(R) = p · µ(R),

so overall we obtain

p · µ(R) < e−δ
3N/16.

Since µ(R) > 1/2, we have p · µ(R) > 2−(2n+2). Taking the natural logarithm
and then the negative, we obtain

δ3N < −16 ln 2−(2n+2) = −16 log2 2−(2n+2) ln 2 < 16(2n+ 2) 6 2n+5,

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 19

the last step recalling that n > 1. Hence

N <
2n+5

δ3
= 2n+523n = 24n+5

as required. �

4. Demuth tracebility and jump traceability

We have shown that the class of computably dominated Demuth traceable sets
coincides with lowness for Demuth randomness. We now give a computability-
theoretic analysis of Demuth traceability by relating it to the more familiar notion
of jump traceability. We observe that Demuth traceability implies jump traceability,
but while the notions coincide on the c.e. degrees, they differ on both the ω-c.a.
degrees and on the computably dominated degrees. Thus, lowness for Demuth
randomness properly implies being computably dominated and jump traceable.

4.1. Jump traceability. An oracle A is jump traceable [34] if every A-partial com-
putable function ψ has a uniformly c.e. trace bounded by some order function. The
reason that we do not require a uniform bound h on the traces for all functions
which are A-partial computable is that there is a universal A-partial computable
function. Letting JA be such a function (for example, JA(e) = ϕAe (e)), we see that
an oracle A is jump traceable if and only if JA has a uniformly c.e. trace bounded
by an order function. However, unlike c.e. traceability, computable traceability and
Demuth traceability, the fact that we need to trace partial functions means that the
standard Terwijn-Zambella for the irrelevance of the choice of the order function
fails for jump traceability. Indeed, the classes of h-jump-traceable sets vary signif-
icantly with the growth-rate of the order function h; for sufficiently fast-growing
functions h, there is a perfect set of h-jump-traceable sets, while for sufficiently
slow-growing h, all h-jump-traceable sets are ∆0

2. In particular, jump traceability
and strong jump traceability, defined in the introduction, differ substantially.

Proposition 4.1. Every Demuth traceable set is jump traceable.

Proof. Suppose that A is Demuth traceable. Let f(n) = JA(n) if n ∈ domJA,
and otherwise let f(n) = 0. Then f is BLR〈A〉. Let (Tn)n∈ω be an ω-c.a. trace
for f , bounded by an order function h, and suppose that g is an order function
which witnesses that the index function for 〈Tn〉 is ω-c.a. Let T ∗n be the union of
all versions of Tn over stages. Then (T ∗n)n∈ω is a uniformly c.e. trace for f , and so
for JA, bounded by h · g. �

In the rest of this section we will show that Demuth traceability strictly implies
jump traceability. However, they agree on the c.e. degrees. Indeed, on the c.e.
degrees, Demuth traceability is equivalent to a strong form of Demuth traceability,
in which the bound h can be taken to be the constant function 1.

Recall that a set A is superlow if A′ 6tt ∅′. Nies [34] showed that jump traceabil-
ity and superlowness coincide on the c.e. sets (see also [36, 8.4.23]), while neither
class includes the other within the ω-c.a. sets.

Note that a set A is Demuth traceable with bound 1 if and only if every BLR〈A〉
function is ω-c.a., in other words if BLR〈A〉 = BLR〈∅〉. Cole and Simpson [7, Cor.
6.15] studied the class of oracles with the latter property, which they dubbed the
oracles low for BLR. They showed [7, Cor. 6.15] that this class coincides with the
intersection of jump traceability and superlowness. Thus:

Fact 4.2. A set is both jump traceable and superlow if and only if it is Demuth
traceable with bound 1.

Since each jump traceable c.e. set is superlow, we obtain:

20 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

Proposition 4.3. The following are equivalent for a c.e. set A:

(1) A is Demuth traceable.
(2) A is Demuth traceable with bound 1.
(3) A is jump traceable.

4.2. Separating jump traceability from Demuth traceability in the ω-c.a.
degrees. We show that the class of Demuth traceable sets is strictly smaller than
the class of jump traceable sets. We first separate these classes within the ω-c.a.
sets.

Theorem 4.4. There is an ω-c.a. set which is jump traceable but not Demuth
traceable.

Proof. We must build an ω-c.a. set A and a BLR〈A〉 function which escapes all
ω-c.a. traces. To diagonalize against all such traces, we will need an enumeration
of them, so let 〈(T en)n∈ω, g

e〉e∈ω be an enumeration of all partial ω-c.a. traces with
bound h(n) = n, where ge(n) is the bound on the number of times the index for T en
can change; the functions ge are partial computable. We construct an ω-c.a. set A,
a Turing functional Γ and a c.e. trace 〈Vn〉n∈ω meeting the following requirements:

G: ΓA is an approximation of a total BLR〈A〉 function.
Re: lims ΓA(e, s) /∈ T ee .

Ni: #Vi 6 2i
4

; if JA(i)↓, then JA(i) ∈ Vi.
Our basic strategy for meeting requirement Re is to choose many distinct strings as
possible initial segments of A, and define Γ(e) differently along each string. Since
|T ee | 6 e, by counting there will always be at least one of these strings σ with
Γσ(e) 6∈ T ee . We make that string our current initial segment of A. If at some later
stage Γσ(e) enters T ee , we change to a different initial segment.

Our basic strategy for meeting requirement Ni is restraint, similar to the proof
of Theorem 1.5. Whenever we see a σ which causes Jσ(i) to converge, we restrain A
to be an extension of that σ and enumerate Jσ(i) into Vi. Of course, this restraint
will cause injury to later Re-strategies, and here is where we use the fact that ΓA

is merely an approximation to a BLR〈A〉 function; whenever a higher priority Ni-
strategy acts, we can restart the Re-strategy by simply redefining Γ(e), so long as
we have a computable bound on the number of times we do so.

Similarly, an Re-strategy changing between possible initial segments of A will
interfere with a later Ni-strategy’s attempts to restrain A, but here we use the fact
that Vi need not be a singleton. As long as higher priority strategies only change

between at most 2i
4

possible initial segments of A, the Ni-strategy can restrain to
a single σ above each of these initial segments and enumerate all of these possible
Jσ(i) into Vi. Note that the number of strings the Re-strategy will change between
is dependent on |T ee |; for our calculations, it is important that the Re-strategy
diagonalizes at ΓA(e) instead of at some arbitrary ΓA(e′) with e′ > e . It is for this
reason that the Re-strategy redefines Γ(e) when injured instead of simply choosing
a larger e′ to work with.

