
Reconciling data compression and
Kolmogorov complexity

Laurent Bienvenu1 and Wolfgang Merkle2

1 Laboratoire d’Informatique Fondamentale, Université de Provence, Marseille,
France, laurent.bienvenu@lif.univ-mrs.fr

2 Institut für Informatik, Ruprecht-Karls-Universität Heidelberg, Germany,
merkle@math.uni-heidelberg.de

Abstract. While data compression and Kolmogorov complexity are both
about effective coding of words, the two settings differ in the following
respect. A compression algorithm or compressor, for short, has to map
a word to a unique code for this word in one shot, whereas with the
standard notions of Kolmogorov complexity a word has many different
codes and the minimum code for a given word cannot be found effec-
tively. This gap is bridged by introducing decidable Turing machines
and a corresponding notion of Kolmogorov complexity, where compres-
sors and suitably normalized decidable machines are essentially the same
concept.
Kolmogorov complexity defined via decidable machines yields charac-
terizations in terms of the intial segment complexity of sequences of the
concepts of Martin-Löf randomness, Schnorr randomness, Kurtz random-
ness, and computable dimension. These results can also be reformulated
in terms of time-bounded Kolmogorov complexity. Other applications
of decidable machines are presented, such as a simplified proof of the
Miller-Yu theorem (characterizing Martin-Löf randomness by the plain
complexity of the initial segments) and a new characterization of com-
putably traceable sequences via a natural lowness notion for decidable
machines.

1 Introduction

The Kolmogorov complexity of a word w with respect to a Turing machine M is
defined to be the length of the shortest input on which M halts and outputs w.
This shortest input is often thought as the “best compression” of w relatively to
M . However, as pointed out by Shen [14]: “[...] in the framework of Kolmogorov
complexity we have no compression algorithm and deal only with the decompres-
sion algorithm.” In this paper, we address Shen’s remark and have a look at
effective randomness from an actual compression viewpoint.

First, in Section 2, we introduce a formal notion of compressor. Among the
many possible formalizations of the notion of compressor, we study one that is
natural and captures the main properties of “real world” compressors. We then
argue that compression obtained by compressors in our sense is essentially the

same as dealing with Kolmogorov complexity defined via decidable machines,
i.e., by Turing machines that have computable domains.

In the following sections, the theory of decidable machines is developed in
a framework of algorithmic randomness. In Section 3, we review the celebrated
characterization of Martin-Löf randomness in terms of prefix-free Kolmogorov
complexity due to Schnorr and the more recent characterizations of Schnorr
and Kurtz randomness in terms of bounded machines due to Downey and Grif-
fiths [2]. We give identical or very similar charaterizations of all three notions
of randomness in terms of decidable machines; to the best of our knowledge,
this is the first time that all three notions are characterized using a single type
of Turing machine. Similary, we argue that the characterization of computable
Hausdorff dimension in terms of computable machines due to Downey et al. [1]
extends to decidable machines. In Section 4, all the mentioned charaterizations
are transferred to standard time-bounded Kolmogorov complexity by arguing
that the latter is closely related to Kolmogorov complexity defined via decidable
machines.

In Section 5, we use the characterization of Martin-Löf randomness in terms
of decidable machines in order to give a simplified proof of the recent Miller-
Yu theorem, which characterizes Martin-Löf randomness in terms of plain Kol-
mogorov complexity of initial segments.

Finally, in Section 6, we consider lowness notions. A sequence A is called low
and order-low for prefix-free decidable machines in case Kolmogorov complexity
with respect to such machines, when relativized to oracle A, changes by less than
a constant and by less than any computable order, respectively. We obtain that
any sequence is order-low for decidable machines if the sequence is computably
traceable, which then implies some known facts on lowness for Schnorr and Kurtz
randomness. Furthermore, exactly the computable sequences are low for prefix-
free decidable machines. In what follows several proofs will be omitted due to
lack of space.

We conclude the introduction by reviewing some standard concepts and no-
tation that will be used in the sequel. A word is a finite binary sequence, the
empty word, the unique word of length 0, is denoted by λ; the set of all words
is denoted by 2∗. Unless explicitely stated differently, a sequence is an infinite
binary sequence, and we write 2ω for the set of all sequences (sometimes also
referred to as Cantor space).We denote by v the prefix relation on 2∗ ∪ 2ω. For
every word u and for every set of words A, let

[u] = {R ∈ 2ω : uvR} and [A] =
⋃

u∈A[u] .

Recall that Lebesgue measure on Cantor space is the unique probability measure
µ on Cantor space such that for all words u holds µ([u]) = 2−|u|.

Following Li and Vitanyi [9], we denote by C(u) and K(u) the plain and the
prefix Kolmogorov complexity of a word u. For every Turing machine M which
computes a partial function from words to words and for any word u, we denote
by CM (u) the natural number inf{|p| : M(p) = u}. If M is assumed to have
prefix-free domain, we write KM in place of CM .

2

2 Compressors and decidable machines

The intuitive understanding of a compressor is a procedure that maps a word
to a code for that word, where the mapping is one-to-one and hence in principle
invertible. For compressors that are to be applied in practice, in addition one will
surely require that coding and decoding are efficient and that redundant sources
will be mapped to reasonably short codes; however, these latter requirements will
not be considered here. We consider a most general notion of compressor where
one simply requires that the compressor yields an effective bijection between a
computable set of words and a computable set of codes.

Definition 1. A compressor is a partial computable function Γ : 2∗ → 2∗

such that Γ is one-to-one and the domain and range of Γ are computable. A
compressor is prefix-free if its range is prefix-free.

