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B-4000 Liège, Belgium
{boigelot,brusten}@montefiore.ulg.ac.be

2 Laboratoire Bordelais de Recherche en Informatique (LaBRI)
351, cours de la Libération

F-33405 Talence Cedex, France
leroux@labri.fr

Abstract This work studies the properties of finite automata recogniz-
ing vectors with real components, encoded positionally in a given integer
numeration base. Such automata are used, in particular, as symbolic
data structures for representing sets definable in the first-order theory
〈R, Z, +,≤〉, i.e., the mixed additive arithmetic of integer and real vari-
ables. They also lead to a simple decision procedure for this arithmetic.

In previous work, it has been established that the sets definable in
〈R, Z, +,≤〉 can be handled by a restricted form of infinite-word au-
tomata, weak deterministic ones, regardless of the chosen numeration
base. In this paper, we address the reciprocal property, proving that
the sets of vectors that are simultaneously recognizable in all bases, by
either weak deterministic or Muller automata, are those definable in
〈R, Z, +,≤〉. This result can be seen as a generalization to the mixed
integer and real domain of Semenov’s theorem, which characterizes the
sets of integer vectors recognizable by finite automata in multiple bases.
It also extends to multidimensional vectors a similar property recently
established for sets of numbers.

As an additional contribution, the techniques used for obtaining our main
result lead to valuable insight into the internal structure of automata
recognizing sets of vectors definable in 〈R, Z, +,≤〉. This structure might
be exploited in order to improve the efficiency of representation systems
and decision procedures for this arithmetic.
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1 Introduction

In the program analysis and verification field, one often faces the problem of
finding a suitable formalism for expressing the constraints to be satisfied by the
system configurations. Ideally, this formalism has to be decidable, while still
remaining expressive enough for handling the class of constraints needed by the
application. An example of such formalism is Presburger arithmetic, i.e., the first-
order additive theory of integers 〈Z,+,≤〉, which is widely used for reasoning
about programs manipulating integer variables. Presburger arithmetic is indeed
decidable [1,2], yet expressive enough for describing arbitrary linear constraints
as well as discrete periodicities [3].

A simple approach to deciding Presburger arithmetic consists in using finite
automata. It is indeed known that, using the positional notation for encoding
numbers and vectors into words, all Presburger-definable sets are mapped onto
regular languages and can thus be recognized by automata [2,3]. A Presburger
formula can be decided by recursively constructing an automaton recognizing its
solutions, and then checking whether this automaton accepts a nonempty lan-
guage. In some program verification applications, such automata, called Number
Decision Diagrams (NDDs) are actually used as data structures for representing
and manipulating symbolically the sets of program configurations that need to
be handled [4].

Although every subset of Zn that is Presburger-definable can be recognized by
a finite automaton, the reciprocal property does not hold. For instance, denoting
by r ∈ N>1 the base chosen for encoding numbers, the set {rk | k ∈ N}, which is
not Presburger-definable, clearly corresponds to a regular language and is thus
recognizable. The well-known Cobham’s theorem states that, if a set S ⊆ Z is
simultaneously recognizable by finite automata in two bases r, s ∈ N>1 that are
multiplicatively independent, i.e., such that rp 6= sq for all p, q ∈ N>0, then
S is Presburger definable [5]. This result has then been extended to subsets of
Zn, with n > 0, i.e., sets of integer vectors, by Semenov [6]. As a corollary of
Semenov’s theorem, the subsets of Zn that are recognizable by finite automata
in every base r ∈ N>1 are exactly those that are Presburger-definable.

Quite recently, automata recognizing sets of numbers and vectors have been
generalized to the mixed integer and real domain [7]. In this setting, the base-r
encoding of numbers and vectors take the form of infinite words over the alphabet
{0, 1, . . . , r− 1, ?}, where “?” is a separator symbol used for distinguishing their
integer and fractional parts. A Real Vector Automaton (RVA) recognizing a set
S ⊆ Rn is then an infinite-word automaton that accepts the encodings of the
elements of S.

It is worth stressing out that RVA are not only theoretical objects; they are
used as actual data structures in verification tools such as LASH for representing
symbolically the sets of configurations of programs relying on both integer and
real variables during their state-space exploration [8]. The decision tool LIRA
also uses RVA for representing the set of solutions of mixed real and integer arith-
metic formulas [9]. For such applications, it is not sufficient to establish that all
sets of interest are representable by RVA and that all the needed operations are
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computable on them, but also to obtain a symbolic representation system that is
concise enough for handling complex sets using a reasonable amount of memory,
and for which the manipulation algorithms are efficient. In particular, this pre-
cludes the use of unrestricted infinite-word automata for describing RVA, due to
the difficulty of carrying out some operations such as set complementation [13].
It is therefore essential to define restricted forms of RVA that can be efficiently
handled, and to precisely characterize their expressiveness in order to match the
requirements of the intended applications. Another goal is to investigate whether
the transition relation of these restricted RVA has structural properties that can
be exploited in order to represent them more efficiently.