The Re-strategy may need to change initial segments many times; potentially
as many as ge(e) · e times. To ensure that A is ω-c.a., we cause all these initial
segments to agree for the first ge(e) bits, and only differ after that point. So the
Re-strategy is only causing changes to late bits, and so the number of changes to a
bit can remain computably bounded.

We order the requirements as R0 < N0 < R1 < N1 < . . . , and at every stage s
we run strategies for every requirement Re and Ni with e, i < s in increasing order.
Every strategy receives from the previous strategy a finite collection of incomparable
strings Xs which are possible initial segments of A and a specified string σs ∈ Xs

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 21

which is the current initial segment of As. The strategy is responsible for creating
its own set X ′s of incomparable strings and its own σ′s ∈ X ′s satisfying:

• For every τ ∈ Xs, there is a τ ′ ∈ X ′s with τ ′ � τ ; and
• σ′s � σs.

The strategy for R0 always receives Xs = {〈〉} and σs = 〈〉.

Strategy for Re:
First we wait for ge(e) to converge. While we wait, we let X ′s = {τ̂0 | τ ∈ Xs},

σ′s = σŝ0, and define Γ(e, s) = 0 with use 0.
Once ge(e) has converged, we let ρ0, . . . , ρ2e−1 be the strings of length e, ordered

lexicographically. We define X ′s = {τ̂ (0ge(e)) ̂ρi | τ ∈ Xs, i < 2e}. We define

Γτ̂(0g
e(e))̂ρi(e, s) = i for all τ ∈ Xs and i < 2e. For every string τ which is

incomparable with every string in X ′s, we define Γτ (e, s) = 0.
We let j be least such that j 6∈ T ee,s (since #T ee 6 e, we know j < 2e) and let

σ′s = σŝ (0ge(e)) ̂ρj .
Strategy for Ni:
Given Xs, we shall construct X ′s to contain precisely one τ ′ � τ for every τ ∈ Xs.
Given τ ∈ Xs, we search for a ρ � τ with |ρ| < s such that Jρs (i)↓. If there is

no such ρ, we define τ ′ = τ̂0. Otherwise, we let t be least such that there is a
ρ � τ with |ρ| < t and Jρt (i)↓, let τ ′ be the least such ρ under some ordering, and

enumerate Jτ
′

t (i) into Vi.
We define X ′s = {τ ′ | τ ∈ Xs} and let σ′ be the unique element of X ′s extending σ.

Verification:
First observe that for a fixed Re-strategy, if s0 < s1 and Xs = Xs0 for every

s0 < s 6 s1, then there can be at most one stage t with s0 < t < s1 and X ′t 6= X ′t+1

— the stage at which ge(e) converges.
Similarly, for a fixed Ni-strategy, if s0 < s1 and Xs = Xs0 for every s0 < s 6 s1,

there can be at most #Xs many stages t at which X ′t 6= X ′t+1. Further, #Xs is

bounded by 2i
2

.
Thus by induction, for any Re- or Ni-strategy, Xs is eventually fixed.
We perform a similar analysis for σs: for a fixed Re-strategy, if s0 < s1 and

σs = σs0 for every s0 < s 6 s1, then there can be at most 1+ge(e) ·e many stages t
with s0 < t < s1 and σ′t 6= σ′t+1 — first when ge(e) converges, and then every
such stage after that indicates that a new element was enumerated into the current
version of T ee . If ge(e) does not converge, then there can be no such stages.

For a fixed Ni-strategy, if s0 < s1 and σs = σs0 for every s0 < s 6 s1, there can
be at most one stage t with s0 < t < s1 and σ′t 6= σ′t+1 — the stage at which a
convergent jump computation is found on an extension of σs0 .

Thus, by induction, for any Re- or Ni-strategy, σs is eventually fixed. Further,
by construction, for any fixed Re-strategy, |σs| > e. Thus if we let σe = lims σs for
the Re-strategy, A =

⋃
e σ

e is a ∆0
2 set.

Claim 4.5. A is an ω-c.a. set.

Proof. For any value n ∈ ω, we approximate A(n) by considering the Rn+1-strategy
and the values of σs(n). As reasoned earlier, the number of times σs can change is
bounded by

2n ·
∏

e<n+1
ge(e)↓

2 + ge(e) · e.

22 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

But if e < n+ 1 and ge(e)↓> n, then we can omit it from the above product when
considering σs(n): all the extensions that the Re-strategy is changing between begin
with ge(e) many 0s, and thus agree on n. So the number of times σs(n) can change
is bounded by

2n ·
∏

e<n+1
ge(e)↓<n

2 + ge(e) · e 6 2n(2 + n2)n+1. �

Clearly ΓY (e, s) is defined for all e < s and oracles Y , and so in particular for
the oracle A. Also, if Γτ (e, s) 6= Γτ (e, s + 1) for some string τ , it indicates that
X ′s 6= X ′s+1 for the Re-strategy. By the earlier reasoning, this can happen at most

2e+1 ·
∏
i<e 2i

2

many times, which is a bound uniformly computable from e. Thus

ΓA is an approximation to a total BLR〈A〉 function.
By construction, lims ΓA(e, s) 6∈ T ee . As observed in Subsection 1.2, this means

that A is not Demuth traceable.
By construction, if JA(i) ↓, then the Ni-strategy will have acted to enumer-

ate JA(i) into Vi. Whenever an element is enumerated into Vi, it indicates that
X ′s 6= X ′s+1 for the Ni-strategy. By the earlier reasoning, this can happen at most

2i+1 ·
∏
j6i 2j

2

6 2i
4

many times. So A is jump traceable. �

4.3. Separating jump traceability from Demuth traceability in the com-
putably dominated degrees. We now separate Demuth traceability from jump
traceability within the computably dominated sets. In particular, this means that
there is a set which is low for Schnorr randomness but not for Demuth randomness.

Theorem 4.6. There is a set which is jump traceable and computably dominated,
but not Demuth traceable.