By Definition 1, a compressor may be undefined on some strings, but such strings
can be recognized effectively. Furthermore, the definition ensures that decom-
pression can be performed effectively, i.e., given a string u = Γ (v) in the range
of Γ , the unique preimage v of u can be found effectively. Here again, some
strings can be invalid for the decompression process, i.e., they do not represent
a compressed string, but these strings can also be recognized effectively. Most
actual compressors (e.g., gzip) are indeed compressors in our sense.

Compressors as just defined and Kolmogorov complexity both are about ef-
fective coding of words. The main difference is that a compressor has to produce
a code for a word in one shot and in fact every word has at most a single code.
For the standard notions of Kolmogorov complexity, on the other hand, a word
has several codes. While decoding is effective and the set of pairs of codes and
coded words is computably enumerable, in general there is no effective way to go
from a word to its shortest code. So if we want to have a notion of Kolmogorov
complexity that corresponds to the type of coding done by compressors, we have
to define Kolmogorov complexity with respect to a restricted class of Turing
machines.

Definition 2. A Turing machine that computes a partial function on the set of
words is called decidable if its domain is decidable.

Decidable Turing machines can be normalized in the sense that superfluous
codes are removed and possessing a code becomes a computable property.

Definition 3. A decidable Turing machine M is called normalized if the range
of M is decidable and for all words w there is at most one word p where M(p)=w.

As usual, a Turing machine is called prefix-free if its domain is prefix-free.

Proposition 4. Given a decidable Turing machine M one can effectively find a
decidable Turing machine M ′ that is normalized such that for all words w holds
KM ′(w) ≤ KM (w) + 1. In addition, if M is prefix-free, then M ′ can be chosen
to be prefix-free, too.

3

Proof. For a given decidable Turing machine M , define M ′ as follows. For any
word w, in case there is some word p where M(p) = w and |p| ≤ 2|w|, let pw

be the least such word and let M ′(0pw) = w. If there is no such word p,
let M ′(1|w|0w) = w. ut

Proposition 5 shows that compressors and normalized decidable Turing machines
are essentially the same. Recall that the inverse of a partial function f from words
to words that is one-to-one is the partial function f−1 : v 7→ min{u : f(u) = v}.

Proposition 5. For any compressor Γ , the inverse mapping Γ−1 is just the
partial function computed by some normalized decidable Turing machine. For
any normalized decidable Turing machine M the inverse mapping M−1 is a
compressor. The same correspondence is given for the subclasses of prefix-free
compressors and prefix-free decidable machines.

Proof. It suffices to observe that both compressors and normalized decidable
Turing machines are by definition just partial computable bijections between a
decidable domain and a decidable range. ut

In the sequel, we will derive several results on decidable Turing machines,
however, by the close correspondence with compressors, all these results could
be reformulated in terms of compressors. For further use, recall the notion of
computable Turing machine, as introduced by Downey and Griffiths.

Definition 6 (Downey and Griffiths). A Turing machine that computes a
partial function on the set of words is called computable if its domain D is
prefix-free and [D] has computable Lebesgue measure.

Observe that any computable Turing machine is in particular decidable; the con-
verse is false even when attention is restricted to prefix-free Turing machines.
Downey and Griffiths [2] introduced the notion of computable machine in order
to give a machine characterization of Schnorr randomness and Kurtz random-
ness. In Section 3, we will give alternative characterizations of these randomness
notions in terms of decidable machines.

3 Characterizing randomness notions by decidable
machines

We first review the notions of a Martin-Löf random, a Schnorr random, and a
Kurtz random sequence, and then we characterize these notions in terms of the
complexity of initial segments with respect to decidable machines.

Definition 7. A Martin-Löf test is a uniformly recursively enumerable se-
quence V0, V1, . . . of sets of words where [Vn] has Lebesgue measure at most 2−n.
A Schnorr test is a Martin-Löf test where in addition the Lebesgue measure
of [Vn] is exactly 2−n. A Kurtz test is a Martin-Löf test where in addition the
sets [Vn] are finite and a canonical index for Vn can be computed from n.

4

A sequence V0, V1, . . . of sets of words covers a sequence X if X is contained
in the intersection of the open sets [Vn] (i.e., if X has a prefix in every set Vi).
A sequence R is Martin-Löf random if it cannot be covered by a Martin-Löf
test. A sequence R is Schnorr random if it cannot be covered by a Schnorr
test. A sequence R is Kurtz random if it cannot be covered by a Kurtz test.

In the above definition of a Schnorr test, the measure condition on the uni-
formly recursively enumerable family V0, V1, . . . actually implies that this fam-
ily is uniformly computable. This is no longer true in the case of Martin-Löf
tests: some are not uniformly computable. However, it is well-known that ev-
ery Martin-Löf test can be turned into an equivalent Martin-Löf test that is
uniformly computable.

Lemma 8. For every Martin-Löf test V0, V1, . . . there exists a Martin-Löf test
U0, U1, . . . such that [Un] = [Vn] for all n and where the set {(u, n) : u ∈ Vn} is
decidable. (We will call a Martin-Löf test with the latter property a decidable
Martin-Löf test.)

One of the most celebrated results in algorithmic randomness is Schnorr’s
characterization of Martin-Löf randomness in terms of prefix-free Kolmogorov
complexity. Propositions 10 and 11 assert that very similar characterizations are
true in a setting of prefix-free decidable machines.

Theorem 9 (Schnorr). A sequence R is Martin-Löf random if and only if
K(R[0..n]) ≥ n−O(1).

Proposition 10. A sequence R is Martin-Löf random if and only if for all
prefix-free decidable machines M , KM (R[0..n]) ≥ n−O(1).

Proposition 11. There exists a prefix-free decidable machine M such that any
sequence R is Martin-Löf random if and only if KM (R[0..n]) ≥ n−O(1).

