
Software Verification - Few Notations

Jérôme Leroux

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
leroux@labri.fr

Abstract. In this lesson we provide a quick overview of the main nota-
tions used in the sequel.

1 Expressions and Logics

Let V be a countable set of elements, called variables. A valuation of V is a
function ρ : V 7→ Z where Z is the set of integers. Given x ∈ V and n ∈ Z, we
denote by ρ[x := n] the valuation ρ′ defined by ρ′(v) = ρ(v) for every v ∈ V \{x}
and ρ′(x) = n. An expression on V is a term e obtained with the following
grammar where v ∈ V and n ∈ Z:

e, e1, e2 := v | n | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 / e2

Valuations ρ : V 7→ Z are extended into the unique (partial) function over the
expressions on V satisfying for every n ∈ Z and e1, e2 expressions on V :

– ρ(n) = n,
– ρ(e1 + e2) = ρ(e1) + ρ(e2),
– ρ(e1 − e2) = ρ(e1)− ρ(e2),
– ρ(e1 ∗ e2) = ρ(e1) ∗ ρ(e2), and
– ρ(e1 / e2) = cdiv(ρ(e1), ρ(e2)) if ρ(e2) 6= 0.

The integer cdiv(n,m) where n,m are two integers with m 6= 0 is the result
of the division of n by m rounded towards zero. This is indeed the behavior of
division in most programming languages (including C). Denoting by dxe and bxc
respectively the ceiling and the floor of a real number x, the value cdiv(n,m)
when m 6= 0 is formally defined as follows:

cdiv(n,m) =

®
b nmc if n

m ≥ 0

d nme if n
m < 0

The set of variables var(e) of a term e is defined inductively as follows for
every n ∈ Z, x ∈ V and e1, e2 expressions on V :

– var(n) = ∅,
– var(x) = {x},
– var(e1 ∼ e2) = var(e1) ∪ var(e2) for every ∼∈ {+,−, ∗, / }.

Example 1.1. Assume that e = v + 10 then var(e) = {v} and ρ(e) = ρ(v) + 10
for every valuation ρ defined on v.

A formula ψ on V is a term obtained with the following grammar where e1, e2
are expressions on V , and ∼∈ {≤, <,=, >,≥}:

ψ,ψ1, ψ2 := true | false | e1 ∼ e2 | ¬ψ1 | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

A formula of the form e1 ∼ e2 is called a simple formula or a guard.
The relation ρ |= ψ where ρ is a valuation on V , and ψ is a formula on V is

defined inductively on formulas by ρ |= ψ if one of the following conditions hold:

– ψ = true, or
– ψ = (e1 ∼ e2) and ρ(e1) ∼ ρ(e2), or
– ψ = (¬ψ1) and not ρ |= ψ1, or
– ψ = (ψ1 ∨ ψ2) and ρ |= ψ1 ∨ ρ |= ψ2, or
– ψ = (ψ1 ∧ ψ2) and ρ |= ψ1 ∧ ρ |= ψ2.

We also denote by ρ 6|= ψ if not ρ |= ψ. When ρ |= ψ we say that ρ satisfies ψ,
or ρ is a model of ψ. The set of models of ψ is denoted by JψK.

We associate to a finite set of variables X, multiple copies indexed by i ∈ Z.
Formally, the i-th copy of x ∈ X is the pair (i, x), usually denoted by x(i). We
also introduce the set X(i) = {x(i) | x ∈ X}. Let V =

⋃
i∈ZX

(i) be the set
of copies and let j ∈ Z. We associate to a variable v = x(i) in V the variable
v(j) defined as x(i+j). This transformation is extended on expressions e on V by
replacing inductively variables v ∈ V by v(j). The resulting expression is denoted
by e(j). The transformation is also extended on formulas on V in the same way
and it produces the formula ψ(j) from a formula ψ. The set X(0) and X are
identified, and X ′ denotes X(1).

Example 1.2. Assume that ψ = (x′ = x+ 2) then ψ(1) = (x(2) = x′ + 2).

2 Operations and control flow automata (CFA)

Let X be an implicit finite set of variables. An operation op is either a guard g
where g is a simple formula on X, or an assignement x := e where x ∈ X and
e is an expression on X. The semantics of an operation op is a formula �op�
on X ∪X ′ defined as follows:

�g� = g ∧
∧
z∈X

z′ = z

�x := e� = (x′ = e) ∧ side(e) ∧
∧

z∈X,z 6=x

z′ = z

where side(e) is a formula defined inductivelly on the structure of the expressions
by:

2

– side(n) = true for every n ∈ Z,
– side(e1 + e2) = side(e1) ∧ side(e2),
– side(e1 − e2) = side(e1) ∧ side(e2),
– side(e1 ∗ e2) = side(e1) ∧ side(e2), and
– side(e1 / e2) = side(e1) ∧ side(e2) ∧ ¬e2 = 0.

The set of operations is denoted by Op. Given an operation op, we denote by
Postop : (P(ZX),⊆) 7→ (P(ZX),⊆) the function defined for every S ⊆ ZX by:

Postop(S) =

®
S ∩ JgK if op = (g)

{ρ[x := ρ(e)] | ρ ∈ S} if op = (x := e)

Lemma 2.1. We have ρ′ ∈ Postop({ρ}) if, and only if, r |=� op� where r
is the valuation on X ∪ X ′ defined by r(x) = ρ(x) and r(x′) = ρ′(x) for every
x ∈ X.

A control flow automaton (CFA for short) is a tuple (Q, qini, qbad, ∆) where
Q is a non-empty finite set of control states, qini is the initial control state, qbad
is the final one, and ∆ ⊆ Q× Op×Q is a finite ste of transitions. A trace from
a control state q to a control state q′ labeled by a word w of operations is a
word of transitions δ1 . . . δk such that there exists q0, . . . , qk ∈ Q and operations
op1, . . . , opk ∈ Op such that q0 = q, qk = q′ and δj = (qj−1, opj , qj). A config-
uration is a pair (q, ρ) where q ∈ Q and ρ is a valuation of X. When q = qini
the configuration is said to be initial, and when q = qbad the configuration is
said to be bad. We associate to an operation op the binary relation

op−→ over the
configurations defined by (q, ρ)

op−→ (q′, ρ′) if (q, op, q′) ∈ ∆ and ρ′ ∈ Postop({ρ}).
An execution is a sequence (q0, ρ0), op1, (q1, ρ1), . . . , opk, (qk, ρk) such that:

(q0, ρ0)
op1−−→ (q1, ρ1) · · ·

opk−−→ (qk, ρk)

A CFA is said to be unsafe if there exists an execution from an initial configura-
tion to a bad one. Otherwise the CFA is said to be safe. The reachability problem
for CFA consists in deciding if a CFA is unsafe.

Theorem 2.2. The reachability problem for CFA is undecidable, even if X is
restricted to two variables and the operator ∗ is disallowed in expressions.

Exercise 2.3. Provide an example of a very simple C program containing a con-
ditional branch if...then...else and an assertion, and a corresponding CFA en-
coding the problem of deciding if the assertion is always true.

3

