
UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET
INFORMATIQUE DE BORDEAUX

Habilitation à Diriger des Recherches

Jérôme Leroux

PRESBURGER
COUNTER
MACHINES

Préparée au LaBRI, équipe MF

Jury :

Rapporteurs :
Javier Esparza - Professeur Technische Universität München, Allemagne
Denis Lugiez - Professeur Université de Provence / LIF
Jean François Raskin - Professeur Université Libre de Bruxelles, Belgique

Examinateurs :
Hubert Comon - Professeur ENS Cachan / LSV
Nicolas Halbwachs - Directeur de Recherche CNRS / Verimag
Anca Muscholl - Professeur Université de Bordeaux-1 / LaBRI
Jean Éric Pin - Directeur de Recherches CNRS / LIAFA
Philippe Schnoebelen - Directeur de Recherche CNRS / LSV

Acknowledgments

Last thing to do :-)

Contents

1 Introduction 1
1.1 Most Significant Results . 2
1.2 Presburger Arithmetic . 3
1.3 Reachability Problems . 8
1.4 Vector Addition Systems . 11

I Presburger Arithmetic 13

2 First Order Logic 15

3 Deciding The Presburger Arithmetic 17
3.1 Quantifier Elimination . 17
3.2 Arithmetic Automata . 19
3.3 TaPAS . 22

3.3.1 Genepi . 23
3.3.2 Alambic . 24
3.3.3 Prestaf . 24

3.4 Conclusion . 25

4 Decoding Arithmetic Automata To Presburger Formulas 27
4.1 The Self-Definability . 27
4.2 Polynomial Time Algorithms . 28
4.3 Batof . 30
4.4 Conclusion . 32

II Reachability Problems 33

5 Presburger Counter Machines 35
5.1 The Reachability Problem . 36
5.2 Subclasses of Presburger Counter Machines 38
5.3 Conclusion . 42

6 Good Semi-Algorithms 45
6.1 Acceleration . 46
6.2 Abstract Acceleration . 50
6.3 Interpolation . 52
6.4 Conclusion . 58

iv Contents

7 Vector Addition System Reachability Problem 61
7.1 Almost Semilinear Sets . 63
7.2 Vector Addition Systems . 64
7.3 Well-Order Over The Runs . 65
7.4 Transformer Relations . 67

7.4.1 Intraproductions . 68
7.4.2 Production Graphs . 69
7.4.3 Kirchhoff’s Functions . 71

7.5 Reachability Relations Are Almost Semilinear 73
7.6 Dimension . 74
7.7 Linearizations . 76
7.8 Presburger Invariants . 78
7.9 Conclusion . 78

III Conclusion 81

8 Conclusion 83
8.1 Almost Semilinear Sets . 83
8.2 The Reachability Problem . 85

Chapter 1

Introduction

Critical, embedded or real-time systems have many applications from the control
(automotive and avionic industry), to signal processing (audio or video data, GPS
navigation systems) and communication (cell phones, internet). Usually these sys-
tems are infinite since they are based on potentially unbounded variables: integer
variables (program counters, number of processes connected to a remote server)
or real numbers (clocks modeling elapsing time), communication channels, stacks,
memory heap, and so on. Whereas the verification of finite state systems is algorith-
mically decidable (and there exist efficient tools), the verification of infinite state
systems is not a sinecure. In fact, even the easiest properties are undecidable in
general. For instance, Minsky proved the undecidability of the reachability problem
for machines with just two counters that can be incremented, decremented or tested
to zero[Minsky 1967].

A result of complexity or decidability is very useful to understand the theoretical
limits of a problem. However for important problems with human or economic
implications, even a result of undecidability cannot be the last word of the solution.
In practice the considered instances of the general problem are not the most difficult
ones. For these practical problems we are interested in the most efficient algorithms.

In this document we present results on the automatic verification of infinite state
systems with the main objective to overcome undecidable results with tools based
on strong theoretical foundations. In the sequel, we provide a brief summary of our
contributions in the following research directions:

• In Section 1.2 : The Presburger arithmetic, a decidable formalism for denoting
complex properties on the configurations of systems manipulating counters.

• In Section 1.3 : Tools and theoretical frameworks for the verification of infinite
states systems.

• In Section 1.4 : The reachability problem for vector addition systems, a class
of systems equivalent to the Petri nets.

These sections correspond roughly to the outline of this document. In these sections
research results related to our work are briefly presented. A more detailed related
work is presented in each chapter. In Section 1.1 we present the most significant
results.

2 Chapter 1. Introduction

1.1 Most Significant Results

From the most significant results presented in this document, we cite the polyno-
mial time characterization of the arithmetic automata encoding the solutions of
Presburger formulas, the separation of unreachable configurations of Petri nets by
inductive invariants definable in the Presburger arithmetic, and the tools Prestaf
and Batof distributed in the Talence Presburger Arithmetic Suite TaPAS, and the
model-checker Fast. These tools are available on the website http://altarica.
labri.fr.

Arithmetic automata and Presburger formulas

Finite state automata provide a simple way for deciding the satisfiability of a Pres-
burger formula. Since [Büchi 1962] we know that for the positional notation of nat-
ural numbers and vectors of natural numbers, the solutions of Presburger formulas
are encoded by regular languages that can be effectively represented by finite state
automata. Whereas there exist efficient algorithms computing arithmetic automata
from Presburger formulas [Wolper 2000], the inverse problem of decoding arithmetic
automata to Presburger formulas is much more difficult. Since in general an arith-
metic automaton may encode a set that is not definable in the Presburger arithmetic
(for instance the power of the basis of decomposition), the decoding problem is linked
to deciding if an arithmetic automaton represents a Presburger set. The decidability
of this problem was first established by Muchnik in 1991 with a 4-exponential time
algorithm[Muchnik 1991, Muchnik 2003]. In the book [Allouche 2003] published in
2003, Jean-Paul Allouche and Jeffrey Shallit conjectured that the problem in dimen-
sion one should be solvable in polynomial time. In 2004, Louis Latour and Denis
Lugiez provides exponential time and double-exponential time algorithm for decid-
ing the membership of sets encoded by arithmetic automata into some subclasses of
Presburger sets [Latour 2004, Lugiez 2004]. In 2005, we solved the general problem
with a polynomial time algorithm[Leroux 2005a]. More precisely we introduced a
polynomial time criterion for deciding if an arithmetic automaton encodes a set of
vectors definable in the Presburger arithmetic. Moreover, in the positive case we
showed how to decode in polynomial time an arithmetic automaton to a Presburger
formula. We spent the 2006 year to improve the solution in order to get efficient al-
gorithms in practice. In a 134 pages long internal report [Leroux 2006], we provided
the complete solution in full detail. The algorithm is based on many algorithmic
solutions to difficult problems and a surprising application of the Stallings’ folding
process to extract periodicities from the strongly connected components of arith-
metic automata [Stallings 1983, Touikan 2006]. During the year 2007, with Gérald
Point (LaBRI, Bordeaux), we implemented these algorithms in the tool Batof.
This tool is very efficient ! In fact the decoding of an arithmetic automaton with
more than 100k states takes less than one minute on a standard computer. Batof is
the unique tool that implements a decoding algorithm. By combining Batof with a
tool computing arithmetic automata from Presburger formulas we obtain the unique

http://altarica.labri.fr
http://altarica.labri.fr

1.2. Presburger Arithmetic 3

implementation of a simplification and normalization procedure for Presburger for-
mulas based on the minimization procedure for automata. These encouraging results
were published in [Leroux 2009b] and provide a framework for solving the Presburger
arithmetic with hybrid representations combining formulas and automata.

The reachability problem for Petri nets

Petri Nets is one of the most popular formal models for the representation and
the analysis of parallel processes [Esparza 1994]. The reachability problem is cen-
tral since many computational problems (even outside the realm of parallel pro-
cesses) reduce to this problem[Bojańczyk 2006, Demri 2009, Figueira 2009]. The
reachability problem is difficult and its decidability remained open during 20 years.
Sacerdote and Tenney provided in [Sacerdote 1977] a partial proof of decidability.
The proof was completed in 1981 by Mayr [Mayr 1981b] and simplified by Kosaraju
[Kosaraju 1982] from [Sacerdote 1977, Mayr 1981b]. Ten years later [Lambert 1992],
Lambert provided a further simplified version based on [Kosaraju 1982]. Nowadays,
no decision procedure are implemented. In fact the known algorithm is conceptu-
ally difficult (to be understood and to be implemented) and with high computa-
tional complexity bound (Ackermann). Since the proof of decidability of the reach-
ability problem in the early 80’s, very few results improved the original solution
except the book of Reutenauer [Reutenauer 1990] and the Lambert’s structures
[Lambert 1992]. Some extensions of the problem were shown to be decidable by
Jançar in [Jančar 1990a] and Reinhardt in [Reinhardt 2005] by considering richer
properties or more expressive models. Recently we obtained a significant progress
by introducing in [Leroux 2009a] a simple algorithm for deciding the reachability
problem based on inductive invariants definable in the Presburger arithmetic that
separate unreachable configurations. Whereas these invariants are obtained from the
Lambert’s structure in the proof published in 2009, we provided in [Leroux 2011a]
a new shorter direct proof of the existence of these inductive invariants. This new
proof introduces the central notion of almost semilinear sets, a class of sets inspired
by the characterization of Presburger sets by semilinear sets [Ginsburg 1966]. The
class of almost semilinear sets provides a simple way to capture the reachability
sets of vector addition systems, and in particular those with reachability sets not
definable in the Presburger arithmetic. These results open many research problems.

1.2 Presburger Arithmetic

In the program analysis and verification field, one often faces the problem of finding
a suitable formalism for expressing the constraints to be satisfied by the system
configurations. Ideally, this formalism has to be decidable, while still remaining
expressive enough for handling the class of constraints needed by the application.
An example of such a formalism is the first order logic over the natural numbers
with the addition which is widely used for reasoning about programs manipulat-
ing counters. This logic, also known as the Presburger arithmetic is indeed decid-

4 Chapter 1. Introduction

able [Presburger 1929, Büchi 1962], yet expressive enough for describing arbitrary
linear constraints as well as discrete periodicities.

Finite state automata provide a simple way for deciding the satisfiability of a
Presburger formula. Since [Büchi 1962] we know that for the positional notation
of natural numbers and vectors of natural numbers, the solutions of Presburger
formulas are encoded by regular languages that can be effectively represented by fi-
nite state automata. The satisfiability of a Presburger formula then simply reduces
to build inductively an automaton encoding the solutions of the formula with a
bottom-up algorithm and then check the emptiness of the language accepted by this
automaton. In tools that manipulate sets definable in the Presburger arithmetic,
these automata, called arithmetic automata are used as symbolic representations
encoding sets of solutions of Presburger formulas. These automata are canonically
associated to the sets of solutions and not on the syntax of the formulas. In fact, the
arithmetic automata encoding the solutions of two equivalent Presburger formulas
recognize the same regular language. Hence the minimization procedure for arith-
metic automata acts like a simplification procedure for the Presburger arithmetic.

Arithmetic automata and Presburger formulas

Unfortunately, in some applications, arithmetic automata may be too large to be
explicitly computed by a tool. From a theoretical viewpoint this problem cannot
be avoided since Leonard Berman shown in [Berman 1977] that the satisfiability of
Presburger formulas is complete for the class of problems that can be solved with
alternating Turing machines in time double exponential with a linear number of
alternations. Nevertheless, in practice we are looking for the most efficient algo-
rithms for the instances we are interested in (and these instances have no reason
to be the most difficult ones as already mentioned). Experimentally, we showed
that the arithmetic automata and the Presburger formulas provide two symbolic
representations efficient for incomparable classes of Presburger sets[Leroux 2009b].
In order to obtain efficient symbolic representations for larger classes of Presburger
sets, we are interested in combining formulas and automata in an hybrid symbolic
representation. Recently, with Florent Bouchy and Alain Finkel (LSV, Cachan) in
[Bouchy 2008] and with Bernard Boigelot and Julien Brusten (Institut Montéfiore,
Liège, Belgium) in [Boigelot 2009] we published preliminary results in this field. In
this last paper we showed that an extension of the Cohbam’s Theorem sheds lights
on the internal structure of the strongly connected components of arithmetic au-
tomata. From this result we deduced a shape of hybrid representation with strongly
connected components represented implicitly with formulas.

In order to implement an hybrid symbolic representation manipulating formulas
and automata we are interested in the effective encoding and decoding of Presburger
formulas to and from arithmetic automata. Whereas there exist efficient algorithms
computing arithmetic automata from Presburger formulas [Wolper 2000], the in-
verse problem of decoding arithmetic automata to Presburger formulas is much
more difficult. Since in general an arithmetic automaton may encode a set that is

1.2. Presburger Arithmetic 5

not definable in the Presburger arithmetic (for instance the power of the basis of de-
composition), the decoding problem is linked to deciding if an arithmetic automaton
represents a Presburger set. The decidability of this problem was first established
by Muchnik in 1991. The solution is based on the self-definability property sat-
isfied by the Presburger arithmetic[Muchnik 1991, Muchnik 2003]. Intuitively for
each dimension d there exists an effectively computable Presburger formula with a
special uninterpreted symbol of arity d such that the formula is valid if and only
if the interpretation of the special symbol is a Presburger set. From this property,
deciding if an arithmetic automaton denotes a Presburger set reduces to compute
another arithmetic automaton encoding the solutions of the self-definability for-
mula introduced by Muchnik. The computational complexity of this algorithm is
4-exponential in time. In the book [Allouche 2003] published in 2003, Jean-Paul
Allouche and Jeffrey Shallit conjectured that the problem in dimension one should
be solvable in polynomial time. In 2004, Louis Latour and Denis Lugiez provides
exponential time and double-exponential time algorithm for deciding the member-
ship of sets encoded by arithmetic automata into some subclasses of Presburger sets
[Latour 2004, Lugiez 2004]. In 2005, we solved the general problem with a poly-
nomial time algorithm[Leroux 2005a]. More precisely we introduced a polynomial
time criterion for deciding if an arithmetic automaton encodes a set of vectors defin-
able in the Presburger arithmetic. Moreover, in the positive case we showed how to
decode in polynomial time an arithmetic automaton to a Presburger formula. We
spent the 2006 year to improve the solution in order to get efficient algorithms in
practice. In a 134 pages long internal report [Leroux 2006], we provided the com-
plete solution in full detail. The algorithm is based on many algorithmic solutions to
difficult problems and a surprising application of the Stallings’ folding process to ex-
tract periodicities from the strongly connected components of arithmetic automata
[Stallings 1983, Touikan 2006]. During the year 2007, with Gérald Point (LaBRI,
Bordeaux), we implemented these algorithms in the tool Batof. This tool is very
efficient ! In fact the decoding of an arithmetic automaton with more than 100k
states takes less than one minute on a standard computer. Batof is the unique tool
that implements a decoding algorithm. By combining Batof with a tool computing
arithmetic automata from Presburger formulas we obtain the unique implementation
of a simplification and normalization procedure for Presburger formulas based on the
minimization procedure for automata. These encouraging results were published in
[Leroux 2009b] and they provide the premises for new hybrid representations based
on automata and formulas for manipulating efficiently larger classes of Presburger
sets.

A polynomial time criterion for deciding if an arithmetic automa-
ton encodes a Presburger set and a polynomial time algorithm
decoding arithmetic automata to Presburger formulas. These al-
gorithms are implemented in Batof.

Whereas there exists a polynomial time criterion for deciding if an arithmetic
automaton encodes a Presburger set, the structure of these arithmetic automata

6 Chapter 1. Introduction

is not known. For the time being, we do not have any structural test for de-
ciding if an arithmetic automaton encodes a Presburger set. We are interested
in such a test in order to understand theoretical complexity bounds about arith-
metic automata (at worst 3-exponential [Klaedtke 2004, Durand-Gasselin 2010])
compared to the general class of arithmetic automata (Ackermann in the worst
case [Büchi 1962, Bruyère 1994, Blumensath 2000]). We think that a structural
test should exist since in [Leroux 2008b] we proved that the arithmetic automata
obtained from minimal deterministic ones encoding Presburger sets by modifying the
initial states and the sets of accepting states still encode Presburger sets. We are in-
terested in characterizing the structure of arithmetic automata encoding Presburger
sets based on properties satisfied by the syntactic monoids [Pin 1996]. Nowadays,
this problem is open.

Extracting geometrical properties from arithmetic automata

Decoding arithmetic automata to Presburger formulas may produce very complex
formulas that can be too precise for the considered problem. Moreover the de-
coding can only be applied on arithmetic automata encoding Presburger sets. In
[Finkel 2005, Leroux 2008a] we provided two algorithms computing automatically
the convex hull of sets denoted by arithmetic automata (which is always a polyhe-
dron with rational constraints). Whereas the algorithm presented in 2005 is based
on an effective enumeration of elements in an exponentially large set, the last one
presented in 2008 does not require such an enumeration. Even if these two algo-
rithms have the same worst case computational complexity (exponential), in practice
there is no hope of termination with an enumerative algorithm. In the future we
are interested in implementing the 2008 algorithm in the tool Batof.

The convex hull of sets encoded by arithmetic automata is poly-
hedral with rational constraints. Moreover this convex hull is ef-
fectively computable in exponential time; this computational com-
plexity bound is tight.

Arithmetic automata

With Gérald Point (LaBRI, Bordeaux) and Jean Michel Couveur (LIFO, Orléans) we
implemented the tool Presatf that implements a decision procedure for the Pres-
burger arithmetic based on the arithmetic automata. Compared to other automata
packages, Prestaf is the unique tool that symbolically represent in memory au-
tomata in a strong canonical form allowing maximal sharing[Couvreur 2004] : That
means we can check if two automata recognize the same language in constant time
(this problem just reduces to check the equality of two pointers). This complexity
result is central in the implementation of Prestaf since it provides a simple way
to implement cache algorithms. No other tool manipulating automata implements
such a cache. In fact, since the equality is usually implemented in linear time, it
is not possible to retrieve efficiently already computed operations on automata or

1.2. Presburger Arithmetic 7

sub-automata. Experimentally, even if Prestaf is not fully optimized, this tool is
very efficient for manipulating arithmetic automata compared to Mona, Lash, and
Lira. The tool Prestaf is presented in [Bardin 2006, Leroux 2009b]. The tool
Prestaf has many applications even outside the Presburger arithmetic since it is
basically an automata package library. In the future we are interested in promoting
this tool.

The tool Prestaf for manipulating Presburger sets with automata
in strong canonical forms allowing maximal sharing.

Tools for deciding the Presburger arithmetic

A lot of tools, called solvers, implement decision procedures for the Presburger
arithmetic. Some of them work directly with Presburger formulas and apply quan-
tification elimination algorithms like the tool Omega [Pugh 1992a] whereas others
are based on finite state automata encoding the solutions of Presburger formulas
like Mona or our tool Prestaf [Leroux 2009b]. These list can be completed with
solvers for extended logics like Lash and Lira [Becker 2007] that implement de-
cision procedures for the first order logic over the integers and the reals with the
addition function thanks to Buchi automata encoding reals by infinite words. Se-
lecting the most efficient solver for a given application can be difficult. This choice
can change dramatically the practical performance of the application. Since solvers
have incompatible application programming interfaces (API), a particular one must
be first selected prior the implementation of the application; change afterward re-
quires additional development effort. We implemented with Gérald Point (LaBRI,
Bordeaux) and Sébastien Bardin (CEA, Saclay) the Generic Presburger Application
Programming Interface Genepi [Bardin 2006] to solve this problem. This tool pro-
vides a simplified and uniform interface between tools implementing solvers for the
Presburger arithmetic and tools that need these solvers. The connection between
applications and solvers is realized transparently using dynamically loaded modules
(plugins) specified at the execution time. This way the choice of a solver can be
postponed after the implementation of an application based on Genepi. The tool
Genepi can be used in two ways, either by developers that look for Presburger arith-
metic libraries but also by developers interested in evaluating a new solver against
existing ones. This last way was used by Felix Klaedtke (ETH, Zurich, Switzerland)
to evaluate his new solver Lira [Becker 2007]. The tool Genepi is presented in
[Bardin 2006, Leroux 2009b] and it provides a simple way to benchmark the solvers
Mona, Lash, Lira, Prestaf, Omega, and PPL.

The API Genepi that provides a uniform and simplified interface
between solvers implementing decision procedures for the Pres-
burger arithmetic and tools using these procedures.

8 Chapter 1. Introduction

1.3 Reachability Problems

The verification problem of a reachability property often reduces to the computation
of a precise enough inductive invariant in a decidable formalism. From a theoretical
viewpoint, a simple way for computing such an invariant when it exists consists in
enumerating the properties in the decidable formalism until we discover one that
denotes an inductive invariant precise enough for proving the safety property. In
practice such an algorithm does not terminate since only a few number of properties
can be analyzed in a reasonable amount of computational time. The framework of
the verification of safety properties we consider is the following one. We assume
that we have a decidable formalism and we consider instances of the reachability
problems that can be solved with inductive invariants in this formalism. We are
looking for efficient algorithms for computing such an invariant in practice.

In this document we focus on the class of infinite state systems manipulating
counters. Note however that algorithms presented in this document can be gener-
alized to systems manipulating other data values. More formally, we introduce the
class of Presburger counter machines corresponding to machines with a finite set of
control locations equipped with a finite set of counters in such a way that the one
step reachability relation is definable in the Presburger arithmetic. This class is rich
enough to capture many other classes of machines manipulating counters. For in-
stance it contains the Minsky machines and as a direct consequence the reachability
problem is undecidable.

Usually the instances (c,M, c′) of the reachability problems where c, c′ are two
configurations of a Presburger counter machine M solved by algorithms correspond
either to the case c′ is reachable from c or there exists a certificate of safety for
(c,M, c′) proving that c′ is not reachable from c thanks to an inductive invariant
definable in the Presburger arithmetic. For instance methods based on abstract
interpretations for many numerical abstract domains like the convex polyhedral
[Cousot 1978], the intervals [Cousot 1977], the DBM, the octagons [Miné 2001], and
so on [Péron 2007] compute precise enough abstract values for proving safety prop-
erties. Such an abstract value can be directly translated into a Presburger formula
denoting an inductive invariant.

In this section we present three methods for deciding the reachability problem
for Presburger counter machines : (1) the computation of reachability sets based on
acceleration techniques, (2) the extension of acceleration techniques in an abstract
domain, and (3) the model-checking based on Craig interpolants and SMT-solvers.
We do not pretend to be exhaustive since these three methods only correspond to the
ones for which we provided contributions. All theses methods introduce algorithms
without any termination guaranty in the general case. In fact, the reachability prob-
lem is undecidable even for the Minsky machines. However, in practice these meth-
ods provide efficient algorithms for some instances. Such an algorithm that work
well in practice but without termination guaranty is called a “good semi-algorithm”.

1.3. Reachability Problems 9

Acceleration in symbolic model-checking

The reachability sets of initialized systems provide the most precise inductive invari-
ants for deciding reachability problems. For finite-state systems, an inductive algo-
rithm provides a simple way for computing these invariants. The computation can be
performed with an explicit enumeration of the reachable configurations or more effi-
ciently with a symbolic representation that encodes with small structures large sets
of configurations. For instance the BDDs provide a symbolic representation based
on acyclic graphs for encoding solutions of propositional formulas[Burch 1990]. For
infinite-state systems, even with a symbolic representation that can encode infi-
nite sets of configurations, a simple iterative computation of the reachability set
usually does not terminate. With Sébastien Bardin (CEA, Saclay), Alain Finkel
(LSV, ENS-Cachan), Philippe Schnoebelen (LSV, ENS-Cachan) and Grégoire Sutre
(LaBRI, Bordeaux) we worked on the iterative computation of the reachability sets
of infinite state systems with acceleration techniques in order to help the termina-
tion. The acceleration techniques consists in computing in a decidable formalism
the precise effect of iterating control flow cycles. For instance, in the case of Pres-
burger counter machines, the acceleration of a loop that increments a counter is
the relation that increase this counter arbitrary. Since such a relation is express-
ible in the Presburger arithmetic, it becomes possible to capture in a finite number
of computational steps an infinite set of reachable configurations. Whereas the
Presburger counter systems are well studied, in 2000 no tool was able to compute
automatically the reachability sets of initialized Presburger counter systems. The
tools Lash developed by Bernard Boigelot (Liège, Belgium) and TReX developed
by the Ahmed Bouajjani team (LIAFA, Paris) were able to compute the transitive
closure of the binary relation associated to a sequence of transitions; However at that
time these tools did not provide automatic procedure for computing the reachability
sets. With Sébastien Bardin (CEA, Saclay), we implemented the accelerated sym-
bolic model-checker Fast. Experimentally, we manage to compute automatically
the reachability set of 40 Presburger counter machines : Java program abstrac-
tions, communication protocols, industrial systems, and the TTP/C protocol with
2 fault[Kopetz 1994]. These results are presented in [Bardin 2004, Bardin 2003].

The symbolic model-checker Fast implementing acceleration tech-
niques.

Acceleration and abstract interpretation

Unfortunately the reachability sets may be not definable in the selected formalism
whereas there exist inductive invariants in this formalism separating some unreach-
able configurations. For instance the reachability set of an initialized vector addi-
tion system is in general not definable in the Presburger arithmetic [Hopcroft 1979]
but any reachability problem can be solved with inductive invariants definable in
the Presburger arithmetic [Leroux 2011a, Leroux 2009a]. This result (detailed in
the next section) shows that we should try to compute a precise enough induc-

10 Chapter 1. Introduction

tive invariant depending on the safety property we are interested in. The abstract
interpretation[Cousot 1977] provides a nice framework for performing such a com-
putation. The lost of preciseness in the computation of an inductive invariant by
abstract interpretation comes from two factors. First, the choice of the abstract
domain limits the form of the invariants that can be computed. For instance with
the polyhedral convex sets, it is not possible to directly determined an invariant
that requires a disjunction. Once the abstract domain is fixed, another lost of pre-
ciseness is introduced during the Kleene fix point computation. In fact, in order to
enforce the termination of the iterative algorithm a widening operator is applied.
The application moment of this operator must be carefully selected since otherwise
inductive invariants can be too coarse for proving the property. With Grégoire Sutre
(LaBRI, Bordeaux), we studied the lost of preciseness due to the abstract domain
[Leroux 2007a, Leroux 2007b]. Intuitively, we replaced the widening operator with
acceleration techniques in order to understand the theoretical limits of an abstract
domain still preserving some termination guaranties. As a surprising result, we
showed that systems of constraints over the intervals can be solved in cubic time
with a simple algorithm based on acceleration techniques in the abstract domain of
intervals[Leroux 2007a].

A cubic time algorithm for solving systems of constraints over the
intervals with acceleration techniques in the abstract domain of
intervals.

Interpolated SMT-solvers

Ken McMillan shown in [McMillan 2003, McMillan 2006] a new framework for solv-
ing the verification problems thanks to Craig interpolants. A Craig interpolant
for two formulas φA and φB such that φA ∧ φB is unsatisfiable is a formula ψ

with a vocabulary included in the intersection of the vocabularies of φA and φB.
For instance, with the Presburger arithmetic, if φA = (x = y ∧ y = z) and
φB = (x < z), the formula ψ = (x = z) is a Craig interpolant for φA ∧ φB.
In order to apply the interpolation-based model checking to Presburger counter
machines, formulas φA and φB are quantifier-free Presburger formulas and we
are looking for interpolants in the same fragment. Since Craig interpolants can
be obtained from proof of unsatifiability φA ∧ φB obtained by SAT-solver or
SMT-solver for the quantifier-free fragment of first order logic over the rational
numbers[Pudlák 1995, McMillan 2003, McMillan 2005], we explored this direction
for the quantifier-free fragment of the Presburger arithmetic.

A SAT-solver is a decision procedure for solving SAT problems, i.e. the satisfia-
bility of propositional formulas. This field is very active in the research community
and many efficient implementations are developed in different laboratories. The
SAT problem is known to be algorithmically difficult since it is complete for the
complexity class NP. This completeness is important. In fact, since any problem in
the NP class can be reduced in log-space to an instance of the SAT problem, an
efficient algorithm for SAT can be used to solve efficiently other NP problems.

1.4. Vector Addition Systems 11

A SMT-solver (for SAT modulo theory) is an algorithm built around a SAT-
solver kernel. Intuitively it is possible to decide the validity of the formula (x = y)⇒
(x = y∨x < y) by observing the validity of the propositional formula p1 ⇒ (p1∨p2).
An SMT-solver follows this idea. In order to obtain efficient algorithms for deciding
fragments of first order logics, the propositional reasoning is delegated to a SAT-
solver and the reminder to a dedicated solver for the considered logic. In practice
for the quantifier free fragment of the Presburger arithmetic (QFPA), the dedicated
solver should be able to decide the satisfiability of a conjunction of linear equalities
and disequalities over the natural numbers (the inequalities and modular constraints
can be reduced to equalities by adding some fresh variables).

With Daniel Kroening and Philipp Rümmer (Oxford university, UK) we showed
in [Kroening 2010] how to compute in polynomial time Craig interpolants for the
quantifier free fragment of the Presburger arithmetic form proofs of unsatisfiability
computed by SMT-solvers. We implemented our algorithm in the tool OpenSMT
and we get encouraging results. We are still working on the subject with the long
term perspective of implementing an efficient interpolation-based model-checker for
Presburger counter machines.

An algorithm computing Craig interpolants for the quantifier-free
fragment of the Presburger arithmetic in polynomial time from
proofs of unsatisfiability computed by SMT-solvers. This algo-
rithm is implemented in the SMT-solver OpenSMT.

