Software Verification - Few Notations

Jérôme Leroux

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France leroux@labri.fr

Abstract. In this lesson we provide a quick overview of the main notations used in the sequel.

1 **Expressions and Logics**

Let V be a countable set of elements, called *variables*. A valuation of V is a function $\rho: V \mapsto \mathbb{Z}$ where \mathbb{Z} is the set of integers. Given $x \in V$ and $n \in \mathbb{Z}$, we denote by $\rho[x := n]$ the valuation ρ' defined by $\rho'(v) = \rho(v)$ for every $v \in V \setminus \{x\}$ and $\rho'(x) = n$. An expression on V is a term e obtained with the following grammar where $v \in V$ and $n \in \mathbb{Z}$:

$$e, e_1, e_2 := v \mid n \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2 \mid e_1 / e_2$$

Valuations $\rho: V \mapsto \mathbb{Z}$ are extended into the unique (partial) function over the expressions on V satisfying for every $n \in \mathbb{Z}$ and e_1, e_2 expressions on V:

 $-\rho(n)=n,$ $- \rho(e_1 + e_2) = \rho(e_1) + \rho(e_2),$ $-\rho(e_1 - e_2) = \rho(e_1) - \rho(e_2),$ $-\rho(e_1 * e_2) = \rho(e_1) * \rho(e_2), \text{ and}$ $- \rho(e_1 / e_2) = \operatorname{cdiv}(\rho(e_1), \rho(e_2)) \text{ if } \rho(e_2) \neq 0.$

The integer $\operatorname{cdiv}(n,m)$ where n,m are two integers with $m \neq 0$ is the result of the division of n by m rounded towards zero. This is indeed the behavior of division in most programming languages (including C). Denoting by $\lceil x \rceil$ and $\lfloor x \rfloor$ respectively the ceiling and the floor of a real number x, the value $\operatorname{cdiv}(n,m)$ when $m \neq 0$ is formally defined as follows:

$$\operatorname{cdiv}(n,m) = \begin{cases} \lfloor \frac{n}{m} \rfloor & \text{if } \frac{n}{m} \ge 0\\ \lceil \frac{n}{m} \rceil & \text{if } \frac{n}{m} < 0 \end{cases}$$

The set of variables var(e) of a term e is defined inductively as follows for every $n \in \mathbb{Z}$, $x \in V$ and e_1, e_2 expressions on V:

$$-\operatorname{var}(n) = \emptyset$$

$$-\operatorname{var}(x) = \{x\}$$

 $- \operatorname{var}(n) = \emptyset,$ $- \operatorname{var}(x) = \{x\},$ $- \operatorname{var}(e_1 \sim e_2) = \operatorname{var}(e_1) \cup \operatorname{var}(e_2) \text{ for every } \sim \in \{+, -, *, /\}.$

Example 1.1. Assume that e = v + 10 then $var(e) = \{v\}$ and $\rho(e) = \rho(v) + 10$ for every valuation ρ defined on v.

A formula ψ on V is a term obtained with the following grammar where e_1, e_2 are expressions on V, and $\sim \in \{\leq, <, =, >, \geq\}$:

 $\psi, \psi_1, \psi_2 :=$ **true** | **false** | $e_1 \sim e_2$ | $\neg \psi_1$ | $\psi_1 \lor \psi_2$ | $\psi_1 \land \psi_2$

A formula of the form $e_1 \sim e_2$ is called a *simple formula* or a *guard*.

The relation $\rho \models \psi$ where ρ is a valuation on V, and ψ is a formula on V is defined inductively on formulas by $\rho \models \psi$ if one of the following conditions hold:

 $-\psi = \mathbf{true}, \text{ or } \\ -\psi = (e_1 \sim e_2) \text{ and } \rho(e_1) \sim \rho(e_2), \text{ or } \\ -\psi = (\neg \psi_1) \text{ and not } \rho \models \psi_1, \text{ or } \\ -\psi = (\psi_1 \lor \psi_2) \text{ and } \rho \models \psi_1 \lor \rho \models \psi_2, \text{ or } \\ -\psi = (\psi_1 \land \psi_2) \text{ and } \rho \models \psi_1 \land \rho \models \psi_2.$

We also denote by $\rho \not\models \psi$ if not $\rho \models \psi$. When $\rho \models \psi$ we say that ρ satisfies ψ , or ρ is a model of ψ . The set of models of ψ is denoted by $\llbracket \psi \rrbracket$.

We associate to a finite set of variables X, multiple copies indexed by $i \in \mathbb{Z}$. Formally, the *i*-th copy of $x \in X$ is the pair (i, x), usually denoted by $x^{(i)}$. We also introduce the set $X^{(i)} = \{x^{(i)} \mid x \in X\}$. Let $V = \bigcup_{i \in \mathbb{Z}} X^{(i)}$ be the set of copies and let $j \in \mathbb{Z}$. We associate to a variable $v = x^{(i)}$ in V the variable $v^{(j)}$ defined as $x^{(i+j)}$. This transformation is extended on expressions e on V by replacing inductively variables $v \in V$ by $v^{(j)}$. The resulting expression is denoted by $e^{(j)}$. The transformation is also extended on formulas on V in the same way and it produces the formula $\psi^{(j)}$ from a formula ψ . The set $X^{(0)}$ and X are identified, and X' denotes $X^{(1)}$.