Proof. The proof is in some sense an elaboration on the proof of Theorem 4.4;
rather than a ∆0

2 set, we build a ∆0
3 set using an approximation argument inside

a Π0
1 class. We build a Π0

1-class P, a functional Γ and a computably dominated
set X ∈ P, with ΓX demonstrating that X is not Demuth traceable by being an
approximation for a BLR〈X〉 function which has no ω-c.a. trace.

Let T be the computable tree T := {σ ∈ ω<ω | (∀n < |σ|)[σ(n) 6 n]}. We
will define a limit-computable embedding g : T → 2<ω with P the image of [T]
under g. For every s, we will define g(σ, s) for all σ ∈ T with |σ| 6 s. Then
g(σ) = lims g(σ, s). An important property of g is the following: if |σ| < s and
g(σ, s) = g(σ, s+ 1), then g(σ̂j, s) ⊆ g(σ̂j, s+ 1).

For every n 6 s, and every σ ∈ T with |σ| = n, we define Γg(σ,s)(n, s) = σ.
To show that ΓX is BLR〈X〉 (that is, ω-c.a. by X), we will later demonstrate a
computable bound on the number of times g(σ, s) changes.

Jump traceability strategy:
We ensure jump traceability as follows: for every σ ∈ T with |σ| = n, we wait

until a stage s + 1 when we see a τ ∈ T extending σ with |τ | 6 s and J
g(τ,s)
s (n)↓.

Then we define g(σ, s + 1) = g(τ, s), enumerate J
g(τ,s)
s (n) into Vn and cease our

action on behalf of σ unless g(σ−) changes.
The sequence (Vn)n∈ω will trace the jump of every X ∈ P, and if g(σ−) never

changed, then we would have |Vn| 6 (n+ 1)!. Instead we will have |Vn| 6 (n+ 1)! ·
h(n − 1), where h is a computable bound on the changes of g which we establish
later.

Basic non-Demuth-traceable strategy:

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 23

Given an ω-c.a. trace (T kn)n∈ω with |T kn | 6 n, the idea for defeating this trace is
the following: suppose σ ∈ T with |σ| > n − 1. Then by counting, σ̂j 6∈ T kn for
some j 6 n, and so g(σ̂j) forces that lims ΓX(e, s) is not traced by (T kn)n∈ω.

Basic strategy for being computably dominated:
This strategy is the most complex; we use a modification of the full approxi-

mation argument found in [12]. Our version is considerably simplified, however,
since we are not attempting to make X have rank 1 in P. For every functional Φi,
if ΦXi is total for our set X, we must construct a computable function fi which
dominates ΦXi .

Suppose σ0, . . . , σk are the elements of T of length n (for some n). We consider

the σj in order. As long as there is no τj extending σj with |τj | 6 s and Φ
g(τj ,s)
i,s (0)↓,

then g(σj , s) forces the satisfaction of the requirement for Φi. When we see such
a τj , we set g(σj , s+ 1) = g(τj , s) and move on to σj+1.

If we have found a τj for every σj , we define fi(0) = maxj6k{Φ
g(τj ,s)
i,s (0)}. In

this case, 〈〉 forces that fi(0) > ΦXi (0).
Of course, once we have forced that ΦXi (0)↓6 fi(0), we must move on to con-

sidering ΦXi (1). We repeat the same strategy as above, but we make an important
observation: the σj used for ΦXi (1) need not be the same as those used for ΦXi (0)
(that is, we need not use the same length n). It is important that we constantly
increase n, otherwise g(σ) would not converge for |σ| > n and P would consist of
only k + 1 elements.

Priority tree:
Suppose that the strategy for ΦX0 is considering σj , searching for a τj ⊇ σj with

Φ
g(σj ,s)
0,s (0)↓. If it never finds such a τj , then X must go through g(σj). The strategy

for avoiding the ω-c.a. trace (T 0
n)n∈ω must act above σj . On the other hand, if the

strategy for ΦX0 always finds a τj for every σj considered, then the requirement
for ΦX0 is satisfied for any X ∈ P, and so the strategy for (T 0

n)n∈ω is free to act
at 〈〉.

Similarly, if g(σ̂j) forces that (T kn)n∈ω does not trace ΓX , then the strategy
for ΦX1 cannot act on all of T , but must restrict itself to considering T above σ̂j.

For this reason, we will make a priority tree of these strategies, with the strategies
at level 2i devoted to ΦXi and the strategies at level 2i+ 1 devoted to (T in)n∈ω (the
jump-traceability strategies will not appear on the priority tree). Each strategy of
the first type will have two outcomes: inf and fin. Each strategy of the second
type will have only a single outcome: outcome. Strategy α will inherit from its
predecessor a string σα ∈ T to work above; the root strategy will use σ = 〈〉.

Full non-BLR-traceable strategy:
For α a (T kn)n∈ω-strategy, let tk(n) be the (partial) computable bound on the

number of times T kn can change. The only action α takes is to define σα (and
initialise strategies extending α̂outcome). While we wait for tk(n) to converge,
we let σα̂outcome = σα. Once tk(n) has converged, at every stage s, let j be least
such that g(σα̂j, s) 6∈ T kn,s. We let σαoutcome = σ̂j. If this is different from the
last time α was accessible, we initialise all strategies extending α̂outcome.

Full strategy for being computably dominated:
For α a ΦX0 -strategy, let sα be the stage at which α was first visited after most

recently being initialised. Its behavior is as follows:

(1) Set m = 0.

24 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

(2) Let σ0, . . . , σk be the elements of T above σα and of length sα +m.

(3) Let j 6 k be least with Φ
g(σj ,s)
i,s (m)↑. If there is no such j, define fα(m) =

maxj6k{Φ
g(τj ,s)
i,s (m)}, increment m and return to Step 2.

(4) Wait for a stage s when there is a τj ⊇ σj with |τj | 6 s and Φ
g(τj ,s)
i,s (m)↓.

(5) Define g(σj , s+ 1) = g(τj , s). and return to Step 3.

When α is initialised, σα̂inf is set to σα. While waiting at Step 4, α has
outcome fin and σα̂fin = σj . When α leaves Step 4, all strategies beneath α̂fin
are initialised. Whenever α returns to Step 2, it has outcome inf for one stage.