1.4 Vector Addition Systems

Vector Addition Systems (VAS), Vector Addition Systems with States (VASS), or
equivalently Petri Nets are one of the most popular formal models for the repre-
sentation and the analysis of parallel processes [Esparza 1994]. Their reachability
problem is central since many computational problems (even outside the realm of
parallel processes) reduce to the reachability problem[Bojańczyk 2006, Demri 2009,
Figueira 2009]. This problem is difficult and its decidability remained open dur-
ing 20 years. Sacerdote and Tenney provided in [Sacerdote 1977] a partial proof
of decidability. The proof was completed in 1981 by Mayr [Mayr 1981b] and
simplified by Kosaraju [Kosaraju 1982] from [Sacerdote 1977, Mayr 1981b]. Ten
years later [Lambert 1992], Lambert provided a further simplified version based on
[Kosaraju 1982]. Nowadays, no decision procedure are implemented. In fact the
known algorithm is conceptually difficult (to be understood and to be implemented)
and with a high computational complexity bound (Ackermann).

Inductive invariants

Since the proof of decidability of the reachability problem in the early 80’s,
very few results improved the original solution except the book of Reutenauer
[Reutenauer 1990] and the Lambert’s structures [Lambert 1992]. Some extensions of

12 Chapter 1. Introduction

the problem were shown to be decidable by Jançar in [Jančar 1990a] and Reinhardt
in [Reinhardt 2005] by considering richer properties or more expressive models. Re-
cently we obtained a significant progress by introducing in [Leroux 2009a] a simple
algorithm for deciding the reachability problem based on inductive invariants de-
finable in the Presburger arithmetic that provide certificates of non reachability.
Whereas these invariants are obtained for the Lambert’s structure in the proof pub-
lished in 2009, we provided in [Leroux 2011a] a new shorter direct proof of the
existence of these inductive invariants. This new proof introduces the central no-
tion of almost semilinear sets, a class of sets inspired by the characterization of
Presburger sets by semilinear sets [Ginsburg 1966]. The class of almost semilinear
sets provides a simple way to capture the reachability sets of vector addition sys-
tems, and in particular those with reachability sets not definable in the Presburger
arithmetic.

Unreachable configurations can be separated by inductive invari-
ants definable in the Presburger arithmetic.

Reversible reachability problem

The complexity of the reachability problem is still open. The gap of complexity
between best lower and upper bounds is very large. Lipton proved in [Cardoza 1976]
that the reachability problem is hard for the class of problems solvable in exponential
space. Concerning the upper bound of complexity, we can only extract a non-
primitive recursive bound for the computational complexity of the original algorithm
solving the reachability problem. We succeeded in closing the complexity gap for
the reversible reachability problem. The reversible reachability problem consists to
decide for two configurations c, c′ if c′ is reachable from c and c is reachable from c′.
In [Leroux 2011b] we proved that the reversible reachability problem is EXPSPACE-
complete. This result is obtained by combining Rackoff techniques [Rackoff 1978]
and Kosaraju ideas [Kosaraju 1982] in order to prove that if two configurations are
reachable and co-reachable, then there exist “short” paths proving this property
(“short” means double exponential in the size of the input problem).

The reversible reachability problem is EXPSPACE-complete.

Part I

Presburger Arithmetic

Chapter 2

First Order Logic

In this thesis, first order logics are used as (decidable) formalism to denote properties
over configurations of infinite state systems. We recall in this chapter briefly some
elements of the first order logics. In the sequel X denotes an infinite countable set
of elements called variables.

A signature is a tuple (D,S, F) where D is a set called the domain, S is a class of
sets S ⊆ Dn for some arity n ∈ N depending on S and F is a class of totally defined
functions f : Dn → D for some arity n ∈ N depending on f . A function with a zero
arity is also called a constant. A term is either a variable x ∈ X or an element of
the form f(t1, . . . , tn) where f : Dn → D is a function in F and t1, . . . , tn are some
terms. A predicate is an element of the form t1 = t2 where t1, t2 are two terms or
an element of the form S(t1, . . . , tn) where S ⊆ Dn is a set in S and t1, . . . , tn are
some terms. A first order formula ψ is either a predicate p, an element of the form
¬φ, ∃x φ, ∀x φ where φ is a first order formula and x ∈ X a variable, or an element
φ1 ∨ φ2 or φ1 ∧ φ2 where φ1 and φ2 are two first order formulas. We denote by
FO (D,S, F) the set of first order formulas.

Remark 2.0.1. Syntax signatures and interpretations of the symbols are usually
presented separately. Since we are only interested by interpreted first order logics1

we only introduce the notion of signature that sums up these two notions.

A quantifier-free formula is either a predicate p, an element of the form ¬φ
where φ is a quantifier-free formula, or an element of the form φ1 ∨ φ2 or φ1 ∧ φ2

where φ1, φ2 are two quantifier-free formulas. A quantifier-free conjunctive formula
is either a predicate p or its negation ¬p, or a conjunction φ1 ∧ φ2 where φ1 and φ2

are two quantifier-free conjunctive formulas.

The semantics is defined as follows. A valuation function is a function v :

X → D. Given a variable x ∈ X and an element d ∈ D, we denote by v[x →
d] the valuation w : X → D defined by w(x) = d and w(y) = v(y) for every
variable y ∈ X\{x}. Valuation functions are extended over the terms inductively
by v(f(t1, . . . , tn)) = f(v(t1), . . . , v(tn)). As usual, we introduce the unique function
that maps every first order formula ψ onto a set model(ψ) of valuations satisfying
the following constraints:

1Uninterpreted symbols only occur in Section 4.1 with the “self-definability” of the Presburger
arithmetic.

16 Chapter 2. First Order Logic

• model(t1 = t2) = {v : X → D | v(t1) = v(t2)}.

• model(S(t1, . . . , tn)) = {v : X → D | (v(t1), . . . , v(tn)) ∈ S}.

• model(¬φ) = {v : X → D | v 6∈ model(φ)}.

• model(∃x φ) =
⋃
d∈D{v : X → D | v[x→ d] ∈ model(φ)}.

• model(∀x φ) =
⋂
d∈D{v : X → D | v[x→ d] ∈ model(φ)}.

• model(φ1 ∨ φ2) = model(φ1) ∪model(φ2).

• model(φ1 ∧ φ2) = model(φ1) ∩model(φ2).

When model(ψ) is non empty we say that ψ is satisfiable. Two first order formulas
ψ1, ψ2 are said to be equivalent if model(ψ1) = model(ψ2)

The set of variables of a term is defined inductively by var(x) = {x} for ev-
ery variable x ∈ X and var(f(t1, . . . , tn)) = var(t1) ∪ . . . ∪ var(tn). The set
of variables of a first order formula ψ is defined inductively by var(t1 = t2) =

var(t1) ∪ var(t2), var(S(t1, . . . , tn)) = var(t1) ∪ . . . ∪ var(tn), var(¬φ) = var(φ),
var(∃x φ) = var(φ)\{x}, var(∀x φ) = var(φ)\{x}, var(φ1 ∨ φ2) = var(φ1)∪ var(φ2),
var(φ1 ∧ φ2) = var(φ1) ∪ var(φ2). Given a vector x ∈ Xn we denote by var(x) the
set of variables {x(1), . . . ,x(n)}.

A set S ⊆ Dn is said to be definable if there exists a first order formula ψ and
a vector x ∈ Xn of distinct variables such that var(ψ) ⊆ var(x) and such that
S = {v(x) | v ∈ model(ψ)} where v(x) = (v(x(1)), . . . , v(x(n))). In that case S is
said to be denoted by ψ(x). A totally defined function f : Dn → D is said to be
definable if the set {(d, f(d)) | d ∈ Dn} is definable with the classical isomorphism
that identify Dn × D with Dn+1.

Remark 2.0.2. Observe that t1 = t2 is a predicate even if the signature (D,S, F)

does not contain the equality. This choice simplifies the previous definitions of de-
finability. In fact if we consider first order logics without the equality predicate,
the previous definitions of definability must require additionally that the occuring
variables are distinct.

We say that FO (D,S1, F1) and FO (D,S2, F2) have the same expressive power
if the class of sets definable in one logic coincides with the class of sets definable in
the other one. The proof of the following lemma is immediate.

Lemma 2.0.3. FO (D,S1, F1) and FO (D,S2, F2) have the same expressive power
if and only if every set S2 ∈ S2 and every function f2 ∈ F2 are definable in
FO (D,S1, F1), and symmetrically every set S1 ∈ S1 and every function f1 ∈ F1

are definable in FO (D,S2, F2).

Chapter 3

Deciding The Presburger
Arithmetic

In the program analysis and verification field, one often faces the problem of finding a
suitable formalism for expressing the constraints to be satisfied by the configurations.
Ideally, this formalism has to be decidable, while still remaining expressive enough
for handling the class of constraints needed by the application. An example of
such a formalism is the first order logic over the natural numbers with the addition
which is widely used for reasoning about programs manipulating counters. This
logic, also known as the Presburger arithmetic is indeed decidable [Presburger 1929,
Büchi 1962], yet expressive enough for describing arbitrary linear constraints as well
as discrete periodicities. In this chapter we recall the two classical ways for deciding
the Presburger arithmetic either based on quantifier elimination algorithms or on
automata constructions. These methods are briefly introduced in the following two
Sections 3.1 and 3.2. Finally in Section 3.3 we provide some benchmarks.

We denote by N,N>0,Z,Q,Q≥0,Q>0,R the set of natural numbers, positive inte-
gers, integers, rational numbers, non negative rational numbers, and positive rational
numbers, and real numbers. Vectors and sets of vectors are denoted in bold face.
The ith component of a vector v ∈ Ed is denoted by v(i). The dot product of
two vectors x,y ∈ Qd is the rational number x · y =

∑d
i=1 x(i)y(i). We introduce

||v||∞ = max1≤i≤d |v(i)| where |v(i)| is the absolute value of v(i). The total order
≤ over Q is extended component-wise into an order ≤ over the set of vectors Qd.
The addition function + is also extended component-wise over Qd. Given two sets
V1,V2 ⊆ Qd we denote by V1 + V2 the set {v1 + v2 | (v1,v2) ∈ V1 ×V2}, and
we denote by V1 −V2 the set {v1 − v2 | (v1,v2) ∈ V1 ×V2}. Following the same
way, given T ⊆ Q and V ⊆ Qd we let TV = {tv | (t,v) ∈ T ×V}. We also denote
by v1 + V2 and V1 + v2 the sets {v1}+ V2 and V1 + {v2}, and we denote by tV
and Tv the sets {t}V and T{v}. In the sequel, an empty sum of sets included in
Qd denotes the set reduced to the zero vector {0}.

3.1 Quantifier Elimination

The original way for deciding the satisfiability of Presburger formulas is based on
a quantifier elimination algorithm for a richer signature having the same expressive
power [Presburger 1929]. This signature is obtained by introducing the binary rela-

18 Chapter 3. Deciding The Presburger Arithmetic

tions ≡m over N indexed by a natural number m ∈ N and defined by n1 ≡m n2 if
n1 +mZ = n2 +mZ.

Definition 3.1.1. The Presburger arithmetic is the first order logic FO (N,+).

Definition 3.1.2. The extended Presburger arithmetic is the first order logic
FO (N,≤, (≡m)m∈N,+, 0, 1).

In order to provide complexity results, we introduce the size function defined
by size(=) = 1, size(≤) = 1, size(+) = 1, size(0) = size(1) = 1, and size(≡m) = k

where k is the minimal natural number in N>0 such that m < 2k. The size function
is extended over the terms inductively by size(x) = 1 for every variable x ∈ X and
size(+(t1, . . . , tn)) = size(+) + size(t1) + · · · + size(tn). The size of a first order
formula ψ is defined inductively by size(S(t1, . . . , tn)) = size(S) + size(t1) + · · · +
size(tn), size(¬φ) = 1 + size(φ), size(∃x φ) = 1 + size(φ), size(∀x φ) = 1 + size(φ),
size(φ1 ∨ φ2) = size(φ1) + 1 + size(φ2), size(φ1 ∧ φ2) = size(φ1) + 1 + size(φ2).

Lemma 3.1.3. The extended Presburger arithmetic and the Presburger arithmetic
have the same expressive power. Moreover extended Presburger formulas are equiv-
alent to Presburger formulas computable in linear time.

Proof. Let us introducing the function fm : N → N that multiply by a natural
number m ∈ N and formally defined by fm(n) = mn for every n ∈ N. We introduce
the functions fm since they simplify the proof that ≡m is definable in the Presburger
arithmetic. A term fm(t) is simply denoted by mt in the sequel. The proof of this
lemma is obtained by observing that the constant 0 is denoted by y + y = y. The
inequality x1 ≤ x2 is denoted by ∃x x1 + x = x2. The constant 1 is denoted by
∀x(x = 0 ∨ y ≤ x) that expresses that 1 is the smallest natural number not equal
to 0. The function y = f0(x) is defined by y = 0. We show that the function
y = fm(x) with m ∈ N>0 is denoted by a Presburger formula with a size bounded
linearly in size(≡m) by decomposing m in binary m = 20b1 + · · · + 2k−1bk where
b1, . . . , bk ∈ {0, 1} and bk = 1. Observe that size(≡m) = k. We introduce the sets
Ibm = {i ∈ {1, . . . , k} | bi = b} where b ∈ {0, 1}. The function y = fm(x) is denoted
by the following formula:

∃x0 . . . ∃xk+1(y = x0∧xk+1 = 0∧
∧
i∈I0m

xi = xi+1 +xi+1∧
∧
i∈I1m

xi = (xi+1 +xi+1)+x)

Finally just observe that x1 ≡m x2 is denoted by ∃y1 ∃y2 x1 + fm(y1) = x2 +

fm(y2).

Theorem 3.1.4 ([Oppen 1978]). Extended Presburger formulas are equivalent to
quantifier-free extended Presburger formulas computable in 3-EXPTIME. The com-
putational complexity bound is tight.

We deduce from the previous theorem that the satisfiability of a Presburger for-
mula is decidable in 3-EXPTIME. This complexity result can be slightly improved as

3.2. Arithmetic Automata 19

follows. First of all, concerning the satisfiability of a quantifier-free extended Pres-
burger formula. The satisfiability of a formula in this fragment is known to be an
NP-complete problem. The NP hardness is obtained by encoding 3-SAT instances.
We show that the problem is in NP by proving that if there exists a valuation
v satisfying such a formula ψ, then there exists another one such that size(v(x))

is polynomially bounded by size(ψ) (by observing that v is a solution of a linear
system). Such a bound on v(x) can be extended to the full extended Presburger
arithmetic (with quantifiers). In fact, in [Berman 1977] Leonard Berman proved that
there exists a constant c ∈ N such that every Presburger formula Q1x1 . . . Qnxn φ

where φ is an extended quantifier-free Presburger formula and Qj ∈ {∃,∀} is equi-
satisfiable to the formula Q1x1 ∈ F . . . Qnxn ∈ F φ where F = {0, . . . , 22ck} and k
is the size of the formula φ. In particular the satisfiability of a Presburger formula
belongs to the class of problems that can be solved with alternating Turing machines
working in 2-EXPTIME with a linear number of alternations. In [Berman 1977] the
satisfiability of a Presburger formula is proved to be complete for this class.

Theorem 3.1.5 ([Berman 1977]). The satisfiability of a Presburger formula is com-
plete for the class of problems that can be solved with alternating Turing machines
working in 2-EXPTIME with a linear number of alternations.

As a direct consequence, the satisfiability of an extended Presburger formula (as
well as a Presburger formula) is 2-EXPSPACE-hard and 3-EXPTIME-easy. So from
a theoretical point view the satisfiability of a Presburger formula is a difficult prob-
lem. From a practical point of view, efficient decision procedures based on quantifier
eliminations algorithm exist. For instance, the elimination algorithm introduced in
[Pugh 1992a] (the omega test) and implemented in the tool Omega works well in
practice. Section 3.3 provides experimental results.

3.2 Arithmetic Automata

A simple approach for deciding the Presburger arithmetic consists in using finite
state automata. It is indeed known that, using the positional notation for encod-
ing numbers and vectors into words, all Presburger sets are mapped onto regular
languages and can thus be recognized by automata [Büchi 1962, Bruyère 1994]. A
Presburger formula can be decided by recursively constructing an automaton en-
coding its solutions, and then checking whether this automaton accepts a nonempty
language. In some program verification applications, such automata, called Number
Decision Diagrams (NDDs) or arithmetic automata are actually used as data struc-
tures for representing and manipulating symbolically infinite sets of configurations
that need to be handled [Boigelot 1998].

Let us introduce some formal notations. A basis of decomposition is a natural
number r ∈ N≥2. The alphabet Σr in basis r is defined by Σr = {0, . . . , r−1} and an
element b ∈ Σr is called a digit. Given a dimension d ∈ N, the alphabet Σr,d is defined
by Σr,d = Σd

r . An element b ∈ Σr,d is called a digit vector. As expected vectors

20 Chapter 3. Deciding The Presburger Arithmetic

v ∈ Nd are encoded by words of digit vectors thanks to the function ρr : Σ∗r,d → Nd
defined by:

ρr(b1 . . .bk) =
k∑
j=1

rj−1bj

Definition 3.2.1. An arithmetic automaton in basis r is a finite state automaton
that recognizes a regular language L ⊆ Σ∗r,d. The set ρr(L) is called the set encoded
by the arithmetic automaton.

Lemma 3.2.2. A set S ⊆ Nd can be encoded by an arithmetic automaton in basis
r if and only if the language ρ−1

r (S) is regular.

Proof. It is sufficient to prove that ρ−1
r (ρr(L)) is regular for every regular language

L ⊆ Σ∗r,d. Just observe that two words σ1, σ2 ∈ Σ∗r,d satisfies ρr(σ1) = ρr(σ2) if and
only if the intersection σ10

∗ ∩σ20
∗ is non empty. We deduce the following equality:

ρ−1
r (ρr(L)) =

⋃
k∈N

L.(0k)−10∗

Where L.(0k)−1 denotes the residue language {σ ∈ Σ∗r,d | σ0k ∈ L}. Since L is
regular we deduce that L.(0k)−1 is regular and moreover the class {L.(0k)−1 | k ∈ N}
is finite. Therefore ρ−1

r (ρr(L)) is regular.

All Presburger sets can be encoded by arithmetic automata in any ba-
sis [Büchi 1962, Bruyère 1994]. In fact, thanks to classical automata constructions
we can build up inductively automata recognizing the solutions of sub-formulas.
There are many variants for implementing such an algorithm. A simple way for
computing an arithmetic automaton encoding the set denoted by ψ(x1, . . . , xn)i

where ψ is a Presburger formula consists to first transform in linear time ψ into
an equivalent Presburger formula such that predicates are reduced to x + y = z or
x = y for some variables x, y, z by introducing fresh variables. Then the algorithm
computes inductively arithmetic automata in basis r based on procedures building
automata encoding the following sets from automata encoding S,S1,S2 ⊆ Nd:

• Predicate Construction : {(s1, s2, s3) ∈ N3 | s1 + s2 = s3}.

• Equality : {(s1, s2) ∈ N2 | s1 = s2}.

• Complement : Nn\S.

• Union: S1 ∪ S2.

• Variable Insertion : {(s1, . . . , si, t, si+1, . . . , sn) | (s1, . . . , sn) ∈ S ∧ t ∈ N}.

• Quantifier Elimination : {(s1, . . . , si−1, si+1, . . . , sn) | (s1, . . . , sn) ∈ S}.

3.2. Arithmetic Automata 21

The previous procedures can be implemented in polynomial time with determinis-
tic finite state automata except the quantifier elimination procedure that requires
exponential time in the worst case. In fact this procedure determinized a non de-
terministic automaton obtained from the input automaton by removing the ith
component of every digit vectors labeling the transitions. In theory the exponen-
tial blow up cannot be avoided but in practice the quantifier elimination procedure
works well. Moreover usually it produces deterministic automata with a number of
states smaller than the one of the input automaton. Note that if we consider non
deterministic automata or alternating automata we still have some complexity is-
sues. Moreover the implementation of the other procedures are much more complex
with these extensions. Note also that for large classes of Presburger sets S ⊆ Nd,
it is proved in [Durand-Gasselin 2010] that non deterministic arithmetic automata
encoding S have a number of states as large as the number of states of the minimal
deterministic automaton that recognizes the language ρ−1

r (S). That result shows
that arithmetic automata should be put in minimal deterministic form.

Although every Presburger set can be denoted by an arithmetic automaton, the
reciprocal property does not hold. For instance, the set {rk | k ∈ N}, which is not a
Presburger set, clearly corresponds to a regular language and is thus recognizable.
The well-known Cobham’s theorem states that, if a set S ⊆ N is simultaneously
denotable by arithmetic automata in two bases r, s ∈ N>1 that are multiplicatively
independent, i.e., such that rp 6= sq for all p, q ∈ N>0, then S is Presburger de-
finable [Cobham 1969]. This result has then been extended to subsets of Nd, with
d > 0 by Semenov [Semenov 1977]. Thanks to simple automata constructions we
easily proved that sets recognizable in basis r are also recognizable in any basis
multiplicatively dependent with r. Hence the Semenov theorem theorem provides
a complete characterization of the sets definable in multiple basis. As a corollary
of the Semenov’s theorem, the subsets of Nd that can be denoted by arithmetic au-
tomata in every base r ∈ N>1 are exactly those that are definable in the Presburger
arithmetic.

Remark 3.2.3. We recently extended the Cobham’s and Semenov’s theorem to
Buchi automata recognizing subsets of Rd [Boigelot 2009].

The class of sets S ⊆ Nd that can be denoted by arithmetic automata in basis
r are characterized by a first order logic as follows. We introduce the valuation
function Vr : N→ N defined by Vr(n) = 0 if n = 0 and Vr(n) is the greatest power
of r that divides n otherwise. Let us observe that ρ−1

r ({s ∈ N2 | Vr(s(1)) = s(2)})
is regular since it is denoted by the following regular language:⋃

b∈{1,...,r−1}

(0, 0)∗(b, 1)(Σr × {0})∗

With the same procedures than the one used to build arithmetic automata from
Presburger formulas we show that every set definable in the logic FO (N,+, Vr) can

22 Chapter 3. Deciding The Presburger Arithmetic

be denoted by an arithmetic automaton in basis r. Conversely, given an arith-
metic automaton encoding a set S ⊆ Nd, we show that S is definable in the logic
FO (N,+, Vr) thanks to a formula that denoting all the possible executions of an
arithmetic automaton.

We introduce the function power : N → N defined by power(n) = 2n for every
n ∈ N. The following theorem shows that FO (N,+, Vr) provides a characterization
of the sets that can be denoted by arithmetic automata.

Theorem 3.2.4 ([Büchi 1962, Bruyère 1994, Blumensath 2000]). A set S ⊆ Nd
can be encoded by an arithmetic automaton in basis r if and only if it is definable
in FO (N,+, Vr). From a complexity point of view, from an arithmetic automaton
encoding S we can compute in polynomial time a presentation (x1, . . . , xd) | ψ of S in
the first order logic FO (N,+, Vr), and conversely from a presentation (x1, . . . , xd) | ψ
of S we can compute an arithmetic automaton encoding S in time powern(n) where
n = d+ length(ψ). The computational complexity bounds are tight.

Whereas arithmetic automata recognizing sets of vectors satisfying formulas ψ
of FO (N,+, Vr) can be non-elementary [Blumensath 2000] (more precisely a tower
of exponential with a height equals to the number of quantifier alternations in ψ),
Felix Klaedtke showed in [Klaedtke 2004] that the minimal deterministic arithmetic
automata that denotes the set of solutions of a Presburger formula ψ has a size at
most 3-exponential in the size of ψ. In particular an algorithm that computes bottom
up minimal deterministic automata for Presburger formulas computes intermediate
automata with sizes bounded by 3-exponential in the size of ψ.

Theorem 3.2.5 ([Klaedtke 2004, Durand-Gasselin 2010]). The algorithm that com-
putes inductively minimal deterministic arithmetic automata encoding the set of
solutions of a Presburger formula terminates in 3-EXPTIME. The computational
complexity bound is tight.

The previous Theorem 3.2.5 and Theorem 3.1.4 show that deciding the Pres-
burger arithmetic with quantifier-free Presburger formulas or arithmetic automata
have the same computational complexity upper bound.

3.3 TaPAS

With Gérald Point (LaBRI, Bordeaux), we developed TaPAS (The Talence Pres-
burger Arithmetic Suite), a suite of libraries dedicated to the Presburger arithmetic
(and some extensions). The suite provides the application programming interface
Genepi for this logic with encapsulations of many classical solvers, the BDD-like
library Prestaf used for encoding Presburger formulas by automata, and the tool
Batof decoding automata to Presburger formulas. All these tools are distributed in
the tool suite TaPAS at http://altarica.labri.fr/wiki/tools:tapas: under a
GPLv2 licence. The following figure shows the architecture of TaPAS (enclosed by
the dotted line). The Fast model-checker is also depicted but it does not actually
belong to the suite; it is just a client application.

http://altarica.labri.fr/wiki/tools:tapas:

3.3. TaPAS 23

Alambic
Armoise
compiler

Fast
model-
checker

G
en

ep
i
P

lu
gi

ns Lash
Lira
Mona
Omega
PPL

Prestaf

Genepi

P
lugin

A
P

I C
lie

nt
A

P
Iim

plem
ents Armoise

formula

Fast
model

Batof

Tools Genepi, Alambic, and Prestaf are presented in Section 3.3.1, 3.3.2
and 3.3.3.

3.3.1 Genepi

Selecting the most efficient solver for a given application can be difficult. This choice
can change dramatically the practical performance of an application. Since solvers
have incompatible application programming interfaces (API), a particular one must
be first selected prior the implementation of the application; changes afterwards
require additional development effort. The Genepi library[Bardin 2006] addresses
this issue by offering small APIs between, on one side, applications requiring solvers
and, on the other side, solvers implementing decision procedures. The connection
between applications and solvers is realized transparenttly using dynamically loaded
modules (plugins) specified at the execution time. This way the choice of a solver
can be postponed after the implementation of an application based on Genepi; then
the best solver can be selected by performing benchmarks.

Potential applications. People concerned with Presburger packages can take
advantage of our open architecture and API in at least two ways.

(1) Presburger developers. People interested in developing a Presburger package
can easily linked it to Faster and use the tool and the 40 case-studies as intensive
benchmarking for their package.

(2) Presburger users. People interested in developing any application requiring
Presburger arithmetics can use our generic Presburger API, and then select through
the set of implementations which one fits most their application.

Implementations of the API. In the first public release of Genepi presented
in [Bardin 2006] that we developed with Gérald Point (LaBRI, Bordeaux) and
Sébastien Bardin (CEA Saclay), we provided three implementations of the API
based upon the standard packages Lash, Mona and Omega. Since 2006, the tool
Lira developed at the ETH Zürich is provided with a Genepi implementation. We
also enhanced Genepi with new features: support for R, and the new plugins PPL
and Prestaf. Actually the tools Lash and Lira are based on Buchi automata
for deciding FO (R,Z,≤,+), tools Mona and Prestaf are based on determinis-
tic finite state automata for deciding the Presburger arithmetic FO (N,+), Omega

24 Chapter 3. Deciding The Presburger Arithmetic

is based on quantifier elimination for deciding FO (Z,≤,+) and PPL is based on
convex polyhedra for deciding FO (R,≤,+).

3.3.2 Alambic

In general, specifying sets with low level logics is difficult and fastidious. The Ar-
moise language allows to describe concisely sets of vectors (in Z and/or R). The
succinctness of formulae is achieved using, among other tricks, hierarchical defi-
nitions and arithmetic over sets (which hides numerous and ugly quantifications).
Below is an example of an Armoise formula which specifies a repeated pattern in
N2. Note that Armoise formulae may define sets which are not necessarily definable
in FO (R,Z,+,≤).

let
origin := (7,3);
directions := { (4,0), (0,4), (4,4) };
pattern := ([0...2], [0...2]) \ (1,1);

in
origin + nat * directions + pattern;

TaPAS provides tools to support the Armoise language. The Alambic library
permits to compile Armoise formulae into calls to Genepi functions. An important
step in this compilation process is the translation of high-level constructions into low
level constructions; due to the expressive power of Armoise this transformation is
not always possible.

Remark 3.3.1. In Armoise we can define sets as products S ∗ T = {st | (s, t) ∈
S × T} where S, T ⊆ N are two Presburger sets. These products are effectively
definable in the Presburger arithmetic when S or T is finite. In general these products
are not definable in the Presburger arithmetic. For instance if S and T are equal
to N>2 then N>1\(S ∗ T) is the set of prime numbers. Up to our knowledge the
decidability of checking if S ∗ T is definable in the Presburger arithmetic is open.

3.3.3 Prestaf

In [Couvreur 2004], Jean Michel Couvreur introduced a new data-structure called
shared-automata. Intuitively, the sharing of a finite set of automata is performed
by merging every states equivalent with respect to the Nérode relation. Prestaf
implements this data structure. In Prestaf, deciding if two automata recognize
the same language reduces to check the equality of their pointers. Similarly to
BDD packages, Prestaf uses a pointer-based hash-table cache algorithm. Up to
our knowledge, no other automata package implements this feature. In fact, in
other automata libraries testing the equality of two languages is performed in linear
time. As a direct consequence, in that tools it is not possible to detect efficiently
operations already performed on automata or sub-automata. Since the first version

3.4. Conclusion 25

of Prestaf written in Java by Couvreur [Couvreur 2004], we have developed with
Gérald Point a new version written in C and now maintained in TaPAS.

