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Abstract. In the theory of algorithmic randomness, several notions of
random sequence are defined via a game-theoretic approach, and the
notions that received most attention are perhaps Martin-Löf randomness
and computable randomness. The latter notion was introduced by Schnorr
and is rather natural: an infinite binary sequence is computably random
if no total computable strategy succeeds on it by betting on bits in order.
However, computably random sequences can have properties that one
may consider to be incompatible with being random, in particular, there
are computably random sequences that are highly compressible. The
concept of Martin-Löf randomness is much better behaved in this and
other respects, on the other hand its definition in terms of martingales is
considerably less natural.
Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined
Schnorr’s model by also allowing non-monotonic strategies, i.e. strategies
that do not bet on bits in order. The subsequent “non-monotonic” notion
of randomness, now called Kolmogorov-Loveland-randomness, has been
shown to be quite close to Martin-Löf randomness, but whether these
two classes coincide remains a fundamental open question.
In order to get a better understanding of non-monotonic randomness no-
tions, Miller and Nies introduced some interesting intermediate concepts,
where one only allows non-adaptive strategies, i.e., strategies that can still
bet non-monotonically, but such that the sequence of betting positions is
known in advance (and computable). Recently, these notions were shown
by Kastermans and Lempp to differ from Martin-Löf randomness. We
continue the study of the non-monotonic randomness notions introduced
by Miller and Nies and obtain results about the Kolmogorov complexities
of initial segments that may and may not occur for such sequences, where
these results then imply a complete classification of these randomness
notions by order of strength.

1 Introduction

Random sequences are the central object of study in algorithmic randomness and
have been investigated intensively over the last decade, which led to a wealth of
interesting results clarifying the relations between the various notions of random-
ness and revealing interesting interactions with notions such as computational
power [2, 5, 11].



Intuitively speaking, a binary sequence is random if the bits of the sequence do
not have effectively detectable regularities. This idea can be formalized in terms
of betting strategies, that is, a sequence will be called random in case the capital
gained by successive bets on the bits of the sequence according to a fixed betting
strategy must remain bounded, with fair payoff and a fixed set of admissible
betting strategies understood.
The notions of random sequences that have received most attention are Martin-Löf
randomness and computable randomness. Here a sequence is called computably
random if no total computable betting strategy can achieve unbounded capital by
betting on the bits of the sequence in the natural order, a definition that indeed
is natural and suggests itself. However, computably random sequences may lack
certain properties associated with the intuitive understanding of randomness, for
example there are such sequences that are highly compressible, i.e., show a large
amount of redundancy, see Theorem 4.2 below. Martin-Löf randomness behaves
much better in this and other respects. Indeed, the Martin-Löf random sequences
can be characterized as the sequences that are incompressible in the sense that
all their initial segments have essentially maximal Kolmogorov complexity, and
in fact this holds for several versions of Kolmogorov complexity according to
celebrated results by Schnorr, by Levin and, recently, by Miller and Yu [2]. On the
other hand, it has been held against the concept of Martin-Löf randomness that
its definition involves effective approximations, i.e., a very powerful, hence rather
unnatural model of computation, and indeed the usual definition of Martin-Löf
randomness in terms of left-computable martingales, that is, in terms of betting
strategies where the gained capital can be effectively approximated from below,
is not very intuitive.
It can be shown that Martin-Löf randomness strictly implies computable ran-
domness. According to the preceding discussion the latter notion is too inclusive
while the former may be considered unnatural. Ideally, we would therefore like
to find a more natural characterization of ML-randomness; or, if that is im-
possible, we are alternatively interested in a notion that is close in strength
to ML-randomness, but has a more natural definition. One promising way of
achieving such a more natural characterization or definition could be to use
computable betting strategies that are more powerful than those used to define
computable randomness.
Muchnik [10] proposed to consider computable betting strategies that are non-
monotonic in the sense that the bets on the bits need not be done in the natural
order, but such that the bit to bet on next can be computed from the already
scanned bits. The corresponding notion of randomness is called Kolmogorov-
Loveland randomness because Kolmogorov and Loveland independently had
proposed concepts of randomness defined via non-monotonic selecting of bits.
Kolmogorov-Loveland randomness is implied by and in fact is quite close to
Martin-Löf randomness, see Theorem 14 below, but whether the two notions
are distinct is one of the major open problems of algorithmic randomness. In
order to get a better understanding of this open problem and of non-monotonic
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randomness in general, Miller and Nies [9] introduced restricted variants of
Kolmogorov-Loveland randomness, where the sequence of betting positions must
be non-adaptive, i.e., can be computed in advance without knowing the sequence
on which one bets.
The randomness notions mentioned so far are determined by two parameters that
correspond to the columns and rows, respectively, of the table in Figure 1. First,
the sequence of places that are scanned and on which bets may be placed, while
always being given effectively, can just be monotonic, can be equal to π(0), π(1), . . .
for a permutation or an injection π from N to N, or can be adaptive, i.e., the
next bit depends on the bits already scanned. Second, once the sequence of
scanned bits is determined, betting on these bits can be according to a betting
strategy where the corresponding martingale is total or partial computable, or
is left-computable. The known inclusions between the corresponding classes of
random sequences are shown in Figure 1, see Section 2 for technical details and
for the definitions of the class acronyms that occur in the figure.