The implications from left to right in Propositions 10 and 11 are immediate from
Schnorr’s theorem because for any prefix-free machine M there is a constant d
such that for all words u holds K(u) ≤ KM (u)+d. The proof of the other direction
is similar to the proof of the corresponding implication in Schnorr’s theorem, i.e.,
one applies the Kraft-Chaitin Theorem in order to go from a Martin-Löf test
that covers a set X to a prefix-free machine that has short codes for the prefixes
of X; in order to actually obtain prefix-free decidable machines, it suffices to
start with a decidable Martin-Löf test according to Lemma 8, where in the case
of Proposition 11 this test is chosen to be universal.

Downey and Griffiths [2] characterized Schnorr randomness by the complex-
ity of initial segements with respect to computable machines; Proposition 13
states a related characterization in terms of decidable Turing machines. In con-
nection with the latter, recall that a function h : N→ N is called an order if h
is nondecreasing and unbounded.

Proposition 12 (Downey and Griffiths). A sequence R is Schnorr random
iff for every computable Turing machine M holds KM (R[0..n]) ≥ n+ O(1).

5

Proposition 13. A sequence R is Schnorr random iff for every computable or-
der h and for every prefix-free decidable Turing machine M ,

KM (R[0..n]) ≥ n− h(n) + O(1) .

Downey and Griffiths [2] also used computable machines to give a machine
characterization of Kurtz randomness. Proposition 15 asserts a completely sim-
ilar characterization in terms of decidable machines, where interestingly the
prefix-free property makes no difference. Furthermore, the last condition in
Proposition 15 gives a characterization of Kurtz randomness similar to the char-
acterization of Schnorr randomness in Proposition 13.

Proposition 14 (Downey and Griffiths).
The following assertions are equivalent.

(i) R is not Kurtz random.
(ii) There exists a computable machine M and a computable function f : N→ N

such that KM (R[0..f(d)]) ≤ f(d)− d holds for all d.

Proposition 15. The following assertions are equivalent.

(i) R is not Kurtz random.
(ii) There exists a prefix-free decidable machine M and a computable function

f : N→ N such that KM (R[0..f(d)]) ≤ f(d)− d holds for all d.
(iii) There exists a decidable machine M and a computable order h such that

CM (R[0..n]) ≤ n− h(n) holds for all n.
(iv) There exists a decidable machine M and a computable function f : N → N

such that CM (R[0..f(d)]) ≤ f(d)− d holds for all d.

A characterization of computable dimension in terms of computable machines
has been obtained by Downey et al. [1], and we conclude this section by a similar
characterization in terms of decidable machines. In the context of time-bounded
complexity, an equivalent formulation of the latter characterization has been
previously demonstrated by Hitchcock [5], see Proposition 20.

Proposition 16. For every sequence R holds

dimcomp(R) = inf
M

lim inf
n→+∞

CM (R[0..n])
n

,

where the infimum is over all decidable Turing machines M .

4 Time-bounded Kolmogorov complexity

Since a decidable Turing machine is required to have a computable domain, it
is not hard to show that a decidable Turing machine is the same as a Turing
machine that obeys a time bound t but is not required to be defined on all inputs,
i.e., on any input p the machine runs for at most t(|p|) steps and then either

6

produces an output or alternatively may decide not to terminate. In contrast to
this, time-bounded Kolmogorov complexity is usually defined in terms of time-
bounded machines where the time-bound is required with respect to the length
of the output, that is the machine may again be undefined on certain inputs, but
whenever the machine outputs a word w then the corresponding computation
runs for at most t(|w|) many steps.

Definition 17. Fix an additively optimal machine U . For any computable func-
tion t : N→ N and any word w, let

Ct(w) = min{|p| : U(p) outputs w after at most t(|w|) steps of computation}.

Kt(w) is defined similarly, taking U optimal among the prefix-free machines.

Lemma 18. For every decidable machine M , there exists a computable time
bound t such that Ct ≤ CM + O(1). For every prefix-free decidable machine M ,
there exists a computable time bound t such that Kt ≤ KM + O(1).

The converse of Lemma 18 is not true, but the following weaker statement
will be sufficient for our purposes.

Lemma 19. For every computable time bound t and every computable order h,
there exists a decidable machine M such that for every word w and all k ∈ N,

Ct(w) ≤ |w| − k =⇒ CM (w) ≤ |w| − k + h(k) .

A similar statement holds for Kt and prefix-free decidable machines.

By Lemma 18 and Lemma 19, all our previous results can be interpreted in
terms of time-bounded Kolmogorov complexity.

Proposition 20. (a) A sequence R is Martin-Löf random iff for every com-
putable time bound t, Kt(R[0..n]) ≥ n+ O(1).
(b) There exists a computable time bound t0 such that every sequence R is
Martin-Löf random iff Kt0(R[0..n]) ≥ n+ O(1).
(c) A sequence R is Schnorr random iff for every computable time bound t and
every computable order g, Kt(R[0..n]) ≥ n− g(n) + O(1).
(d) A sequence R is Kurtz random iff for every computable time bound t and
every computable order g, Kt(R[0..n]) ≥ n− g(n) for infinitely many n(and this
equivalence remains true with Ct in place of Kt).
(e) For every sequence R, dimS(R) = inf lim inf Kt(R[0..n])

n , the infimum being
taken over all computable time bounds t (and this equation remains true with Ct

in place of Kt).

Assertion (e) was proved earlier by Hitchcock [5]. Assertion (c) is an improvement
of a result of Lathrop and Lutz [7], who demonstrated that the right-hand side
condition is necessary for R to be computably random.