The table given in Fig. 3.1 compares performances of Genepi plugins on Fast
models (these files are distributed within the Fast package). Each process was
allocated a budget of 4.5 GB and 5 minutes of CPU times. ERR indicates an
abnormal termination of the program due to the consumption of its memory or
time limit. The benchmarks were executed on a 64 bits machine equipped with an
Intel R© Xeon R© 2.33 GHz CPU and 8 GB of memory. CPU Execution times are
expressed in seconds and were computed with the time command of the bash shell.
Columns Lash.l and Lash.m are performed with the same tool Lash but initialized
in different way : columns Lash.l and Lash.m correspond to deterministic and co-
deterministic arithmetic automata (corresponding to the two possible endianess).
The tool Prestaf out-performed the other tools on 10 cases over 40. Note that for
many models that can be analyzed in a very short amount of time, the tool Mona
outperformed Prestaf. This property comes from non optimized initialization and
closing methods implemented in Prestaf.

3.4 Conclusion

In this chapter we recalled the two classical ways for deciding the Presburger arith-
metic either based on quantifier elimination algorithms or on automata construc-
tions. In the worst case the two approaches are computationally equivalent since
they require 3-exponential time. This upper bound is tight because the satisfiability
of a Presburger formula is 2-EXPSPACE-hard.

We implemented the API Genepi in order to simplify (1) the choice of solvers for
programs using the Presburger arithmetic, (2) the benchmarks of existing solvers.
This last feature has been used by the tool Lira that provides an implementation of
a Genepi plugin. With Genepi we observed that the Presburger formulas and the
arithmetic automata provide symbolic representations for solving efficiently incom-
parable classes of Presburger formulas. As an open problem, we are interested by
symbolic representations that can combine formulas and automata in order to get
efficient decision procedures for larger classes of Presburger formulas. In Chapter 4
we provide some elements for this problem.

We also implemented the solver Prestaf for the Presburger arithmetic based
on minimal deterministic automata that are represented in strong canonical forms
allowing maximal sharing. That means deciding the equality of languages recognized
by two automata can be done in constant time since this test reduces to check
the equality of the pointers. Up to our knowledge no other automata package
implements such a feature. This property is very important for implemented cache
algorithms. In fact with other tools it is not possible to retrieve efficiently already
performed computations on automata or sub-automata. Prestaf is very efficient
and it has many applications even outside the Presburger arithmetic since it is
basically an automata package.

26 Chapter 3. Deciding The Presburger Arithmetic

Models Lash.l Lash.m Lira Mona Omega Prestaf
barber 2.17 1.45 0.85 0.10 0.38 0.37
berkeley 0.35 0.21 0.13 0.03 0.02 0.23
BLW-CAV03 78.35 15.33 25.31 31.17 ERR 25.44
BLW-CAV03.s 41.51 11.71 13.89 6.57 0.91 5.92
centralserver 55.44 32.86 45.04 1.49 ERR 2.53
consistency ERR ERR ERR 22.61 22.69 71.25
consistencyInv 6.20 3.55 4.61 0.21 0.29 0.45
consprod 90.31 88.65 ERR 3.15 ERR 2.50
consprodjava ERR ERR ERR 72.76 ERR 13.71
consprodjavaN ERR ERR ERR 71.29 ERR 13.76
consprodjavaNInv ERR 186.79 ERR 6.63 ERR 2.55
csm 216.40 153.61 ERR 7.02 ERR 4.69
csmInv 6.75 4.60 7.88 0.25 0.45 0.69
dekker 119.54 87.06 ERR 3.13 ERR 4.21
DRAGON 1.71 1.06 0.75 0.10 0.31 0.34
efm 1.36 0.71 0.40 0.06 0.03 0.31
FIREFLY 1.06 0.56 0.34 0.05 0.04 0.24
fms ERR ERR ERR 15.35 ERR 12.50
fmsInv ERR ERR ERR 17.94 ERR 12.46
futurbus 4.28 2.86 2.15 0.18 0.54 0.48
ILLINOIS 1.01 0.62 0.41 0.05 0.08 0.29
incdecInv ERR ERR ERR ERR ERR 41.09
kanban 29.08 20.77 121.77 0.90 ERR 2.15
lamport 7.04 4.04 3.46 0.22 0.88 0.67
lastinfirstserved 3.74 2.42 1.29 0.16 2.67 0.44
lift 5.84 3.66 2.81 0.21 0.48 0.49
manufacturing 2.19 1.59 1.18 21.89 0.07 3.91
MESI 0.40 0.27 0.18 0.03 0.04 0.23
MOESI 0.63 0.44 0.28 0.04 0.07 0.26
multipoll 112.37 59.97 210.27 2.46 24.81 2.47
peterson 16.14 9.16 21.95 0.42 3.10 1.18
PROD-CONS 0.45 0.32 0.16 0.03 0.02 0.23
readwrit 30.56 19.96 47.18 1.24 ERR 6.24
rtp 3.35 2.20 1.29 0.13 0.27 0.44
SYNAPSE 0.24 0.14 0.09 0.02 0.01 0.21
ticket2i 1.02 0.97 0.70 0.06 0.14 0.26
ticket3i 10.65 9.58 7.88 0.42 14.31 0.40
train 13.45 7.88 7.43 0.60 15.42 0.56
ttp2 ERR ERR ERR 104.19 ERR 32.37
ttp ERR ERR ERR 18.14 29.90 23.56

Figure 3.1: Benchmarks of Genepi plugins performed with Fast.

Chapter 4

Decoding Arithmetic Automata
To Presburger Formulas

Presburger formulas lack canonicity since a Presburger set can be denoted by many
equivalent Presburger formulas. As a direct consequence, a set that possesses a
simple representation could unfortunately be represented in an unduly complicated
way. On the other hand, a minimization procedure for arithmetic automata provides
a canonical representation. That means, the automaton encoding a Presburger set
only depends on this set and not on the way the automaton have been computed.
For these reasons, automata seem to be well adapted for applications requiring a lot
of boolean manipulations such as the symbolic model-checking.

In practice, Presburger formulas and arithmetic automata are efficient symbolic
representations for incomparable classes of Presburger sets (see Section 3.3). In
order to obtain efficient symbolic representations for larger classes of Presburger
sets, we are interested in defining hybrid representations combining formulas and
automata. Whereas there exist efficient algorithms for encoding the set of solu-
tions of Presburger formula into arithmetic automata [Klaedtke 2004, Wolper 2000,
Boudet 1996], the inverse problem of decoding arithmetic automata to Presburger
formulas is much more complex. Let us observe that with an encoding and a decod-
ing algorithm, we get an algorithm that normalizes Presburger formulas. In fact,
from a Presburger formula that denotes a set S we compute a minimal deterministic
arithmetic automaton encoding S with usual automata constructions. This au-
tomaton only depends on S. That means the Presburger formula decoded from the
arithmetic automaton only depends on S. Intuitively, the automata minimization
algorithm acts like a minimization procedure on the Presburger formulas.

In section 4.1 we recall the 4-exponential time decision procedure introduced
by Muchnik for checking if an arithmetic automaton encodes a Presburger set. In
Section 4.2 we present our polynomial time algorithm that checks if an arithmetic
automaton encodes a Presburger set and decodes the arithmetic automaton into a
Presburger formula in the positive case. We provide experiments performed with
the tool Batof that implements these algorithms in Section 4.3.

4.1 The Self-Definability

The problem of computing a Presburger formula from an arithmetic automaton
is naturally related to the problem of deciding whether an automaton represents a

28 Chapter 4. Decoding Arithmetic Automata To Presburger Formulas

Presburger set. In fact, there exists automata denoting sets that are not definable in
the Presburger arithmetic. For instance the set of powers {rn | n ∈ N} of a natural
number r ≥ 2 is not definable in the Presburger arithmetic, but it can be denoted by
a very simple arithmetic automaton in basis r. This well-known hard problem was
first solved by Muchnik in 1991 [Muchnik 1991, Muchnik 2003] with a 4-exponential
time algorithm. The Muchnik approach is based on the following property. He
proved that for every dimension d, there exists a formula φd in FO (N,+, Pd) where
Pd is a d-dimensional uninterpreted predicate such that this formula is valid when Pd
is interpreted as a set S ⊆ Nd if and only if S is Presburger definable. In dimension
d = 1 such a formula is obtained as follows. We observe that a set N ⊆ N is
definable in the Presburger arithmetic if and only if N is asymptotically periodic.
This property is equivalent with the fact that there exists M ∈ N and m ∈ N>0

such that for every n ≥ M we have n ∈ N if and only if n + m ∈ N . We deduce
that the following formula φ1 satisfies the Muchnik criterion:

φ1 = ∃M∃m (m ≥ 1 ∧ ∀n n ≥M ⇒ (P1(n)⇐⇒ P1(n+m)))

With a non trivial induction on d, Muchnik provided an explicit formula φd for every
d ≥ 1. In particular, if a set S ⊆ Nd is represented by an arithmetic automaton,
we can compute an arithmetic automaton representing the set of solutions of φd
where Pd is interpreted as S. This technique provides an algorithm deciding if the
set denoted by an arithmetic automaton is definable in the Presburger arithmetic.
Due to the quantifier alternations in φd this algorithm is shown to terminate in
4-exponential time in the size of the arithmetic automaton.

Remark 4.1.1. The Muchnik criterion shows that the Presburger arithmetic
FO (N,+) is “self-definable”. In 1991 Muchnik open the problem of finding other
logics satisfying this criterion.

4.2 Polynomial Time Algorithms

In 2003, we started working on efficient solutions for decoding arithmetic au-
tomata. In the book [Allouche 2003] published in 2003, Jean-Paul Allouche and
Jeffrey Shallit conjectured that the problem in dimension one should be solvable
in polynomial time. We provided in [Leroux 2003] a polynomial time algorithm for
strongly connected arithmetic automata encoding quantifier-free first order formulas
in FO (N,+, 0, 1). In particular this algorithm was not able to detect inequality con-
straints. In 2004 two other algorithms where provided by Louis Latour and Denis
Lugiez. In [Latour 2004] the decoding is solved with an exponential time algorithm
for arithmetic automata encoding convex sets. In [Lugiez 2004] the decoding is
solved with a double exponential time algorithm for arithmetic automata encoding
sets of the form B + Np1 + · · ·+ Npk where B ⊆ Nd is finite and pj ∈ Nd.

In [Leroux 2005a] we solved the general problem with a polynomial time algo-
rithm. More precisely our algorithm decides in polynomial time if a deterministic
arithmetic automaton encodes a Presburger set and it decodes it into a Presburger

4.2. Polynomial Time Algorithms 29

formula in the positive case. In order to obtain an efficient algorithm in practice,
I spent the whole year 2006 to find out efficient algorithms for solving this difficult
problem. The results of this research effort are available in an internal report of
134 pages containing a lot of algorithms for solving difficult problems[Leroux 2006].
In 2007, we implemented these algorithms with Gérald Point (LaBRI, Bordeaux)
in the tool Batof distributed with the tool suite TaPAS [Leroux 2009b] (See the
previous Chapter 3). In practice our algorithm is very efficient since in less than one
minute it can compute a Presburger formula from an arithmetic automaton with
more than 100k states. Experimental results are provided in Section 4.3.

High Level View-Point

Let us describe from an high level view-point the algorithm implemented in Batof.
The algorithm is based on the following idea : by changing the set of accepting
states of a deterministic arithmetic automaton A that encodes a Presburger set S,
we obtain arithmetic automata that encodes “simple” Presburger sets. Moreover,
a boolean combination of these simple “Presburger” sets provides S. By “simple”
Presburger sets we mean sets of the form Nd ∩ (B + (G ∩H)) where B is a finite
subset of Zd, G ⊆ Zd is a lattice, i.e. a set of the form Zp1 + · · · + Zpr, and
H = {z ∈ Zd | h · z ≥ 0} is an half-space parameterized by a vector h ∈ Zd.

Remark 4.2.1. We proved in [Leroux 2008b] that if A is a minimal deterministic
arithmetic automaton encoding a Presburger set S ⊆ Nd then the arithmetic automa-
ton obtained from A by changing the initial state and changing the set of accepting
states to any set is still an arithmetic automaton encoding a Presburger set.

The lattices G on which the “simple” Presburger sets are defined are obtained by
applying the Stalling’s Folding Process on the underlying graph of A. This process
works as follows. It computes inductively a sequence of graphs by merging pairs of
states in such a way that we get a deterministic and co-deterministic graph. More
precisely, the folding process merges two states q1, q2 if either there exist transitions
q
a−→ q1 and q a−→ q2, or there exist transitions q1

a−→ q and q2
a−→ q. Our implementa-

tion follows the algorithm presented in [Touikan 2006] which performs the compu-
tation in time O(nAck−1(n)) where Ack is the Ackermann function and n = r|C|.
Note that the Stallings’ folding process has applications for canonically representing
finitely generated subgroups of the free group [Stallings 1983] by graphs.

We do not provide more information on the way the “simple” Presburger sets
are computed since this difficult problem is out of the scope of this thesis.

At some point the algorithm computes from an arithmetic automaton A encoding
a set S, a finite class of pairs (H,SH) where H is a set of control states and SH is
a simple Presburger denoted by AH , the automaton obtained from A by replacing
the set of accepting states by H. Since S is a Presburger set if and only if S is
a boolean combination of the simple Presburger sets SH , we deduce that S is a
Presburger set if and only if the set of final states F is a boolean combination of

30 Chapter 4. Decoding Arithmetic Automata To Presburger Formulas

the sets H. This property can be decided in polynomial time. Moreover when such
a boolean combination exists we can compute a propositional formula that denotes
this combination. The following Example 4.2.2 shows on an example how to perform
the computation.

Example 4.2.2. Let us consider the class F = {{a, b}, {b, c, d}, {e, f}} of subsets
of the finite set C = {a, b, c, d, e, f}. In order to check if a set S is a boolean
combination of sets in F we first introduce the equivalence relation ≡F over Q
defined by q1 ≡F q2 if q1 ∈ F ⇔ q2 ∈ F for every F ∈ F . Observe that the
equivalence classes are {{a}, {b}, {c, d}, {e, f}}. This class can be computed induc-
tively by considering the equivalence classes ≡F0 , ≡F1, ≡F2, ≡F3 where F0 = ∅,
F1 = F0 ∪ {{a, b}}, F2 = F1 ∪ {{b, c, d}}, F3 = F2 ∪ {{e, f}}. We deduce induc-
tively the following equivalence classes {{a, b, c, d, e, f}}, then {{a, b}, {c, d, e, f}},
then {{a}, {b}, {c, d, e, f}} and finally {{a}, {b}, {c, d}, {e, f}}. With a nice data
structure such a computation can be performed in time O(nAck−1(n)) where Ack is
the Ackermann function[Cormen 1989]. Now, just observe that a set S is a boolean
combination of sets in F if and only if it is a finite union of equivalence classes.
Naturally deciding this last property can be done in linear time from the equivalence
classes of ≡F .

4.3 Batof

Extracting geometrical properties (for instance linear constraints) from automata
is a challenging problem. From a theoretical point of view, this problem has been
solved in [Leroux 2005a] with a polynomial time algorithm computing Presburger
formulae from automata representing Presburger sets. We implemented this algo-
rithm in the tool Batof distributed in the tool suite TaPAS, a suite of tools for the
Presburger arithmetic already mentioned in the previous Chapter 3 that contains
the tools Prestaf that encodes Presburger formulas into arithmetic automata.
Prestaf and Batof provide together the very first implementation of an algo-
rithm that normalizes Presburger formulas into unique canonical forms that only
depend on the denoted sets. Intuitively in the normalization process, the minimiza-
tion procedure for automata acts like a simplification procedure for the Presburger
arithmetic. We experimented our implementation in two ways. First we computed
a Presburger formula from arithmetic automata produced by the symbolic model-
checker Fast. Then we tried the normalization process on Presburger formulas by
applying first Prestaf to produce an arithmetic automaton and then Batof to
compute back a Presburger formula.

Fast [Bardin 2006] is a symbolic model-checker for verifying reachability prop-
erties of infinite-state systems. Benchmarks of Fast are available in Section 3.3.3.
We experimented the decoding algorithm over arithmetic automata encoding the
reachability sets of 40 systems. Some results are presented in the following table.
Column “→ A” is the time in seconds spent by Fast for computing an automaton
A encoding the reachability set, a subset of Nn, “|A|” is the number of states of A,

4.3. Batof 31

“A→ ψ” is the time in seconds to decode A into a Presburger formula ψ, |ψ| is the
length of ψ, and “l” is the number of “linear inequalities” extracted (0 means that
the set can be denoted with equality and modular constraints).

system → A |A| A→ ψ |ψ| n l

Central Server system 9.57 75 0.07 3716 12 10

Consistency Protocol 194.96 90 0.06 3811 11 11

CSM - N 24.38 66 0.05 3330 14 11

Dekker ME 17.73 200 0.01 13811 22 0

Multipoll 11.38 612 2.54 60995 18 19

SWIMMING POOL 71.03 553 0.14 1803 9 18

Time-Triggered Protocol 116.89 17971 90.53 984047 11 44

We also experimented the normalization of Presburger formulas on various
examples. Four representative examples are presented: modulo, large-coef,
large-var and unsimplified. Example modulo denotes the Cartesian product
(11N) × (7N) × (5N) × (3N), large-coef is the conjunction of three linear con-
straints with coefficients larger than 20, large-var is a linear constraint defined over
36 variables, and unsimplified is a disjunction of two sets of linear constraints with
redundant constraints. Benchmark results are summarized in the following table.
Columns have the following meaning: “example” provides the name of the formula
ψ0, “|ψ0|” is the length of the formula ψ0, “ψ0 → A” is the time in seconds spent
by Prestaf to produce an automaton A encoding the solutions of ψ0. The other
columns have been defined previously.

example |ψ0| ψ0 → A |A| A→ ψ |ψ| n l

modulo 40 0.1 4620 35.8 335 4 0

large-coef 167 1.7 147378 25.1 957 4 3

large-var 543 0.2 4320 12.7 2220 36 1

unsimplified 529 1.1 16530 1.3 1026 5 2

We observe that the computation of automata A from formulas ψ0 takes less than
2 seconds. Moreover, the computation of formula ψ from A takes less than half a
minute even on automata with more than 100k states. In practice the implemen-
tation slows down in presence of modular constraints. Note that |ψ0| < |ψ| in all
our examples due to non-optimized outputs. However, even if |ψ0| < |ψ| in the last
example unsimplified, the redundant linear constraints of ψ0 no longer appears in
ψ.

Contrary to previous results, we observe that |ψ| is quite smaller than |A|. In
both series of benchmarks formulas contain a few number of constraints (see the “l”
column). In practice, we observe that small automata can encode complex boolean
combinations but only a small number of “simple” Presburger sets.

32 Chapter 4. Decoding Arithmetic Automata To Presburger Formulas

4.4 Conclusion

We solved the decoding problem of arithmetic automata into Presburger formulas
with a polynomial time algorithm. We presented an high level viewpoint of the
algorithm since the complete solution requires a lot of sub-algorithms for many
difficult problems. The complete solution is available in an internal report of 134
pages[Leroux 2006]. Note that this paper opens research perspectives and interest-
ing problems. We implemented these algorithms in the tool Batof. The imple-
mentation is efficient since we decoded in less than one minute an automaton with
more than 100k states. These good results show that it is possible to implement a
decision procedure for the Presburger arithmetic that can switch between formulas
and automata depending on the most suitable symbolic representation during the
computation.

In the future we are interested in developing hybrid representations that can
manipulate arithmetic automata with some parts that are implicitly represented by
Presburger formulas. With Bernard Boiglot and Julien Brusten (Institut Montéfiore,
Belgium) we started working on this problem and published some preliminary results
in [Boigelot 2009].

From a theoretical viewpoint, we are interested in characterizing the structure
of arithmetic automata encoding Presburger sets based on properties satisfied by
the syntactic monoid [Pin 1996]. In fact, in [Leroux 2008b], we proved that the
arithmetic automata obtained from minimal deterministic ones encoding Presburger
sets by modifying the initial states and the sets of accepting states still encode
Presburger sets.

Part II

Reachability Problems

Chapter 5

Presburger Counter Machines

A Counter Machine is a finite state machine equipped with a finite set of counters
that hold natural numbers. Figure 5.1 provides a counter machine computing the
Syracuse sequence. Starting from the configuration (ini, 10) this machine exhibits
the following run:

ini, 10 → even, 10 → ini, 5 → odd, 5 → ini, 16 → even, 16 → ini, 8

iniodd even

∃k x′ = k + k ∧
x′ = x

x′ = x
2

∃k x′ + 1 = k + k ∧
x′ = x

x′ = 3x+ 1

Figure 5.1: A counter machine computing the Syracuse sequence.

In this thesis transitions are labeled by binary relations over Nn definable in the
Presburger arithmetic.

Remark 5.0.1. Note that x′ = 3x + 1 and x′ = x
2 simply denotes the formulas

x′ = x+ x+ x+ 1 and x′ + x′ = x.

Definition 5.0.2. A Presburger Counter Machine (PCM) with n counters is a tuple
M = (Q,x,x′, T) where Q is a non-empty finite set of elements called control states,
x,x′ ∈ Xn are vectors of distinct variables such that var(x) ∩ var(x′) = ∅, and T is
a finite set of triples called transitions of the form (p, ψ, q) where p, q ∈ Q and ψ is
a Presburger formula such that var(ψ) ⊆ var(x) ∪ var(x′).

A trace is a word τ ∈ T ∗ of the form τ = (q0, ψ1, q1) . . . (qk−1, ψk, qk). A configu-
ration ofM is a couple c ∈ Q×Nn. We denote by conf(M) the set of configurations
of M . A run is a non-empty word ρ = c0 . . . ck of configurations cj = (qj ,mj) such
that there exists a trace τ = (q0, ψ1, q1) . . . (qk−1, ψk, qk) and a sequence v1, . . . , vk of
valuations vj ∈ model(ψj) such thatmj−1 = vj(x), mj = vj(x

′) for every 1 ≤ j ≤ k.

36 Chapter 5. Presburger Counter Machines

The configurations c0 and ck are called the source and target of ρ, and we say that
ρ is a run from c0 to ck labeled by τ . Given a trace τ , we introduce the binary
relation τ−→ over the set of configurations defined by c τ−→ c′ if there exists a run ρ
from c to c′ labeled by τ . We also denote by τ−→ the empty relation if τ is a word in
T ∗ that is not a trace.

Remark 5.0.3. The semantics of a PCM can also be defined thanks to Labeled
Transitions Systems (LTS).

Remark 5.0.4. The set of traces of a PCM is a regular language.

5.1 The Reachability Problem

The verification problem often reduces to the reachability problem. Whereas reach-
ability properties are algorithmically checkable for finite-state systems (and efficient
implementations exist), the situation is more complex for infinite-state systems.
Formally, the reachability problem for Presburger counter machines consists in de-
ciding for a triple (c,M, c′) where c, c′ are two configurations of a Presburger counter
machine M if there exists a run from c to c′.

Remark 5.1.1. The reachability problem for Presburger counter machines has ap-
plications outside the verification of infinite state systems. Several logics for data
words over an infinite alphabet have been defined by [Bojańczyk 2006], [Demri 2009],
and [Figueira 2009]. These works provide some links between logics and classes of
Presburger counter machines. For instance, [Bojańczyk 2006] show that reachabil-
ity problem for vector addition systems with states is equivalent to the satisfiability
problem for the first-order logic over data words restricted to two individual variables.

This problem is clearly recursively enumerable thanks to the algorithm that
enumerates all the possible words ρ of configurations of M and check if ρ is a run
from c to c′. In that case the algorithm terminates and returns a positive answer,
i.e. the fact that there exists a run from c to c′. However, the reachability problem is
undecidable even for the subclass ofMinsky machines with 2 counters [Minsky 1967].

A Minsky machine is a Presburger counter machine (Q,x,x′, T) such that tran-
sitions are labeled by Presburger formulas ψ of the form x′ = x + εei where
ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith unit vector and ε ∈ {−1, 0, 1} denotes a
decrement, no-operation, increment of the ith counter, or the Presburger formula
x(i) = 0 ∧ x′ = x that denotes a test to zero of the ith counter.

A result of complexity or decidability is important to understand the theoretical
limits of a problem. However, for an important problem like the reachability prob-
lem, an undecidability result cannot be the final solution to the problem. In fact,
in practice the Presburger counter systems we consider have no reason to be the
must difficult instances of the problem. With this point of view, we are interested in
classes of Presburger counter machines for which the reachability problem becomes

5.1. The Reachability Problem 37

decidable. In this thesis we consider Presburger counter machines such that the
reachability problem can be decided with the Presburger arithmetic. More formally
we are interested by instances (c,M, c′) of the reachability problem such that either
c′ is reachable from c or such that there exists an inductive invariant definable in
the Presburger arithmetic proving that c′ is not reachable from c.

Let us introduce the definition of inductive invariants. Given a language L ⊆ T ∗

we denote by L−→ the binary relation over the configurations defined by c L−→ c′ if there
exists τ ∈ L such that c τ−→ c′. Given a Language L ⊆ T ∗ and sets C,C ′ ⊆ conf(M)

of configurations, we introduce the sets PostL(C) and PreL(C) of configurations
defined by:

PostL(C) = {c′ ∈ conf(M) | ∃c ∈ C c
L−→ c′}

PreL(C ′) = {c ∈ conf(M) | ∃c′ ∈ C ′ c L−→ c′}

The sets PostT
∗
(C) and PreT

∗
(C ′) are called the forward reachability set from C

and the backward reachability set from C ′. These sets are denoted by Post∗(C) and
Pre∗(C ′). The binary relation T ∗−−→ is called the reachability relation of M and it is
denoted by ∗−→. A set of configurations C ⊆ conf(M) is called a forward inductive
invariant if C = Post∗(C). Symmetrically, a set of configurations C ′ ⊆ conf(M) is
called a backward inductive invariant if C ′ = Pre∗(C ′).

Remark 5.1.2. Forward and backward inductive invariants are dual since any par-
tition C ∪C ′ of the set of configurations satisfies C is a forward inductive invariant
if and only C ′ is a backward inductive invariant.

Example 5.1.3. Let us come back to the PCM depicted in Figure 5.1. The Syracuse
problem consists to decide if for every n ∈ N there exists a run from (ini, n) to
(ini, 1). This problem is equivalent to the inclusion {ini} × N ⊆ Pre∗({(ini, 1)}).
This problem is open.

We are interested by inductive invariants that can be denoted by formulas in the
Presburger arithmetic. A set of configurations C ⊆ conf(M) is said to be definable
in the Presburger arithmetic if the unique decomposition of C into C =

⋃
q∈Q{q}×Sq

is such that Sq is definable in the Presburger arithmetic. In that case, a sequence
(ψq(xq))q∈Q of presentations ψq(xq) of Sq is called a presentation of C (note that
presentations are defined in Chapter 2).

Definition 5.1.4. A certificate of safety for an instance (c,M, c′) of the reachability
problem is a presentation of a forward inductive invariants that contains c but not c′.

Since the Presburger arithmetic is a decidable logic we deduce the following
theorem.

Theorem 5.1.5. We can decide if presentations of Presburger sets of configurations
are certificates of safety.

38 Chapter 5. Presburger Counter Machines

Proof. Let us consider a presentation (ψq(xq))q∈Q of a Presburger set of configu-
rations C of a Presburger counter machine M = (Q,x,x′, T). By renaming the
variables occuring in the presentation, we can assume without loss of generality
that var(xq) is disjoint from var(x), var(x′), and var(xp) for every p 6= q. Now just
observe that C is a forward inductive invariant if and only if for every transition
(p, ψ, q) ∈ T the following formula is valid (i.e. its negation is unsatisfiable):

(ψp ∧ xp = x ∧ ψ ∧ xq = x′) =⇒ ψq

We deduce an algorithm for the reachability problem that takes as input a triple
(c,M, c′) where c, c′ are configurations of the Presburger counter machine M , and
enumerates the runs and the presentations of Presburger sets of configurations until
it discovers either (1) a run from c to c′ and returns that c′ is reachable from c, or (2)
a certificate of safety for (c,M, c′) and returns that c′ is not reachable from c. Note
that this algorithm is correct but the termination is not guaranty. However for some
classes of Presburger counter machines, this algorithm always terminates. This is
for instance the case for the Vector Addition Systems with States (see Chapter 7),
and the class of lossy Presburger counter machines introduced in the sequel.

5.2 Subclasses of Presburger Counter Machines

Lossy Presburger Counter Machines

Lossy Presburger counter machines were first introduced in [Mayr 2000, Mayr 2003]
as a simpler subclass of the lossy channel systems where counters holds natural
numbers rather than channels holding words of messages in transit. Intuitively a
lossy PCM is a PCM such that the value of any counter can be decreased during
the execution. More formally given a PCM M we introduce the order v over the
configurations defined by (q1,m1) v (q2,m2) if q1 = q2 and m1 ≤ m2 where ≤ is
the component-wise extension of the usual order over N. The PCM M is said to be
lossy if c′ τ−→ d′ for every c′ w c

τ−→ d w d′ where c′, c, d, d′ are configurations and τ
is a trace.

Reachability sets of lossy PCM are proved to be definable in the Presburger
arithmetic thanks to the Dickson’s Lemma [Dickson 1913].

Lemma 5.2.1 (Dickson’s Lemma). (Nn,≤) is a well-ordered set, i.e. for every
infinite sequence (mj)j∈N of vectors in Nn, there exists j < k such that mj ≤mk.

From the previous lemma we deduce that v is a well-order over the set of con-
figurations. As a direct consequence, upward closed sets of configurations, i.e. sets
C ⊆ conf(M) such that c ≤ d∧c ∈ C implies d ∈ C for every d ∈ conf(M) are finite
unions of sets of the form {q} × (m + Nn). Hence upward closed sets are definable
in the Presburger arithmetic.