monotonic permutation injection adaptive

total TMR = TPR ⊇ TIR ⊇ KLR

⊆ ⊆ ⊆ =

partial PMR ⊇ PPR ⊇ PIR ⊇ KLR

⊆ ⊆ ⊆ ⊆

left-computable MLR = MLR = MLR = MLR

Fig. 1. Known class inclusions

The classes in the last row of the table in Figure 1 all coincide with the class
of Martin-Löf random sequences by the folklore result that left-computable
martingales always yield the concept of Martin-Löf randomness, no matter
whether the sequence of bits to bet on is monotonic or is determined adaptively,
because even in the latter, more powerful model one can uniformly in k enumerate
an open cover of measure at most 1/k for all the sequences on which some universal
martingale exceeds k. Furthermore, the classes in the first and second row of the
last column coincide with the class of Kolmogorov-Loveland random sequences,
because it can be shown that total and partial adaptive betting strategies yield
the same concept of random sequence [6]. Finally, it follows easily from results
of Buhrman et al. [1] that the class TMR of computably random sequences
coincides with the class TPR of sequences that are random with respect to total
permutation martingales, i.e., the ability to scan the bits of a sequence according
to a computable permutation does not increase the power of total martingales.
Concerning non-inclusions, it is well-known that it holds that

KLR ( PMR ( TMR.
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Furthermore, Kastermans and Lempp [3] have recently shown that the Martin-Löf
random sequences form a proper subclass of the class PIR of partial injective
random sequences, i.e., MLR ( PIR.
Apart from trivial consequences of the definitions and the results just mentioned,
nothing has been known about the relations of the randomness notions between
computable randomness and Martin-Löf randomness in Figure 1. In what follows,
we investigate the six randomness notions that are shown in Figure 1 in the
range between PIR and TMR, i.e., between partial injective randomness as
introduced below and computable randomness. We obtain a complete picture of
the inclusion structure of these notions, more precisely we show that the notions
are mutually distinct and indeed are mutually incomparable with respect to set
theoretical inclusion, except for the inclusion relations that follow trivially by
definition and by the known relation TMR ⊆ TPR, see Figure 2 at the end of
this paper. Interestingly these separation results are obtained by investigating
the possible values of the Kolomogorov complexity of initial segments of random
sequences for the different strategy types, and for some randomness notions we
obtain essentially sharp bounds on how low these complexities can be.

Notation. We conclude the introduction by fixing some notation. The set of finite
strings (or finite binary sequences, or words) is denoted by 2<ω, ε being the
empty word. We denote the set of infinite binary sequences by 2ω. Given two
finite strings w,w′, we write w v w′ if w is a prefix of w′. Given an element x
of 2ω or 2<ω, x(i) denotes the i-th bit of x (where by convention there is a 0-th
bit and x(i) is undefined if x is a word of length less than i+ 1). If A ∈ 2ω and
X = {x0 < x1 < x2 < . . .} is a subset of N then A � X is the finite or infinite
binary sequence A(x0)A(x1) . . .. We abbreviate A � {0, . . . , n− 1} by A � n (i.e.,
the prefix of A of length n).
C and K denote plain and prefix-free Kolmogorov complexity, respectively [2,
5]. The function log designates the logarithm of base 2. An order is a function
h : N→ N that is non-decreasing and tends to infinity.