Construction: At stage s = 2t, we run the jump traceability strategy for JX(n) for
all n 6 s in increasing order, stopping if any of these strategies act.

At stage s = 2t+ 1, we run all accessible non-Demuth-traceable and computable
domination strategies up to level s, in order of priority, stopping if any of these
strategies act.

After running the appropriate strategies, if some strategy defined g(σ, s + 1) =
g(τ, s) for some σ and τ , we choose appropriate values for g(π, s+ 1) for all π ⊃ σ
with |π| < s + 1, and we define g(ρ, s + 1) = g(ρ, s) for all ρ 6⊇ σ. If no strategy
acted, we define g(ρ, s + 1) = g(ρ, s) for all ρ. We also choose appropriate values
for g(π, s+ 1) for all |π| = s+ 1.

For every strategy α on the priority tree, if g(σα, s+1) 6= g(σα, s), we initialise α.

Verification: We define the true path as usual.

Claim 4.7. There is a computable function h such that for each σ, we have h(|σ|) >
#{s | g(σ, s) 6= g(σ, s+ 1)}.

Proof. We construct h recursively.
The only strategies which can change g(σ) without changing g(σ′) for any |σ′| <

|σ| are the jump traceability strategy for JX(|σ|) and computable domination
strategies α with sα + m = |σ|. The first can act at most (|σ| + 1)! times with-
out g(σ′) changing for some |σ′| < |σ|. There are at most |σ|2 of the latter (because
at most s2 strategies have been visited by stage s), and without g(σ′) changing
for some |σ′| < |σ|, each can act at most (|σ| + 1)! times before sα + m is larger
than |σ|.

So

h(|σ|) = h(|σ| − 1) + (h(|σ| − 1) + 1) · ((|σ|+ 1)! + |σ|2 · (|σ|+ 1)!)

suffices. �

Note that this is a bound on the number of times ΓX(|σ|, s) can change for
any X ∈ P . It follows by induction that every strategy along the true path is
initialised only finitely many times. Let X be the limit of σα for α along the true
path. It is now immediate from the construction that every strategy along the true
path and every jump-traceability strategy ensures its requirement is met. �

5. Constant bounds on the traces

We observed above that unlike other traceability notions, considering constant
bounds in the definition of Demuth traceability does not force the oracle to be
computable. Indeed, we gave a characterization of those oracles which are Demuth
traceable with bound 1. When considering constant bounds, we show that every
increase of a constant bound also enlarges the class of Demuth traceable oracles
with that bound.

Theorem 5.1. For every n, there is a ∆0
2-set A which is Demuth traceable with

bound n+ 1 but not bound n.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 25

Proof. Fix n. Let (T i, fi)i∈ω be an enumeration of all partial ω-c.a. traces with
bound n; here fi(m) is the bound on the number of times the index for T im can
change. Let (Γe, ge)e∈ω be an enumeration of all BLR functionals; here ge(m) is
the bound on #{s | ΓXe (m, s) 6= ΓXe (m, s + 1)} for any oracle X. We construct
the desired A, a BLR〈A〉 function ∆A, and ω-c.a. traces (V e)e∈ω with bound n+ 1
using strategies to meet the following requirements:

Re,m: If ge(m)↓, then lims ΓAe (m, s) ∈ V em.
Pi: There is a number j such that either fi(j)↑ or lims ∆A(j, s) 6∈ T ij .

Meeting these requirements for every e,m and i will suffice to prove the theorem.

Basic idea:
The basic strategy for Re,m is restraint: when we see a string σ ≺ As with

Γσe (m, s) 6= Γσe (m, s+ 1), we restrain As �|σ| and set V em = {Γσe (m, s+ 1)}. This will
happen at most ge(m) many times.

The basic strategy for Pi is to choose a j and n + 1 incomparable strings
σ0, . . . , σn, and define ∆σk(j, s) = k. Then by counting there is always a k 6 n
with k 6∈ T ij,s, so at stage s we choose the least such k and define σk ≺ As. This
will cause a change in A at most fi(j) · n many times.

Of course, there is conflict between these two basic strategies, as one wishes to
restrain A and the other wishes to change A, and so we must resolve this. If ve(m)
(the bound on the number of times the index of V em can change) is defined after
fi(j) converges, then it can be defined large enough for Re,m to handle the finitely
many changes caused by Pi. If d(j) (the bound on #{s | ∆A(j, s) 6= ∆A(j, s+ 1)})
is defined after ge(m) converges, then it can be defined large enough to allow Pi to
switch to larger strings whenever the old ones are restrained by Re,m.

Since the trace V e need only exist if ge is total, we can assume that ve(m) is
defined at the same stage ge(m) converges. However, d must be total no matter
what, so if ge(m) converges after d(j) is defined but before fi(j) converges, neither
of the previous two cases hold. By appropriate managing of priority, we can ensure
that for each (e,m), there is at most one (i, j) for which this holds. This Pi will be
changing between n+ 1 different versions of A, while V em can have size n+ 1, so it
can contain one element for each of the versions. Of course, V em will need to change
versions whenever Γe(m, s) changes along one of these (n + 1) different versions
of A, but that is at most (n+ 1) · ge(m) different versions of V em, and recall that n
is fixed in the construction. Thus ve(m) can be made large enough to account for
this.

Organizing the construction:
We must assign priorities dynamically. We prioritize the Re,m-strategies based

on the order the ge(m) converge — if ge(m) converges before ge′(m
′), then the Re,m-

strategy has higher priority than the Re′,m′ -strategy. We assume that exactly one
of these converges at every stage. Strategies for which ge(m)↑ are never assigned a
priority.

At stage s, let i0 be least such there is a j with i0 6 j < s and fi0,s(j)↓, and
let j0 be the least such j for this i0. The Pi0 -strategy will work with j0 and has
highest priority amongst the Pi-strategies at stage s. Every strategy Re,m such
that ge(m) converged by stage j0 has higher priority than Pi0 , while the rest have
lower.

Let s0 be the stage at which fi0(j0) converged. Let i1 > i0 be least such that
there is a j with max(i1, s0, j0) 6 j < s and fi1,s(j)↓, and let j1 be least for this i1.
Then i1 will work with j1 and has next highest priority amongst the Pi-strategies

26 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

at stage s. Every Re,m such that ge(m) converged by stage j1 has higher priority
than Pi1 , while the rest have lower.