5.2. Subclasses of Presburger Counter Machines 39

If c′ is a configuration not reachable from c in a lossy counter machine, there
exists a certificate of safety for (c,M, c′). The existence of such a certificate is
obtained just by observing that C = Post∗({c}) is a Presburger set of configurations.
In fact, since conf(M)\C is upward closed, this set is definable in the Presburger
arithmetic. In particular C is also definable in the Presburger arithmetic. So,
the reachability problem is decidable for lossy PCM. This proof idea is present in
[Schnoebelen 2010a]. In [Mayr 2000, Mayr 2003] a different proof based on the fact
that we can compute a presentation of the backward reachability sets.

Remark 5.2.2. The decidability of the reachability problem as previously presented
is based on the fact that the forward reachability sets are definable in the Pres-
burger arithmetic. Note however that we cannot effectively compute a presenta-
tion of this set since checking the finiteness of Post∗({c}) is undecidable[Mayr 2000,
Mayr 2003].

Functional Presburger Counter Machines

A transition t = (p, ψ, q) of a Presburger counter machineM = (Q,x,x′, T) is said to
be functional if for every configurations c, c1, c2 such that c t−→ c1 and c t−→ c2 we have
c1 = c2. A Presburger counter machine is said to be functional if every transition is
functional. We decide if a transition t = (p, ψ, q) is functional as follows. We consider
a vector z ∈ Xn of distinct variables such that var(z)∩ (var(x)∪var(x′)) = ∅. Now,
just observe that t is functional if and only if the following Presburger formula is
valid:

∀x ∃z ∀x′ ψ ⇒ x′ = z

Since the Presburger arithmetic is decidable, we deduce that the class of func-
tional PCM is recursive.

Functional transitions can be geometrically characterized by introducing the
semilinear sets [Ginsburg 1966].

Definition 5.2.3. A linear set is a set of the form b + Np1 + · · · + Npk where
b ∈ Zn and pj ∈ Zn. A semilinear set is a finite union of linear sets.

Theorem 5.2.4 ([Ginsburg 1966]). A subset of Nn is definable in the Presburger
arithmetic if and only if and only if it is semilinear.

Remark 5.2.5. The class of almost semilinear sets introduced in Chapter 7 is
central for deciding the reachability problem for vector addition systems with states.
This class is inspired by the semilinear sets.

A function f : Nn → N partially defined over a set S ⊆ Nn is said to be definable
in the Presburger arithmetic if the set {(s, f(s)) | s ∈ S}, called the graph of f is
definable in the Presburger arithmetic with the classical identification of Nn × N
with Nn+1. Observe that a transition (p, ψ, q) of a Presburger counter machine

40 Chapter 5. Presburger Counter Machines

Figure 5.2: The linear set (0, 0) + N(1, 1) + N(2, 0).

M = (Q,x,x′, T) is functional if and only if {(v(x), v(x′(i))) | v ∈ model(ψ)} is the
graph of such a function for every i ∈ {1, . . . , n}.

As an application of the semilinear sets, functions f : Nn → N definable in the
Presburger arithmetic can be characterized as follows. A function f : Nn → N is said
to be piecewise-Presburger linear if there exists a sequence (Sj)1≤j≤k of Presburger
sets such that

⋃k
j=1 Sj is equal to the definition domain of f , a sequence (hj)1≤j≤k

of vectors hj ∈ Qn and a sequence (cj)1≤j≤k of rational values cj ∈ Q such that
f(s) = hj · s + cj for every s ∈ Sj and every j ∈ {1, . . . , k}.

Theorem 5.2.6 (unpublished result of A.Finkel and J.Leroux). A function is de-
finable in the Presburger arithmetic if and only if it is piecewise-Presburger linear.

Proof. Let f : Nn → N be a function definable in the Presburger arithmetic. We
denote by S is definition domain. The graph {(s, f(s)) | s ∈ S} of f is definable
in the Presburger arithmetic. Hence it can be decomposed into

⋃
L∈L L where L

is a finite class of linear sets included in Nd × N. We introduce the projection
function π : Nd×N→ Nd that projects away the last component. Observe that the
definition domain of f is equal to

⋃
L∈L π(L). In order to prove that f is piecewise-

Presburger linear, it is sufficient to prove that for every linear set L ∈ L the set
π(L) is definable in the Presburger arithmetic and there exists h ∈ Qd and c ∈ Q
such that f(s) = h · s + c for every s ∈ π(L).

Let us consider such a linear set L = (p0, c0) + N(p1, c1) + · · · + N(pk, ck).
Observe that π(L) is the linear set p0 + Np1 + · · · + Npk. In particular π(L) is a
Presburger set. Let us introduce the vector space V = Qp1 + · · ·+ Qpk generated
by p1, . . . ,pk. From this generating sequence, we can extract a basis of the vector
space V. By reordering the sequence, without loss of generality we can assume that
there exists d ∈ {0, . . . , k} such that p1, . . . ,pd is a basis of V. We consider the
linear form g : Qn → Q partially defined over V by g(

∑d
j=1 λjpj) =

∑d
j=1 λjcj for

every sequence (λj)1≤j≤d of rational values λj ∈ Q. We observe that π(L) ⊆ p0 +V.
Let us prove that f(s) = c0 + g(s− p0) for every s ∈ π(L).

Since s ∈ π(L) we deduce that there exists a sequence (nj)1≤j≤k of natural
numbers nj ∈ N such that s = p0 +

∑k
j=1 njpj . As s − p0 ∈ V, there exists a

sequence (λj)1≤j≤k of rational values λj ∈ Q such that s − p0 =
∑k

j=1 λjpj and
λj = 0 for every j > d. Hence g(s − p0) =

∑k
j=1 λjcj . Let a ∈ N>0 such that

5.2. Subclasses of Presburger Counter Machines 41

aλj ∈ Z for every j. Such an integer can be decomposed into aλj = n+
j − n

−
j where

n+
j , n

−
j ∈ N. We get:

k∑
j=1

anjpj = a(s0 − p0) =
k∑
j=1

(n+
j − n

−
j)pj

And in particular there exists s′ ∈ π(L) such that:

p0 +

k∑
j=1

(n−j + anj)pj = s′ = p0 +

k∑
j=1

n+
j pj

Let us introduce c− = c0+
∑k

j=1(n−j +anj)cj and observe that (s′, c−) is in the linear
set (p0, c0) + N(p1, c1) + · · ·+ N(pk, ck). As this linear set is included in the graph
of f we get c− = f(s′). Symmetrically the natural number c+ = c0 +

∑k
j=1 n

+
j cj

satisfies c+ = f(s′). Therefore c+ = c− and we get the following equality:

k∑
j=1

njcj = g(s− p0)

Now, let c = c0 +
∑k

j=1 njcj and observe that (s, c) is in the linear set (p0, c0) +

N(p1, c1) + · · · + N(pk, ck). As this linear set is included in the graph of f we get
c = f(s). We have proved that f(s) = c0 + g(s − p0) for every s ∈ π(L). Since
g : Qd → Q is a linear form there exists h ∈ V such that g(v) = h · v for every
v ∈ V. Hence f(s) = h · s + c for every s ∈ π(L) where c = c0 − h · p0.

Remark 5.2.7. The function f : N→ N defined by f(x) = x
2 + 1

2 if x is odd shows
that we cannot restrict the vectors hj and the rational values cj to be in Zd and Z
respectively.

Since the decomposition of a Presburger set into semilinear sets is effective and
since the proof of the previous Theorem 5.2.6 is also effective, without modifying
reachability problems, we can effectively replace transitions t = (p, ψ, q) in a Pres-
burger counter machine M = (Q,x,x′, T) by transitions of the form (p, ψG ∧ x′ =

Mx+a, q) where φG is the Presburger formula such that var(ψG) ⊆ var(x) denoting
a guard, M ∈ Qn×n is a matrix, and a ∈ Qn.

Remark 5.2.8. The reachability problem for functional Presburger counter ma-
chines is undecidable since this class contains the Minsky machines.

Translation Presburger Counter Machines

A transition t = (p, ψ, q) is said to be a translation if there exists a vector a ∈ Zn

such that m′ = m + a for every (p,m)
t−→ (q,m′). A translation Presburger counter

machine is a Presburger counter machine with transitions that are translations.

42 Chapter 5. Presburger Counter Machines

Translation Presburger counter machines are functional. We decide that a tran-
sition t = (p, ψ, q) is a translation as follows. We consider vectors y,y′ ∈ Xn of
distinct variables such that var(x), var(x′), var(y), var(y′) are disjoint. Observe that
t is a translation if and only if the following Presburger formula is satisfiable:

∀x∀x′ ψ ⇒ x + y = x′ + y′

Moreover from a valuation v that satisfies this formula we deduce a vector a = v(y)−
v(y′) such that ψ is equivalent to φG∧x′ = x+a where φG is the Presburger formula
∃x′ψ. Intuitively, ψG is a guard and a is the vector added when the transition is
executed.

The class of translation Presburger counter machines contains the class of Minsky
machines and in particular the reachability problem is undecidable. However, for
this class we can apply acceleration techniques, a method introduced in Chapter 6
that helps the termination of inductive computations of reachability sets.

Vector Addition Systems With States

A vector addition system with states (VASS) is a translation Presburger counter
machines such that transitions are labeled by formulas of the form x′ = x+a where
a ∈ Zd. The reachability problem for VASS is proved decidable in Chapter 7. In
fact we prove that for every instance (c,M, c′) of the reachability problem where
M is a VASS, either c′ is reachable from c or there exists a certificate of safety for
(c,M, c′).

Remark 5.2.9. The reachability problem for lossy PCM is an Ackermann-complete
problem [Schnoebelen 2010b] whereas the reachability problem is simply EXPSPACE-
complete for lossy VASS [Rackoff 1978, Cardoza 1976].

5.3 Conclusion

We introduced in this chapter the Presburger counter machines and some known
subclasses. We provided a reduction of the functional Presburger counter machines
based on the piecewise-Presburger linear functions.

We also introduced the reachability problem for the class of Presburger counter
machines. Even if the problem is undecidable for restricted classes, it becomes
decidable for the class of instances (c,M, c′) such that either c′ is reachable from c

or there exists a certificate of safety for (c,M, c′). In fact for this class it is sufficient
to enumerate in parallel all the possible runs and all the possible presentations of
Presburger sets of configurations until either we discover a run from c to c′ and in
this case c′ is reachable from c or we discover a certificate of safety for (c,M, c′) and
in this case c′ is not reachable from c.

Naturally such an algorithm is useless in practice since such an enumeration
can only consider a very small number of cases in a reasonable amount of time. In

5.3. Conclusion 43

the next Chapter 6 we introduce different semi-algorithms that try to decide the
reachability problem without using such an enumeration.

Chapter 6

Good Semi-Algorithms

Many specialized algorithms have been designed to solve verification problems for
various classes of Presburger counter machines (PCM). The reachability problem
for Petri nets has been proved decidable [Mayr 1981b, Kosaraju 1982]. The binary
reachability relation is effectively Presburger for reversible Petri nets [Taiclin 1968]
and for BPP-nets [Esparza 1997], and the forward reachability set is effectively Pres-
burger for cyclic Petri nets [Araki 1977], for persistent Petri nets [Landweber 1978,
Mayr 1981a] and for regular Petri nets [Valk 1981]. The reachability sets are ef-
fectively Presburger for reversal-bounded Minsky machines [Ibarra 1978], for lossy
VASS [Bouajjani 1999b] and for VASS with 2 counters [Hopcroft 1979]. It was later
shown that reachability are still effectively Presburger for various extensions of VASS
with 2 counters [Finkel 2000b, Finkel 2000a]. However, these methods suffer from
serious drawbacks: (1) they cannot be easily extended or combined, (2) from an
implementation perspective, a dedicated tool would be needed for each specialized
algorithm, and (3) in practice, PCM rarely belong entirely to one of these classes.
Thus, generic symbolic model-checking techniques for general (undecidable) classes
have been developed and implemented.

Usually the instances (c,M, c′) of the reachability problem solved by algorithms
correspond either to the case c′ is reachable from c or there exists a certificate of
safety for (c,M, c′) proving that c′ is not reachable from c based on the Presburger
arithmetic. This is the case for the previously mentioned algorithms but also for
methods based on abstract interpretations for many numerical abstract domains
like the convex polyhedra [Cousot 1978], the intervals [Cousot 1977], the DBM, the
octagons [Miné 2001], and so on [Péron 2007]. In fact, when these methods succeed
in computing a precise enough abstract value for proving the reachability problem,
we can extract from these values certificates of safety definable in the Presburger
arithmetic.

Remark 6.0.1. The inductive invariants computed by ellipsoid abstract domains
cannot be captured with the Presburger arithmetic [Feret 2004]. More generally, in-
variants requiring non-linear constraints are out of the scope of the Presburger arith-
metic. Since the logic FO (N,+, ∗) is undecidable, specific techniques are required to
denote non-linear inductive invariants in a decidable formalism.

In this section we present three methods for deciding the reachability problem
for Presburger counter machines. We do not pretend to be exhaustive since these
three methods only correspond to the ones for which we provided contributions.

46 Chapter 6. Good Semi-Algorithms

void foo(uint i, uint j) {
x = i; y = j;
while ((x != 0) && (y!=0))

{ x--; y--; }
if (i == j)

assert (y == 0);
}

q0 q1 q2

Entry Error

(x′, y′, i′, j′) = (i, j, i, j)

x 6= 0 ∧ y 6= 0

∧(x′, y′, i′, j′) = (x− 1, y − 1, i, j)

(x = 0 ∨ y = 0) ∧ i = j ∧ y 6= 0

Figure 6.1: A PCM that models a C program.

All these methods provide algorithms without any termination guaranty in the gen-
eral case. In fact, the reachability problem is undecidable even for the restrictive
classes of Minsky machines. However, in practice these methods provide efficient
algorithms for some instances. Such an algorithm that work well in practice but
without termination guaranty is called a “good semi-algorithm”. In Section 6.1 we
present the computation of forward reachability sets based on acceleration tech-
niques. In Section 6.2 we present a method combining abstract interpretation and
acceleration techniques. Finally, in Section 6.3 we sketch up our contribution to the
model-checking based on Craig interpolations.

6.1 Acceleration

Verification of reachability properties usually proceeds through an iterative fixpoint
computation of the forward reachability set starting from the set of initial con-
figurations. To help termination of this fixpoint computation, so-called acceler-
ation techniques (or meta-transitions) are applied [Boigelot 1994, Boigelot 1997,
Bouajjani 1999a, Finkel 2003, Finkel 2002]. Basically, acceleration consists in com-
puting in a decidable formalism the effect of iterating loops. Symbolic model
checkers Lash, TReX [Annichini 2001], and Fast [Bardin 2003] implement this
approach. As an illustration, consider the PCM shown on Figure 6.1 taken
from [Jhala 2006], and well-known in the CEGAR framework [Gulavani 2006]. We
prove that the assertion is always satisfied as follows. The acceleration of the loop
on q1 provides the binary relation denoted by ∃k (x′, y′, i′, j′) = (x − k, y − k, i, j)
corresponding to the exact effect of iterating an arbitrary number of times the loop.
Thanks to this meta-transition the forward reachability set from {q0} × N4 is an
effectively computable Presburger set of configurations.

We implemented the tool Fast which follows the accelerated symbolic model-

6.1. Acceleration 47

checking framework. We experimented Fast with more than 40 systems modeled
by PCM. In 80% of case, the tool succeeded in computing the reachability sets
of PCM [Finkel 2002, Bardin 2003, Bardin 2004, Bardin 2006]. We tried to ex-
plain these good results by investigating termination of symbolic model-checking
based on acceleration techniques for known classes of PCM having a Presburger
definable set of reachable configurations. A natural notion in this framework is
flatness [Fribourg 1997a, Comon 1998]: an initialized Presburger counter machine
(c,M) is called flat1 when its control flow graph can be “replaced”, equivalently
w.r.t. the reachability, by another one with no nested loops. We show that flatness
is a necessary and sufficient condition for termination of reachability set computa-
tions by acceleration-based semi-algorithms. In particular, we get that accelerated
symbolic model checkers terminate on a given system iff this system is flat (and a
suitable search strategy is used). More formally, the definition of flat PCM is based
on the notion of bounded languages. A language L ⊆ T ∗ is said to be bounded if
there exists a sequence σ1, . . . , σk of words in T ∗ such that L ⊆ σ∗1 . . . σ∗k.

Definition 6.1.1 (Flat PCM). An initialized PCM (c,M) is said to be flat if there
exists a bounded regular language L ⊆ T ∗ such that Post∗({c}) = PostL({c}).

We then turn our attention to the analysis of flatness for known classes of Pres-
burger counter automata with reachability sets definable in the Presburger arith-
metic. We show that most of the known classes (in particular the ones cited in this
chapter introduction) are flat [Leroux 2005b]. Our main technical contributions are
the proofs of flatness for the following classes: reversal-bounded counter machines,
reversible Petri nets and conflict-free Petri nets. In particular, we obtain that the
binary reachability relation is effectively Presburger for conflict-free Petri nets. We
also show that cyclic Petri nets, persistent Petri nets, regular Petri nets and Insert-
ing counter machines are flat. As flatness implies effective computation (see the
following Theorem 6.1.2) of the forward / binary reachability set, our results give
new “uniform” proofs that these classes have reachability sets or relations effectiv-
elly definable in the Presburger arithmetic. In particular, we obtain simpler proofs
for reversal-bounded counter machines and reversible Petri nets.

Theorem 6.1.2 ([Finkel 2002]). Forward reachability sets of flat initialized trans-
lation Presburger counter machines are effectively definable in the Presburger arith-
metic.

Remark 6.1.3. The previous Theorem 6.1.2 is proved in [Finkel 2002] for the class
of functional Presburger counter machines satisfying an algebraic conditions. This
condition allows translations as well as reset/transfer transitions.

It is remarkable that accelerated symbolic model checkers designed to analyse
PCM, such as Lash and Fast, terminate on all these classes. From a practical

1Our notion of flatness is actually more general than in [Comon 1998]: there, a system is called
flat when it contains no nested loops.

48 Chapter 6. Good Semi-Algorithms

viewpoint, our approach has several benefits: (1) we can apply a generic algorithm,
which was designed for a much larger class of (undecidable) systems, and (2) the —
forward, backward and binary — reachability sets can be computed using the same
generic algorithm.

Related Work.

The following approaches and tools have been developed to check correctness of
PCM.

Forward reachability set computation. Tools Alv [Bultan 2001,
Yavuz-Kahveci 2005], Lash and TReX [Annichini 2001] implement symbolic
methods to compute the forward reachability set of Presburger counter machines.
Alv provides two different symbolic representations for integer vectors: Presburger
formula or automata as in Fast. Acceleration is available for the formula-based
representation [Kelly 1995], but not for the automata-based representation. The
tool is mostly used in backward computation or in approximated forward compu-
tation [Bartzis 2004]. Lash foundations are close to those of Fast, with similar
symbolic representations and acceleration algorithms. The main difference is that
Lash does not implement any circuit search and the user has to provide circuits
to the tool. TReX [Annichini 2001] follows the same framework but uses rather
different technologies.

Backward reachability set computation. One of the most interesting results
is the computability of the backward reachability set for lossy Presburger counter
machines with efficient symbolic representations. We can cite the work on covering
sharing trees of Delzanno, Raskin and Van Begin [Delzanno 2004] and the tool
brain by Voronkov and Rybina [Rybina 2002]. These approaches are more specific
than the one of Fast: computation is backward only2, properties are reduced to
upward-closed sets and systems are lossy.

Remark 6.1.4. A computation of the backward reachability set for lossy VASS
provides an algorithm with an optimal computational complexity[Bozzelli 2011].

Reachability set approximation. Finally, some approaches relax the exactness
of computation to ensure computation termination or at least simpler computational
steps. However the superset obtained in the end may not be tight enough to decide
the property. We can cite the classic tool Hytech [Alur 1995], as well as the
abstract-check and refine technique of Raskin et al. [Geeraerts 2005] to compute
iteratively covering trees of monotonic Petri nets.

2Fast can also be used for backward reachability computations.

6.1. Acceleration 49

q1 q2

t1 : x = 0 ∧ (x, y)′ = (x, y + 1)

t2 : y = 0 ∧ (x, y)′ = (x+ 1, y)

l1 : (x, y)′ = (x− 1, y + 1) l2 : (x, y)′ = (x+ 1, y − 1)

q1

q1

q2

q2

q2

q2

q2 q1

q1

Figure 6.2: A non-flat translation Presburger counter machine.

Experimental Evaluation

With Sebastien Bardin and Gérald Point, we implemented the tool Fast based on
acceleration techniques. We use a large pool of counter systems and case studies an-
alyzed by tools Alv, Babylon3, Brain, Lash and TReX to evaluate Fast. They
range from tricky academic puzzles like the swimming pool protocol [Fribourg 1997b]
to industrial case studies like the cache coherence protocol for the Futurebus+.

Fast appears to be a very efficient tool for the forward computation of reach-
ability sets of functional Presburger counter machines. In experiments, Fast per-
formance is clearly superior to that of similar tools Alv, Lash and TReX (see
[Bardin 2008]). Experimentals results are presented in Chapter 3.

Again, recall that it does not necessarily imply that Fast is better then the other
tools for PCM validation since we restricted the experiments to exact forward com-
putation while other approaches exist. Moreover, recall that we use restrictions of
Alv and TReX which are primarily designed to handle different machines (TReX)
or richer properties (Alv).

Even though it behaves well in practice, accelerated symbolic model-checking
is only a semi-algorithm: it does not provide any guarantee of termination even if
the forward reachability set is definable in the Presburger arithmetic. For instance,

3http://www.ulb.ac.be/di/ssd/lvanbegin/CST

http://www.ulb.ac.be/di/ssd/lvanbegin/CST

50 Chapter 6. Good Semi-Algorithms

iteration of loops is not sufficient for computing the forward reachability set of the
PCM depicted in Figure 6.2, with initial configuration (q1, 0, 0) whereas this set is
clearly definable in the Presburger arithmetic. In order to improve the acceleration
frameworks, a first step consists in characterizing classes for which the generic accel-
erated semi-algorithm fails to terminate whereas the reachability sets are effectively
definable in the Presburger arithmetic. The class of VASS with forward reachability
sets definable in the Presburger arithmetic seems to be such a good class. In fact
this class is known to be recursive and there exists an algorithm computing a presen-
tation of the forward reachability set in that case (unpublished result of Hauschildt
and Lambert). Naturally flat VASS have forward reachability sets definable in the
Presburger arithmetic thanks to Theorem 6.1.2. Up to our knowledge, we do not
know if this implication is an equivalence.

6.2 Abstract Acceleration

Model-checking safety properties on a given system usually reduces to the computa-
tion of a precise enough invariant of the system. In traditional symbolic verification,
the set of all reachable (concrete) configurations is computed iteratively from the
initial states by a standard fix-point computation. This reachability set is the most
precise invariant, but quite often (in particular for software systems) a much coarser
invariant is sufficient to prove correctness of the system. Data-flow analysis, and in
particular abstract interpretation [Cousot 1977], provides a powerful framework to
develop analysis for computing such approximate invariants.

A data-flow analysis of a program basically consists in the choice of a (poten-
tially infinite) complete lattice of data properties for program variables together
with transfer functions for program instructions. The merge over all path (MOP)
solution, which provides the most precise abstract invariant, is in general over-
approximated by the minimum fix-point (MFP) solution, which is computable by
Kleene fix-point iteration. However the computation may diverge and widening/-
narrowing operators are often used in order to enforce convergence at the expense of
precision [Cousot 1977, Cousot 1992]. While often providing very good results, the
solution computed with widenings and narrowings may not be the MFP solution.
This may lead to abstract invariants that are too coarse to prove safety properties
on the system under check.

Techniques to help convergence of Kleene fix-point iterations have also been in-
vestigated in symbolic verification of infinite-state systems. In these works, the
objective is to compute the (potentially infinite) reachability set for automata
with variables ranging over unbounded data, such as counters, clocks, stacks or
queues. So-called acceleration techniques (or meta-transitions) have been de-
velopped [Boigelot 1994, Boigelot 1997, Comon 1998, Finkel 2003, Finkel 2002] to
speed up the iterative computation of the reachability set. Basically, accelera-
tion consists in computing in one step the effect of iterating a given loop (of
the control flow graph). Accelerated symbolic model checkers such as Lash,

6.2. Abstract Acceleration 51

TReX [Annichini 2001], and Fast [Bardin 2003] successfully implement this ap-
proach.

Our contribution. In [Leroux 2007a], we extended acceleration techniques to
data-flow analysis and we applied these ideas to interval analysis. Acceleration tech-
niques for (concrete) reachability set computations may be equivalently formalized
“semantically” in terms of control-flow path languages [Leroux 2005b] or “syntacti-
cally” in terms of control-flow graph unfoldings [Bardin 2005]. We extended these
concepts to the MFP solution in a generic data-flow analysis framework, and we
established several links between the resulting notions. It turns out that, for data-
flow analysis, the resulting “syntactic” notion, based on graph flattenings, is more
general that the resulting “semantic” notion, based on restricted regular expressions.
We then propose a generic flattening-based semi-algorithm for computing the MFP
solution. This semi-algorithm may be viewed as a generic template for applying
acceleration-based techniques to constraint solving.

We then showed how to instantiate the generic flattening-based semi-algorithm
in order to obtain an efficient constraint solver4 for integers, for a rather large class
of constraints using addition, (monotonic) multiplication, factorial, or any other
bounded-increasing function. The intuition behind our algorithm is the following:
we propagate constraints in a breadth-first manner as long as the least solution
is not obtained, and variables involved in a “useful” propagation are stored in a
graph-like structure. As soon as a cycle appears in this graph, we compute the least
solution of the set of constraints corresponding to this cycle. It turns out that this
acceleration-based algorithm always terminates in cubic-time.

In [Leroux 2007b], we aimed at developing methods that speed up the itera-
tive computation of the MFP-solution, without any loss of precision. We focus on
dataflow analysis with the complete lattice of convex sets of real vectors. A set
S ⊆ Rd is said to be convex if for every s1, s2 ∈ S and for every λ1, λ2 ∈ R≥0 such
that λ1 + λ2 = 1 then λ1s1 + λ2s2 ∈ S. We introduced the class of guarded trans-
lation systems (GTSs). This class intuitively represents programs where conditions
are convex sets and transformations are restricted to translations.

Definition 6.2.1. A guarded translation system (GTS) is a graph G = (Q,T) where
Q is a non-empty finite set of states and T is a finite set of transition (p, (x,y) |
ψ∧y = x+a, q) where x,y ∈ Xd are vectors of dictinct variables, a ∈ Qd, and ψ is
a first order formula of FO (R,+,≤) such that var(ψ) ⊆ var(x) and such that x | ψ
denotes a convex subset of Rd.

Recast in our setting, the (exact) acceleration techniques mentioned above con-
sist in computing the merge over all path (MOP) solution along some (simple) cycle,
which we call MOP-acceleration. We show that the MOP-acceleration of any cy-
cle is a convex sets with a computable presentation. However MOP-acceleration

4By solver, we mean an algorithm computing the least solution of constraint systems.

52 Chapter 6. Good Semi-Algorithms

is not in general sufficient to guarantee termination of the Kleene fix-point itera-
tion, even for cyclic GTSs (GTSs with control flow graphs reduced to single cycles).
We therefore investigate MFP-acceleration, which basically amounts to computing
the MFP-solution of the system restricted to a given cycle. In other words, MFP-
acceleration directly gives the MFP-solution for cyclic GTSs.

We obtained a surprisingly simple expression of the MFP-acceleration for cy-
cles with a unique initial location. This characterization shows that the MFP-
acceleration is definable in FO (R,+,≤) and a presentation is computable. This re-
sult cannot be extended to arbitrary cycles, as we give a 3-dim (i.e. three real-valued
variables) cyclic example where the MFP-solution is not definable in FO (R,+,≤)

neither FO (R,+, ∗,≤). We then focused on 2-dim GTSs and we proved that even if
the MFP-solution is not definable in FO (R,+,≤) then it is definable in the decid-
able logic FO (R,+, ∗,≤). Even for cyclic GTSs in dimension 2, the MFP-solution
requires this extended logic.

Related work. In [Karr 1976], Karr presented a polynomial-time algorithm
that computes the set of all affine relations that hold in a given control location
of a (numerical) program. Recently, the complexity of this algorithm was revis-
ited in [Müller-Olm 2004] and a fine upper-bound was presented. Many refinements
of this original widening operator have since been studied [Bagnara 2005] to limit
the loss of precision. Recently Gonnord and Halbwachs [Gonnord 2006] introduced
the notion of abstract-acceleration as a complement to widening for linear rela-
tion analysis. We show that while maintaining the same computational complexity,
our MFP-acceleration is “better” than abstract-acceleration in the sense that MFP-
acceleration enforces convergence of the Kleene fix-point iteration strictly more often
than abstract-acceleration. On another hand [Gonnord 2006] also investigates ac-
celeration of multiple loops and the combination of translations and resets.

For interval constraints with affine transfer functions, the exact least solu-
tion may be computed in cubic-time [Su 2004]. Strategy iteration was pro-
posed in [Costan 2005] to speed up Kleene fix-point iteration with better pre-
cision than widenings and narrowings, and this approach has been developped
in [T. Gawlitza 2007] for interval constraint solving with full addition, multipli-
cation and intersection. Strategy iteration may be viewed as an instance of our
generic flattening-based semi-algorithm. The class of interval constraints that we
consider in this paper contains the one in [Su 2004] (which does not include interval
multiplication) but it is more restrictive than the one in [T. Gawlitza 2007].