2 Permutation and injection randomness

We now review the concept of martingale and betting strategy that are central for
the unpredictability approach to define notions of an infinite random sequence.

Definition 1. A martingale is a nonnegative, possibly partial, function d :
2<ω → Q such that for all w ∈ 2<ω, d(w0) is defined if and only if d(w1) is, and
if these are defined, then so is d(w), and the relation 2d(w) = d(w0) + d(w1)
holds. A martingale succeeds on a sequence A ∈ 2ω if d(A � n) is defined for
all n, and lim sup d(A � n) = +∞. We denote by Succ(d) the success set of d,
i.e., the set of sequences on which d succeeds.

Intuitively, a martingale represents the capital of a player who bets on the bits of
a sequence A ∈ 2ω in order, where at every round she bets some amount of money
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on the value of the next bit of A. If her guess is correct, she doubles her stake. If
not, she loses her stake. The quantity d(w), with w a string of length n, represents
the capital of the player before the n-th round of the game (by convention there
is a 0-th round) when the first n bits revealed so far are those of w.

We say that a sequence A is computably random if no total computable
martingale succeeds on it. One can extend this in a natural way to partial
computable martingales: a sequence A is partial computably random if no
partial computable martingale succeeds on it. No matter whether we consider
partial or total computable martingales, this game model can be seen as too
restrictive by the discussion in the introduction. Indeed, one could allow the
player to bet on bits in any order she likes (as long as she can visit each bit at
most once). This leads us to extend the notion of martingale to the notion of
strategy.

Definition 2. A betting strategy is a pair b = (d, σ) where d is a martingale
and σ : 2<ω → N is a function.

For a strategy b = (d, σ), the term σ is called the scan rule. For a string w,
σ(w) represents the position of the next bit to be visited if the player has read
the sequence of bits w during the previous moves. And as before, d specifies
how much money is bet at each move. Formally, given an A ∈ 2ω, we define by
induction a sequence of positions n0, n1, . . . by{

n0 = σ(ε),
nk+1 = σ (A(n0)A(n1) . . . A(nk)) for all k ≥ 0

and we say that b = (d, σ) succeeds on A if the ni are all defined and pairwise
distinct (i.e., no bit is visited twice) and

lim sup
k→+∞

d (A(n0) . . . A(nk)) = +∞

Here again, a betting strategy b = (d, σ) can be total or partial. In fact, its
partiality can be due either to the partiality of d or to the partiality of σ. We
say that a sequence is Kolmogorov-Loveland random if no total computable
betting strategy succeeds on it. As noted in [8], the concept of Kolmogorov-
Loveland randomness remains the same if one replaces “total computable” by
“partial computable” in the definition.
Kolmogorov-Loveland randomness is implied by Martin-Löf randomness and
whether the two notions can be separated is one of the most important open
problems on algorithmic randomness. As we discussed above, Miller and Nies [9]
proposed to look at intermediate notions of randomness, where the power of
non-monotonic betting strategies is limited. In the definition of a betting strategy,
the scan rule is adaptive, i.e., the position of the next visited bit depends on the
bits previously seen. It is interesting to look at non-adaptive games.
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Definition 3. In the above definition of a strategy, when σ(w) only depends
on the length of w for all w (i.e., the decision of which bit should be chosen at
each move is independent of the values of the bits seen in previous moves), we
identify σ with the (injective) function π : N → N, where for all n π(n) is the
value of σ on words of length n (π(n) indicates the position of the bit visited
during the n-th move), and we say that b = (d, π) is an injection strategy. If
moreover π is bijective, we say that b is a permutation strategy. If π is the
identity, the strategy b = (d, π) is said to be monotonic, and can clearly be
identified with the martingale d.

All this gives a number of possible non-adaptive, non-monotonic, randomness
notions: one can consider either monotonic, permutation, or injection strategies,
and either total computable or partial computable ones. This gives a total of six
randomness classes, which we denote by

TMR, TPR, TIR, PMR, PPR, and PIR, (1)

where the first letter indicates whether we consider total (T) or partial (P) strate-
gies, and the second indicates whether we look at monotonic (M), permutation (P)
or injection (I) strategies. For example, the class TMR is the class of computably
random sequences, while the class PIR is the class of sequences A such that
no partial injection strategy succeeds on A. Recall in this connection that the
known inclusions between the six classes in (1) and the classes KLR and MLR
of Kolmogorov-Loveland random and Martin-Löf random sequences have been
shown in Figure 1 above.