We continue in this fashion, assigning priorities at stage s to as many Pi as
possible; those which remain will not have a priority at stage s. Note that by
construction, for every Re(m) there is at most one Pik , such that ge(m) converged
at stage s′, fik(jk) converged at stage sk, and jk < s′ < sk.

We then let every strategy which has a priority act in order of priority. Every
strategy will receive from the previous strategy a set of incomparable strings B
which are potential initial segments of A, with one of those strings distinguished
as the current initial segment. The highest priority strategy receives {〈〉} with 〈〉
distinguished. Each strategy is then responsible for constructing a set of incompa-
rable strings B′ with every string in B′ extending a string in B. One of the strings
in B′ must be distinguished, and it must extend the distinguished string in B.

If Pi is working with j at stage s, it will define ∆X(j, s) for every oracle X. For
every remaining j, we define ∆X(j, s) = 0 for all oracles X.

Strategy Pi:
We fix some collection σ0, . . . , σn of incomparable strings.
Let τ be the distinguished string in the received set B (all other strings in B

will be ignored). We define ∆τ̂σk(j, s) = k for every k 6 n, define ∆ρ(j, s) = 0 for
every ρ incomparable with all the τ̂σk, and let

B′ = {τ̂σk | k 6 n}.
Let k be least such that k 6∈ T ij,s. We distinguish τ̂σk as the current initial segment
of A.

Strategy for Re,m:
Let B be the set received from the previous strategy. For every τ ∈ B, we shall

search for a ρ � τ that maximizes

#{s′ | Γρe(m, s′) 6= Γρe(m, s
′ + 1)}.

Let ρτ be least such under some ordering. Then we define

B′ = {ρτ | τ ∈ B}
and

V em,s = {Γρτe (m, s) | τ ∈ B}.
We distinguish in B′ whichever ρτ extends the distinguished element of B.

Verification:
By induction, every Pi-strategy for which fi is total will eventually settle on

a j and cease changing priority. By induction again, every strategy only redefines
its B′ or distinguished element finitely many times. Thus we can define σ(`, s) to
be the distinguished element of the strategy with priority ` at stage s, and we know
that σ(`) = lims σ(`, s) exists. Further, σ(`, s) ⊂ σ(` + 1, s) by construction, and
so A =

⋃
` σ(`) exists and is ∆0

2.

Claim 5.2. The Re,m-strategy ensures its requirement.

Proof. Let ` be the eventual priority of the Re,m-strategy, and let s be the last stage

at which this strategy acts. Then Γ
σ(`)
e (m, s) ∈ V em by construction, and σ(`) ≺ A.

If there is some ρ � σ(`) and some stage t > s with Γ
σ(`)
e (m, s) 6= Γρe(m, t), this

would contradict the action of Re,m. Thus lims ΓAe (m, s) ∈ V em.
It remains only to show that there is a bound on the number of changes to V em

which is uniformly computable in m. Let s0 be the stage at which ge(m) converged.

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 27

There are only three ways in which the Re,m-strategy’s set B can be changed after
stage s0: a higher priority Re′,m′ can act; a Pi-strategy working with a j < s0 such
that fi(j) converged before stage s0 can act; and a Pi-strategy can begin working
with a j < s0. Note that by construction, at any given stage there can be at most
one Pi-strategy working with a j < s0 such that fi(j) converged after stage s0, and
the action of this strategy does not affect Re,m’s set B.

If Re′,m′ is of higher priority than Re,m, ge′(m
′) converged before stage s0. Re′,m′

will act at most (n+1)·ge′(m′) many times between stages when some higher priority
strategy acts.

If Pi is working with a j < s0, and fi(j) converged before s0, Pi will act at most
(n+ 1) · fi(j) many times between stages when some higher priority strategy acts.

If Pi begins working with a j < s0 at some stage after s0, then necessarily
i < s0. Further, if later a different strategy Pi′ begins working with a j′ < s0, then
necessarily i′ < i or i′ = i and j′ < j. Thus this can occur at most s20 many times
after stage s0.

Between stages when the Re,m-strategy’s B changes, the strategy will act at
most (n+1) ·ge(m) many times. Thus an upper bound for the number of times V em
changes is[∏

(n+ 1) · ge′(m′)
]
·
[∏

(n+ 1) · fi(j)
]
· s20 · (n+ 1) · ge(m),

where the first product ranges over those e′,m′ with ge′(m
′) converged before

stage s0, and the second product ranges over those i, j with fi(j) converged be-
fore stage s0. Thus the above expression can be computed at stage s0. �

Claim 5.3. ∆A is a BLR〈A〉 function.

Proof. Fix j. By construction, there are only three situations in which ∆A(j, s) 6=
∆A(j, s+ 1): j is claimed by some Pi at stage s but not at stage s1; j is claimed by
some Pi at stage s+ 1 but not at stage s; and j is claimed by some Pi at stages s
and s+ 1, and some higher priority strategy acts at stage s+ 1. Notably, ∆A(j, s)
is not affected by T ij,s.

By the manner in which we assign priorities, if Pi claims j, then i 6 j. If later Pi
stops claiming j, then Pi will never again claim j. If later some P ′i claims j, then
i′ < i. So the first and second cases can only occur (j + 1) many times each.

If some Pi has claimed j at stage s + 1 and Re,m is higher priority than Pi,
then ge(m) converged by stage j. If some Pi′ is higher priority and is working with
some j′, then j′ < j and fi′(j

′) converged by stage j. By the same argument as in
the previous claim, we can bound the number of times a higher priority strategy
acts by [∏

(n+ 1) · ge(m)
]
·
[∏

(n+ 1) · fi′(j′)
]
,

where the first product ranges over those e,m such that ge(m) converged by stage j,
and the second product ranges over those i′, j′ such that fi′(j

′) converged by stage j.
So

2 · (j + 1) +
[∏

(n+ 1) · ge(m)
]
·
[∏

(n+ 1) · fi′(j′)
]

serves as a bound for #{s | ∆A(j, s) 6= ∆A(j, s+ 1)}. �

Claim 5.4. The Pi-strategy ensures its requirement.