6.3 Interpolation

Counterexample-guided abstraction refinement (CEGAR) paradigm [Clarke 2003]
makes it possible to perform efficient verification of real-life software. In this ap-
proach, an initial coarse predicate abstraction [Graf 1997] of the concrete model is
first derived and explored by a model-checker. If no error trace is found, the system

6.3. Interpolation 53

is said to be ’safe’. If an abstract error-trace is found, it is checked against the
concrete model. When the error also exists in the concrete model, the system is said
to be ’unsafe’ and a concrete error trace is provided to the operator. Finally, when
the error is found to be spurious, a proof of the spuriousness of the trace is used to
build a refinement of the abstraction.

Interpolation-based model-checking [McMillan 2003, McMillan 2005] is a CE-
GAR framework where checking the error-trace is performed using decision pro-
cedures for various logics and refinements are produced by computing interpolants,
which provide sets of predicates needed to invalidate the considered spurious error-
traces in the abstraction. Interpolation-based model-checking technique has been
proved robust and efficient. Recently, a ’lazy ’ [Henzinger 2002] approach of this
method has been introduced [McMillan 2006], allowing it to deal with infinite sys-
tems.

Let us first recall the notion of interpolants as introduced by
McMillan[McMillan 2006] in the context of Presburger counter machines.

Definition 6.3.1 (Interpolant). An interpolant for a non-empty sequence
(φ1, . . . , φk) of Presburger formulas φj is a sequence (ψ0, . . . , ψk) of Presburger for-
mulas such that ψ0 is valid, ψk is unsatifiable, such that for every j ∈ {0, . . . , k}:

var(ψj) ⊆ (var(φ1) ∪ . . . ∪ var(φj)) ∩ (var(φj+1) ∪ . . . ∪ var(φk))

and the following formula is valid for every j ∈ {1, . . . , k}:

ψj−1 ∧ φj =⇒ ψj

Remark 6.3.2. The previous definiton of interpolants extends the notion of Craig
interpolants for a pair (φA, φB) of formulas such that φA ∧ φB is unsatisfiable
[Pudlák 1995].

Theorem 6.3.3 ([McMillan 2006]). A non empty sequence (φ1, . . . , φk) of Pres-
burger formulas φj admits an interpolant if and only if φ1 ∧ . . .∧φk is unsatisfiable.

The lazy interpolation model-checking is based on the fact that if a trace is not
the label of a run then there exists an interpolant proving this property from which
interesting predicates can be extracted.

Definition 6.3.4. A trace τ = t1 . . . tk of a Presburger counter machine is said to
be spurious if there does not exist a run labeled by τ .

We characterize spurious traces with interpolants as follows. Let us consider a
non-empty trace τ = (q0, θ1, q1) . . . (qk−1, θk, qk) of a Presburger counter machine
M = (Q,x,y, T). Let us consider a sequence (xj)0≤j≤k of vectors xj ∈ Xn of
distinct variables such that the sets var(xj) are disjoint. By renaming the variables
of θj we deduce a Presburger formula φj such that var(φj) ⊆ var(xj−1)∪var(xj) and

54 Chapter 6. Good Semi-Algorithms

such that θj(x,y) and φj(xj−1,xj) denotes the same Presburger set. We observe
that τ is spurious if and only if the following Presburger formula is unsatisfiable:

φ1 ∧ . . . ∧ φk

In that case, theorem 6.3.3 shows that there exists an interpolant (ψ0, . . . , ψk) for
(φ1, . . . , φk). Since var(φ1∧. . .∧φj) ⊆ var(x0)∪. . .∪var(xj) and var(φj+1∧. . .∧φk) ⊆
var(xj)∪. . .∪var(xk) we deduce that var(ψj) ⊆ var(xj). In particular ψj(xj) denotes
a Presburger set Sj ⊆ Nn. The sequence (Sj)0≤j≤k is in fact an inductive invariant
for the trace τ . In fact, since ψ0 is valid and ψk is unsatisfiable we get S0 = Nn
and Sk = ∅. Moreover, as ψj−1 ∧ φj ⇒ ψj is valid we get the following inclusion for
every j ∈ {1, . . . , k}:

Posttj ({qj−1} × Sj−1) ⊆ {qj} × Sj

That explains why the sequence ({qj} × Sj)0≤j≤k is kind of inductive invariant
proving that τ is a spurious trace. The lazy interpolation-based model-checking
consider the presentations ψj(xj) in order to refine abstract models. We do not
present in the sequel the way these predicates are used (The reader can have a look
at the algorithms presented in [McMillan 2006]) but we focus on the computation
of interpolants.

Theorem 6.3.3 can be proved easilly thanks to Presburger formulas ψj obtained
from φ1 ∧ . . .∧ φj by quantifying existentially variables not in φj ∧ . . .∧ φk. Even if
the formulas occuring in interpolants obtained this way have small length, they are
quantified. In practice, we are interested in quantifier free interpolants since manip-
ulating formulas in this fragment is usually more efficient (see Chapter 3). Unfortu-
nately, even if the Presburger arithmetic admits a quantifier elimination algorithm,
in practice quantifier-free interpolants obtained this way are unduly complicated.
For instance let us consider the sequence (φ1, φ2, φ3) of Presburger formulas of the
form φ1 = (x = 0), φ2 is a very complex Presburger formula in wich x does not
occur and φ3 is the conjunction of x 6= 0 and a complex Presburger formula sharing
variables with φ2. A possible interpolant is (ψ0, ψ1, ψ2, ψ3) where ψ0 is the true
formula, ψ3 the false formula, and ψ1, ψ2 are equal to the formula (x = 0). Due to
the high complexity of φ2 and φ3, a quantifier-free interpolant obtained by applying
a quantifier elimination algorithm will provide much complex interpolants. Craig in-
terpolation has become a key ingredient in many symbolic model checkers, serving as
an approximative replacement for expensive quantifier elimination [McMillan 2005].
The application of Craig interpolants in lieu of quantifier elimination relies on the
availability of an effective interpolating decision procedure.

We focus on an interpolating decision procedure for the quantifier-free fragment
of Presburger Arithmetic (QFPA for short), that is linear arithmetic over the inte-
gers, a theory which is a good fit for the analysis of Presburger counter machines.
Interpolating decision procedures typically derive the interpolant from a proof of

6.3. Interpolation 55

inconsistency of φ1 ∧ . . . ∧ φk, which in turn is computed by a decision procedure
for the underlying logic. Decision problems arising in software analysis are often
large, and call for a scalable algorithm. The most efficient decision procedures for
the quantifier-free fragment of the Presburger arithmetic known today use the Sim-
plex algorithm in combination with a variant of the branch-and-bound technique.
The Simplex algorithm is used to solve the relaxed problem, in which the variables
are permitted to take fractional values. In case a variable x obtains the fractional
value r, branch-and-bound will consider the two sub-problems in which x ≤ brc
or x ≥ dre, respectively. The original problem has an integer solution iff one of
the two sub-problems has a solution. Branch-and-bound is incomplete by itself,
and usually augmented by a cutting-plane technique, e.g., Gomory’s cutting planes.
An instance of an efficient implementation of these techniques is the SMT-solver
Z3 [Dutertre 2006].

In principle, any cut-based decision procedure for Presburger can be used for
the computation of interpolants. The primary problem is computational cost: for
the most common cut rules (in particular for Gomory’s cutting planes) it is possible
to construct cases where the derivation of interpolants from proofs has exponential
complexity. This high complexity is caused by mixed cuts, which involve rounding
(rational) constant terms of inequalities that are derived from formulas φi and φj
with i 6= j. Intuitively, interpolating calculi rely on identifying which parts in
φ1, . . . , φk are contributing to an intermediate argument; additional effort is required
when rounding intermediate arguments derived from both two different formulas
φi, φj .

Our Contribution.

We introduced a novel interpolating decision procedure for the full QFPA
fragment[Kroening 2010]. Our algorithm computes in polynomial time interpolants
for two classes of constraints (i) conjunctions of inequality constraints unsatisfiable
over the rationals, and (ii) conjunctions of equality and divisibility constraints unsat-
isfiable over the integers. For the full QFPA fragment, the algorithm is exponential
in the worst case. This complexity is proved tight since we exhibit formulas such
that every interpolant is exponentially large. Moreover the algorithm improves the
doubly exponential upper bound complexity known for the computation of inter-
polants based on the elimination of blocks of quantifiers [Weispfenning 1997]. Our
general procedure integrates efficient reasoning and interpolation for equalities by
means of a transformation of matrices into Smith Normal Form, which resembles
a known procedure for interpolating linear diophantine equations [Jain 2008]. For
reasoning about inequalities, our procedure uses a complete version of the branch-
and-cut principle that avoids mixed cuts and therefore allows interpolant extraction
from proofs in polynomial time. Since the proof size is exponentially large in the
worst case, we deduce an exponential upper bound for the runtime of the algorithm.

56 Chapter 6. Good Semi-Algorithms

Related Work.

Interpolation procedures have been proposed for various fragments of linear
integer arithmetic. McMillan considers the logic of difference-bound con-
straints [McMillan 2006]. This logic, a fragment of QFPA, is decidable by reduction
to rational arithmetic. As an extension, Cimatti et al. [Cimatti 2009] present an
interpolation procedure for the unit two variables per inequality (UTVPI) fragment
of linear integer arithmetic. Both fragments allow efficient reasoning and interpo-
lation, but are not sufficient to express many typical program constructs, such as
integer division. In [Jain 2008], interpolation procedures for QFPA restricted to
conjunctions of integer linear (dis)equalities, and for QFPA restricted to conjunc-
tions of divisibility constraints are given. The combination of both fragments with
integer linear inequalities is not supported, however. Our work closes this gap, as it
permits predicates involving all types of constraints.

Lynch et al. [Lynch 2008] define an interpolation procedure for linear rational
arithmetic, and extend it to integer arithmetic by means of Gomory cuts. For integer
arithmetic, however, interpolation in [Lynch 2008] can produce formulas that violate
the vocabulary condition (i.e., can contain variables that are not common to φi
and φj with i 6= j), and are therefore not true interpolants. The problem is that
Gomory cuts used in [Lynch 2008] do not prevent mixed cuts, for which no efficient
interpolation is possible in QFPA.

Brillout et al. [Brillout 2010] define a complete interpolating sequent calculus for
QFPA. The calculus contains a rule strengthen that is general enough to simulate ar-
bitrary (possibly mixed) Gomory cuts, but in general causes exponential complexity
of interpolant extraction from proofs. In contrast, our cut rule (which is embedded
in an effective decision procedure) enables extraction with polynomial complexity.

The recent SMT-solver SmtInterpol decides and interpolates problems in
linear integer arithmetic, apparently using an architecture similar to the one in
[McMillan 2005]. To the best of our knowledge, the precise design and calculus of
SmtInterpol has not been documented in publications yet (see the sequel for an
empirical comparison with our approach).

Interpolation for rational arithmetic is a well-explored field. McMillan presents
an interpolating theorem prover for linear rational arithmetic and uninterpreted
functions [McMillan 2005]; an interpolating SMT-solver for the same logic has been
developed by Beyer et al. [Beyer 2008]. Rybalchenko et al. introduced an algorithm
for interpolating rational arithmetic with uninterpreted functions without the need
for explicit proofs [Rybalchenko 2007].

Experimental Evaluation

We have created a prototypical implementation of our interpolating deci-
sion procedure and integrated it as a theory solver into the SMT-solver
OpenSMT [Bruttomesso 2010], with the long-term goal of creating an interpolating
SMT-solver to be used in model checkers. The prototype was developed on top of

6.3. Interpolation 57

a recent development version of OpenSMT that already provided an interpolation
procedure for propositional logic. To the best of our knowledge, the following tools
and algorithms are the only ones available for comparison:

• the theorem prover iPrincess [Brillout 2010], which implements an interpo-
lating decision procedure for QFPA based on a sequent calculus,

• the SMT-solver SmtInterpol,5 a recently released interpolating decision pro-
cedure for linear integer arithmetic that uses an architecture similar to the one
in Foci [McMillan 2005],

• quantifier elimination (QE) procedures, which can be used to generate in-
terpolants; for our experiments, we use the implementation of the Omega
test [Pugh 1992b] available in iPrincess.

The benchmarks for our experiments are derived from different families of the
SMT-LIB category QF-LIA. Some of the selected families (e.g., rings) are specifi-
cally designed to test integer reasoning capabilities, and contain problems satisfiable
over the rationals. Because SMT-LIB benchmarks are usually conjunctions at the
outermost level, we partitioned them into A ∧ B by choosing the first k

10 · n of the
benchmark conjuncts as A, the rest as B (where n is the total number of con-
juncts, and k ∈ {1, . . . , 9}). This yields 9 interpolation problems for each SMT-LIB
benchmark.

Our experimental results are summarized in Table 6.1. The first collum provides
the name of the problem clases. Each class contains a set of formulas that are either
satisfiable or unsatisfiable. The distribution is given in the second collum with two
values corresponding to “unsat / sat”. Since we consider 9 possible interpolations,
the maximum number of computed interpolants is 9 times the number of unsatis-
fiable problems. In the other colums experimental results performed with different
tools are sumerized with 5 values “unsat / sat / average time / #interpolants /
average int. size” corresponding to (1) the number of unsatisfiable problems proved
to be unsatifiable, (2) the number if satisfiable problems proved to be satisfiable, (3)
the average time required for the computation, (4) the number of interpolants pro-
duced, and (5) the average length of the computed interpolants. This table shows
that our implementation in OpenSMT is competitive with all compared interpola-
tion procedures: in 4 of the 8 families, it is able to prove the largest of problems
unsatisfiable (and to compute interpolants for them); in all families but one, the
runtime is smaller or comparable with the other tools; in 4 families, the generated
interpolants are significantly smaller (on average) than the interpolants computed
by the other tools.

In conclusion, we have presented an algorithm computing interpolants in the
quantifier-free fragment of Presburger arithmetic in exponential time in the worst
case. This algorithm combines the one presented in [Jain 2008] that computes in-
terpolants in polynomial time for systems of equalities over the integers and the

5http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

58 Chapter 6. Good Semi-Algorithms

one presented in [McMillan 2005] that computes interpolant in polynomial time for
systems of inequalities over the rational numbers, without any overhead.

OpenSMT SmtInterpol iPrincess Omega QE

Averest 10/9 10/1/31.75/ 8/4/97.02/ 0/0/–/ –/–/203.89/
90/221 72/149 –/– 8/132639

CIRC-mul 16/1 5/1/48.94/ 5/1/24.40/ 6/1/130.46/ –/–/108.71/
45/2357 45/48827 35/12764 125/15392

CIRC-add 17/0 7/0/102.81/ 5/0/8.58/ 6/0/412.82/ –/–/97.83/
63/23362 45/41077 49/47218 129/93181

check 4/1 4/1/0.77/ 2/1/0.17/ 4/1/36.65/ –/–/0.26/
36/1.7 18/2.3 33/485 30/0.67

nec-smt-small 17/18 1/0/251.95/ 7/0/259.86/ 0/0/–/ –/–/134.88/
9/36 63/1728 –/– 66/15867

mathsat 100/21 74/15/52.96/ 65/13/45.74/ 11/11/61.78/ –/–/168.81/
666/2020 585/126705 99/13745 612/101088

rings 294/0 9/0/59.93/ 0/0/–/ 54/0/108.01/ –/–/227.25/
81/4611 –/– 62/3470 1474/55307

wisa 2/3 0/0/–/ 1/2/394.22/ 0/0/–/ –/–/67.01/
–/– 9/1039 –/– 14/23709

unsat/sat unsat / sat / average time / #interpolants / average int. size

Table 6.1: Results of applying the four compared tools to SMT-LIB benchmarks
(times in seconds). Experiments were done on an Intel Xeon X5667 4-core machine
with 3.07GHz, heap-space limited to 12GB, running Linux, with a timeout of 900s.

6.4 Conclusion

We presented three approaches for solving the reachability problem for Presburger
counter machines. These approaches are incomparable and provide tools for dif-
ferent instances of the problem. They provide rigourous frameworks for computing
presentation of inductive invariants in the Presburger arithmetic. A practical imple-
mentation of these approaches require some additional efforts and good heuristics.
For instance, acceleration techniques require an algorithm for selecting cycles that
must be accelerated in order to enforce the termination of the fixpoint computation
(such an heuristic algorithm is implemented in Fast). Sometimes the application
of widening operators in Kleene fixpoint iterations must be postponed in order to
improve the analysis precision. The same problem occurs with the interpolant based
model checking. The computation of “good” interpolants is still an important prob-
lem. By “good” we mean interpolants that helps the model-checker to compute a
prescise enough abstraction of the system.

6.4. Conclusion 59

A possible way for understanding the theoritical limits of these approaches con-
sists in finding classes of systems with termination guaranties. For the acceleration
techniques, the class of initialized VASS with a Presburger forward reachability set
seems to be such an important class. For the time beeing, we do not know if there
exists an initialized VASS in this class that is not flat. We think that such an exam-
ple does not exist. In fact, we proved in [Leroux 2005b] that all known subclasses of
initialized VASS with a forward reachability sets definable in the Presburger arith-
metic are flat. However, the problem is still open. Concerning the interpolation
based model-checking we are interested in by algorithms computing interpolants
that are precise enough for deciding the reachability problem for VASS. Such an
algorithm should be a great progress to solve in practice the reachability problem
for VASS. In fact, even if this problem is decidable, no algorithm implements a de-
cision procedure for it since the classical solution is difficult from a computational
complexity and from an implementation viewpoint (see Chapter 7).

Chapter 7

Vector Addition System
Reachability Problem

This chapter follows a paper published in the proceedings of “The Alan Turing
Centenary Conference, Manchester, UK, June 22-25, 2012”. This paper received a
best paper award.

Vector Addition Systems (VAS), Vector Addition Systems with States (VASS),
or equivalently Petri Nets are one of the most popular formal methods for the rep-
resentation and the analysis of parallel processes [Esparza 1994]. Their reachability
problem is central since many computational problems (even outside the realm of
parallel processes) reduce to the reachability problem. Therefore, improving the
computational cost for solving the reachability problem for Petri nets would also
improve the complexity of the formal verification of numerous classes of infinite-
state systems.

Formally, Vector Addition Systems with States (VASS) with d counters are Pres-
burger counter machines (Q,x,x′, T) with transitions labeled by y′ = x + a where
a ∈ Zd. Usually such a formula is simply denoted by a. Let us consider the vector
addition system with two states and three counters depicted in Figure 7.1.

p q

s : (0, 0, 1)

l : (−1, 1, 0)

t : (0, 0, 0)

r : (2,−1, 0)

Figure 7.1: A vector addition system with states taken from [Hopcroft 1979].

We have the following run:

(p, 1, 0, 0)
lsrt l2sr2t l4sr4t ... l2

n−1
sr2

n−1
t−−−−−−−−−−−−−−−−−−−−−→ (p, 2n, 0, n)

This run corresponds to the following scheme: (1) iterate the left control loop l

as much as possible, then (2) execute the control transition s, (3) iterate the right
control loop r as much as possible, (4) execute the control transition t and go back
to (1).

62 Chapter 7. Vector Addition System Reachability Problem

Starting from the initial configuration (p, 1, 0, 0), this vector addition system
with states exhibits the following reachability set (see [Hopcroft 1979] for a proof)

Post∗({(p, 1, 0, 0)}) ={p} × {(x1, x2, x3) ∈ N3 | 1 ≤ x1 + x2 ≤ 2x3}
∪{q} × {(x1, x2, x3) ∈ N3 | 1 ≤ x1 + 2x2 ≤ 2x3}

This equality shows that the reachability set is not definable in the Presburger
arithmetic. Hence the Presburger arithmetic is not enough expressive for denot-
ing VASS reachability sets. It is difficult to find out a decidable formalism for
denoting reachability sets for VASS. In fact, since the equality of two reachability
sets is undecidable[Hack 1976, Jančar 2001] it is not possible to effectively describe
reachability sets in a decidable formalism.

Nevertheless, the reachability problem is decidable. Sacerdote and Tenney pro-
vided in [Sacerdote 1977] a partial proof of decidability of this problem. The
proof was completed in 1981 by Mayr [Mayr 1981b] and simplified by Kosaraju
[Kosaraju 1982] from [Sacerdote 1977, Mayr 1981b]. Ten years later [Lambert 1992],
Lambert provided a further simplified version based on [Kosaraju 1982]. This last
proof still remains difficult and the upper-bound complexity of the corresponding
algorithm is at least non-primitive recursive. Nowadays, the exact complexity of the
reachability problem for VASS is still an open-problem. Even the existence of an
elementary upper-bound complexity is open. In fact, the known general reachability
algorithms are exclusively based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney
(KLMST) decomposition.

Recently [Leroux 2009a] we proved thanks to the KLMST decomposition that
Parikh images of languages accepted by VASS are semi-pseudo-linear, a class that
extends the Presburger sets. An application of this result was provided; we proved
that a final configuration is not reachable from an initial one if and only if there
exists a forward inductive invariant definable in the Presburger arithmetic that
contains the initial configuration but not the final one. Since we can decide if a
Presburger formula denotes a forward inductive invariant, we deduce that there exist
checkable certificates of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general VASS reachability problem
based on two semi-algorithms. A first one that tries to prove the reachability by
enumerating finite sequences of actions and a second one that tries to prove the
non-reachability by enumerating Presburger formulas.

In [Leroux 2011a] we provided a new proof of the reachability problem
that is not based on the KLMST decomposition. The proof is based on
the transformer relations inspired by the production relations introduced by
Hauschildt [Hauschildt 1990] and it provides directly that reachability relations are
almost semilinear, a class of sets inspired by the geometrical decomposition of Pres-
burger definable sets into semilinear sets. Thanks to this characterization we deduce
that if a configurations c′ is not reachable from a configuration c from the VASS
M , there exists a certificate of safety for (c,M, c′), that means a forward inductive
invariant definable in the Presburger arithmetic that contains c but not c′.

7.1. Almost Semilinear Sets 63

Example 7.0.1. Let us show on the VASS depicted in Figure 7.1 how certificate
of safety can be obtained. We consider a pair (c, c′) of configurations such that c′

is not reachable from c. We observe that the following set Cc,k where k is the value
of the third counter of c′ is a Preburger set of configurations that denotes a forward
inductive invariant that contains c but not c′:

Cc,k = Post∗({c}) ∩ ({p, q} × N× N× {0, . . . , k})
∪{p, q} × N× N× N>k

In fact {p, q} × N × N × N>k is a forward inductive invariant and Post∗({c}) ∩
({p, q} × N × N × {0, . . . , k}) is a finite set with successors either in this set or in
{p, q} × N × N × N>k (just observe that the third counter can only be incremented
and it is eventually incremented since the control loops s and r can be iterated only
a finite number of times from any given configuration).

In the reminder of this chapter we consider Vector Additions Systems (VAS)
rather than Vector Additions Systems with States (VASS). Informally a VAS is a
VASS with a set of control states Q reduced to a single element. The VAS and
VASS models are equivalent for the reachability problem since control states can
be encoded by additional counters. Moreover from certificates of safety for VAS we
deduce certificates of safety for VASS.

Outline of the paper : Section 7.1 recalls the definition of almost semilinear sets,
a class of sets inspired by the decomposition of Presburger sets into semilinear
sets. Section 7.2 introduces definitions related to vector addition systems. Sec-
tion 7.3 introduces a well-order over the runs of vector addition systems. This
well-order is central in the proof and it was first introduced by Petr Jančar in an-
other context[Jančar 1990b]. Based on the definition of this well-order we introduce
in Section 7.4 the notion of transformer relations and we prove that conic relations
generated by transformer relations are definable in FO (Q,+,≤). Thanks to this re-
sult and the well-order introduced in the previous section we show in Section 7.5 that
reachability sets of vector addition systems are almost semilinear. In Section 7.6
we introduce a dimension function for subsets of integer vectors. In Section 7.7
the almost semilinear sets are proved to be approximable by Presburger sets in a
precise way based on the dimension function previously introduced. Thanks to this
approximation and since reachability sets are almost semilinear we finally prove in
Section 7.8 that the vector addition system reachability problem can be decided by
inductive invariants definable in the Presburger arithmetic.

7.1 Almost Semilinear Sets

In this section we introduce the class of almost semilinear sets, a class of sets inspired
by the geometrical characterization of the Presburger sets by semilinear sets.

A periodic set is a subset P ⊆ Zd such that 0 ∈ P and P + P ⊆ P. A conic
set is a subset C ⊆ Qd such that 0 ∈ C, C + C ⊆ C and Q≥0C ⊆ C. A periodic

64 Chapter 7. Vector Addition System Reachability Problem

Figure 7.2: Periodic set introduced in Example 7.1.1

set P is said to be finitely generated if there exist vectors p1, . . . ,pk ∈ P such that
P = Np1 + · · · + Npk. A periodic set P is said to be asymptotically definable if
the conic set Q≥0P is definable in FO (Q,+,≤). Observe that finitely generated
periodic sets are asymptotically definable since the conic set Q≥0P generated by
P = Np1 + · · ·+ Npk is equal to Q≥0p1 + · · ·+ Q≥0pk.

Example 7.1.1. The periodic set P = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2)−1} is depicted
in Figure 7.2. Observe that Q≥0P is the conic set {0} ∪ {c ∈ Q2

>0 | c(2) ≤ c(1)}
which is definable in FO (Q,+,≤).

A Presburger set is a set Z ⊆ Zd definable in FO (Z,+,≤). Recall that Z ⊆ Zd
is a Presburger set iff it is semilinear, i.e. a finite union of linear sets b + P where
b ∈ Zd and P ⊆ Zd is a finitely generated periodic set [Ginsburg 1966]. The class of
almost semilinear sets [Leroux 2011a] is obtained from the definition of semilinear
sets by weakening the finiteness condition on the considered periodic sets. More
formally, an almost semilinear set is a finite union of sets of the form b + P where
b ∈ Zd and P ⊆ Zd is an asymptotically definable periodic set.

7.2 Vector Addition Systems

A Vector Addition System (VAS) is given by a finite subset A ⊆ Zd. A vector a ∈ A

is called an action. A configuration is a vector c ∈ Nd. A run ρ is a non-empty
word ρ = c0 . . . ck of configurations such that the difference aj = cj − cj−1 is in
A for every j ∈ {1, . . . , k}. In that case we say that ρ is labeled by w = a1 . . .ak,
the configurations c0 and ck are respectively called the source and the target and
they are denoted by src(ρ) and tgt(ρ). The direction of ρ is the pair (src(ρ), tgt(ρ)),
denoted by dir(ρ). Given a word w ∈ A∗, we introduce the binary relation w−→ over
the set of configurations by x

w−→ y if there exists a run ρ from x to y labeled by
w. Observe that in this case ρ is unique. The displacement of a word w = a1 . . .ak
of actions aj ∈ A is the vector ∆(w) =

∑k
j=1 aj . Note that x

w−→ y implies
x + ∆(w) = y but the converse is not true in general. The reachability relation is
the relation ∗−→ over Nd defined by x

∗−→ y if there exists a run from x to y. The
following simple lemma is central in this paper.

Lemma 7.2.1 (Monotony). We have c+x
w−→ c+y for every x

w−→ y and for every
c ∈ Nd.

7.3. Well-Order Over The Runs 65

Proof. Just observe that if ρ = c1 . . . ck is a run from x to y labeled by w where
cj ∈ Nd then ρ′ = c′1 . . . c

′
k where c′j = c + cj is a run from c + x to c + y labeled

by w.

The set of configurations forward reachable from a configuration x ∈ Nd is the
set {c ∈ Nd | x ∗−→ c} denoted by Post∗(x). Symmetrically the set of configurations
backward reachable from a configuration y ∈ Nd is the set {c ∈ Nd | c ∗−→ y} denoted
by Pre∗(y). These definitions are extended over sets of configurations X,Y ⊆ Nd by
Post∗(X) =

⋃
x∈X Post∗(x) and Pre∗(Y) =

⋃
y∈Y Post∗(y). A set X ⊆ Nd is said

to be a forward inductive invariant if X = Post∗(X). Symmetrically a set Y ⊆ Nd
is said to be a backward inductive invariant if Y = Pre∗(Y).

In this chapter we prove that for every x,y ∈ Nd such that there does not
exist a run from x to y, then there exists a pair (X,Y) of disjoint Presburger sets
X,Y ⊆ Nd such that X is a forward inductive invariant that contains x and Y is a
backward inductive invariant that contains y. This result will provide directly the
following theorem.

Theorem 7.2.2. The reachability problem for vector addition systems is decidable.

Proof. See Chapter 5 for more details.

Remark 7.2.3. The set Post∗(x) is a forward inductive invariant that contains
x and Pre∗(y) is a backward inductive invariant that contains y. Moreover, if
there does not exist a run from x to y then these two reachability sets are dis-
joint. However in general reachability sets are not definable in the Presburger arith-
metic [Hopcroft 1979].

7.3 Well-Order Over The Runs

An order v over a set S is said to be a well-order if for every sequence (sj)j∈N of
elements sj ∈ S there exist j < k such that sj v sk. Observe that (N,≤) is a well-
ordered set whereas (Z,≤) is not well-ordered. As another example, the pigeon-hole
principle shows that a set S is well-ordered by the equality relation if and only if S
is finite. Well-orders can be easily defined thanks to Dickson’s lemma and Higman’s
lemma as follows.

Dickson’s lemma: Dickson’s lemma shows that the Cartesian product of two
well-ordered sets is well-ordered. More formally, given two ordered sets (S1,v1)

and (S2,v2) we denote by v1 × v2 the order defined component-wise over the
Cartesian product S1 × S2 by (s1, s2) v1 × v2 (s′1, s

′
2) if s1 v1 s

′
1 and s2 v2 s

′
2.