7

5 The Miller-Yu Theorem

After Schnorr [13] characterized Martin-Löf randomness in terms of the prefix
Kolmogorov complexity of initial segments, the question whether there is a sim-
ilar characterization in terms of plain complexity remained open for more than
three decades until recently Miller and Yu [11] gave a positive answer. A simpli-
fied proof of their result is obtained by using the characterization of Martin-Löf
randomness via prefix-free decidable machines from Proposition 11.

Proposition 21 (Miller and Yu). There is a computable function G : N→ N
such that the sum

∑
n∈N 2−G(n) converges and such that for any sequence R the

following assertions are equivalent.

(i) R is Martin-Löf random.
(ii) For every computable function g : N → N such that

∑
n∈N 2−g(n) converges

it holds that C(R[0..n− 1]) ≥ n− g(n)−O(1).
(iii) It holds that C(R[0..n− 1]) ≥ n−G(n)−O(1).

Proof. For completeness, we review the standard proof of the implication (i)→(ii).
If (ii) is false, then there is a computable function g where

∑
n∈N 2−g(n) converges

and such that for arbitrarily large d there is some n where

C(R[0..n− 1]) ≤ n− g(n)− d . (1)

But for any such d and n, inequality (1) remains true with g(n) replaced by K(n)
because K(n) ≤ g(n) + O(1) holds by the Kraft-Chaitin Theorem [3] and as-
sumption on g. Hence for any such d and n, the prefix w of R of length n has a
prefix-free code of length at most n− d/2 + O(1), which consists of a prefix-free
code for n of length K(n), followed by a prefix-free code for n−K(n)−C(w) plus
a plain code for w of length C(w). Consequently, R is not Martin-Löf random.

We now construct a computable function G with the required convergence
property, where the implication (ii)→(iii) is then immediate, and we conclude
by giving an alternative proof of (iii)→(i). Let M be the prefix-free decidable
machine of Proposition 11. For all n, c ∈ N, let Ac

n = {u : |u| = n and KM (u) ≤
|u| − c} and ac

n = Card(Ac
n). Furthermore, let bcn = 2cac

n and bn =
∑

c∈N b
c
n;

observe that the sums of the latter type are actually finite because Ac
n is empty

for c > n. This way we have∑
n∈N

bn
1
2n

=
∑

n,c∈N
bcn

1
2n

=
∑

n,c∈N
ac

n

1
2n−c

≤ 1 , (2)

where the equalities hold by definition and the inequality holds because M is
prefix-free. Now, if we let G(n) = n − log(b1 + ... + bn), then G is computable
and by definition of G and elementary rearrangements of terms one obtains∑

n∈N
2−G(n) ≤

∑
n∈N

b1 + · · ·+ bn
2n

≤ 2
∑
n∈N

bn
2n
≤ 2 .

8

Next consider any word w in Ac
n. Since the Ac

n’s are uniformly computable,
the word w can be obtained effectively from a description that contains c together
with the index of w in the enumeration of the union of the sets Ac

0, A
c
1, . . . where

the elements of Ac
n are enumerated before those of Ac

n+1. Hence it holds that

C(w) ≤ 2 log c+ log(ac
1 + ac

2...+ ac
n) + O(1)

≤ 2 log c+ log(2−cb1 + 2−cb2 + ...+ 2−cbn) + O(1) (3)
≤ n−G(n)− c+ 2 log c+ O(1) ≤ n−G(n)− c/2 + O(1) ,

where the second and third inequality hold by definition of the bn’s and of G,
respectively. Now if the sequence R is not Martin-Löf random, then by Propo-
sition 11 and definition of the Ac

n’s, there are arbitrarily large c such that for
some n the prefix w of R of length n is in Ac

n and thus w and c satisfy the chain
of inequalities (3), hence (iii) is false. ut

6 Lowness and order-lowness

In the area of algorithmic randomness, various lowness notions have been studied
and have been shown to interact interestingly with each other and with other
notions [3, 12]. In general, a sequence A is called low for a certain concept, if
the concept does not change (or at least does not change significantly) when
the concept is relativized to the sequence A. For example, a sequence A is low
for K if the the standard prefix-free Kolmogorov complexity K and it relativized
version with oracle A differ at most by some additive constant. In connection
with complexity notions that are not defined via a universal machine, such as
Kolmogorov complexity defined in terms of prefix-free decidable machines, low-
ness usually means that for any machine of the given type with oracle there is
another machine without oracle such that complexity with respect to the latter
is not significantly larger than complexity with respect to the former. Note in
this connection that a prefix-free decidable machine with oracle A is an ora-
cle Turing machine with oracle A that on oracle A has prefix-free domain that
can be computed with oracle A; we write KA

M for the corresponding relativized
notion of Kolmogorov complexity.

Definition 22. A sequence A is low for prefix-free decidable machines
if for every prefix-free decidable machine M with oracle A, there exists a prefix-
free decidable machine M ′ such that for all words w,

KM ′(w) ≤ KA
M (w) + O(1).

A sequence A is order-low for prefix-free decidable machines if for
every prefix-free decidable machine M with oracle A and any computable order h,
there exists a prefix-free decidable machine M ′ such that for all words w,

KM ′(w) ≤ KA
M (w) + h(KA

M (w)) + O(1). (4)

9

The notion of order-low is similar to a lowness notion for standard prefix-free
Kolmogorov complexity that has been introduced and has been shown to be
equivalent to strong jump-traceability by Figueira, Nies, and Stephan [4]. Some-
what similar to their equivalence result, we obtain a characterization of com-
putable traceability in terms of order-lowness for prefix-free decidable machines.
Recall the concept of computable traceability.