Proof. If fi is not total, this is trivial. Failing that, let j be the value that Pi
eventually works with. Then by counting, there is a k 6 n such that k 6∈ T ij . By

construction, lims ∆A(j, s) is the least such k. �

This completes the proof. �

28 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

6. Lowness for weak Demuth randomness

The Solovay condition for being captured by a test 〈Un〉, namely being in infin-
itely many components Un, is the natural one to use when the tests are not nested.
If the test is nested, then the capturing condition is equivalent to being in all com-
ponents. Nevertheless, strengthening the notion of capturing even when the tests
are not nested gives rise to a weaker notion of randomness which turns out to be
useful. This definition also goes back to Demuth; see [31] for more background.

Definition 6.1. A set Z weakly passes a test 〈Un〉 if Z 6∈
⋂
n Un (equivalently, the

test strongly captures the set Z if Z ∈ Un for all n). A set Z is weakly Demuth
random if it weakly passes every Demuth test.

Because the universal Martin-Löf test is nested, and is a Demuth test, we see that
weak Demuth randomness is an intermediate notion between Demuth randomness
and Martin-Löf randomness:

Demuth random → weak Demuth random → ML-random.

In [30] it is shown that a weakly Demuth random set is never superhigh. On
the other hand, they build a high ∆0

2 set that is weakly Demuth random (while a
Demuth random is always generalized low1). Here, we show that similar to the sit-
uation vis-a-vis computable randomness, computability itself can be characterized
as lowness for weak Demuth randomess.

Theorem 6.2. A set is low for weak Demuth randomness if and only if it is
computable.

Proof. One direction is immediate. The interesting direction is showing that low-
ness for weak Demuth randomness implies computability. The way we do this is by
showing that lowness for weak Demuth randomness implies both K-triviality and
being computably dominated. We then obtain the desired result by using the facts
that every K-trivial set is ∆0

2, and that the only computably dominated ∆0
2 sets

are the computable sets. Thus, the theorem is proved once we obtain Propositions
6.3 and 6.4 below.

Proposition 6.3. Every set which is low for weak Demuth randomness is K-trivial.

This follows immediately from a result of Downey et al. [17, Thm. 4.2]: if every
weakly 2-random is ML-random in an oracle A, then A is K-trivial. Nonetheless,
we give a direct proof based on a different literature result [6], in order to adapt
the proposition to the case of partial relativization.

Proof. Bienvenu and Miller [6] introduced a partial relativization of Martin-Löf
randomness. For an oracle V , a ML〈V 〉 test is a sequence [Wg(n)]

≺
n∈ω, where g 6T

V , such that λ[Wg(n)]
≺ 6 2−n. The difference from the full relativization of Martin-

Löf randomness is that the test components must be Σ0
1, not merely Σ0

1(V). As
the index function for this test is not necessarily computable, the union of a tail of
such a test may not be Σ0

1, and so weakly passing such tests is not equivalent to
Solovay passing them. Nonetheless, a set Z is ML〈V 〉-random if it weakly passes
every ML〈V 〉 test 〈Un〉, that is, if Z 6∈

⋂
n[Wg(n)]

≺ for each such test.
Bienvenu and Miller showed the following for any pair of oracles V and A: if each

ML〈V 〉-random set is ML-random relative to A, then A is K-trivial. Now letting
A be a set which is low for weak Demuth randomness, the proposition follows from
their result using V = ∅′, once we notice that every set which is ML〈∅′〉 is weakly
Demuth random (in fact a set is ML〈∅′〉 if and only it is weakly-2-random), and that
in turn every set which is weakly Demuth random relative to A is also Martin-Löf
random relative to A. The former follows from the fact that every ω-c.a. function is

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 29

computable in ∅′, and the latter is a relativization to A of the fact, noticed above,
that every weakly Demuth random set is Martin-Löf random. �

We remark that the relativization of the implication from weak Demuth ran-
domness to Martin-Löf randomness also holds if we only partially relativize weak
Demuth randomness. In other words, the proof of Proposition 6.3 shows that if A
is low for weak DemuthBLR randomness, then A is K-trivial. Although we do not
include a proof, this implication reverses; if A is K-trivial, then A is low for weak
DemuthBLR randomness.

The next proposition, which completes the proof of the theorem, is an analog of a
result of Downey’s and Ng’s [16], which we mentioned and used above, that lowness
for Demuth randomness implies being computably dominated. This proposition
uses the power of the full relativization of weak Demuth randomness.

Proposition 6.4. Every set which is low for weak Demuth randomness is com-
putably dominated.

Proof. Let A be a set computing a function f which is not dominated by any
computable function. We construct a weakly Demuth random set Z which is not
weakly Demuth random relative to A.

We shall construct a Demuth test 〈Un〉n∈ω relative to A and a weakly Demuth
random set Z such that Z ∈

⋂
n Un (so Z is not weakly Demuth random relative

to A). Let (
〈
Vkn
〉
n∈ω, gk)k∈ω be an enumeration of all partial computable Demuth

tests, where gk(n) is the bound on the number of times the version of Vkn can change.
We need to ensure the following requirements hold:

Nk: If gk is total, there is some n with Z 6∈ Vkn.

We do not directly create a strategy for every Nk requirement. Instead, we
associate a strategy with every Un. If this strategy sees that gk(n + 2)↓< f(n), it
will work to meet Nk. It does this by instructing all strategies associated with U`
for ` > n to construct their U` avoiding Vkn+2.

To implement this, the strategy associated with Un defines a set Bn+1 which the
strategy associated with Un+1 must work to avoid. We cannot hope to build Un+1

so that it avoids Bn+1 in its entirety, so instead we settle for only having small
overlap with it. The strategy then passes the overlap to the next strategy as part
of Bn+2. In order to keep small overlap with Bn+1, Un+1 may need to change as
many as 4gk(n + 2) times. Thus we can use f(n) to compute an upper bound on
the number of changes.

If gk is total, we argue that Z weakly passes the Demuth test
〈〈
V kn
〉
n∈ω, gk

〉
as follows. By assumption there is some n satisfying gk(n + 2) < f(n), and thus
the strategy associated with Un will work to meet Nk. Our set Z will be a set in⋂
n Un\Bn. Thus since Z 6∈ Bn+1, Z weakly passes the Demuth test.