Dickson’s lemma says that (S1×S2,v1 × v2) is well-ordered for every well-ordered
sets (S1,v1) and (S2,v2). As a direct application, the set Nd equipped with the
component-wise extension of ≤ is well-ordered.

Higman’s lemma: Higman’s lemma shows that words over well-ordered alpha-
bets can be well-ordered. More formally, given an ordered set (S,v), we introduce

66 Chapter 7. Vector Addition System Reachability Problem

the set S∗ of words over S equipped with the order v∗ defined by w v∗ w′ if w and
w′ can be decomposed into w = s1 . . . sk and w′ ∈ S∗s′1S∗ . . . s′kS∗ where sj v s′j
are in S for every j ∈ {1, . . . , k}. Higman’s lemma says that (S∗,v∗) is well-ordered
for every well-ordered set (S,v). As a classical application, the set of words over a
finite alphabet S is well-ordered by the sub-word relation =∗.

We define a well-order over the runs as follows. We introduce the relation �

over the runs defined by ρ� ρ′ if ρ is a run of the form ρ = c0 . . . ck where cj ∈ Nd
and if there exists a sequence (vj)0≤j≤k+1 of vectors vj ∈ Nd such that ρ′ is a run
of the form ρ′ = ρ0 . . . ρk where ρj is a run from cj + vj to cj + vj+1.

Lemma 7.3.1. The relation � is a well-order over the runs.

Proof. A proof of this lemma with different notations can be obtained from Section 6
of [Jančar 1990b] with a simple reduction. For sake of completeness, we prefer to give
a direct proof of this important result. To do so, we introduce a well-order � over the
runs based on Dickson’s lemma and Higman’s lemma and we show that � and � are
equal. We first associate to a run ρ = c0 . . . ck the word α(ρ) = (a1, c1) . . . (ak, ck)

over the set S = A × Nd where aj = cj − cj−1. The set S is well-ordered by the
relation v defined by (a1, c1) v (a2, c2) if a1 = a2 and c1 ≤ c2. Dickson’s lemma
shows that v is a well-order. The set of words S∗ is well-ordered thanks to Higman’s
lemma by the relation v∗. The well-order � over the runs is defined by ρ � ρ′ if
dir(ρ) ≤ dir(ρ′) and α(ρ) v∗ α(ρ′). Now, let us prove that � and � are equal. We
consider a run ρ = c0 . . . ck with cj ∈ Nd and we introduce the action aj = cj−cj−1

for each j ∈ {1, . . . , k}.
Assume first that ρ � ρ′ for some run ρ′. Since α(ρ) = (a1, c1) . . . (ak, ck) and

α(ρ) v∗ α(ρ′) we deduce a decomposition of α(ρ′) into the following word where
c′j ≥ cj for every j ∈ {1, . . . , k} and w0, . . . , wk ∈ S∗:

α(ρ′) = w0(a1, c
′
1)w1 . . . (ak, c

′
k)wk

In particular ρ′ can be decomposed in ρ′ = ρ0 . . . ρk where ρ0 is a run from src(ρ′)

to c′1 − a1, ρj is a run from c′j to c′j+1 − aj+1 for every j ∈ {1, . . . , k − 1}, and ρk
is a run from c′k to tgt(ρ′). Let us introduce the sequence (vj)0≤j≤k+1 of vectors
defined by v0 = src(ρ′) − src(ρ), vj = c′j − cj for every j ∈ {1, . . . , k} and vk+1 =

tgt(ρ′) − tgt(ρ). Note that vj ∈ Nd for every j ∈ {0, . . . , k + 1}. Observe that for
every j ∈ {1, . . . , k − 1} we have c′j+1 − aj = cj+1 − aj + vj+1 = cj + vj+1. Hence
ρj is a run from cj + vj to cj + vj+1 for every j ∈ {0, . . . , k}. Therefore ρ� ρ′.

Conversely, let us assume that ρ� ρ′ for some run ρ′. We introduce a sequence
(vj)0≤j≤k+1 of vectors in Nd such that ρ′ = ρ0 . . . ρk where ρj is a run from cj + vj
to cj + vj+1. We deduce the following equality where a′j = src(ρj)− tgt(ρj−1):

α(ρ′) = α(ρ0)(a′1, c1 + v1)α(ρ1) . . . (a′k, ck + vk)α(ρk)

Observe that a′j = (cj + vj) − (cj−1 + vj) = aj . We deduce that α(ρ) v∗ α(ρ′).
Moreover, since dir(ρ) ≤ dir(ρ′) we get ρ � ρ′.

7.4. Transformer Relations 67

Example 7.3.2. The well-order � provides a simple criterion for deciding if a
component i of a VAS is unbounded from an initial configuration c, i.e. for every
n ∈ N there exists a run from c to a configurations yn such that yn(i) ≥ n. In fact,
we directly show that a component i is unbounded from c if and only if there exists
a sequence (aj)1≤j≤k of actions aj ∈ A and a sequence (wj)0≤j≤k of words wj ∈ A∗

such that vj = ∆(w0) + · · ·+ ∆(wj) is in Nd for every j ∈ {0, . . . , k}, vk(i) > 0 and
such that there exists a run from c labeled by w0a1w1 . . .akwk.

7.4 Transformer Relations

Based on the definition of �, we introduce the transformer relation with capacity
c ∈ Nd as the binary relation cy over Nd defined by x

cy y if there exists a run
from c + x to c + y. We also associate to every run ρ = c0 . . . ck with cj ∈ Nd

the transformer relation along the run ρ denoted by
ρ
y and defined as the following

composition:
ρ
y =

c0y ◦ · · · ◦ cky

In this section transformer relations are shown to be asymptotically definable peri-
odic. Thanks to the following Lemma 7.4.1, it is sufficient to prove that cy is in this
class for every capacity c ∈ Nd.

Lemma 7.4.1. Asymptotically definable periodic relations are stable by composition.

Proof. Assume that R,S ⊆ Zd × Zd are two periodic relations and observe that
(0,0) ∈ R ◦ S. Let us consider two pairs (x1, z1) and (x2, z2) in R ◦ S. For each
k ∈ {1, 2}, there exists yk ∈ Zd such that (xk,yk) ∈ R and (yk, zk) ∈ S. As R and
S are periodic we get (x,y) ∈ R and (y, z) ∈ S where x = x1 +x2, y = y1 +y2 and
z = z1 +z2. Thus (x, z) ∈ R◦S and we have proved that R◦S is periodic. Now just
observe that Q≥0(R ◦ S) = (Q≥0R) ◦ (Q≥0S). Hence if R and S are asymptotically
definable then R ◦ S is also asymptotically definable.

c

c + x1 c + y1

c

c + x2

c + y2

c

c + x1 + x2

c + y1 + x2

c + y1 + y2

Figure 7.3: Transformer relations are periodic.

Lemma 7.4.2. The transformer relation
cy is periodic.

Proof. Assume that c+ x1
w1−→ c+ y1 and c+ x2

w2−→ c+ y2 for words w1, w2 ∈ A∗

and vectors x1,y1,x2,y2 ∈ Nd. By monotony c + x1 + x2
w1w2−−−→ c + y1 + y2 (see

Figure 7.3).

68 Chapter 7. Vector Addition System Reachability Problem

In the remainder of this section, we show that Q≥0
cy is definable in

FO (Q,+,≤). We introduce the set Γc of triples γ = (x, c,y) such that x cy y and
the set Γ =

⋃
c∈Nd Γc. Given a triple γ ∈ Γ, the vectors x, c,y implicitly denote the

components of γ. We introduce the set Ωγ of runs ρ such that dir(ρ) ∈ (c, c)+N(x,y)

and the set Qγ of configurations q ∈ Nd such that there exists a run ρ ∈ Ωγ in which
q occurs. We denote by Iγ the set of indexes i ∈ {1, . . . , d} such that {q(i) | q ∈ Qγ}
is finite.

c

c + a c + b

c + y

...
c + (n− 1)y

c + a + (n− 1)y c + b + (n− 1)y

c + ny

a b

ab

a b

ab

Figure 7.4: Figure for Example 7.4.3

Example 7.4.3. Let us consider the VAS A = {a,b} where a = (1, 1,−1) and
b = (−1, 0, 1) and let γ = (x, c,y) where x = (0, 0, 0), c = (1, 0, 1) and y = (0, 1, 0).
Since x = (0, 0, 0), we observe that Ωγ = {c w1...wn−−−−→ c+ny | n ∈ N wj ∈ {ab,ba}}.
This set of runs is depicted in Figure 7.4. Observe that Qγ = (c + a + Ny) ∪ (c +

Ny) ∪ (c + b + Ny). Hence the set of bounded components is Iγ = {1, 3}.

In section 7.4.1 we show that for every configuration q ∈ Qγ , there exist config-
urations q′ ∈ Qγ that coincide with q on components indexed by Iγ and such that
q′ is as large as expected on all the other components. Based on a projection of the
unbounded components of vectors in Qγ , i.e. the components not indexed by Iγ , we
show in Section 7.4.3 that a finite graph Gγ called production graph can be canon-
ically associated to every triple γ. We also prove that the class {Gγ | γ ∈ Γc} is
finite. Finally in Section 7.4.2 we introduce a binary relation Rγ ⊆ Q≥0

cy definable
in FO (Q,+,≤) associated to the production graphs Gγ and such that (x,y) ∈ Rγ .
By observing that Q≥0

cy=
⋃
γ∈Γc

Rγ and the class {Rγ | γ ∈ Γc} is finite we

deduce that the periodic relation cy is asymptotically definable.

7.4.1 Intraproductions

An intraproduction for γ is a vector h ∈ Nd such that there exists n ∈ N satisfying
nx

cy h
cy ny. We denote by Hγ the set of intraproductions for γ. This set is peri-

odic since cy is periodic. In particular for every h ∈ Hγ we have Nh ⊆ Hγ and the

7.4. Transformer Relations 69

following lemma shows that Qγ +Nh ⊆ Qγ . Hence, the components of every vector
q ∈ Qγ indexed by i such that h(i) > 0 can be increased to arbitrary large values
by adding a large number of times the vector h. In order to increase simultaneously
all the components not indexed by Iγ we are interested by intraproductions h such
that h(i) > 0 for every i 6∈ Iγ . Note that components indexed by Iγ are necessarily
zero since c + Nh ⊆ Qγ for every intraproduction h.

Example 7.4.4. Let us come back to Example 7.4.3. We have Hγ = Ny.

Lemma 7.4.5. We have Qγ + Hγ ⊆ Qγ.

Proof. Let q ∈ Qγ and h ∈ Hγ . As q ∈ Qγ , there exist n ∈ N and words u, v ∈ A∗

such that c + nx
u−→ q

v−→ c + ny. Since h ∈ Hγ there exist n′ ∈ N and words

u′, v′ ∈ A∗ such that c + n′x
u′−→ c + h

v′−→ c + n′y. Let m = n+ n′. By monotony,
we have c +mx

u′u−−→ q + h
vv′−−→ c +my. Hence q + h ∈ Qγ .

Lemma 7.4.6. For every q ≤ q′ in Qγ there exists h ∈ Hγ such that q′ ≤ q + h.

Proof. As q,q′ ∈ Qγ there exists m,m′ ∈ N and u, v, u′, v′ ∈ A∗ such that:

c +mx
u−→ q

v−→ c +my and c +m′x
u′−→ q′

v′−→ c +m′y

Let us introduce v = q′−q, h = v+m(x+y), and n = m+m′. By monotony:

c + nx
u′−→ q′ +mx and q + v +mx

v−→ c + h

c + h
u−→ q + v +my and q′ +my

v′−→ c + ny

Since q′ + mx = q + v + mx and q + v + my = q′ + my, we have proved that
c+nx

u′v−−→ c+h
uv′−−→ c+ny. Hence h ∈ Hγ . Observe that q+h = q′+m(x+y) ≥ q′.

We are done.

Lemma 7.4.7. There exist h ∈ Hγ such that Iγ = {i | h(i) = 0}.

Proof. Let i 6∈ Iγ . There exists a sequence (qj)j∈N of configurations qj ∈ Qγ such
that (qj(i))j∈N is strictly increasing. Since (Nd,≤) is well-ordered there exists j < k

such that qj ≤ qk. Lemma 7.4.6 shows that there exists an intraproduction hi for
γ such that qk ≤ qj + hi. In particular hi(i) > 0 since qj(i) < qk(i). As the set of
intraproductions Hγ is periodic we deduce that h =

∑
i 6∈I hi is an intraproduction

for γ. By construction we have h(i) > 0 for every i 6∈ Iγ . Since h ∈ Hγ we deduce
that h(i) = 0 for every i ∈ Iγ . Therefore Iγ = {i | h(i) = 0}.

7.4.2 Production Graphs

Finite graphs Gγ , called production graphs can be associated to every triple γ as
follows. The set of states is obtained from Qγ by projecting away the unbounded
components. More formally, we introduce the projection function πγ : Qγ → NIγ
defined by πγ(q)(i) = q(i) for every q ∈ Qγ and for every i ∈ Iγ . We consider the

70 Chapter 7. Vector Addition System Reachability Problem

finite set of states Sγ = πγ(Qγ) and the set Tγ of transitions (πγ(q),q′ − q, πγ(q′))

where qq′ is a factor of a run in Ωγ . Since Tγ ⊆ Sγ ×A× Sγ we deduce that Tγ is
finite. We introduce the finite graph Gγ = (Sγ , Tγ), called the production graph of
γ. Since c ∈ Qγ we deduce that πγ(c) is a state of Gγ . This state, called the special
state for γ, is denoted by sγ .

(2, ?, 0) (1, ?, 1) (0, ?, 2)

b

b

a

a

Figure 7.5: Figure for Example 7.4.8

Example 7.4.8. Let us come back to Example 7.4.3. Observe that πγ(c + a +

ny) = (2, ?, 0), πγ(c + ny) = (1, ?, 1), and πγ(c + b + ny) = (0, ?, 2) where ?
denotes a projected component. The graph Gγ is depicted in Figure 7.5. Note that
sγ = (1, ?, 1).

Corollary 7.4.9. We have πγ(src(ρ)) = sγ = πγ(tgt(ρ)) for every run ρ ∈ Ωγ.

Proof. Since ρ ∈ Ωγ there exists n ∈ N such that ρ is a run from c + nx to c + ny.
In particular nx and ny are two intraproductions for γ. We get nx(i) = 0 = ny(i)

for every i ∈ Iγ . Hence πγ(src(ρ)) = πγ(c) = πγ(tgt(ρ)).

A path in Gγ is a word p = (s0,a1, s1) . . . (sk−1,ak, sk) of transitions (sj−1,aj , sj)

in Tγ . Such a path is called a path from s0 to sk labeled by w = a1 . . .ak. When
s0 = sk the path is called a cycle. The previous corollary shows that for every run
ρ = c0 . . . ck in Ωγ the following word θρ is a cycle on sγ in Gγ labeled by w:

θρ = (πγ(c0),a1, πγ(c1)) . . . (πγ(ck−1),ak, πγ(ck))

Corollary 7.4.10. The graph Gγ is strongly connected.

Proof. Let s ∈ Sγ . There exists q ∈ Qγ that occurs in a run ρ ∈ Ωγ such that
s = πγ(q). Hence there exist u, v ∈ A∗ such that src(ρ)

u−→ q
v−→ tgt(ρ). Note that

θρ is the concatenation of a path from sγ to s and a path from s to sγ labeled by
u, v.

Corollary 7.4.11. States in Sγ are incomparable.

Proof. Let us consider s ≤ s′ in Sγ . There exists q,q′ ∈ Qγ such that s = πγ(q)

and s′ = πγ(q′). Lemma 7.4.7 shows that there exists an intraproduction h′ ∈ Hγ

such that Iγ = {i | h′(i) = 0}. By replacing h′ by a vector in N>0h
′ we can

assume without loss of generality that q(i) ≤ q′(i) + h′(i) for every i 6∈ Iγ . As

7.4. Transformer Relations 71

q(i) = s(i) ≤ s′(i) = q′(i) = q′(i)+h′(i) for every i ∈ Iγ we deduce that q ≤ q′+h′.
Lemma 7.4.5 shows that q′ + h′ ∈ Qγ . Lemma 7.4.6 shows that there exists an
intraproduction h ∈ Hγ such that q′ + h′ ≤ q + h. As h ∈ Hγ we deduce that
h(i) = 0 for every i ∈ Iγ . In particular q′(i) ≤ q(i) for every i ∈ Iγ . Hence s′ ≤ s

and we get s = s′.

Corollary 7.4.12. The class {Gγ | γ ∈ Γc} is finite.

Proof. Given I ⊆ {1, . . . , d} we introduce the state sc,I ∈ NI defined by sc,I(i) =

c(i) for every i ∈ I. We also introduce the set Γc,I of triples γ ∈ Γc such that
Iγ = I. Note that in this case sc,I is equal to the special state sγ for γ. Assume
by contradiction that Sc,I =

⋃
γ∈Γc,I

Sγ is infinite. For every s ∈ Sc,I there exists
γ ∈ Γc,I such that s ∈ Sγ . Hence there exists a path ps in Gγ from sc,I to s.
Since the states in Sγ are incomparable, we can assume that the states occurring
in ps are incomparable. By inserting the paths ps in a tree rooted by sc,I with
transitions labeled by actions in A we deduce an infinite tree such that each node
has a finite number of children (at most |A|). Koenig’s lemma shows that this tree
has an infinite branch. Since (NI ,≤) is well-ordered, there exists two comparable
distinct nodes in this branch. There exists s ∈ Sc,I such that these two comparable
states occurs in ps. We get a contradiction. Thus Sc,I is finite. We deduce the
corollary.

7.4.3 Kirchhoff’s Functions

We associate to the production graph Gγ a binary relation Rγ included in Q≥0
cy

and such that (x,y) ∈ Rγ . This relation is based on Kirchhoff’s functions.

A Kirchhoff’s function for γ is a function f : Tγ → Q labeling transitions of the
production graph Gγ by rational numbers satisfying the following equality for every
s ∈ Sγ : ∑

t∈Tγ∩({s}×A×Sγ)

f(t) =
∑

t∈Tγ∩(Sγ×A×{s})

f(t)

Kirchhoff’s functions f : Tγ → N>0 are characterized as follows. A cycle θ in Gγ is
said to be total for γ if every transition in Tγ occurs in θ. The Parikh image of a
path is the function f : Tγ → N where f(t) denotes the number of occurrences of t
in the path. Since Gγ is strongly connected, Euler’s lemma shows that a function
f : Tγ → N>0 is a Kirchhoff’ function for γ if and only if f is the Parikh image of a
total cycle for γ.

The displacement of a function f : Tγ → Q is the sum
∑

t∈Tγ f(t)∆(t) where
∆(t) = a if a is the label of the transition t. This displacement is denoted by ∆(f).
Let us observe that if f is the Parikh’s image of a path in Gγ labeled by a word w
then ∆(f) = ∆(w). Intuitively the displacement of w only depends on the number
of times transitions in Tγ occur in the path.

72 Chapter 7. Vector Addition System Reachability Problem

We introduce the relation Rγ of pairs (u,v) ∈ Qd
≥0 × Qd

≥0 satisfying u(i) > 0

iff x(i) > 0, v(i) > 0 iff y(i) > 0, and such that there exists a Kirchhoff’s function
f : Tγ → Q>0 such that v−u = ∆(f). Observe that Rγ is definable in FO (Q,+,≤).

Example 7.4.13. Let us come back to Examples 7.4.3 and 7.4.8. A function
f : Tγ → Q is a Kirchhoff’s function for γ if and only if f((1, ?, 1),a, (2, ?, 0)) =

f((2, ?, 0),b, (1, ?, 1)) and f((1, ?, 1),b, (0, ?, 2)) = f((0, ?, 2),a, (1, ?, 1)). We get
Rγ = {((0, 0, 0), (0, n, 0)) | n ∈ Q>0}.

Lemma 7.4.14. We have (x,y) ∈ Rγ.

Proof. Assume that Tγ = {t1, . . . , tk}. By definition of Tγ , for every j ∈ {1, . . . , k},
there exists a run ρj such that tj occurs in the cycle θρj . Let wj be the label of ρj
and nj ∈ N such that dir(ρj) ∈ (c, c) + nj(x,y). As x

cy y there exists a run ρ

from c + x to c + y labeled by a word w. The cycle θρ shows that w is the label
of a cycle on sγ . Let us consider n = 1 +

∑k
j=1 nj and σ = ww1 . . . wk. Observe

that σ is the label of a total cycle on sγ . Hence the Parikh’s image of this total
cycle provides a Kirchhoff’s function f for γ such that ∆(σ) = ∆(f). Observe that
∆(σ) = n(y − x). Hence y − x = ∆(1

nf) and we have proved that (x,y) ∈ Rγ .

Lemma 7.4.15. We have Rγ ⊆ Q≥0
cy.

Proof. Lemma 7.4.7 shows that there exists h′ ∈ Hγ such that Iγ = {i | h′(i) = 0}.
From h′ ∈ Hγ we have a run ρ of the form c + nx

w1−→ c + h′
w2−→ c + ny for some

n ∈ N and w1, w2 ∈ A∗. The cycle θρ shows that there exist cycles θ1, θ2 on sγ
labeled by w1, w2. We denote by f1 and f2 the Parikh images of these two cycles.
Let (u,v) ∈ Rγ . By replacing (u,v) by a pair in N>0(u,v) we can assume without
loss of generality that u′ = u−nx and v′ = v−ny are both in Nd, and there exists
a Kirchhoff’s function f such that f(t) ∈ N>0 and f(t) > f1(t) + f2(t) for every
t ∈ Tγ , and such that v−u = ∆(f). Since g = f−(f1 +f2) is a Kirchhoff’s function
satisfying g(t) ∈ N>0 for every t ∈ Tγ , Euler’s Lemma shows that g is the Parikh’s
image of a total cycle θ in Gγ on sγ . Let σ be the label of this cycle and observe that
∆(σ) = ∆(g) = ∆(f)− (∆(f1) + ∆(f2)) = v−u− ((h′−nx) + (ny−h′)) = v′−u′.
Since c + nx

w1−→ c + h′
w2−→ c + ny and nx ≤ u, ny ≤ v we deduce by monotony

that for every m ∈ N we have:

c +mu
wm1−−→ c +m(h′ + u′) c +m(h′ + v′)

wm2−−→ c +mv

We prove that there exists a run labeled by σ from c +mh′ for some m ∈ N>0

large enough as follows. We introduce the decomposition of σ into σ = a1 . . .ak
where aj ∈ A. Since θ is a cycle on the special state sγ labeled by σ, there exists
a sequence (sj)0≤j≤k of states sj ∈ Sγ such that θ = (s0,a1, s1) . . . (sk−1,ak, sk).
Let i 6∈ Iγ and j ∈ {0, . . . , k}. Since h′(i) > 0 there exists mi,j ∈ N such that
the ith component of c + mi,jh

′ + ∆(a1 . . .aj) is in N. Let m ∈ N>0 such that
m ≥ mi,j for every i 6∈ Iγ and j ∈ {0, . . . , k}. Note that for every i ∈ Iγ and for
every j ∈ {0, . . . , k}, the ith component of c + ∆(a1 . . .aj) is equal to sj(i) which

7.5. Reachability Relations Are Almost Semilinear 73

is in N. We have proved that c +mh′ + ∆(a1 . . .aj) ∈ Nd for every j ∈ {0, . . . , k}.
Hence there exists a run from c +mh′ labeled by σ.

Let us consider ` ∈ {0, . . . ,m} and let us introduce z` = (m− `)u′ + `v′. Note
that z` ∈ Nd. By monotony there exists a run from c + mh′ + z` labeled by σ.
Since ∆(σ) = v′ − u′, we get z` + ∆(σ) = z`+1. We deduce that c + mh′ + z`

σ−→
c +mh′ + z`+1. Therefore:

c +m(h′ + u′)
σm−−→ c +m(h′ + v′)

We have proved the lemma by observing that c +mu
wm1 σ

mwm2−−−−−−→ c +mv.

Corollary 7.4.16. Transformer relations are asymptotically definable periodic re-
lations.

Proof. Lemma 7.4.14 and Lemma 7.4.15 show that Q≥0
cy=

⋃
γ∈Γc

Rγ . Since the
class {Gγ | γ ∈ Γc} is finite we deduce that the class {Rγ | γ ∈ Γc} is finite. Recall
that relations Rγ are definable in FO (Q,+,≤).

7.5 Reachability Relations Are Almost Semilinear

In this section the intersection of the reachability relation ∗−→ with any Presburger
relation R ⊆ Nd × Nd is proved to be almost semilinear. As a direct corollary we
will deduce that Post∗(X) ∩ Y and Pre∗(Y) ∩ X are almost semilinear for every
Presburger sets X,Y ⊆ Nd. Since Presburger relations are finite unions of linear
relations, we can assume that R = r + P where r ∈ Nd × Nd and P ⊆ Nd × Nd is
a finitely generated periodic relation. We introduce the set Ω of runs ρ such that
dir(ρ) ∈ R equipped with the order v defined by ρ v ρ′ if dir(ρ′) ∈ dir(ρ) + P and
ρ� ρ′. Since P is finitely generated, Dickson’s lemma shows that v is a well-order.
In particular we deduce that the set of minimal runs in Ω for v, denoted by minv(Ω)

is finite.

Lemma 7.5.1. The intersection of ∗−→ with R is equal to:⋃
ρ∈minv(Ω)

dir(ρ) + (
ρ
y ∩P)

Proof. Let us first prove that dir(ρ) + (
ρ
y ∩P) is included in ∗−→ ∩R for every run

ρ ∈ Ω. Assume that ρ = c0 . . . ck with cj ∈ Nd and let (u,v) ∈ P such that u
ρ
y v.

As ρ ∈ Ω we deduce that (c0, ck) ∈ R. As u
ρ
y v there exists a sequence (vj)0≤j≤k+1

of vectors vj ∈ Nd such that v0 = u, vk+1 = v and such that vj
cjy vj+1 for every

j ∈ {0, . . . , k}. In particular there exists a run from cj +vj to cj +vj+1 labeled by a
word wj ∈ A∗. Now just observe that we have a run from c0+v0 to ck+vk+1 labeled
by w0a1w1 . . .akwk where aj = cj − cj−1. Since (c0, ck) ∈ r+ P and (u,v) ∈ P we
deduce that (c0 + u, ck + v) ∈ r + P + P ⊆ R. Hence dir(ρ) + (u,v) is in ∗−→ ∩R.

74 Chapter 7. Vector Addition System Reachability Problem

Now, let us prove that for every (x,y) ∈ R such that x
∗−→ y there exists

ρ ∈ minv(Ω) such that (x,y) ∈ dir(ρ) + (
ρ
y ∩P). There exists a run ρ′ ∈ Ω such

that dir(ρ′) = (x,y). Since v is a well-order, there exists a run ρ ∈ minv(Ω) such
that ρ v ρ′. By definition of v we deduce that dir(ρ′) ∈ dir(ρ) + (

ρ
y ∩P).

Since P is finitely generated it is asymptotically definable. From the following
lemma we deduce that

ρ
y ∩P is an asymptotically definable periodic relation. Hence,

the previous lemma proved that the intersection of the reachability relation ∗−→ with
every Presburger relation is almost semilinear.

Lemma 7.5.2. Asymptotically definable periodic sets are stable by intersection.

Proof. If P1,P2 ⊆ Zd are two periodic sets then P = P1 ∩ P2 is a periodic set.
Moreover, observe that Q≥0(P1 ∩P2) = (Q≥0P1) ∩ (Q≥0P2). Hence, if P1,P2 are
asymptotically definable then P is also asymptotically definable.

We deduce the following corollary.

Corollary 7.5.3. The sets Post∗(X) ∩Y and Pre∗(Y) ∩X are almost semilinear
for every Presburger sets X,Y ⊆ Nd.

Proof. Let us consider the Presburger relation R = X × Y and observe that
Post∗(X)∩Y = f(

∗−→ ∩R) and Pre∗(Y)∩X = g(
∗−→ ∩R) where f, g : Qd×Qd → Qd

and defined by f(x,y) = y and g(x,y) = x. Now just observe that for every
r ∈ Nd × Nd, for every asymptotically definable periodic relation P ⊆ Nd × Nd,
and for every h ∈ {f, g} we have h(r + P) = h(r) + h(P). Moreover h(P) is a
periodic set and the conic set Q≥0h(P) is equal to h(Q≥0P) which is definable in
FO (Q,+,≤).

7.6 Dimension

In this section we introduce a dimension function for the subsets of Zd and we
characterize the dimension of periodic sets.

A vector space is a set V ⊆ Qd such that 0 ∈ V, V + V ⊆ V and such that
QV ⊆ V. Let X ⊆ Qd. The following set V is a vector space called the vector space
generated by X.

V =

k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X

This vector space is the minimal for the inclusion among the vector spaces that
contain X. Let us recall that every vector space V is generated by a finite set.
The rank rank(V) of a vector space V is the minimal natural number m ∈ N such
that there exists a finite set X with m vectors that generates V. Let us recall
that rank(V) ≤ d for every vector space V ⊆ Qd and rank(V) ≤ rank(W) for

7.6. Dimension 75

every pair of vector spaces V ⊆W. Moreover, if V is strictly included in W then
rank(V) < rank(W).

Example 7.6.1. Vector spaces V included in Q2 satisfy rank(V) ∈ {0, 1, 2}. More-
over these vectors spaces can be classified as follows : rank(V) = 0 if and only if
V = {0}, rank(V) = 1 if and only if V = Qv with v ∈ Q2\{0}, and rank(V) = 2

if and only if V = Q2.