3 Randomness notions based on total computable
strategies

We begin our study by the randomness notions arising from the game model
where strategies are total computable. As we will see, in this model, it is possible
to construct sequences that are random and yet have very low Kolmogorov
complexity (i.e. all their initial segments are of low Kolmogorov complexity). We
will see in the next section that this is no longer the case when we allow partial
computable strategies in the model.

3.1 Sequences in TMR and TPR may have low complexity

The following theorem is a first illustration of the phenomenon we just described.

Theorem 4 (Lathrop and Lutz [4], Muchnik [10]). For every computable
order h, there is a sequence A ∈ TMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) + O(1).
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Proof (Idea). Defeating one total computable martingale is easy and can be
done computably, i.e., for every total computable martingale d there exists a
sequence A, uniformly computable in d, such that A /∈ Succ(d). Indeed, given a
martingale d. For any given w, one has either d(w0) ≤ d(w) or d(w1) ≤ d(w).
Thus, one can easily construct a computable sequence A by setting A � 0 = ε
and by induction, having defined A � n, we choose A � n+ 1 = (A � n)i where
i ∈ {0, 1} is such that d((A � n)i) ≤ d(A � n). This can of course be done
computably since d is total computable, and by construction of A, d(A � n) is
non-increasing, meaning in particular that d does not succeed against A.

Defeating a finite number of total computable martingales is equally easy. Indeed,
given a finite number d1, . . . , dk of such martingales, their sum D = d1 + . . .+ dk
is itself a total computable martingale (this follows directly from the definition).
Thus, we can construct as above a computable sequence A that defeats D. And
since D ≥ di for all 1 ≤ i ≤ k, this implies that A defeats all the di. Note that
this argument would work just as well if we had taken D to be any weighted sum
α1d1 + . . .+ αkdk, with positive rational constants αi.

We now need to deal with the general case where we have to defeat all total com-
putable martingales simultaneously. What we do is simply add total martingales
one by one: we start by diagonalizing against the first total martingale d1, then
(maybe after a long time) we may introduce the second martingale d2, with a
small coefficient α2 (to ensure that introducing d2 does not cost us too much)
and then consider the martingale d1 + α2d2. Much later we can introduce the
third martingale d3 with an even smaller coefficient α3, and diagonalize against
d1+α2d2+α3d3, and so on. So in each step of the construction we have to consider
just a finite number of martingales, and if we add the martingales sufficiently
slowly, it is easy to see than we can keep the complexity low (indeed, as long
as we know what martingales we are diagonalizing against, the construction is
computable; note however that the sequence as a whole will not be computable
since whenever we add a martingale we need to store some information, consisting
of its code, when it was added and with which coefficient). ut

It turns out that, perhaps surprisingly, the classes TMR and TPR coincide.
This fact was stated explicitely in Merkle et al [8], but is easily derived from the
ideas introduced in Buhrman et al [1]. We present the main ideas of their proof
as we will later need them. We shall prove:

Theorem 5. Let b = (d, π) be a total computable permutation strategy. There
exists a total computable martingale d such that Succ(b) ⊆ Succ(d).

This theorem states that total permutation strategies are no more powerful than
total monotonic strategies, which obviously entails TMR = TPR. Before we
can prove it, we first need a definition.

Definition 6. Let b = (d, π) be a total injective strategy. Let w ∈ 2<ω. We can
run the strategy b on w as if it were an element of 2ω, stopping the game when b
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asks to bet on a bit of position outside w. This game is of course finite (for a
given w) since at most |w| bets can be made. We define b̂(w) to be the capital
of b at the end of this game. Formally: b̂(w) = d

(
wπ(0) . . . wπ(N−1)

)
where N is

the smallest integer such that π(N) ≥ |w|.

Note that if b = (d, π) is a total computable injection martingale, b̂ is total
computable. If b̂ was itself a monotonic martingale, Theorem 5 would be proven.
This is however not the case in general. The trick is, given a betting strategy b and
a word w, to look at the expected value of b on w, i.e., look at the mathematical
expectation of b(w′) for large enough extensions w′ of w. Specifically, given a
total betting strategy b = (d, π) and a word w of length n, we take an integer M
large enough to have

π ([0, . . . ,M − 1]) ∩ [0, . . . , n− 1] = π(N) ∩ [0, . . . , n− 1]

(i.e. the strategy b will never bet on a bit of position less than n after the M -th
move), and define:

Avb(w) =
1

2M
∑
wvw′

|w′|=M

b̂(w′)

Proposition 7 (Buhrman et al [1], Kastermans-Lempp [3]).