In previous work, a result analogous to Cobham’s theorem has been obtained
for RVA: The sets S ⊆ R that are recognizable by RVA in two bases that do
not share the same set of prime factors1 are exactly those that are definable in
the first-order theory 〈R,Z,+,≤〉, i.e., the extension of Presburger arithmetic to
mixed integer and real variables [10]. This has an important consequence. One
indeed knows that the full expressive power of ω-regular languages is not needed
for representing the sets definable in 〈R,Z,+,≤〉, since those sets can be rec-
ognized by weak deterministic automata [11], a restricted class of infinite-word
automata that are much more easily manipulated algorithmically, and admit a
canonical form. It follows that the sets of reals that are recognizable by RVA in
every base r ∈ N>1 are exactly those that can be recognized by weak determin-
istic RVA.

This paper is aimed at extending this result to sets of vectors with a fixed
dimension, i.e., to subsets of Rn with n > 0. This can be seen as a generalization
of Semenov’s theorem to real vectors. Precisely, we prove that the sets S ⊆ Rn
that are simultaneously recognizable by RVA in two bases that do not share the
same set of prime factors are those that are definable in 〈R,Z,+,≤〉. From this
result, it follows that the sets of vectors that are recognizable by RVA in every
base r ∈ N>1 are exactly those that can be recognized by weak deterministic
RVA. The same proof also establishes that the sets that are recognizable by
weak deterministic RVA in two multiplicatively independent bases are definable
in 〈R,Z,+,≤〉 as well. Those results are significant for practical applications,
since they imply that weak deterministic automata can be used for implementing
RVA in all cases where the sets of vectors that are symbolically represented are
expressed as combinations of linear constraints and discrete periodicities.

As an additional contribution, the techniques used for obtaining this result
give out valuable insight into the internal structure of RVA recognizing sets of
vectors definable in 〈R,Z,+,≤〉. It might be possible to exploit this structure in
order to improve the efficiency of symbolic representation systems and decision
procedures for that arithmetic.

1 As opposed to the integer case, it has been shown that the result does not hold for
multiplicatively independent bases [10].
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2 Preliminaries

2.1 Positional Encoding of Vectors

Let r ∈ N>1 be a base. The positional notation in base r encodes numbers
x ∈ R as infinite words of the form wI ? wF over the finite alphabet Σr ∪ {?},
where Σr = {0, 1, . . . , r − 1}, and “?” is a separator symbol. The finite prefix
wI ∈ Σ+

r and the infinite suffix wF ∈ Σω
r respectively encode an integer and

a fractional part of x. In other words, wI encodes a number xI ∈ Z, and wF a
number xF ∈ [0, 1], such that xI + xF = x. Note that integer numbers admit
two decompositions into integer and fractional parts, e.g., x = 2 leads to both
xI = 2 and xF = 0, and xI = 1 and xF = 1.

An encoding wI of an integer part xI ∈ N is a word ap−1ap−2 . . . a0 ∈ Σ+
r ,

with p > 0, such that xI =
∑p−1
i=0 air

i. For signed numbers xI ∈ Z, the r’s-
complement representation is used, implying that the sign digit ap−1 is then
equal to 0 for positive (or zero) numbers, and to r − 1 for negative ones. For a
negative number, the value of xI becomes equal to −rp +

∑p−1
i=0 air

i. The length
p of encodings is not fixed, but chosen large enough for satisfying the constraint
−rp−1 ≤ xI < rp−1. Finally, an encoding wF of a fractional part xF ∈ [0, 1] is a
word b0b1 . . . ∈ Σω

r such that xF =
∑
i≥0 bir

−i.
This encoding scheme can be extended to vectors x = (x1, x2, . . . , xn) ∈ Rn,

with n > 0. The idea is to encode each component xi separately into a word
wi, but in such a way that these words share the same integer-part length. This
can always be achieved, for the sign digit of an encoding can be repeated at will
without altering the encoded value. One thus obtains a vector (w1, w2, . . . , wn)
of encodings in which the separator symbol “?” occurs at the same position in
each component. By reading those components synchronously one symbol at a
time, one eventually obtains an encoding of x as a single word wI ?wF over the
n-dimensional alphabet Σn

r , augmented with a unique separator symbol “?”. For
each word w ∈ {0, r − 1}n(Σn

r )∗ ? (Σn
r )ω, the vector x ∈ Rn encoded by w in

base r is denoted by [w]r .