The dimension of a set X ⊆ Zd is the minimal integer m ∈ {−1, . . . , d}
such that X ⊆

⋃k
j=1 bj + Vj where bj ∈ Zd and Vj ⊆ Qd is a vector space

satisfying rank(Vj) ≤ m for every j. We denote by dim(X) the dimension
of X. Observe that dim(v + X) = dim(X) for every X ⊆ Zd and for every
v ∈ Zd. Moreover we have dim(X) = −1 if and only if X is empty. Note that
dim(X ∪Y) = max{dim(X),dim(Y)} for every subsets X,Y ⊆ Zd.

Example 7.6.2. Let X = {−10, . . . , 10} × Z. Observe that dim(X) ≤ 1 since the
set X is included in

⋃
b∈{−10,...,10}×{0} b + V where V = {0} ×Q.

Lemma 7.6.3. Let P ⊆ Zd be a periodic set included in
⋃k
j=1 bj + Vj where k ∈

N>0, bj ∈ Zd and Vj ⊆ Qd is a vector space. There exists j ∈ {1, . . . , k} such that
P ⊆ Vj and bj ∈ Vj.

Proof. Let us first prove by induction over k ∈ N>0 that for every periodic set P ⊆
Zd included in

⋃k
j=1 Vj where Vj ⊆ Qd is a vector space, there exists j ∈ {1, . . . , k}

such that P ⊆ Vj . The rank k = 1 is immediate. Assume the rank k proved and
let us prove the rank k + 1. Let P be a periodic set included in

⋃k+1
j=1 Vj where

Vj ⊆ Qd is a vector space. If P ⊆ Vk+1 the induction is proved. So we can assume
that there exists p ∈ P\Vk+1. Let x ∈ P. Since p + nx ∈ P for every n ∈ N, the
pigeon-hole principle shows that there exist j ∈ {1, . . . , k+ 1} and n < m such that
np + x and mp + x are both in Vj . In particular the difference of this two vectors
is in Vj . Since this difference is (m − n)p and p 6∈ Vk+1 we get j ∈ {1, . . . , k}.
Observe that n(mp + x)−m(np + x) is the difference of two vectors in Vj . Thus
this vector is in Vj and we deduce that x ∈ Vj . We have shown that P ⊆

⋃k
j=1 Vj .

By induction there exists j ∈ {1, . . . , k} such that P ⊆ Vj . We have proved the
induction.

Finally, assume that P ⊆ Zd is a periodic set included in
⋃k
j=1 bj + Vj where

k ∈ N>0, bj ∈ Zd and Vj ⊆ Qd is a vector space. Let J be the set of j ∈ {1, . . . , k}
such that bj ∈ Vj and let us prove that P ⊆

⋃
j∈J Vj . Let p ∈ P. Since np ∈ P

for every n ∈ N, there exist j ∈ {1, . . . , k} and n < m such that np and mp are
both in bj + Vj . The difference of these two vectors shows that (m− n)p is in Vj .
From bj ∈ np−Vj ⊆ Vj we deduce that j ∈ J . Thus P ⊆

⋃
j∈J Vj . As 0 ∈ P we

deduce that J 6= ∅ and from the previous paragraph, there exists j ∈ J such that
P ⊆ Vj .

Lemma 7.6.4. We have dim(P) = rank(V) for every periodic set P where V is
the vector space generated by P.

76 Chapter 7. Vector Addition System Reachability Problem

Proof. Since P ⊆ V we deduce that dim(P) ≤ rank(V). For the converse in-
equality, there exist k ∈ N, (bj)1≤j≤k a sequence of vectors bj ∈ Zd and a se-
quence (Vj)1≤j≤k of vector spaces Vj ⊆ Qd such that P ⊆

⋃k
j=1 bj + Vj and

such that rank(Vj) ≤ dim(P) for every j. Since P is non empty we deduce that
k ∈ N>0. Lemma 7.6.3 proves that there exists j ∈ {1, . . . , k} such that P ⊆ Vj and
bj ∈ Vj . By minimality of the vector space generated by P we get V ⊆ Vj . Hence
rank(V) ≤ rank(Vj). From rank(Vj) ≤ dim(P) we get rank(V) ≤ dim(P).

7.7 Linearizations

A linearization of an almost semilinear set X is a set
⋃k
j=1 bj + (Pj −Pj)∩Q≥0Pj

where bj ∈ Zd and Pj ⊆ Zd is an asymptotically definable periodic set such
that X =

⋃k
j=1 bj + Pj . Let us recall that every subgroup of (Zd,+) is finitely

generated[Schrijver 1987]. Moreover, since FO (Q,+,≤, 0) admits a quantifier elim-
ination algorithm, we deduce that linearizations are definable in the Presburger
arithmetic.

Remark 7.7.1. Almost semilinear sets can have multiple linearizations.

In this section we show that if X,Y ⊆ Zd are two non-empty almost semilinear
sets with an empty intersection then every linearizations S,T of X,Y satisfy:

dim(S ∩T) < dim(X ∪Y)

Figure 7.6: From left to right : sets X and Y, sets u + Q≥0P and v + Q≥0Q, and
set S ∩T.

Example 7.7.2. Sets introduced in this example are depicted in Figure 7.6. Let us
introduce the asymptotically definable periodic set P = {p ∈ N2 | p(2) ≤ p(1) ≤
2p(2)−1} and the finitely generated periodic set Q = N(1, 0)+N(3,−1). We introduce
the almost semilinear sets X = u+P and Y = v+Q where u = (0, 0) and v = (7, 2).
Observe that X ∩Y is empty and dim(X ∪Y) = 2. Let us consider linearizations
S,T of X,Y defined by S = u + P′ and T = v + Q′ where P′ = (P −P) ∩ Q≥0P

and Q′ = (Q−Q) ∩Q≥0Q. Observe that P′ = {(0, 0)} ∪ {p ∈ N2
>0 | p(2) ≤ p(1)}

and Q′ = Q. Note that the intersection S ∩ T is non empty since it is equal to
{(7, 2), (10, 1)} + N(1, 0). In particular dim(S ∩ T) ≤ 1 and we get dim(S ∩ T) <

dim(X ∪Y).

7.7. Linearizations 77

Lemma 7.7.3. Assume that b+M ⊆ (P−P)∩Q≥0P where b ∈ Zd and M,P ⊆ Zd
are two periodic sets. Let a be a vector of the form m1+· · ·+mk where (mj)1≤j≤k is
a sequence of vectors mj ∈M that generates a vector space that contains P. There
exists k ∈ N>0 such that b + kN>0a ⊆ P.

Proof. Since b ∈ P − P there exists p+,p− ∈ P such that b = p+ − p−. As
the sequence (mj)1≤j≤k generates a vector space that contains P, we get p+ ∈∑k

j=1 Qmj . Hence there exists z ∈ N>0 such that −zp+ ∈
∑k

j=1 Zmj . By definition
of a, there exists n ∈ N>0 such that −zp+ +na ∈

∑k
j=1 Nmj . Hence b−zp+ +na ∈

b+
∑k

j=1 Nmj . Since this set is included in Q≥0P and (z−1)p+ ∈ P we deduce that
(b− zp+ +na) + (z− 1)p+ is in Q≥0P. Note that this vector is equal to −p−+na

since b = p+ − p−. Hence, there exists s ∈ N>0 such that s(−p− + na) ∈ P. Let
k = sn and observe that −p−+ka = s(−p−+na)+(s−1)p−. Hence −p−+ka ∈ P.
Since b+ka = (−p−+ka) +p+ and ka = (−p−+ka) +p− we deduce that b+ka

and ka are both in P. In particular b + kN>0a ⊆ P.

Corollary 7.7.4. Let X,Y ⊆ Zd be two non-empty almost semilinear sets with an
empty intersection. For every linearizations S,T of X,Y we have:

dim(S ∩T) < dim(X ∪Y)

Proof. We can assume that X = u+P, Y = v+Q where u,v ∈ Zd and P,Q ⊆ Zd
are two asymptotically definable periodic sets such that X ∩ Y = ∅ and we can
assume that S = u + P′ where P′ = (P − P) ∩ Q≥0P and T = v + Q′ where
Q′ = (Q − Q) ∩ Q≥0Q. Let U and V be the vector spaces generated by P and
Q. Lemma 7.6.4 shows that dim(X) = rank(U) and dim(Y) = rank(V). Note
that S ∩ T is a Presburger set and in particular a finite union of linear sets. If
this set is empty the corollary is proved. Otherwise there exists b ∈ Zd and a
finitely generated periodic set M ⊆ Zd such that b + M ⊆ S ∩ T and such that
dim(S ∩T) = dim(b + M). Let W be the vector space generated by M. Observe
that b + M ⊆ (u + U) ∩ (v + V). Hence for every m ∈ M since b + m − u and
b+2m−u are both in U the difference is also in U. Hence m ∈ U. We deduce that
M ⊆ U and symmetrically M ⊆ V. As M is included in the vector space U ∩V,
by minimality of W, we get W ⊆ U ∩V. Assume by contradiction that W = U

and W = V. Since M is finitely generated, there exists a sequence (mj)1≤j≤k of
vectors mj ∈M such that M = Nm1 + · · ·+ Nmk. Let a = m1 + · · ·+ mk. From
b−u+M ⊆ (P−P)∩Q≥0P and Lemma 7.7.3 we deduce that there exists k ∈ N>0

such that b−u+kN>0a ⊆ P. From b−v+M ⊆ (Q−Q)∩Q≥0Q and Lemma 7.7.3
we deduce that there exists k′ ∈ N>0 such that b− v + k′N>0a ⊆ Q. In particular
b + kk′a ∈ (u + P) ∩ (v + Q) and we get a contradiction since this intersection is
empty. Thus W 6= U or W 6= V. Since W ⊆ U ∩V we deduce that W is strictly
included in U or in V. Hence rank(W) < max{rank(U), rank(V)} = dim(X ∪Y).
From Lemma 7.6.4 we get dim(M) = rank(W) and since dim(M) = dim(S ∩ T)

the corollary is proved.

78 Chapter 7. Vector Addition System Reachability Problem

7.8 Presburger Invariants

We introduce the notion of separators. A separator is a pair (X,Y) of Presburger
sets X,Y ⊆ Nd such that there does not exist a run from a configuration in X to a
configuration in Y. In particular X ∩Y = ∅. The Presburger set D = Nd\(X ∪Y)

is called the domain of (X,Y). We observe that a separator (X,Y) with an empty
domain is a partition of Nd such that X is a Presburger forward inductive invariant
and Y is a Presburger backward inductive invariant.

Lemma 7.8.1. Let (X0,Y0) be a separator with a non-empty domain D0. There
exists a separator (X,Y) with a domain D such that X0 ⊆ X, Y0 ⊆ Y and
dim(D) < dim(D0).

Proof. As X0,D0 are Presburger sets, Corollary 7.5.3 shows that H = Post∗(X0)∩
D0 is an almost semilinear set. We introduce a linearization S of this set. Since
(X0,Y0) is a separator, the intersection Post∗(X0) ∩ Y0 is empty. Moreover, as
Post∗(X0) ∩ D0 ⊆ S, we deduce that the set Y = Y0 ∪ (D0\S) is such that
Post∗(X0) ∩ Y = ∅. Hence (X0,Y) is a separator. Symmetrically, as D0,Y are
Presburger sets, Corollary 7.5.3 shows that K = Pre∗(Y) ∩D0 is an almost semi-
linear set. We introduce a linearization T of this set. Since (X0,Y) is a separator,
the intersection Pre∗(Y)∩X0 is empty. Moreover, as Pre∗(Y)∩D0 ⊆ T, we deduce
that the set X = X0 ∪ (D0\T) is such that Pre∗(Y) ∩X = ∅. Hence (X,Y) is a
separator.

Let us introduce the domain D of (X,Y) and observe that D = D0 ∩ S ∩ T.
If H or K is empty then S or T is empty and in particular D is empty and the
lemma is proved. So we can assume that H and K are non empty. Since H ⊆
Post∗(X0) ⊆ Post∗(X) and K ⊆ Pre∗(Y) and (X,Y) is a separator, we deduce
that H ∩K = ∅. Moreover as H,K ⊆ D0 we deduce that dim(H ∪K) ≤ dim(D0).
As S and T are linearizations of the non-empty almost semilinear sets H, K and
H ∩ K = ∅, Corollary 7.7.4 shows that dim(S ∩ T) < dim(H ∪ K). Therefore
dim(D) < dim(D0).

We deduce the main theorem of this paper.

Theorem 7.8.2. For every x,y ∈ Nd such that there does not exist a run from x to
y, then there exists a pair (X,Y) of disjoint Presburger sets X,Y ⊆ Nd such that
X is a forward inductive invariant that contains x and Y is a backward inductive
invariant that contains y.

Proof. Observe that ({x}, {y}) is a separator.Thanks to Lemma 7.8.1 with an im-
mediate induction over the dimension of the domains we deduce that there exists a
separator (X,Y) with an empty domain such that x ∈ X and y ∈ Y.

7.9 Conclusion

The reachability problem for vector addition systems can be solved with a simple
algorithm based on inductive invariants definable in the Presburger arithmetic. This

7.9. Conclusion 79

algorithm does not require the classical KLMST decomposition. Note however that
the complexity of this algorithm is still open. In fact, the complexity depends on
the minimal length of a run from x to y when such a run exists, or the minimal
length of a Presburger formula denoting a forward inductive invariant X such that
x ∈ X and y 6∈ X when such a formula exists. We left as an open question the
problem of computing lower and upper bounds for these lengths. Note that the VAS
exhibiting a large (Ackermann size) but finite reachability set given in [Mayr 1981c]
does not directly provide an Ackermann lower-bound for these sizes since Presburger
forward invariants can over-approximate reachability sets. Note that the existence
of a primitive recursive upper bound of complexity for the reachability problem is
still open since Zakaria Bouziane’s paper[Bouziane 1998] introducing such a bound
was proved to be incorrect by Petr Jančar[Jančar 2008].

As already mentioned, from a practical viewpoint, an algorithm that enumer-
ates the Presburger formulas until it discovers one that denotes a precise enough
inductive invariant is useless since it will never terminate in a reasonable amount
of time. Nevertheless, the previous result shows that the Presburger arithmetic is
expressive enough for separating unreachable configurations by inductive invariants
definable in the Presburger arithmetic. In the future, we are interested in extending
known semi-algorithms like the lazy interpolation model-checking or the accelerated
symbolic model-checking (or even its abstract counterpart) in such a way that we
get algorithms with termination guaranty that works well in practice for VASS.

Part III

Conclusion

Chapter 8

Conclusion

We presented in this document frameworks based on good semialgorithms for
deciding the reachability problem for Presburger counter machines. Since
the problem is in general undecidable even for the restricted class of Minsky
machines[Minsky 1967], these semialgorithms do not have termination guaranty.

In the future we are interested in exploring efficient algorithms for deciding
the vector addition systems reachability problem. This problem is central in the
verification of infinite state systems and some other applications[Bojańczyk 2006,
Demri 2009, Figueira 2009]. The reachability problem is difficult and its decidability
remained open during 20 years. Nowadays, no decision procedure are implemented.
In fact the known algorithm is conceptually difficult (to be understood and to be
implemented) and with high computational complexity bound (at least Ackermann).
Naturally, the good semialgorithms presented in this document can be applied for
deciding some instances of the reachability problems. For instance, we can use our
model-checker Fast, but we do not have any termination guaranty.

Our recent results on the reachability problem for Petri nets open research direc-
tions to solve this problem. The reminder of this chapter is divided in two sections
corresponding respectively to research directions based on (1) the mathematical
properties satisfied by the almost semilinear sets, and (2) the reachability problem
for Petri nets.

8.1 Almost Semilinear Sets

An interesting approach for deciding the reachability problem consists in denoting
reachability sets with formulas in a decidable formalism. The Presburger arith-
metic seems to be a good candidate for vector addition systems with states (VASS).
Hopcroft and Pansiot proved in [Hopcroft 1979] that reachability sets of VASS with 2
counters are definable in the Presburger arithmetic, but with 3 counters this property
is no longer true. Hence the characterization of VASS reachability sets by formulas
in a decidable logic seems to be a difficult problem. This intuition is confirmed by
the undecidability of checking if two VASS reachability sets are equal[Hack 1976].
This result shows in particular that it is not possible to effectively compute formulas
in a decidable logic denoting reachability sets.

Recently we proved in [Leroux 2011a] that VASS reachability sets are almost
semilinear. This class is inspired by the geometrical characterization of the Pres-
burger sets by semilinear sets[Ginsburg 1966]. Intuitively, semilinear sets and al-
most semilinear sets are both defined as finite union of “simple submonoids” of

84 Chapter 8. Conclusion

(Zd,+) translated by some vectors. Whereas these “simple submonoids” are as-
sumed to be finitely generated for the semilinear sets, we simply require that the
conic sets generated by these “simple submonoids” are definable in the decidable
logic FO (Q,+,≤) in the case of almost semilinear sets.

Decidable Formalism

We proved that From the characterization of VASS reachability relations by al-
most semilinear sets, we deduced that unreachable configurations can be separated
by inductive invariants definable in the Presburger arithmetic. Since the class of
VASS reachability relations is stable by composition and transitive closure, it seems
reasonable to check these stability properties over the class of almost semilinear
relations. Such a result is not trivial since reachability relations of Presburger
counter machines are transitive closure of binary relations definable in the Pres-
burger arithmetic. However the VASS reachability relations satisfy and additional
monotonic property. We say that a binary relation R over Nd is monotonic if
(v,w) ∈ R ⇒ (v + z,w + z) ∈ R for every z ∈ Nd. We conjecture that the
transitive closure of monotonic almost semilinear relations are stable almost semi-
linear (the intersection of the relation with any semilinear relation should be as-
sumed almost semilinear). With such a result we deduce a uniform method for
solving the reachability problem for Petri nets extensions like the ones with zero-
tests[Bonnet 2011, Reinhardt 2005].

Define a decidable formalism for manipulating monotonic binary
relations over Nd by composition, intersection, union, transitive
closure.

Semilinearity detection

In general VASS reachability sets are not definable in the Presburger arithmetic. In
particular, the construction of an inductive invariant in the Presburger arithmetic
separating some unreachable configurations requires to over-approximate the reach-
ability set. We are interested in detecting which parts of the VASS reachability sets
must be over-approximated in order to obtain inductive invariants definable in the
Presburger arithmetic. This problem reduces to check if the reachability set of an
initialized VASS is definable in the Presburger arithmetic. Such an initialized VASS
is said to be semilinear.

Hauschildt and Lambert proved independently in the early 90’s that the class of
semilinear initialized VASS is recursive : we can effectively decide if the reachability
set of an initialized VASS is definable in the Presburger arithmetic, moreover in the
positive case a Presburger formula denoting this set is effectively computable. These
two results are not well-known by the community. In fact, they are unpublished and
the proofs are based on mathematical structures used by Kosaraju and Mayr for
deciding the reachability problem. These structures suffer from complexity problems
and implementation difficulties.

8.2. The Reachability Problem 85

Find out a simple criterion for deciding the semilinearity of initial-
ized VASS.

There exists a rich literature of classes of Petri nets with reachability sets defin-
able in the Presburger arithmetic : Petri nets with 4 counters, conflict-free, per-
sistent, regular, BPP-nets, reversible Petri nets. With Grégoire Sutre (LaBRI,
Bordeaux), we proved in [Leroux 2005b] that all these classes are flat, that means
their reachability sets can be computed with acceleration techniques. Whereas the
symbolic model-checker Fast had been implemented in the objective of computing
reachability sets of general Presburger counter machines, for these subclasses we
have a termination guaranty. We are interested by the link between flat and semi-
linear for initialized VASS. Whereas the flat property clearly implies the semilinear
one, the converse implication is open.

Show that flat is equivalent to semilinear for initialized VASS.

8.2 The Reachability Problem

The reachability problem for Petri nets was solved 30 years ago. Today, the complex-
ity of this problem is still open. The complexity gap between the best known lower
and upper bounds is huge. In 1976, the problem was proved to be EXPSPACE-
hard[Cardoza 1976]. Concerning upper-bound, the algorithms introduced by Mayr
and Kosaraju are non-primitive recursive. This complexity gap is very surprising
in computer science. By comparison, the coverability problem is easier. The cov-
erability problem is a variant of the reachability problem that consists in deciding
if there exists a reachable configuration larger or equal (component-wise) than a
given final configuration. This problem was proved to be EXPSPACE-complete
[Cardoza 1976, Rackoff 1978].

Complexity upper bound

The best complexity lower bound for the reachability problem is EXPSPACE. This
bound comes from a log-space reduction of the coverability problem. We do not
know if this bound is tight since the coverability problem seems to be an easier
problem compared to the reachability problem. Concerning the upper bound, we are
interested by Ackermann functions. Such a bound is motivated by the Ackermann-
complete problem that consists in checking the equality of two finite reachability
sets[Mayr 1981c]. We are confident that such a bound can be obtained from the
recent results presented in [Leroux 2011a]. Such a result should be a great theoretical
progress for the reachability problem.

An Ackermann complexity upper bound for the reachability prob-
lem.

86 Chapter 8. Conclusion

Good semi-algorithms à la Karp-Miller

The Karp and Miller algorithm [Karp 1969] provides a simple way for deciding the
coverability problem. This algorithm logs a state space exploration of the reacha-
bility set with a finite tree. In order to enforce the termination of this algorithm,
some reachable configurations are abstracted away by replacing integral components
with a special symbol ∞, which intuitively denotes a very large number. Whereas
this abstraction is fine for deciding the coverability problem, it is no longer suffi-
cient for deciding the reachability problem. In order to overcome this limitation,
the preciseness of this algorithm must be improved. The way we would like to ex-
plore consists in replacing the previous abstraction with a finer one. Inspired by
the class of asymptotically definable periodic sets [Leroux 2011a] we are interested
in equipping reachable markings with (1) a conic set definable in FO (Q,+,≤) de-
noting asymptotic directions of reachable markings, and (2) a subgroup of (Zd,+)

of the form Zv1 + · · ·+Zvk denoting periodicities of reachable markings. We think
that symmetrically to the coverability problem even if this algorithm is Ackermann
in the worst case, in practice it should works well on interesting instances of the
reachability problem.

A Karp and Miller algorithm for the reachability problem.

Bibliography

[Allouche 2003] Jean-Paul Allouche and Jeffrey O. Shallit. Automatic sequences -
theory, applications, generalizations. Cambridge University Press, 2003.

[Alur 1995] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, Pei-Hsin Ho,
X. Nicollin, A. Olivero, J. Sifakis and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science, vol. 138, no. 1, pages 3–34,
1995.

[Annichini 2001] A. Annichini, A. Bouajjani and M. Sighireanu. TReX: A Tool for
Reachability Analysis of Complex Systems. In Proc. 13th Int. Conf. Computer
Aided Verification (CAV’2001), Paris, France, July 2001, volume 2102 of
LNCS, pages 368–372. Springer, 2001.

[Araki 1977] T. Araki and T. Kasami. Decidable Problems on the Strong Connec-
tivity of Petri Net Reachability Sets. Theoretical Computer Science, vol. 4,
no. 1, pages 99–119, 1977.

[Bagnara 2005] R. Bagnara, P. M. Hill, E. Ricci and E. Zaffanella. Precise widening
operators for convex polyhedra. Science of Computer Programming, vol. 58,
no. 1–2, pages 28–56, 2005.

[Bardin 2003] S. Bardin, A. Finkel, J. Leroux and L. Petrucci. FAST: Fast Accel-
eration of Symbolic Transition systems. In Proc. 15th Int. Conf. Computer
Aided Verification (CAV’2003), Boulder, CO, USA, July 2003, volume 2725
of LNCS, pages 118–121. Springer, 2003.

[Bardin 2004] Sébastien Bardin, Alain Finkel and Jérôme Leroux. FASTer Accelera-
tion of Counter Automata in Practice. In Tools and Algorithms for the Con-
struction and Analysis of Systems, 10th International Conference, TACAS
2004, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Pro-
ceedings, volume 2988 of Lecture Notes in Computer Science, pages 576–590.
Springer, 2004.

[Bardin 2005] S. Bardin, A. Finkel, J. Leroux and P. Schnoebelen. Flat acceleration
in symbolic model checking. In Proc. 3rd Int. Symp. Automated Technology
for Verification and Analysis (ATVA’05), Taipei, Taiwan, Oct. 2005, volume
3707 of LNCS, pages 474–488. Springer, 2005.

[Bardin 2006] Sébastien Bardin, Jérôme Leroux and Gérald Point. FAST Extended
Release. In Proc. 18th Int. Conf. Computer Aided Verification (CAV’2006),
Seattle, Washington, USA, August 2006, volume 4144 of LNCS, pages 63–66.
Springer, 2006.

88 Bibliography

[Bardin 2008] Sébastien Bardin, Alain Finkel, Jérôme Leroux and Laure Petrucci.
FAST: acceleration from theory to practice. International Journal on Software
Tools for Technology Transfer (STTT), vol. 10, no. 5, pages 401–424, 2008.

[Bartzis 2004] Constantinos Bartzis and Tevfik Bultan. Widening Arithmetic Au-
tomata. In Proc. 16th Int. Conf. Computer Aided Verification (CAV 2004),
, Boston, Massachussetts , July 2004, volume 3114 of Lecture Notes in Com-
puter Science, pages 321–333. Springer, 2004.

[Becker 2007] Bernd Becker, Christian Dax, Jochen Eisinger and Felix Klaedtke.
LIRA: Handling Constraints of Linear Arithmetics over the Integers and the
Reals. In CAV, volume 4590 of LNCS, pages 307–310. Springer, 2007.

[Berman 1977] Leonard Berman. Precise Bounds for Presburger Arithmetic and
the Reals with Addition: Preliminary Report. In Proc. 18th IEEE Symp.
Foundations of Computer Science (FOCS’77), Providence, RI, USA, Oct.-
Nov. 1977, pages 95–99, Providence, Rhode Island, 31 October–2 November
1977. IEEE.

[Beyer 2008] Dirk Beyer, Damien Zufferey and Rupak Majumdar. CSIsat: Inter-
polation for LA+EUF. In Computer Aided Verification, 20th International
Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings,
volume 5123 of Lecture Notes in Computer Science, pages 304–308. Springer,
2008.

[Blumensath 2000] Achim Blumensath and Erich Grädel. Automatic Structures. In
LICS, pages 51–62, 2000.

[Boigelot 1994] B. Boigelot and P. Wolper. Symbolic Verification with Periodic Sets.
In Proc. 6th Int. Conf. Computer Aided Verification (CAV’94), Stanford, CA,
USA, June 1994, volume 818 of LNCS, pages 55–67. Springer, 1994.

[Boigelot 1997] B. Boigelot, P. Godefroid, B. Willems and P. Wolper. The Power
of QDDs. In Proc. Static Analysis 4th Int. Symp. (SAS’97), Paris, France,
Sep. 1997, volume 1302 of LNCS, pages 172–186. Springer, 1997.

[Boigelot 1998] Bernard Boigelot. Symbolic Methods for Exploring Infinite State
Spaces. PhD thesis, Université de Liège, 1998. Dans cette thèse, deux
représentations symboliques sont présentées: les NDD pour représenter
des vecteurs d’entier et les QDD pour représenter des contenus de file.
L’acceleration de circuits de controles pour ces deux représentations sont
étudiés.

[Boigelot 2009] Bernard Boigelot, Julien Brusten and Jérôme Leroux. A Gener-
alization of Semenov’s Theorem to Automata over Real Numbers. In Re-
nate A. Schmidt, editeur, Automated Deduction, 22nd International Con-
ference, CADE 2009, McGill University, Montreal,August 2 - 7, 2009 Pro-

Bibliography 89

ceedings, volume 5663 of Lecture Notes in Computer Science, pages 469–484.
Springer, 2009.

[Bojańczyk 2006] M. Bojańczyk, A. Muscholl, Th. Schwentick, L. Segoufin and
C. David. Two-variable logic on words with data. In LICS 2006, pages
7–16. IEEE, 2006. To appear in ACM T. Comput. Log.

[Bonnet 2011] Rémi Bonnet. The Reachability Problem for Vector Addition System
with One Zero-Test. In Mathematical Foundations of Computer Science 2011
- 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-
26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science,
pages 145–157. Springer, 2011.

[Bouajjani 1999a] A. Bouajjani and P. Habermehl. Symbolic reachability analysis
of FIFO-channel systems with nonregular sets of configurations. Theoretical
Computer Science, vol. 221, no. 1–2, pages 211–250, 1999.

[Bouajjani 1999b] A. Bouajjani and R. Mayr. Model Checking Lossy Vector Addition
Systems. In Proc. 16th Ann. Symp. Theoretical Aspects of Computer Science
(STACS’99), Trier, Germany, Mar. 1999, volume 1563 of LNCS, pages 323–
333. Springer, 1999.

[Bouchy 2008] Florent Bouchy, Jérôme Leroux and Alain Finkel. Decomposition of
Decidable First-Order Logics over Integers and Reals. In Temporal Represen-
tation and Reasoning, 15th International Symposium, TIME 2008, Montréal,
Canada, June 16 - 18, 2008, Proceedings, pages 147–155. IEEE Computer
Society Press, 2008.

[Boudet 1996] Alexandre Boudet and Hubert Comon. Diophantine equations, Pres-
burger arithmetic and finite automata. In Proc. 21st Int. Coll. on Trees
in Algebra and Programming (CAAP’96), Linköping, Sweden, Apr. 1996,
volume 1059 of Lecture Notes in Computer Science, pages 30–43. Springer,
1996.

[Bouziane 1998] Z. Bouziane. A primitive recursive algorithm for the general Petri
net reachability problem. In FOCS 1998, pages 130 –136, nov 1998.