Definition 23. A sequence A is computably traceable if there is a computable
order h such that for any function f that is computable with oracle A there is a
computable sequence of canonical indices for finite sets F0, F1, . . . where for all i,

(i) f(i) ∈ Fi, and (ii) |Fi| ≤ h(i).

Proposition 24. A sequence A is computably traceable if and only if A is order-
low for prefix-free decidable machines.

Terwijn and Zambella [16] observed that the notion of computable trace-
ability is robust in the following sense. The notion remains the same if in its
definition it is required that for any computable order h and any function f
computable in A there is a trace F0, F1, . . . with f(i) ∈ Fi and |Fi| ≤ h(i); that
is, if according to Definiton 23 a sequence A is computably traceable with re-
spect to some computable order h, then the sequence is computably traceable
with respect to any computable order h. Indeed, the definition holds then even
with respect to any order that is computable in A, because by Remark 25, for
any computably traceable sequence A and any order g computable in A there is
a computable order h where h(n) ≤ g(n) for all n.

Recall that by definition sequence A is hyperimmune-free, if for any func-
tion f that is computable with oracle A there is a computable function g such
that f(n) ≤ g(n) for all n. Furthermore, observe that every computably traceable
sequence A is hyperimmune-free, where it suffices to let g(n) be the maximum
value in Fi where F0, F1, . . . is a computable trace for a given function f that is
computable in A.

Remark 25. For any hyperimmume-free sequence A, thus in particular for any
computably traceable sequence A, and for any order h that is computable in A
there is a computable order g such that for all n holds g(n) ≤ h(n) (in fact, this
property characterizes the hyperimmune-free sequences).

For a proof, h being given, consider the A-computable function f defined by:
f(k) = max{n : h(n) ≤ k}. If A is hyperimmune-free, there is a computable
function f ′ such that for all n, f(n) ≤ f ′(n), and we can assume that f ′ is
increasing. Set g(k) = max{n : f ′(n) ≤ k} for all k. Since f ′ is computable and
increasing, g is a computable order. Moreover, for all n, g(n) ≤ h(n). Indeed,
suppose that for some n, one has g(n) > h(n). Then:

n ≥ f ′(g(n)) > f ′(h(n)) ≥ f(h(n)) ≥ n

(the inequalities following from the definition of g, the fact that f ′ is increasing,
the fact that f ′ ≥ f and the defintion of f respectively), a contradiction.

10

Remark 26. The concept of order-low for prefix-free decidable machines is not
changed if one requires in its definition just that (4) is satisfied for some fixed
computable order in place of all such orders. For a proof, observe that the equiv-
alence in Proposition 24 extends to the altered concepts by literally the same
proof, and conclude using Remark 25.

Remark 27. The concept of order-low for prefix-free decidable machines is not
changed if one requires in the definition of a sequence A being order-low that (4)
is not just satisfied for all computable orders but for all orders that are computable
with oracle A. For a proof it suffices to observe that if a sequence A is order-low,
then A is computably traceable by Proposition 24, hence by Remark 25 for any
A-computable order there is a computable order that grows at least as slowly.

Proposition 24 and the assertions of Remarks 26 and 27 remain true when
considering dedicable machines (and corresponding notions of order lowness) in
place of prefix-free decidable machines.

Terwijn and Zambella [16] and Kjos-Hanssen, Nies, and Stephan [8] demon-
strated that the class of computably traceable sequences coincides with the class
of sequences that are low for Schnorr null tests and with the class of sequences
that are low for Schnorr randomness, respectively. Furthermore, it is known
that the computably traceable sequences form a strict subclass of the class of
sequences that are low for Kurtz randomness [15]. We obtain part of these results
as a corollary to Propositions 13, 15, and 24.

Corollary 28. Any computably traceable sequence A is low for Schnorr ran-
domness and low for Kurtz randomness.

Proof. Let A be a computably traceable sequence, and R a Schnorr random se-
quence. We shall prove that R is A-Schnorr random. Let M be a prefix-free decid-
able machine with oracle A, and h be an A-computable order. Up to normalizing
M as we did in the proof of Proposition 4, let us suppose that KA

M (w) ≤ 2|w|
for all words w. By Remark 25, there exists a computable order g such that
g ≤ h/2. Set g′(n) = g(n/2) for all n, and notice that g′ is a computable or-
der. By Proposition 24, let M ′ be a prefix-free decidable machine such that
KM ′ ≤ KA

M + g′(KA
M) + O(1). Since R is Schnorr random, by Proposition 13,

KM ′(R[0..n]) ≥ n− g(n)−O(1) for all n. Hence

KA
M (R[0..n]) ≥ n− g(n)− g′(KA

M (R[0..n]))−O(1)
≥ n− g(n)− g′(2n)−O(1)
≥ n− 2g(n)−O(1)
≥ n− h(n)−O(1)

By Proposition 13 (relativized to A), R is A-Schnorr random. The proof for
Kurtz randomness is similar. ut

Finally, the following proposition shows that, in contrast to order-lowness,
lowness for decidable machines is a trivial lowness notion.

11

Proposition 29. A sequence is low for prefix-free decidable machines if and
only if the sequence is computable.

Proof. Let A be a sequence that is low for prefix-free decidable machines. By
Proposition 10, A is low for Martin-Löf randomness, hence ∆0

2 (see [12]). More-
over, since A is low for prefix-free decidable machines, it is in particular order-
low, which by Proposition 24 implies that A is computably traceable. As a ∆0

2

computably traceable sequence is necessarily computable, we are done. ut

References

1. R. Downey, W. Merkle and J. Reimann. Schnorr dimension. Mathematical Struc-
tures in Computer Science 16:789–811, 2006.