Strategy for Un:
The strategy for Un only acts at stages s > n. It will keep a value ks(n), which

may be undefined.
At stage s, if s = n or Un−1,s 6= Un−1,s−1, we define Un,s to be some clopen set

in Un−1,s disjoint from Bn,s and of size 2−n.

Otherwise, if λ(Un,s ∩ Bn,s) 6 2−(n+2), we define Un,s = Un,s−1. If λ(Un,s ∩
Bn,s) > 2−(n+2), we define Un,s to be some clopen set in Un−1,s disjoint from Bn,s
and of size 2−n.

Note that since λ(Un−1,s) = 2−(n−1) and λ(Bn,s) 6 2−n, there is always sufficient
measure to choose Un,s as described.

30 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

Finally, if there is some k < n such that gk(n + 2)↓< f(n), and for every m <
n, k 6= ks(m), we choose the least such k and set ks(n) = k and Bn+1,s = Un,s ∩
(Bn,s ∪ Vkn+2). Otherwise, we leave ks(n) undefined and set Bn+1,s = Un,s ∩ Bn,s.

If ks(n) is undefined, clearly λ(Bn+1,s) 6 2−(n+1) by construction. Otherwise,

Bn+1,s ⊆ (Un−1,s ∩ Bn−1,s) ∪ Vkn+2, and thus λ(Bn+1,s) 6 2−(n+2) + 2−(n+2) =

2−(n+1).

Construction:
At every stage s, we begin by setting B0,s = ∅. Then, for n 6 s in increasing

order, we run the strategy for Un.

Verification:
We proceed with a sequence of claims.

Claim 6.5. The set {s | ks(n) 6= ks+1(n)} has size at most 4n.

Proof. By construction, ks(n) 6= ks+1(n) implies that either some gk(n + 2)↓ at
stage s + 1 with k < n or some ks(m) 6= ks+1(m) with m < n. The former
can clearly happen at most n times, while by induction the latter can happen at
most 4m for each m < n. Thus we have the bound

n+
∑
m<n

4m 6 4n. �

Claim 6.6. If gk is total, then there is some n such that lims ks(n) = k. Hence the
requirement Nk is met.

Proof. Since the function n 7→ gk(n+ 2) is total computable, by assumption there
are infinitely many n such that gk(n+ 2) < f(n). Let n0, . . . , nk be the first k + 1
such n. Let s0 be a stage such that gk(ni + 2) has converged for every i 6 k. By
construction, for every s > s0, ks(ni) = k for some i 6 k. By pigeon hole, there
is some i such that ks(ni) = k for infinitely many s. But by the previous claim,
ks(ni) can only change finitely many times. Thus n = ni is as desired. �

Claim 6.7. There is a total A-computable function h such that #{s | Un,s 6=
Un,s+1} 6 h(n).

Proof. We build this bound by recursion. Since B0,s = ∅ for all s, we can take h(0) =
0.

For n > 0, Bn,s is a union of finitely many test elements Vkini,s, with ki = ks(ni−2)

and ni − 2 < n. Each Vkini can change versions at most gki(ni) many times, and by

construction gki(ni) < f(ni−2). Further, each ks(ni−2) can change at most 4ni−2

many times.
If none of the ks(m) with m < n have changed between stages s0 and s1,

and none of the Vkini have changed their versions between stages s0 and s1, and
Un−1,s = Un−1,s+1 for all s0 6 s < s1, then since λ(Bn,s) 6 2−n and Un is changed

whenever λ(Un,s ∩ Bn,s) > 2−(n+2), Un will have to be changed at most 3 times
between stages s0 and s1. Thus we can bound the number of changes by

4 · (h(n− 1) + 1) ·
∑
m<n

4mf(m).

This is clearly A-computable. �

Claim 6.8. The class Bn = lim sups Bn,s is a Σ0
1-class.

Proof. Let s0 be a stage such that all ks(m) have converged for m < n by stage s0,
and for every m < n with k = ks0(m) defined, Vkm+2 will never again change

versions. Then lim sups Bn,s is simply the finite union of the Σ0
1-classes Vkm+2. �

CHARACTERIZING LOWNESS FOR DEMUTH RANDOMNESS 31

Claim 6.9. Let Un = lims Un,s. For m < n, (Um − Bm) ⊃ (Un − Bn).

Proof. By construction, Um ⊃ Un and Bm ∩ Un ⊆ Bn. �

By compactness,
⋂
n(Un−Bn) is nonempty. Let Z be a point in the intersection.

Clearly Z is not A-weakly Demuth random, since it fails the test 〈Un〉n∈ω.

Claim 6.10. Z is weakly Demuth random.

Proof. For any weak Demuth test
〈
Vkn
〉
n∈ω, let n be such that k = lims ks(n).

Then Vkn+2 ⊆ Bn+1 by construction, and so Z 6∈ Vkn+2. Thus Z weakly passes this
Demuth test. �

Thus Z is the set we desire, completing the proof of the proposition and of the
theorem. �

�

References

[1] G. Barmpalias, J. S. Miller, and A. Nies. Randomness notions and partial relativization.

Israel J. Math., 191(2):791–816, 2012.

[2] T. Bartoszyński. Combinatorial aspects of measure and category. Fund. Math., 127(3):225–
239, 1987.

[3] L. Bienvenu, D. Diamondstone, N. Greenberg, and D. Turetsky. van Lambalgen’s theorem

for Demuth randomness. In preparation.
[4] L. Bienvenu, R. Hoelzl, J. Miller, and A. Nies. The Denjoy alternative for computable func-

tions. Symposium on theoretical aspects of computer science (STACS) 2012, 543-554.

[5] L. Bienvenu, R. Hoelzl, J. Miller, and A. Nies. Demuth, Denjoy, and Density. Submitted,
2013.

[6] L. Bienvenu and J. Miller. Randomness and lowness notions via open covers. Ann. Pure Appl.

Logic, 163(5), 506–518, 2012.
[7] J. Cole and S. Simpson. Mass problems and hyperarithmeticity. J. Math. Log., 7(2):125–143,

2007.
[8] O. Demuth. Some classes of arithmetical real numbers. Comment. Math. Univ. Carolin.,

23(3):453–465, 1982.

