Software Verification - Few Notations

Jérome Leroux

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
leroux@labri.fr

Abstract. In this lesson we provide a quick overview of the main nota-
tions used in the sequel.

1 Expressions and Logics

Let V be a countable set of elements, called variables. A valuation of V is a
function p : V +— Z where Z is the set of integers. Given z € V and n € Z, we
denote by p[x := n] the valuation p’ defined by p'(v) = p(v) for every v € V\{z}
and p'(z) = n. An expression on V is a term e obtained with the following
grammar where v € V and n € Z:

e,e1,ea = U | m| egt+ex | e1—ex | erxes | e1/en

Valuations p : V' +— Z are extended into the unique (partial) function over the
expressions on V satisfying for every n € Z and eq, es expressions on V':

(1), p(ez)) if pez) # 0.

The integer cdiv(n,m) where n,m are two integers with m # 0 is the result
of the division of n by m rounded towards zero. This is indeed the behavior of
division in most programming languages (including C). Denoting by [z] and |z]
respectively the ceiling and the floor of a real number z, the value cdiv(n,m)
when m # 0 is formally defined as follows:

n|ofn s
CdiV(n,m) — {LmJ 1 m — O

The set of variables var(e) of a term e is defined inductively as follows for
every n € Z, x € V and ej, e5 expressions on V:

2) = var(ey) U var(eg) for every ~€ {+, —, %, / }.

Ezample 1.1. Assume that e = v 4 10 then var(e) = {v} and p(e) = p(v) + 10
for every valuation p defined on v.

A formula ¥ on V is a term obtained with the following grammar where e, e5
are expressions on V, and ~€ {<, <, =,> >}

Y,)1, = true | false | e;~ex | =1 | Py Vahy | Y1 Adho

A formula of the form e; ~ es is called a simple formula or a guard.
The relation p = 1 where p is a valuation on V', and ¢ is a formula on V is
defined inductively on formulas by p [= v if one of the following conditions hold:

— 9 = true, or

— ¢ = (e1 ~ €2) and p(e1) ~ p(ez), or

— ¢ = (1) and not p = 91, or

— =1 Vi) and p 1 Vp |1, or
— =1 AY2) and p = Y1 Ap | 1o

We also denote by p = v if not p = 1. When p |= ¢ we say that p satisfies 1,
or p is a model of ¥. The set of models of v is denoted by [¢].

We associate to a finite set of variables X, multiple copies indexed by i € Z.
Formally, the i-th copy of 2 € X is the pair (i,), usually denoted by =M. We
also introduce the set X = {2 | z € X}. Let V = (J;c, X be the set
of copies and let j € Z. We associate to a variable v = z(Y in V the variable
vU) defined as 2("+7). This transformation is extended on expressions e on V by
replacing inductively variables v € V by v(). The resulting expression is denoted
by e\9). The transformation is also extended on formulas on V' in the same way
and it produces the formula 1) from a formula 1. The set X(® and X are
identified, and X’ denotes X).

Ezxample 1.2. Assume that ¢ = (2/ = z + 2) then (M) = () = 2/ +2).

2 Operations and control flow automata (CFA)

Let X be an implicit finite set of variables. An operation op is either a guard g
where ¢ is a simple formula on X, or an assignement x := e where z € X and
e is an expression on X. The semantics of an operation op is a formula < op>>
on X U X’ defined as follows:

Lg>» = gA /\ 2 =z
zeX
<z:i=e>» = (2 =e)Aside(e) A /\ 2=z

zeX, z#x

where side(e) is a formula defined inductivelly on the structure of the expressions
by:

— side(n) = true for every n € Z,

— side(ey + e2) = side(ey) A side(es),

— side(e; — e2) = side(eq) A side(ea),

— side(ey * e2) = side(ey) A side(ez), and

— side(ey / e2) = side(e;) A side(ez) A —ex = 0.

The set of operations is denoted by Op. Given an operation op, we denote by
Postep : (P(ZY), C) = (P(Z%), C) the function defined for every S C Z*X by:

SN gl if op = (9)

Postes() = {{P[x ~p(e)] | pe S} ifop=(ai=c)

Lemma 2.1. We have p’ € Postop({p}) if, and only if, r =< op > where
is the valuation on X U X' defined by r(z) = p(x) and r(z') = p'(x) for every
re X.

A control flow automaton (CFA for short) is a tuple (Q, ¢ini, Gbad, 4) where
Q@ is a non-empty finite set of control states, gi,; is the initial control state, qpaq
is the final one, and A C @ x Op x @ is a finite ste of transitions. A trace from
a control state g to a control state ¢’ labeled by a word w of operations is a
word of transitions d; . ..d; such that there exists qg, ..., qx € @ and operations
Opy,-..,0p; € Op such that go = ¢, gx = ¢’ and J; = (g;j—1,0p;,q;). A config-
uration is a pair (g, p) where ¢ € Q and p is a valuation of X. When g = gin;
the configuration is said to be initial, and when ¢ = ¢paq the configuration is
said to be bad. We associate to an operation op the binary relation 2P, over the
configurations defined by (g, p) = (¢, p') if (¢, 0p,¢') € A and p’ € Postep({p}).
An ezecution is a sequence (qo, po), 0P, (¢1,P1)s - - - 0P, (qk, Px) such that:

(405 P0) =5 (g1, p1) - —%5 (qi, p1)

A CFA is said to be unsafe if there exists an execution from an initial configura-
tion to a bad one. Otherwise the CFA is said to be safe. The reachability problem
for CFA consists in deciding if a CFA is unsafe.

Theorem 2.2. The reachability problem for CFA is undecidable, even if X is
restricted to two variables and the operator x is disallowed in expressions.

Ezercise 2.3. Provide an example of a very simple C program containing a con-
ditional branch if...then...else and an assertion, and a corresponding CFA en-
coding the problem of deciding if the assertion is always true.