2. R. Downey and E. Griffiths. On Schnorr randomness. Journal of Symbolic Logic
69(2):533–554, 2004.

3. R. Downey and D. Hirschfeldt. Algorithmic Randomness and Complexity.
Manuscript, 2007.

4. S. Figueira, A. Nies, and F. Stephan. Lowness properties and approximations of
the jump. In WOLLIC 2005, Electronic Notes in Theoretical Computer Science
143:45–57, Elsevier 2006.

5. J. M. Hitchcock. PhD dissertation, Iowa State University, 2003.
6. J. M. Hitchcock and J. H. Lutz. Why computational complexity requires stricter

martingales. Theory of computing systems 39(2):277–296, 2006.
7. J. Lathrop and J. Lutz. Recursive computional depth. Information and Computa-

tion 153:137-172, 1999.
8. B. Kjos-Hanssen, A. Nies, and F. Stephan. Lowness for the class of Schnorr random

reals. SIAM Journal on Computing 35(3): 647–657, 2005.
9. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Appli-

cations, second edition. Springer, 1997.
10. P. Martin-Löf. The definition of random sequences. Information and Control

9(6):602–619, 1966.
11. J. S. Miller and L. Yu. On initial segment complexity and degrees of randomness.

Transactions of the American Mathematical Society. To appear.
12. A. Nies. Lowness properties and randomness. Advances in Mathematics 197:274–

305, 2005.
13. C.-P. Schnorr. A unified approach to the definition of random sequences. Mathe-

matical Systems Theory 5:246–258, 1971.
14. A. Shen. Algorithmic Information Theory and Kolmogorov Complexity. Lecture

notes of an introductory course. Uppsala University Technical Report 2000-034.
Available online at http://www.it.uu.se/publications/reports/2000-034.

15. F. Stephan and Liang Yu. Lowness for weakly 1-generic and Kurtz-random.
TAMCS 2006, LNCS 3959:756–764, Springer, 2006.

16. S. Terwijn and D. Zambella. Computable randomness and lowness. Journal of Sym-
bolic Logic 66(3):1199–1205, 2001.

Appendix

Proof of Lemma 8

Proof. Let n be fixed. We construct Vn as follows. We enumerate Un, and, when
a word u is enumerated in Un after s steps of enumeration, we add in Vn all the

12

extensions of u of length max(|u|, s). Of course this can be done uniformly in n,
and hence {Vn} is a Martin-Löf test. Moreover, to decide whether or not a word
w belongs to Vn, it is sufficient to compute the |v| first elements u1, ..., u|v| in
the enumeration of Un, and to notice that v is in Vn if and only if v an extension
of us of length max(|us|, s) for some s ≤ |v|. ut

Proof of Proposition 10

Proof. Since for all prefix-free machines M we have K ≤ KM + O(1), we only
need to prove that if R if not Martin-Löf random, then there exists a decidable
prefix-free machine M such that inf KM (R[0..n]) − n = −∞. Let R be non
Martin-Löf random, and let {Vn} be a decidable Martin-Löf test covering it
(there exists such a test by the previous lemma). From this test, we contruct the
machine M . By a classical Kraft-Chaitin argument, there exists a computable
function π : 2∗ × N → 2∗ which range is prefix free and such that for all (u, n)
with u ∈ Vn, |π(u, n)| = |u| − bn/2c+ c for some constant c ∈ N. We then define
M by M(π(u, n)) = u. We show that M is decidable. Suppose w ∈ dom(M),
then w = π(u, n) for some (u, n) s.t. u ∈ Vn. In this case |w| = |u| − bn/2c+ c,
and |u| ≥ n. Hence, n ≤ 2|w|. Thus, to check if w ∈ dom(M) it is sufficient to
compute π(u, n) for all (u, n) such that u ∈ Vn, n ≤ 2|w| and |w| = |u|−bn/2c+c.
Since {Vn} is decidable and since there are finitely many such (u, n), this shows
that M is decidable. Now, for any n and any u such that u ∈ Vn, we have by
definition of M : KM (u) = |u|−bn/2c+c, and hence inf KM (R[0..n])−n = −∞.

ut

Proof of Proposition 13

Proof. First assume that R is not Schnorr random, that is, there is a normed
computable martingale d and a computable order g such that d(R[0..n]) ≥ g(n)
for infinitely many n. Let g′ be a computable order such that g′(n) = o(g(n)),
for example, g′ = log g (log being the floor of the logarithm of base 2). For all
k ∈ N, let Ak be the set of all words that are minimal among all words u such
that d(u) ≥ 2k+1g′(|u|). By construction, R ∈

⋂
k[Ak]. Moreover, by Theorem

??, we have

2k+1
∑

u∈Ak

2−|u|+log(g′(|u|)) =
∑

u∈Ak

2−|u|+k+1+log(g′(|u|)) ≤
∑

u∈Ak

2−|u|d(u) ≤ 1

and hence the sum of 2−|u|+log(g′(|u|)) over all k and all u in Ak is at most 1. By a
standard Kraft-Chaitin argument, there exists some partial computable function
π : N×2∗ → 2∗ whose domain is {(k, u) ∈ N×2∗ : u ∈ Ak}, whose range is prefix
free and such that for all (k, u) ∈ dom(π), |π(k, u)| = |u| − log(g′(|u|)). Let
us show that the range of π is computable. By definition of Ak, for all u ∈ Ak,
|u|−log(g′(|u|)) ≥ k. Thus, in order to know if a word w lies in range(π), it suffices
to compute π(k, u) for all k ≤ |w| and all u such that |u| − log(g′(|u|)) = |w|
(there are only finitely many such couples (k, u) since log(g′(|u|)) = o(|u|), and

13

they can be effectively found since g′ is computable) and check whether or not
w belongs to the computed values.