2.2 Real Vector Automata

Consider a base r ∈ N>1 and a set S ⊆ Rn, with n > 0. Let L(S) ⊆ (Σn
r )+?(Σn

r )ω

denote the language formed by the encodings of the elements of S. If L(S) is
ω-regular, then any infinite-word automaton that accepts L(S) is a Real Vector
Automaton (RVA) recognizing S [7]. In this paper, in order to simplify some
developments thanks to their deterministic transition relation, we assume w.l.o.g.
that RVA take the form of Muller automata [12]. A set S ⊆ Rn that can be
recognized by a RVA in base r is said to be r-recognizable.

For practical applications as symbolic representations of sets, infinite-word
automata are somehow problematic, since some of their manipulation algorithms
are known to be significantly costlier than their finite-word counterparts [13]. In
the case of RVA, its has been shown that the full expressive power of infinite-word
automata is not needed for recognizing the sets definable in the first-order theory
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〈R,Z,+,≤〉. Indeed, for any base r ∈ N>1, such sets can be recognized by weak
deterministic RVA [11]. A weak RVA representing a set S is a Büchi automaton
accepting L(S), such that each of its strongly connected components is either
globally accepting or globally non-accepting. Compared to general infinite-word
automata, weak deterministic ones are much more easily manipulated algorith-
mically. In addition, they admit a canonical form that simplifies comparison
operations between symbolically represented sets [14]. We will say that a set
S ⊆ Rn that can be recognized by a weak deterministic RVA in base r is weakly
r-recognizable.

2.3 Properties of Recognizable Sets

In the next sections, we study the properties of sets that are recognizable, or
weakly recognizable, in one or several bases. Such sets are characterized by the
following results.

Theorem 1 ([15]). Let n ∈ N>0 and r ∈ N>1. A set S ⊆ Rn is r-recognizable
iff it is definable in the first-order theory 〈R,Z,+,≤, Xr〉, where Xr ⊂ R3 is
a base-dependent predicate such that Xr(x, u, k) holds whenever u is an integer
power of r, and there exists an encoding of x in which the digit at the position
specified by u is equal to k.

Theorem 2 ([11]). Let n ∈ N>0 and r ∈ N>1. A set S ⊆ Rn is weakly r-
recognizable iff it is r-recognizable, and it belongs to the topological class Fσ ∩Gδ
of the metric topology over Rn induced by the Euclidean distance. This means
that the set has to be decomposable both into a countable union of closed sets,
and into a countable intersection of open sets.

In particular, it is known that every subset of Rn that is definable in the
first-order theory 〈R,Z,+,≤〉, i.e., the extension of Presburger arithmetic to
mixed integer and real variables, satisfies the hypotheses of Theorem 2, and it
is therefore weakly recognizable in every base r ∈ N>1 [11].

The following theorems and lemmas introduce some operations and transfor-
mations that preserve the recognizable nature of sets.

Theorem 3. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be multiplicatively
dependent bases, i.e., such that rk = sl for some k, l ∈ N>0. A set S ⊆ Rn is
(resp. weakly) r-recognizable iff it is (resp. weakly) s-recognizable.

Proof sketch. From Theorems 1 and 2, it suffices to show that definability in
〈R,Z,+,≤, Xr〉 is equivalent to definability in 〈R,Z,+,≤, Xs〉. Furthermore,
since rk = sl, it actually suffices to establish that definability in 〈R,Z,+,≤, Xt〉
is equivalent to definability in 〈R,Z,+,≤, Xti〉 for all t ∈ N>1 and i ∈ N>0. An
encoding of a number x ∈ R in base ti can directly be turned into one of the
same number in base t by replacing each digit (belonging to the alphabet Σti)
into a sequence of i digits from Σt. The reciprocal operation is similar. It follows
that the predicate Xt can be defined in terms of Xti , and reciprocally. ut
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Theorem 3 states that (resp. weak) recognizability in bases that are multi-
plicatively dependent is equivalent to (resp. weak) recognizability in one of them.
In the sequel, we will thus only consider bases r and s that are multiplicatively
independent.