(i) The quantity Avb(w) (defined above) is well-defined i.e. does not depend
on M as long as it satisfies the required condition.

(ii) For a total injective strategy b, Avb is a martingale.
(iii) For a given injective strategy b and a given word w of length n, Avb(w) can

be computed if we know the set π(N) ∩ [0, . . . , n− 1]. In particular, if b is a
total computable permutation strategy, then Avb is total computable.

As Buhrman et al. [1] explained, it is not true in general that if a total computable
injective strategy b succeeds on a sequence A, then Avb also succeeds on A.
However, this can be dealt with using the well-known “saving trick”. Suppose we
are given a martingale d with initial capital, say, 1. Consider the variant d′ of d
that does the following: when run on a given sequence A, d′ initially plays exactly
as d. If at some stage of the game d′ reaches a capital of 2 or more, it then puts
half of its capital on a “bank account”, which will never be used again. From that
point on, d′ bets half of what d does, i.e. starts behaving like d/2 (plus the saved
capital). If later in the game the “non-saved” part of its capital reaches 2 or more,
then half of it is placed on the bank account and then d′ starts behaving like d/4,
and so on. For every martingale d′ that behaves as above (i.e. saves half of its
capital as soon as it exceeds twice its starting capital), we say that d′ has the
“saving property”.

Lemma 8. Let b = (d, π) be a total injective strategy such that d has the saving
property. Let d′ = Avb. Then Succ(b) ⊆ Succ(d′).
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Now the proof of Theorem 5 is as follows. Let b = (d, π) be a total computable
permutation strategy. By the above discussion, let d′ be the saving version of d,
so that Succ(d) ⊆ Succ(d′). Setting b′ = (d′, π), we have Succ(b) ⊆ Succ(b′). By
Proposition 7 and Lemma 8, d′′ = Avb′ is a total computable martingale, and

Succ(b) ⊆ Succ(b′) ⊆ Succ(d′′)

as wanted. ut

3.2 Understanding the strength of injective strategies: the class
TIR

While the class of computably random sequences (i.e. the class TMR) is closed
under computable permutations of the bits, we now see that this result does not
extend to computable injections. To wit, the following theorem is true.

Theorem 9. Let A ∈ 2ω. Let {nk}k∈N be a computable sequence of integers such
that nk+1 ≥ 2nk for all k. Suppose that A is such that:

C (A � nk | k) ≤ log(nk)− 3 log(log(nk))

for infinitely many k. Then A /∈ TIR

As an immediate corollary, we get the following.

Corollary 10. If for a sequence A we have for all n that C (A � n | n) < log n−
4 log log n+ O(1), then A 6∈ TIR.

The lower bound on Kolmogorov complexity given in Theorem 9 is quite tight,
as witnessed by the following theorem.

Theorem 11. For every computable order h there is a sequence A ∈ TIR
such that C(A � n | n) ≤ log(n) + h(n) + O(1) (in particular, C(A � n) ≤
2 log(n) + h(n) + O(1)).

4 Randomness notions based on partial computable
strategies

We now turn our attention to the second line of Figure 1, i.e., to those randomness
notions that are based on partial computable betting strategies.
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4.1 The class PMR: partial computable martingales are stronger
than total ones

We have seen in the previous section that some sequences in TIR (and a fortiori
TPR and TMR) may be of very low complexity, namely logarithmic. This is not
the case anymore when one allows partial computable strategies, even monotonic
ones.

Theorem 12 (Merkle [7]). If C(A � n) = O(log n) then A 6∈ PMR.

By this theorem, together with Theorem , we immediately see that the class
PMR is strictly contained in TMR. However, the next theorem, proven by
An. A. Muchnik, shows that allowing slightly super-logarithmic growth of the
Kolmogorov complexity is enough to construct a sequence in PMR.

Theorem 13 (Muchnik et al. [10]). For every computable order h there is a
sequence A ∈ PMR such that, for all n ∈ N,

C (A � n | n) ≤ h(n) log(n) + O(1).