Let now M be the machine of domain range(π) such that for all (k, u) ∈
dom(π), M(π(k, u)) = u (M is a computable function for the same reason as
above). Thus, for all u ∈ Ak, CM (u) ≤ |u| − log(g′(|u|)), and since arbitrarily
long prefixes of R belong to

⋃
k Ak, it does not hold that KM (R[0..n]) ≥ n −

log(g′(n)) + O(1) (log(g′(n)) being an order).
Suppose conversely that there exists a computable order g and a prefix-free,

decidable machine M such that for all k, KM (R[0..n]) ≤ n−g(n)−k for infinitely
many n. We can assume that g(n) = o(n). For all k ∈ N, let Ak be the set of all
words that are minimal among all words u such that KM (u) ≤ |u| − g(|u|)− k.
Obviously, we have KM ≥ K (up to an additive constant). Thus, {Ak} is a
uniformly computable family of prefix-free subsets of 2∗ such that for all k ∈ N
:
∑

u∈Ak
2−|u|+g(|u|) ≤

∑
u∈Ak

2−K(u)−k ≤ 2−k. Let d be the martingale defined
as follows:

d(w) =
∑
k∈N

∑
u∈Ak

2−|u|+g(|u|)dg(|u|)/2
u (w)

- d is a martingale as the weighted sum of martingales, where the sum of the
weights is bounded.
- d is computable: We first show that d(λ) is computable. Indeed, d(λ) =∑

k∈N
∑

u∈Ak
2−|u|+g(|u|), and for all k,

∑
u∈Ak

2−|u|+g(|u|) ≤ 2−k. This allows
us, to get an approximation of d(λ) by 2−n, to compute only the finite sum∑

k≤n

∑
u∈Ak

2−|u|+g(|u|)d
g(|u|)/2
u (w). By induction, for any word w, if d(w) is

computable one can compute d(w0) (and symmetrically d(w1)) since

d(w0)− d(w) =
∑
k∈N

∑
u∈Ak

2−|u|+g(|u|)
(
dg(|u|)/2

u (w0)− dg(|u|)/2
u (w)

)
(which is in fact a finite sum because d

g(|u|)/2
u (w) = 1 for every u such that

g(|u|) ≥ 2|w|)
- Finally, if w ∈

⋃
k Ak, d(w) ≥ 2−|w|+g(|w|)d

g(|w|)/2
w (w) i.e. d(w) ≥ 2g(|w|)/2.

Since 2g(n)/2 is an order and there are infinitely many prefixes of R in
⋃

k Ak,
this shows that R is not Schnorr random. ut

Proof of Proposition 15

Proof. (i) → (ii): Let d be a computable martingale and g a computable or-
der such that for all n, d(R[0..n]) ≥ g(n). For k ∈ N, set g−1(k) = min {n ∈
N : g(n) = k} and Ak = {u : |u| = g−1(22k) and d(u) ≥ 22k}. In the same way as
in the proof of Proposition 13 (using a Kraft-Chaitin argument), there exists a
decidable machine M with prefix-free domain such that for all k and all u ∈ Ak,
KM (u) = |u| − k. Thus, for all k: KM (R[0..g−1(22k)]) ≤ g−1(22k) − k. Hence,
taking f(n) = g−1(22n), we get the desired result.
(ii)→ (iii) is immediate.
(iii)→ (iv): Just take f = h−1.

14

(iv)→ (i): For all n, set Bn = {u : |u| = f(2n) and CM (u) ≤ |u| − 2n}. Let the
d be the martingale defined by

d(w) =
∑
n∈N

∑
u∈Bn

2−f(2n)+ndu(w)

For all n,
∑

u∈Bn
du(w) ≤ Card(Bn)2|w| ≤ 2f(2n)−2n+|w|. Hence, for al n the

quantity
∑

u∈Bn
2−f(2n)+ndu(w) in the above sum is bounded by 2−n+|w|, which

ensures that this sum is computable up to any required precision, i.e. d is com-
putable. Moreover, for all n, R([0..f(2n)−1]) ∈ Bn and hence for all m ≥ f(2n):∑

u∈Bn

2−f(2n)+ndu(R[0..m]) ≥ 2n

Hence, setting g(n) = 2f−1(2n), we get the desired result. ut

Proof of Proposition 24

Proof. Let A be any sequence that is order-low for prefix-free decidable ma-
chines and let f be a function that is computable in A. Then there is a prefix-
free decidable machine M relative to oracle A which on input ux = 1|x|0x
ouputs f(x). Accordingly, there is a prefix-free decidable machine M ′ such that
for some computable order g and for all x there is some word px of length at
most nx = |ux|+g(|ux|) where M ′(px) = f(x). Since M ′ is decidable, this yields
a computable trace for f of size at most 2nx+1, where the latter bound does not
depend on f , hence A is computably traceable.

Next, let A be any sequence that is computably traceable, let M be any
prefix-free decidable machine with oracle A, and let h be any order that is
computable in A. Let f be the A-computable function such that f(n) contains
for all words p such that h(|p|) ≤ 2n + 1 in appropriately encoded form the
information on whether M terminates on input x and if so, the value M(x). Let g
be a computable order that grows so slowly that g(0) + . . .+ g(i) ≤ 2i− 1 holds
for all i > 0. Furthermore, by assumption on A, let F0, F1, . . . be a computable
trace of f where the sets Fi have size of at most g(i). Let z1, z2, . . . be the
sequence of values that are contained in the sets Fi where z1, . . . , z|F0| are the
values in F (0) in ascending order, z|F0|+1, . . . , z|F0|+|F1| are the values in F (1)
in ascending order, and so on. Consider the machine M ′ which on input 1t0x
first checks that zt is an appropriate encoding of the the behavior of a prefix-free
machine on a set of words that includes x. If the latter is wrong, then M ′ does
not terminate whereas, otherwise, M ′ simply copies the behavior at place x of
the machine encoded in zt, i.e., either does not terminate or outputs the same
value.