[9] O. Demuth. Remarks on the structure of tt-degrees based on constructive measure theory.
Comment. Math. Univ. Carolin., 29(2):233–247, 1988.

[10] R. Downey and N. Greenberg. Strong jump traceability II: the general case. Israel J. Math.,

2011. In press.
[11] D. Diamondstone, N. Greenberg and D. Turetsky. Inherent enumerability of strong jump-

traceability. Submitted.

[12] Rod Downey. On Π0
1 classes and their ranked points. Notre Dame J. Formal Logic, 32(4):499–

512 (1992), 1991.

[13] R. Downey and N. Greenberg. Pseudo-jump inversion and SJT-hard sets. Submitted.

[14] R. Downey, E. Griffiths, and G. Laforte. On Schnorr and computable randomness, martin-
gales, and machines. Math. Log. Q., 50(6):613–627, 2004.

[15] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Theory and Appli-

cations of Computability. Springer, New York, 2010.
[16] R. Downey and S. Ng. Lowness for Demuth randomness. In Mathematical Theory and Com-

putational Practice, volume 5635 of Lecture Notes in Computer Science, pages 154–166.
Springer Berlin / Heidelberg, 2009. Fifth Conference on Computability in Europe, CiE 2009,

Heidelberg, Germany, July 19-July 24.
[17] R. Downey, A. Nies, R. Weber, and L. Yu. Lowness and Π0

2 nullsets. J. Symbolic Logic,
71(3):1044–1052, 2006.

[18] S. Figueira, A. Nies, and F. Stephan. Lowness properties and approximations of the jump.

Ann. Pure Appl. Logic, 152:51–66, 2008.
[19] J. Franklin and D. Diamondstone. Lowness for difference tests. Submitted.

[20] J. Franklin and K. M. Ng. Difference randomness. Proceedings of the American Mathematical
Society. To appear.

[21] P. Gács. Every sequence is reducible to a random one. Inform. and Control, 70:186–192, 1986.
[22] N. Greenberg and J. Miller. Lowness for Kurtz randomness. J. Symbolic Logic, 74(2):665–678,

2009.

32 L. BIENVENU, R. DOWNEY, N. GREENBERG, A. NIES, AND D. TURETSKY

[23] N. Greenberg and D. Turetsky. Strong jump-traceability and Demuth randomness. Submitted.

[24] R. Hölzl, T. Kräling, S. Stephan, and G. Wu. Initial segment complexities of randomness

notions. To appear, 20xx.
[25] S. Ishmukhametov. Weak recursive degrees and a problem of Spector. In Recursion theory

and complexity (Kazan, 1997), volume 2 of de Gruyter Ser. Log. Appl., pages 81–87. de
Gruyter, Berlin, 1999.

[26] S. Kautz. Degrees of random sets. Ph.D. Dissertation, Cornell University, 1991.

[27] B. Kjos-Hanssen, A. Nies, and F. Stephan. Lowness for the class of Schnorr random sets.
SIAM J. Computing, 35(3):647–657, 2005.

[28] A. Kučera. An alternative, priority-free, solution to Post’s problem. In Mathematical founda-

tions of computer science, 1986 (Bratislava, 1986), volume 233 of Lecture Notes in Comput.
Sci., pages 493–500. Springer, Berlin, 1986.

[29] A. Kučera and S. Terwijn. Lowness for the class of random sets. J. Symbolic Logic, 64:1396–

1402, 1999.
[30] A. Kučera and A. Nies. Demuth randomness and computational complexity. Ann. Pure Appl.

Logic, 162:504–513, 2011.

[31] A. Kučera and A. Nies. Demuth’s path to randomness (extended abstract). Computation,
Physics and Beyond. Lecture Notes in Computer Science, 2012, Volume 7160, 159-173.

[32] W. Miller and D. A. Martin. The degree of hyperimmune sets. Z. Math. Logik Grundlag.
Math., 14:159–166, 1968.

[33] K. Miyabe. Truth-table Schnorr randomness and truth-table reducible randomness. MLQ

Math. Log. Q., 57(3):323–338, 2011.
[34] A. Nies. Reals which compute little. In Logic Colloquium ’02, Lecture Notes in Logic, pages

260–274. Springer–Verlag, 2002.

[35] A. Nies. Lowness properties and randomness. Adv. in Math., 197:274–305, 2005.
[36] A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides. Oxford University

Press, Oxford, 2009.

[37] A. Nies. Computably enumerable sets below random sets. Ann. Pure Appl. Logic, 2011. To
appear.

[38] A. Nies. New directions in computability and randomness. Talk at the CCR 2009 in Luminy,

available at this link, 2009.
[39] A. N. Shiryayev. Probability, volume 95 of Graduate Texts in Mathematics. Springer-Verlag,

New York, 1984. Translated from the Russian by R. P. Boas.

[40] F. Stephan. Marin-Löf random and PA-complete sets. In Logic Colloquium ’02, volume 27 of
Lect. Notes Log., pages 342–348. Assoc. Symbol. Logic, La Jolla, CA, 2006.

[41] F. Stephan and L. Yu. Lowness for weakly 1-generic and Kurtz-random. In Theory and
applications of models of computation, volume 3959 of Lecture Notes in Comput. Sci., pages

756–764. Springer, Berlin, 2006.

[42] S. Terwijn and D. Zambella. Algorithmic randomness and lowness. J. Symbolic Logic,
66:1199–1205, 2001.

http://www.cs.auckland.ac.nz/~nies/talklinks/Luminy.pdf

	1. Introduction
	Demuth randomness
	Traceability
	Partial relativization
	The BLR transform
	1.1. The content of the paper
	1.2. Clopen tests

	2. A perfect class of Demuth traceable sets
	3. Lowness for randomness
	3.1. Demuth open sets and their basic properties
	3.2. Obtaining a trace from a Demuth open cover
	3.3. Forcing with Demuth closed sets
	3.4. Forcing failure of lowness
	3.5. Independent sets and Chernoff bounds

	4. Demuth tracebility and jump traceability
	4.1. Jump traceability
	4.2. Separating jump traceability from Demuth traceability in the -c.a. degrees
	4.3. Separating jump traceability from Demuth traceability in the computably dominated degrees

	5. Constant bounds on the traces
	6. Lowness for weak Demuth randomness
	References