[Bozzelli 2011] Laura Bozzelli and Pierre Ganty. Complexity Analysis of the Back-
ward Coverability Algorithm for VASS. In Reachability Problems - 5th In-
ternational Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Pro-
ceedings, volume 6945 of Lecture Notes in Computer Science, pages 96–109.
Springer, 2011.

[Brillout 2010] Angelo Brillout, Daniel Kroening, Philipp Rümmer and Thomas
Wahl. An Interpolating Sequent Calculus for Quantifier-Free Presburger
Arithmetic. In IJCAR, volume 6173 of LNCS. Springer, 2010.

90 Bibliography

[Bruttomesso 2010] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina and Ali-
aksei Tsitovich. The OpenSMT Solver. In Javier Esparza and Rupak Ma-
jumdar, editeurs, TACAS, volume 6015 of LNCS, pages 150–153. Springer,
2010.

[Bruyère 1994] Véronique Bruyère, Georges Hansel, Christian Michaux and Roger
Villemaire. Logic and p-recognizable Sets of Integers. Bull. Belg. Math. Soc.,
vol. 1, no. 2, pages 191–238, March 1994.

[Bultan 2001] Tevfik Bultan and Tuba Yavuz-Kahveci. Action Language Verifier.
In Proc. 16th IEEE Int. Conf. Automated Software Engineering (ASE
2001), 26-29 November 2001, Coronado Island, San Diego, CA, USA, pages
382–386. IEEE Computer Society, 2001.

[Burch 1990] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill and L. J. Hwang. Symbolic Model Checking: 102̂0 States and Beyond.
In Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Sci-
ence, 4-7 June 1990, Philadelphia, Pennsylvania, USA, pages 428–439. IEEE
Computer Society, 1990.

[Büchi 1962] J. R. Büchi. On a Decision Method in Restricted Second Order Arith-
metic. In Proc. International Congress on Logic, Methodoloy and Philosophy
of Science, pages 1–12, Stanford, 1962. Stanford University Press.

[Cardoza 1976] E. Cardoza, Richard J. Lipton and Albert R. Meyer. Exponen-
tial Space Complete Problems for Petri Nets and Commutative Semigroups:
Preliminary Report. In Proceedings of the 8th Annual ACM Symposium on
Theory of Computing, May 3-5, 1976, Hershey, Pennsylvania, USA, pages
50–54. ACM, 1976.

[Cimatti 2009] Alessandro Cimatti, Alberto Griggio and Roberto Sebastiani. In-
terpolant Generation for UTVPI. In Renate A. Schmidt, editeur, CADE,
volume 5663 of LNCS, pages 167–182. Springer, 2009.

[Clarke 2003] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith.
CounterExample-Guided Abstraction Refinement for Symbolic Model Check-
ing. Journal of the ACM, vol. 50, no. 5, pages 752–794, 2003.

[Cobham 1969] A. Cobham. On the Base-dependence of Sets of Numbers Recog-
nizable by Finite Automata. Mathematical Systems Theory, vol. 3, pages
186–192, 1969.

[Comon 1998] H. Comon and Y. Jurski. Multiple counters automata, safety analysis
and Presburger arithmetic. In Proc. 10th Int. Conf. Computer Aided Verifi-
cation (CAV’98), Vancouver, BC, Canada, June-July 1998, volume 1427 of
LNCS, pages 268–279. Springer, 1998.

Bibliography 91

[Cormen 1989] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. In-
troduction to algorithms. The MIT Press and McGraw-Hill Book Company,
1989.

[Costan 2005] A. Costan, S. Gaubert, E. Goubault, M. Martel and S. Putot. A Pol-
icy Iteration Algorithm for Computing Fixed Points in Static Analysis of Pro-
grams. In In Proc. 7th Int. Conf. on Computer Aided Verification (CAV’05),
Edinburgh, Scotland, UK, July 2005, LNCS, pages 462–475. Springer, 2005.

[Cousot 1977] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In Proc. 4th ACM Symp. Principles of Programming Languages,
Los Angeles, CA, USA, pages 238–252. ACM Press, 1977.

[Cousot 1978] Patrick Cousot and Nicolas Halbwachs. Automatic Discovery of Lin-
ear Restraints Among Variables of a Program. In POPL, pages 84–96, 1978.

[Cousot 1992] P. Cousot and R. Cousot. Comparing the Galois Connection and
Widening/Narrowing Approaches to Abstract Interpretation. In Proc. 4th
Int. Symp. Programming Language Implementation and Logic Programming
(PLILP’92), Leuven, Belgium, Aug. 1992, volume 631 of LNCS, pages 269–
295. Springer, 1992.

[Couvreur 2004] Jean-Michel Couvreur. A bdd-like implementation of an automata
package. In Proc. 9th Int. Conf. Implementation and Application of Au-
tomata (CIAA’2004), Kingston, Canada, July 2004, volume 3317 of LNCS,
pages 310–311. Springer, 2004.

[Delzanno 2004] G. Delzanno, J.-F. Raskin and L. Van Begin. Covering sharing
trees: a compact data structure for parameterized verification. Journal of
Software Tools for Technology Transfer, vol. 5, no. 2–3, pages 268–297, 2004.

[Demri 2009] S. Demri and R. Lazić. LTL with the freeze quantifier and register
automata. ACM Trans. Computational Logic, vol. 10, no. 3, art. 16, 2009.

[Dickson 1913] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Amer. Journal Math., pages 413–422,
1913.

[Durand-Gasselin 2010] Antoine Durand-Gasselin and Peter Habermehl. On the
Use of Non-deterministic Automata for Presburger Arithmetic. In CONCUR
2010 - Concurrency Theory, 21th International Conference, CONCUR 2010,
Paris, France, August 31-September 3, 2010. Proceedings, volume 6269 of
Lecture Notes in Computer Science, pages 373–387. Springer, 2010.

[Dutertre 2006] Bruno Dutertre and Leonardo Mendonça de Moura. A Fast Linear-
Arithmetic Solver for DPLL(T). In CAV, volume 4144 of LNCS, pages 81–94.
Springer, 2006.

92 Bibliography

[Esparza 1994] J. Esparza and M. Nielsen. Decidability Issues for Petri Nets - a Sur-
vey. Bulletin of the European Association for Theoretical Computer Science,
vol. 52, pages 245–262, 1994.

[Esparza 1997] J. Esparza. Petri Nets, Commutative Context-Free Grammars, and
Basic Parallel Processes. Fundamenta Informaticae, vol. 31, no. 1, pages
13–25, 1997.

[Feret 2004] Jérôme Feret. Static Analysis of Digital Filters. In Programming Lan-
guages and Systems, 13th European Symposium on Programming, ESOP
2004, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,
Proceedings, volume 2986 of Lecture Notes in Computer Science, pages 33–
48. Springer, 2004.

[Figueira 2009] D. Figueira and L. Segoufin. Future-looking logics on data words
and trees. In MFCS 2009, volume 5734 of LNCS, pages 331–343. Springer,
2009.

[Finkel 2000a] A. Finkel and G. Sutre. An algorithm constructing the semilinear
post∗ for 2-dim Reset/Transfer VASS. In Proc. 25th Int. Symp. Math. Found.
Comp. Sci. (MFCS’2000), Bratislava, Slovakia, Aug. 2000, volume 1893 of
LNCS, pages 353–362. Springer, 2000.

[Finkel 2000b] A. Finkel and G. Sutre. Decidability of reachability problems for
classes of two counters automata. In Proc. 17th Ann. Symp. Theoretical
Aspects of Computer Science (STACS’2000), Lille, France, Feb. 2000, volume
1770 of LNCS, pages 346–357. Springer, 2000.

[Finkel 2002] A. Finkel and J. Leroux. How To Compose Presburger-Accelerations:
Applications to Broadcast Protocols. In Proc. 22nd Conf. Found. of Software
Technology and Theor. Comp. Sci. (FST&TCS’2002), Kanpur, India, Dec.
2002, volume 2556 of LNCS, pages 145–156. Springer, 2002.

[Finkel 2003] A. Finkel, S. P. Iyer and G. Sutre. Well-Abstracted Transition Systems:
Application to FIFO automata. Information and Computation, vol. 181,
no. 1, pages 1–31, 2003.

[Finkel 2005] Alain Finkel and Jérôme Leroux. The convex hull of a regular set of
integer vectors is polyhedral and effectively computable. Information Process-
ing Letters, vol. 96, no. 1, pages 30–35, 2005.

[Fribourg 1997a] L. Fribourg and H. Olsén. A Decompositional Approach for Com-
puting Least Fixed-Points of Datalog Programs with Z-counters. Constraints,
vol. 2, no. 3/4, pages 305–335, 1997.

[Fribourg 1997b] L. Fribourg and H. Olsén. Proving Safety Properties of Infinite
State Systems by Compilation into Presburger Arithmetic. In Proc. 8th Int.

Bibliography 93

Conf. Concurrency Theory (CONCUR’97), Warsaw, Poland, Jul. 1997, vol-
ume 1243 of LNCS, pages 213–227. Springer, 1997.

[Geeraerts 2005] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin.
Expand, Enlarge and Check... Made efficient. In S. K. Rajjamani and K. Etes-
sami, editeurs, Proceedings of 17th International Conference on Computer
Aided Verification – (CAV 2005), numéro 3576 de LNCS, pages 394–404.
Springer, 2005.

[Ginsburg 1966] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas
and languages. Pacific J. Math., vol. 16, no. 2, pages 285–296, 1966.

[Gonnord 2006] L. Gonnord and N. Halbwachs. Combining Widening and Acceler-
ation in Linear Relation Analysis. In Proc. Static Analysis, 13th Int. Symp.
(SAS’06), Seoul, Korea, Aug. 2006, volume 4134 of LNCS, pages 144–160.
Springer, 2006.

[Graf 1997] S. Graf and H. Saïdi. Construction of Abstract State Graphs with PVS.
In Proc. of 9th Conf. on Computer Aided Verification (CAV’97), volume
1254 of LNCS, pages 72–83, 1997.

[Gulavani 2006] B. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori and S. K. Ra-
jamani. Synergy: A New Algorithm for Property Checking. In Proc. of 14th
Symp. on Foundations of Software Engineering (FSE’06), pages 117–127.
ACM Press, 2006.

[Hack 1976] Michel Hack. The Equality Problem for Vector Addition Systems is
Undecidable. Theoretical Computer Science, vol. 2, no. 1, pages 77–95, 1976.

[Hauschildt 1990] Dirk Hauschildt. Semilinearity of the Reachability Set is Decidable
for Petri Nets. PhD thesis, University of Hamburg, 1990.

[Henzinger 2002] T. A. Henzinger, R. Jhala, R. Majumbar and G. Sutre. Lazy
Abstraction. In Proc. of 29th Symp. on Principles of Programming Languages
(POPL’02), pages 58–70, 2002.

[Hopcroft 1979] J. E. Hopcroft and J.-J. Pansiot. On the reachability problem for
5-dimensional vector addition systems. Theoretical Computer Science, vol. 8,
no. 2, pages 135–159, 1979.

[Ibarra 1978] O.H. Ibarra. Reversal-Bounded Multicounter Machines and Their De-
cision Problems. Journal of the ACM, vol. 25, no. 1, pages 116–133, 1978.

[Jain 2008] Himanshu Jain, Edmund M. Clarke and Orna Grumberg. Efficient Craig
Interpolation for Linear Diophantine (Dis)Equations and Linear Modular
Equations. In CAV, LNCS. Springer, 2008.

[Jančar 1990a] P. Jančar. Decidability of a Temporal Logic Problem for Petri Nets.
Theoretical Computer Science, vol. 74, no. 1, pages 71–93, 1990.

94 Bibliography

[Jančar 1990b] Petr Jančar. Decidability of a temporal logic problem for Petri nets.
Theoretical Computer Science, vol. 74, no. 1, pages 71 – 93, 1990.

[Jančar 2001] Petr Jančar. Nonprimitive recursive complexity and undecidability
for Petri net equivalences. Theoretical Computer Science, vol. 256, no. 1–2,
pages 23–30, 2001.

[Jančar 2008] Petr Jančar. Bouziane’s transformation of the Petri net reachability
problem and incorrectness of the related algorithm. Inf. Comput., vol. 206,
pages 1259–1263, November 2008.

[Jhala 2006] R. Jhala and K. L. McMillan. A Practical and Complete Approach to
Predicate Refinement. In Proc. of 12th Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), volume 3920 of LNCS,
pages 459–473. Springer, 2006.

[Karp 1969] R. M. Karp and R. E. Miller. Parallel Program Schemata. Journal of
Computer and System Sciences, vol. 3, no. 2, pages 147–195, 1969.

[Karr 1976] M. Karr. Affine Relationship Among Variables of a Program. Acta
Informatica, vol. 6, pages 133–141, 1976.

[Kelly 1995] Wayne Kelly, William Pugh, Evan Rosser and Tatiana Shpeis-
man. Transitive Closure of Infinite Graphs and Its Applications. In 8th
Int. Wor. Languages and Compilers for Parallel Computing (LCPC’95),
Columbus, Ohio, USA, August 10-12, 1995, volume 1033 of Lecture Notes in
Computer Science, pages 126–140. Springer, 1995.

[Klaedtke 2004] Felix Klaedtke. On the Automata Size for Presburger Arithmetic.
In Proc. 19th Annual IEEE Symposium on Logic in Computer Science
(LICS’04), Turku, Finland July 2004, pages 110–119. IEEE Comp. Soc.
Press, 2004.

[Kopetz 1994] Hermann Kopetz and Günter Grünsteidl. TTP - A Protocol for Fault-
Tolerant Real-Time Systems. IEEE Computer, vol. 27, no. 1, pages 14–23,
1994.

[Kosaraju 1982] S. R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proc. 14th ACM Symp. Theory of Computing (STOC’82), San
Francisco, CA, May 1982, pages 267–281, 1982.

[Kroening 2010] Daniel Kroening, Jérôme Leroux and Philipp Rümmer. Interpo-
lating Quantifier-Free Presburger Arithmetic. In Christian G. Fermüller and
Andrei Voronkov, editeurs, Logic for Programming, Artificial Intelligence,
and Reasoning - 17th International Conference, LPAR-17, Yogyakarta, In-
donesia, October 10-15, 2010. Proceedings, volume 6397 of Lecture Notes in
Computer Science, pages 489–503. Springer, 2010.

Bibliography 95

[Lambert 1992] Jean Luc Lambert. A structure to decide reachability in Petri nets.
Theoretical Computer Science, vol. 99, no. 1, pages 79–104, 1992.

[Landweber 1978] L.H. Landweber and E.L. Robertson. Properties of Conflict-Free
and Persistent Petri Nets. Journal of the ACM, vol. 25, no. 3, pages 352–364,
1978.

[Latour 2004] L. Latour. From Automata to Formulas: Convex Integer Polyhe-
dra. In Proc. 19th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’04), Turku, Finland July 2004, pages 120–129. IEEE Comp. Soc.
Press, 2004.

[Leroux 2003] Jérôme Leroux. Algorithmique de la vérification des systèmes à comp-
teurs. Approximation et accélération. Implémentation de l’outil Fast. PhD
thesis, Ecole Normale Supérieure de Cachan, Laboratoire Spécification et
Vérification. CNRS UMR 8643, décembre 2003.

[Leroux 2005a] J. Leroux. A Polynomial Time Presburger Criterion and Synthesis
for Number Decision Diagrams. In 20th IEEE Symposium on Logic in Com-
puter Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings,
pages 147–156. IEEE Computer Society, 2005.

[Leroux 2005b] Jérôme Leroux and Grégoire Sutre. Flat Counter Automata Almost
Everywhere! In Automated Technology for Verification and Analysis, Third
International Symposium, ATVA 2005, Taipei, Taiwan, October 4-7, 2005,
Proceedings, volume 3707 of Lecture Notes in Computer Science, pages 489–
503. Springer, 2005.

[Leroux 2006] Jérôme Leroux. Least Significant Digit First Presburger Automata.
CoRR, vol. abs/cs/0612037, 2006.

[Leroux 2007a] Jérôme Leroux and Grégoire Sutre. Accelerated Data-Flow Analy-
sis. In Static Analysis, 14th International Symposium, SAS 2007, Kongens
Lyngby, Denmark, August 22-24, 2007, Proceedings, volume 4634 of Lecture
Notes in Computer Science, pages 184–199. Springer, 2007.

[Leroux 2007b] Jérôme Leroux and Grégoire Sutre. Acceleration in Convex Data-
Flow Analysis. In Foundations of Software Technology and Theoretical Com-
puter Science, 27th International Conference, FSTTCS 2007, New Delhi, In-
dia, December 12-14, 2007, Proceedings, volume 4855 of Lecture Notes in
Computer Science, pages 520–531. Springer, 2007.

[Leroux 2008a] Jérôme Leroux. Convex Hull of Arithmetic Automata. In Static
Analysis, 15th International Symposium, SAS 2008, Valencia, Spain, Jully
16-18, 2008, Proceedings, volume 5079 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2008.

96 Bibliography

[Leroux 2008b] Jérôme Leroux. Structural Presburger Digit Vector Automata. The-
oretical Computer Science, vol. 409, no. 3, pages 549–556, 2008.

[Leroux 2009a] Jérôme Leroux. The General Vector Addition System Reachability
Problem by Presburger Inductive Invariants. In 24th IEEE Symposium on
Logic in Computer Science (LICS 2009), 11-14 August 2009, Los Angeles,
California, USA, Proceedings, pages 4–13. IEEE Computer Society, 2009.

[Leroux 2009b] Jérôme Leroux and Gérald Point. TaPAS : The Talence Presburger
Arithmetic Suite. In Stefan Kowalewski and Anna Philippou, editeurs, Tools
and Algorithms for the Construction and Analysis of Systems, 15th Interna-
tional Conference, TACAS 2009, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2009, York, UK, March
22-29, 2009. Proceedings, volume 5505 of Lecture Notes in Computer Science,
pages 182–185. Springer, 2009.

[Leroux 2011a] Jérôme Leroux. Vector addition system reachability problem: a short
self-contained proof. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
Texas, January 26-28, 2011, POPL ’11, pages 307–316. ACM, 2011.

[Leroux 2011b] Jérôme Leroux. The Vector Addition System Reversible Reachabil-
ity Problem. In CONCUR 2011 - Concurrency Theory, 22th International
Conference, Aachen, Germany, 5-10 September, 2011, Proceedings, Lecture
Notes in Computer Science. Springer, 2011. to appear.

[Lugiez 2004] Denis Lugiez. From Automata to semilinear sets: a solution for poly-
hedra and even more general sets. In Proc. 9th. Int. Conf. on Implementation
and Application of Automata (CIAA’04), Queen’s University, Kingston, On-
tario, Canada, Jul. 2004, volume 3317 of Lecture Notes in Computer Science,
pages 321–322. Springer, 2004.

[Lynch 2008] Christopher Lynch and Yuefeng Tang. Interpolants for Linear Arith-
metic in SMT. In ATVA, LNCS. Springer, 2008.

[Mayr 1981a] E. W. Mayr. Persistence of Vector Replacement Systems is Decidable.
Acta Informatica, vol. 15, pages 309–318, 1981.

[Mayr 1981b] Ernst W. Mayr. An Algorithm for the General Petri Net Reachability
Problem. In Conference Proceedings of the Thirteenth Annual ACM Sympo-
sium on Theory of Computation, (STOC 1981), 11-13 May 1981, Milwaukee,
Wisconsin, USA, pages 238–246. ACM, 1981.

[Mayr 1981c] Ernst W. Mayr and Albert R. Meyer. The Complexity of the Finite
Containment Problem for Petri Nets. J. ACM, vol. 28, no. 3, pages 561–576,
1981.

Bibliography 97

[Mayr 2000] Richard Mayr. Undecidable Problems in Unreliable Computations. In
LATIN 2000: Theoretical Informatics, 4th Latin American Symposium,
Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume 1776 of
Lecture Notes in Computer Science, pages 377–386. Springer, 2000.

[Mayr 2003] R. Mayr. Undecidable problems in unreliable computations. Theoretical
Computer Science, vol. 297, no. 1–3, pages 337–354, 2003.

[McMillan 2003] Kenneth L. McMillan. Interpolation and SAT-Based Model Check-
ing. In Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings, volume 2725 of Lec-
ture Notes in Computer Science, pages 1–13. Springer, 2003.

[McMillan 2005] K. L. McMillan. An Interpolating Theorem Prover. Journal of
Theoritical Computer Science, vol. 345, no. 1, pages 101–121, 2005.

[McMillan 2006] K. L. McMillan. Lazy Abstraction with Interpolants. In Proc. of
18th Conf. on Computer Aided Verification (CAV’06), volume 4144 of LNCS,
pages 123–136. Springer, 2006.

[Miné 2001] A. Miné. A New Numerical Abstract Domain Based on Difference-
Bound Matrices. In Proc. 2nd Symp. Programs as Data Objects (PADO’01),
Aarhus, Denmark, May 2001, volume 2053 of LNCS, pages 155–172.
Springer, 2001.

[Minsky 1967] M. Minsky. Computation, finite and infinite machines. Prentice Hall,
1967.

[Muchnik 1991] A. Muchnik. Definable criterion for definability in presburger arith-
metic and its applications. (in russian), preprint, Institute of new technolo-
gies, 1991.

[Muchnik 2003] A. A. Muchnik. The Definable Criterion for Definability in Pres-
burger Arithmetic and its Applications. Theoretical Computer Science,
vol. 290, no. 3, pages 1433–1444, 2003.

[Müller-Olm 2004] M. Müller-Olm and H. Seidl. A Note on Karr’s Algorithm. In
Proc. 31st Int. Coll. on Automata, Languages and Programming (ICALP’04),
Turku, Finland, July 2004, LNCS, pages 1016 – 1028. Springer, 2004.

[Oppen 1978] Derek C. Oppen. A 2ˆ 2ˆ 2ˆ pn Upper Bound on the Complexity of
Presburger Arithmetic. J. Comput. Syst. Sci., vol. 16, no. 3, pages 323–332,
1978.

[Péron 2007] Mathias Péron and Nicolas Halbwachs. An Abstract Domain Extend-
ing Difference-Bound Matrices with Disequality Constraints. In Verification,
Model Checking, and Abstract Interpretation, 8th International Conference,
VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings, volume 4349
of Lecture Notes in Computer Science, pages 268–282. Springer, 2007.

98 Bibliography

[Pin 1996] Jean-Eric Pin. Logic, Semigroups and Automata on Words. Ann. Math.
Artif. Intell., vol. 16, pages 343–384, 1996.

[Presburger 1929] M. Presburger. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation
hervortritt. In Comptes Rendus du Premier Congrès des Mathématiciens des
Pays Slaves, pages 92–101, Warsaw, 1929.

[Pudlák 1995] P. Pudlák. Lower Bounds for Resolution and Cutting Planes Proofs
and Monotone Computations. Journal of Symbolic Logic, vol. 62, no. 3, pages
981–998, 1995.

[Pugh 1992a] William Pugh. The Omega test: a fast and practical integer program-
ming algorithm for dependence analysis. Communications of the ACM, vol. 8,
pages 102–114, 1992.

[Pugh 1992b] William Pugh and David Wonnacott. Eliminating False Data Depen-
dences using the Omega Test. In PLDI, pages 140–151, 1992.

[Rackoff 1978] Charles Rackoff. The Covering and Boundedness Problems for Vector
Addition Systems. Theor. Comput. Sci., vol. 6, pages 223–231, 1978.

[Reinhardt 2005] K. Reinhardt. Counting as method, model and task in theoretical
computer science. Habilitation thesis, 2005.

[Reutenauer 1990] Christophe Reutenauer. The mathematics of petri nets. Prentice
Hall/Masson, 1990.

[Rybalchenko 2007] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. Con-
straint Solving for Interpolation. In VMCAI, volume 4349 of LNCS, pages
346–362. Springer, 2007.

[Rybina 2002] Tatiana Rybina and Andrei Voronkov. BRAIN: Backward Reacha-
bility Analysis with Integers. In Proc. 9th Int. Conf. Algebraic Methodology
and Software Technology (AMAST’2002), Saint-Gilles-les-Bains, Reunion Is-
land, France, Sep. 2002, volume 2422 of Lecture Notes in Computer Science,
pages 489–494. Springer, 2002.

[Sacerdote 1977] George S. Sacerdote and Richard L. Tenney. The Decidability of
the Reachability Problem for Vector Addition Systems (Preliminary Version).
In Conference Record of the Ninth Annual ACM Symposium on Theory of
Computing, 2-4 May 1977, Boulder, Colorado, USA, pages 61–76. ACM,
1977.

[Schnoebelen 2010a] Philippe Schnoebelen. Lossy Counter Machines Decidability
Cheat Sheet. In Reachability Problems, 4th International Workshop, RP
2010, Brno, Czech Republic, August 28-29, 2010. Proceedings, volume 6227
of Lecture Notes in Computer Science, pages 51–75. Springer, 2010.

Bibliography 99

[Schnoebelen 2010b] Philippe Schnoebelen. Revisiting Ackermann-Hardness for
Lossy Counter Machines and Reset Petri Nets. In Mathematical Founda-
tions of Computer Science 2010, 35th International Symposium, MFCS 2010,
Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6281 of Lec-
ture Notes in Computer Science, pages 616–628. Springer, 2010.

[Schrijver 1987] Alexander Schrijver. Theory of linear and integer programming.
John Wiley and Sons, New York, 1987.

[Semenov 1977] A.L. Semenov. Presburgerness of Predicates Regular in Two Num-
ber Systems. Siberian Mathematical Journal, vol. 18, pages 289–299, 1977.

[Stallings 1983] J. Stallings. The topology of graphs. Invent. Math., no. 71, pages
551–565, 1983.

[Su 2004] Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints
for Interval Analysis without Widenings and Narrowings. In Proc. 10th Int.
Conf. Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), Barcelona, Spain, Mar.-Apr. 2004, volume 2988 of LNCS, pages
280–295. Springer, 2004.

[T. Gawlitza 2007] H. Seidl T. Gawlitza. Precise Fixpoint computation Through
Strategy Iteration. In Proc. 16th European Symp. on Programming
(ESOP’2007), Braga, Portugal, April 2007, volume 4421 of LNCS, pages
300–315. Springer, 2007.

[Taiclin 1968] M.A. Taiclin. Algorithmic Problems for Commutative Semigroups.
Soviet Math. Doklady, vol. 9, no. 1, pages 201–204, 1968.

[Touikan 2006] Nicholas W. M. Touikan. A Fast Algorithm for Stallings’ Folding
Process. IJAC, vol. 16, no. 6, pages 1031–1046, 2006.

[Valk 1981] R. Valk and G. Vidal-Naquet. Petri Nets and Regular Languages. Jour-
nal of Computer and System Sciences, vol. 23, no. 3, pages 299–325, 1981.

[Weispfenning 1997] Volker Weispfenning. Complexity and Uniformity of Elimina-
tion in Presburger Arithmetic. In ISSAC, pages 48–53, 1997.

[Wolper 2000] Pierre Wolper and Bernard Boigelot. On the Construction of Au-
tomata from Linear Arithmetic Constraints. In Proc. 6th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’2000),
Berlin, Germany, Mar.-Apr. 2000, volume 1785 of LNCS, pages 1–19.
Springer, 2000.

[Yavuz-Kahveci 2005] Tuba Yavuz-Kahveci, Constantinos Bartzis and Tevfik Bul-
tan. Action Language Verifier, Extended. In Proc. 17th Int. Conf. Computer
Aided Verification (CAV 2005), Edinburgh, Scotland, UK, July 6-10, 2005,
volume 3576 of Lecture Notes in Computer Science, pages 413–417. Springer,
2005.

Presburger Counter Machines

Abstract: Critical, embedded or real-time systems have many applications from
the control (automotive and avionic industry), to signal processing (audio or video
data, GPS navigation systems) and communication (cell phones, internet). Usually
these systems are infinite since they are based on potentially unbounded variables:
integer variables (program counters, number of processes connected to a remote
server) or real numbers (clocks modeling elapsing time), communication channels,
stacks, memory heap, and so on. Whereas the verification of finite state systems is
algorithmically decidable (and there exist efficient tools), the verification of infinite
state systems is not a sinecure. In this document we introduce frameworks for decid-
ing reachability problems of infinite state systems. The frameworks are illustrated
by the Presburger counter machines, a class of machines manipulating a finite set of
counters with semantics definable in the first order logic over the natural numbers
with the addition, also known as the Presburger arithmetic.

Keywords: Verification; Infinite state system; Presburger arithmetic; Automaton;
First order logic.

	Introduction
	Most Significant Results
	Presburger Arithmetic
	Reachability Problems
	Vector Addition Systems

	I Presburger Arithmetic
	First Order Logic
	Deciding The Presburger Arithmetic
	Quantifier Elimination
	Arithmetic Automata
	TaPAS
	Genepi
	Alambic
	Prestaf

	Conclusion

	Decoding Arithmetic Automata To Presburger Formulas
	The Self-Definability
	Polynomial Time Algorithms
	Batof
	Conclusion

	II Reachability Problems
	Presburger Counter Machines
	The Reachability Problem
	Subclasses of Presburger Counter Machines
	Conclusion

	Good Semi-Algorithms
	Acceleration
	Abstract Acceleration
	Interpolation
	Conclusion

	Vector Addition System Reachability Problem
	Almost Semilinear Sets
	Vector Addition Systems
	Well-Order Over The Runs
	Transformer Relations
	Intraproductions
	Production Graphs
	Kirchhoff's Functions

	Reachability Relations Are Almost Semilinear
	Dimension
	Linearizations
	Presburger Invariants
	Conclusion

	III Conclusion
	Conclusion
	Almost Semilinear Sets
	The Reachability Problem