Example 1.2. Assume that $\psi = (x' = x + 2)$ then $\psi^{(1)} = (x^{(2)} = x' + 2)$.

2 Operations and control flow automata (CFA)

Let X be an implicit finite set of variables. An operation op is either a guard g where g is a simple formula on X, or an assignment x := e where $x \in X$ and e is an expression on X. The semantics of an operation op is a formula $\ll op \gg$ on $X \cup X'$ defined as follows:

$$\ll g \gg = g \wedge \bigwedge_{z \in X} z' = z$$
$$\ll x := e \gg = (x' = e) \wedge \operatorname{side}(e) \wedge \bigwedge_{z \in X, z \neq x} z' = z$$

where side(e) is a formula defined inductively on the structure of the expressions by:

- $-\operatorname{side}(n) = \operatorname{true}$ for every $n \in \mathbb{Z}$,
- $-\operatorname{side}(e_1+e_2)=\operatorname{side}(e_1)\wedge\operatorname{side}(e_2),$
- $-\operatorname{side}(e_1 e_2) = \operatorname{side}(e_1) \wedge \operatorname{side}(e_2),$
- $-\operatorname{side}(e_1 * e_2) = \operatorname{side}(e_1) \wedge \operatorname{side}(e_2)$, and
- $-\operatorname{side}(e_1 / e_2) = \operatorname{side}(e_1) \wedge \operatorname{side}(e_2) \wedge \neg e_2 = 0.$

The set of operations is denoted by Op. Given an operation op, we denote by $\text{Post}_{op} : (\mathcal{P}(\mathbb{Z}^X), \subseteq) \mapsto (\mathcal{P}(\mathbb{Z}^X), \subseteq)$ the function defined for every $S \subseteq \mathbb{Z}^X$ by:

$$\operatorname{Post}_{\operatorname{op}}(S) = \begin{cases} S \cap \llbracket g \rrbracket & \text{if } \operatorname{op} = (g) \\ \{ \rho[x := \rho(e)] \mid \rho \in S \} & \text{if } \operatorname{op} = (x := e) \end{cases}$$

Lemma 2.1. We have $\rho' \in \text{Post}_{op}(\{\rho\})$ if, and only if, $r \models \ll \text{op} \gg$ where r is the valuation on $X \cup X'$ defined by $r(x) = \rho(x)$ and $r(x') = \rho'(x)$ for every $x \in X$.

A control flow automaton (CFA for short) is a tuple $(Q, q_{\text{ini}}, q_{\text{bad}}, \Delta)$ where Q is a non-empty finite set of control states, q_{ini} is the initial control state, q_{bad} is the final one, and $\Delta \subseteq Q \times \mathsf{Op} \times Q$ is a finite ste of transitions. A trace from a control state q to a control state q' labeled by a word w of operations is a word of transitions $\delta_1 \dots \delta_k$ such that there exists $q_0, \dots, q_k \in Q$ and operations $\mathsf{op}_1, \dots, \mathsf{op}_k \in \mathsf{Op}$ such that $q_0 = q$, $q_k = q'$ and $\delta_j = (q_{j-1}, \mathsf{op}_j, q_j)$. A configuration is a pair (q, ρ) where $q \in Q$ and ρ is a valuation of X. When $q = q_{\text{ini}}$ the configuration is said to be initial, and when $q = q_{\text{bad}}$ the configuration is said to be bad. We associate to an operation op the binary relation $\stackrel{\mathsf{op}}{\longrightarrow}$ over the configurations defined by $(q, \rho) \stackrel{\mathsf{op}}{\longrightarrow} (q', \rho')$ if $(q, \mathsf{op}, q') \in \Delta$ and $\rho' \in \operatorname{Post}_{\mathsf{op}}(\{\rho\})$. An execution is a sequence $(q_0, \rho_0), \mathsf{op}_1, (q_1, \rho_1), \dots, \mathsf{op}_k, (q_k, \rho_k)$ such that:

$$(q_0, \rho_0) \xrightarrow{\mathsf{op}_1} (q_1, \rho_1) \cdots \xrightarrow{\mathsf{op}_k} (q_k, \rho_k)$$

A CFA is said to be *unsafe* if there exists an execution from an initial configuration to a bad one. Otherwise the CFA is said to be *safe*. The *reachability problem* for CFA consists in deciding if a CFA is unsafe.

Theorem 2.2. The reachability problem for CFA is undecidable, even if X is restricted to two variables and the operator * is disallowed in expressions.

Exercise 2.3. Provide an example of a very simple C program containing a conditional branch if...then...else and an assertion, and a corresponding CFA encoding the problem of deciding if the assertion is always true.