4.2 The class PPR

In the case of total strategies, allowing permutation gives no real additional
power, as TMR = TPR. Very surprisingly, Muchnik showed that in the case of
partial computable strategies, permutation strategies are a real improvement over
monotonic ones. To wit, the following theorem (quite a contrast to Theorem 13!)
holds.

Theorem 14 (Muchnik [10]). If there is a computable order h such that for
all n we have K(A � n) ≤ n− h(n)−O(1), then A 6∈ PPR.

Note that the proof used by Muchnik in [10] works if we replace K by C in the
above statement. So we now know that any sequence in PPR must have infinitely
many initial segments of high Kolmogorov complexity. The following theorem
shows that some sequences in PPR also have infinitely many initial segments of
very low complexity.

Theorem 15. For every computable order h there is a sequence A ∈ PPR, such
that there are infinitely many n where C (A � n | n) < h(n).
Furthermore, if we have an infinite computable set S ⊆ N, we can choose the
infinitely many lengths n such that they all are contained in S.

The proof of this theorem requires the following “totalization” technique.

Proposition 16. Let b = (d, π) be a partial computable permutation strategy
(resp. injective strategy). Let C be an effectively closed subset of 2ω. Suppose that b
is total on every element of C. Then there exists a total computable permutation
strategy (resp. injective strategy) b′ such that Succ(b) ∩ C = Succ(b′) ∩ C.
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Proof (of Theorem 15, sketch). Like for Theorem , we proceed by diagonalization
against all partial permutation martingales, “transforming” them into total mono-
tonic martingales in order to carry out the construction. Suppose that during
the construction we have constructed an initial segment w of our infinite se-
quence by diagonalization against a weighted sum of total monotonic martingales
α1d1 + . . .+ αkdk (say that the value of this sum at w is less than 2). Suppose
that we now want to add a new partial permutation martingale D. There are
two cases:

1. Either there exists an extension v of w such that D diverges on v, and such
that the value of α1d1 + . . .+ αkdk still does not exceed 2 at v. In that case,
we choose v as an initial segment of our sequence, as it both defeats D (no
matter how we further extend v later) and keeps α1d1 + . . .+ αkdk low.

2. Or, if we are not in the first case, then D is total on the set T of sequences v
such that α1d1 + . . .+ αkdk has value less than 2 at v and at all its prefixes.
Notice that T is a computable tree, and thus defines an effectively closed
set C. By Proposition 16, we can therefore replace D by a total permutation
strategy. Then, by Theorem 5, we can additionally make D monotonic. The
martingale dk+1 we obtain can now be added to the other ones, with a
coefficient αk+1 sufficiently small to ensure that α1d1 + . . .+αkdk+αk+1dk+1

has value less than 2 at w, and go on with the diagonalization.

Here again, if we wait for a long time before introducing a new strategy, we can
keep the Kolmogorov complexity low. However, we cannot keep it low all the
time as in the above case 1, the string v cannot be found effectively (we cannot
check that a strategy diverges on a string), and in particular it may have high
Kolmogorov complexity. ut

Now that we have assembled all our tools, we can easily prove the desired results.

Theorem 17. The following statements hold.

1. PPR 6⊆ TIR
2. TIR 6⊆ PMR
3. PMR 6⊆ PPR

From these results it easily follows that in Figure 2 no inclusion holds except
those indicated and those implied by transitivity.

Proof. 1. Choose a computable sequence {nk}k fulfilling the requirements of
Theorem 9 such that C(k) ≤ log log nk for all k. The members of this set then
form a computable set S. Use Theorem 15 to construct a sequence A ∈ PPR
such that C(A � n | n) < log logn at infinitely many places in S. We then
have for infinitely many k

C(A � nk | k) ≤ C(A � nk) ≤ C(A � nk | nk) + 2 log log nk ≤ 3 log log nk,

so A cannot be in TIR according to Theorem 9.
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monotonic permutation injection

total TMR = TPR ) TIR

( ( (

partial PMR ) PPR ) PIR

Fig. 2. Assembled class inclusion results

2. Follows immediately from Theorems 11 and 12.
3. Follows immediately from Theorems 13 and 14. ut

Note: An extended version of this paper (with full proofs of theorems) can be
found at http://arxiv.org/pdf/0907.2324.
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