By construction, the machineM ′ is decidable and prefix-free. Now assumeM(p) =
w where p is a code of minimum length for w with respect to M and let i = h(|p|).
By choice of f and g, the value f(bi/2c) contains the information on the behavior
of M at place p, where this value is contained in Fbi/2c, hence is equal to one of
the values z0 through zi−1. So M ′ will output w on an input of the form 1t0p
where t+ 1 ≤ i = h(|p|) = h(KA

M (w)). ut

15

Proof of Corollary 28

Proof. We give the proof for the case of Schnorr randomness and omit the very
similar argument for the case of Kurtz randomness. The characterization of
Schnorr randomness given in Proposition 13 relativizes, i.e., for any sequences A
and X, the sequence X is not Schnorr random relative to A if there is an A-
computable order g and a prefix-free decidable Turing machine relative to A
such that for infinitely many n holds

KA
M (X[0...n]) < n− g(n) + O(1). (5)

By Remark 25 there is a computable order h where h(n) ≤ g(n); in particular,
inequality (5) remains true with g replaced by h. Let h′(n) = bg(n)/3c. By
Proposition refprop:orderlow, there is prefix-free decidable Turing machine M ′

such that for all words w holds KM ′(w) ≤ KA
M (w) + h′(n) + O(1), hence for

infinitely many n we have

KM ′(X[0...n]) < n− h′(n) + O(1),

and R is not Schnorr random according to Proposition 13.

Proof of Proposition 29

Proof. In order to proof the non-trivial direction let A be any sequence that is
low for decidable prefix-free machines. Then by Corollary 28, the sequence A is
low for Kurtz randomness and low for Schnorr randomness, where all sequences
of the former type are hyperimmune-free [?] and all sequences of the latter type
are ∆0

2 [12], while a sequence that has both properties must be computable. ut

Proof of Proposition ??

Proof. (a) Suppose that R is not mp-Schnorr random, that is there exits some
computable martingale process d and some computable order g such that d(R[0..n]) ≥
g(n) for infinitely many n, where we can assume d(λ) < 1.

Fix a computable order g′ such that 2g′(n) = o(g(n)), e.g., g′(n) = log log g(n).
For all k > 0, let Ak be the set of words that are minimal among all words u
that satisfy

d(u) ≥ g(|u|) ≥ 2g′(n)+k ,

and observe that R has a prefix in every set Ak. Then Ak is prefix-free and closed
under ≈d, hence, by the generalized fairness condition for martingales,

2k
∑

u∈Ak

2−|u|+g′(|u|) =
∑

u∈Ak

2−|u|2g′(|u|)+k ≤
∑

u∈Ak

2−|u|d(u) ≤ 1 .

Thus the sum of 2−|u|+g′(|u|) over all k and all u in Ak is at most 1. Furthermore,
the sets Ak are uniformly computable, hence by yet another standard Kraft-
Chaitin argument, there is a Turing machine M such that for all k and all
words u in Ak,

CM (u) = |u| − g′(|u|) . (6)

16

Moreover, the domain of M can be chosen to be computable because by con-
struction the set Ak does not contain words of length less than 2k and any
alleged code of M of length k can only code words in A1 through A2k of length
at most 2k. In summary, we obtain a computable order g′ and a decidable Turing
machine M such that R has infinitely many prefixes u where (6) holds, hence R
is not Schnorr random according to Proposition 12.
(b) Suppose that R is not mp-Schnorr random, that is there exits some com-
putable martingale process d and some computable order g such that d(R[0..n]) ≥
g(n) for all n. By the exact same argument as for the part (i)→ (ii) of Propo-
sition 15, there exist a computable function f : N→ N such that for all n and a
decidable prefix-free machine M such that KM (R[0..f(n)]) ≤ f(n)−n for all n.
Hence by Proposition 15, R is not Kurtz random. ut

Proof of Lemma 18

Proof. Let M be a decidable machine. By Proposition 4, there exists a normal-
ized machine M ′ such that CM ′ ≤ CM + O(1). Now, define the following time
bound:

t(n) = max {time(M ′, pw) : w ∈ range(M ′) and |w| = n}

where pw is the program such that M ′(pw) = w (it is unique by the definition
of normalized machines), and time(M ′, pw) is the number of computation steps
in the computation of M ′(pw). Again by definition of normalized machines, t
is computable as range(M ′) is. The fact that CM ′ = Ct

M ′ is clear, and by the
invariance theorem, for some c > 0, Cc t log t ≤ Ct

M ′ +O(1). ut

Proof of Lemma 19

Proof. Here again we only prove the plain complexity case. Let t be a computable
time bound, let h a computable order and by abuse of notation let h−1(k) be
equal to the maximum number m where h(m) ≤ k. Let U be the machine such
that Ct = Ct

U . Define the machine M as follows: on an input 0r1p, M simulates
U(p) during t(h−1(r + 1) + |p|+ 1) steps. If the computation halts within these
number of steps, set M(0r1q) = U(p), otherwise M(p) is undefined. Clearly,
M is a decidable machine. Let now w be such that Ct(w) = |w| − k. Let q be
a witness of this, i.e. |q| = |w| − k and U on input q outputs w in no more
than t(|w|) steps. By definition of M , we have M(0h(k)−11q) = U(q) = w (since
h−1(h(k)) + |q|+ 1 ≥ |q|+ k ≥ |w|). Thus, CM (w) ≤ h(k) + |q| ≤ |w| − k+ h(k).

ut

17