Lemma 1. Let n ∈ N>0, S1, S2 ⊆ Rn, and r ∈ N>1. If S1 and S2 are both
(resp. weakly) r-recognizable, then the sets S1 ∪S2, S1 ∩S2, S1 \S2 and S1×S2

are (resp. weakly) r-recognizable as well.

Proof sketch. The class of sets definable in 〈R,Z,+,≤, Xr〉 is closed under
Boolean and Cartesian operators. The same property holds for the topologi-
cal class Fσ ∩Gδ. The result then follows from Theorems 1 and 2. ut

Lemma 2. Let n ∈ N>0, r ∈ N>1, C ∈ Qn×n such that det(C) 6= 0, and
a ∈ Qn. If a set S ⊆ Rn is (resp. weakly) r-recognizable, then the set CS + a is
(resp. weakly) r-recognizable as well.

Proof sketch. The proof is by similar arguments as in that of Lemma 1. Indeed,
the transformation x 7→ Cx + a is definable in 〈R,Z,+,≤, Xr〉, and preserves
the topological class Fσ ∩Gδ. ut

It is worth mentioning that, in the statement of Lemma 2, it is essential
to require det(C) 6= 0 as far as weak recognizability is concerned. Indeed, a
transformation x 7→ Cx + a with a singular matrix C amounts to a projection,
which generally alters topological properties of sets. As an example, the set
S = {(zrk, rk) | k, z ∈ Z} belongs to Fσ ∩ Gδ, and it is actually weakly r-
recognizable, whereas the set CS, with C = diag(1, 0), does not.

Although projection does not preserve weak recognizability, one can however
sometimes extract from a set a weak recognizable set of smaller dimension. This
operation is described by the following lemma.

Lemma 3. Let n,m ∈ N>0, r ∈ N>1. If two sets S1 ⊆ Rn and S2 ⊆ Rm are such
that S1 × S2 is weakly r-recognizable, then S1 and S2 are weakly r-recognizable
as well.

Proof sketch. The proof is by similar arguments as in that of Lemma 1. ut
Finally, the following result addresses the comparison of two recognizable

sets.

Theorem 4. Let n ∈ N>0 and r ∈ N>1. Two r-recognizable sets S1, S2 ⊆ Rn
are equal iff they coincide over the rational vectors, i.e., iff S1 ∩ Qn = S2 ∩ Qn.

Proof sketch. The vectors in Qn are exactly those that are encoded by ultimately
periodic words, i.e., words of the form uvω with |v| ≥ 1. Two ω-regular languages
are equal iff they coincide over the ultimately periodic words [16]. ut

As a corollary, one can always extract a rational vector from a non-empty
r-recognizable set.
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3 Problem Reductions

Our main goal will be to prove that a set S ⊆ Rn that is recognizable or
weakly recognizable in two bases r and s that are multiplicatively independent,
with some possible additional restrictions on r and s, is necessarily definable in
〈R,Z,+,≤〉. In this section, we reduce this general problem to simpler ones.

3.1 Reduction to [0, 1]n

It is known that a set S ⊆ Rn that is r-recognizable can be decomposed into
a finite union S =

⋃
i(S

I
i + SFi ), where the sets SIi ⊆ Zn are non-empty and

pairwise disjoint, and the sets SFi ⊆ [0, 1]n are non-empty and pairwise differ-
ent2 [17,10]. This decomposition of S into sets SIi and SFi is independent from
the base r. In addition, each set SIi is recognizable by a finite-word automaton
in base r (operating only on the integer part of r-encodings), and each set SFi is
(resp. weakly) r-recognizable if S is (resp. weakly) r-recognizable as well [17,10].

Consider two multiplicatively independent bases r and s, and a set S ⊆ Rn
that is both r- and s-recognizable. Applying Semenov’s theorem, one obtains
that the sets SIi are definable in 〈Z,+,≤〉. It follows that, in order to prove that
S is definable in 〈R,Z,+,≤〉, it suffices to show that each set SFi is definable in
〈R,+,≤, 1〉. Since this theory is closed under elimination of quantifiers [18], this
is equivalent to proving that each SFi can be expressed as a Boolean combination
of linear constraints with rational coefficients.

We have therefore reduced our main problem from Rn to the simpler domain
[0, 1]n. From now on, we will stay within [0, 1]n and consider that RVA only
recognize the fractional part of encodings, their integer part being restricted to
zero. Formally, we introduce [w]r, with w ∈ (Σn

r )ω, as a shorthand for [0 ? w]r.

3.2 Reduction to Product-Stable Sets

In order to be able to prove that the recognizability of a subset of [0, 1]n in
multiple bases leads to its definability in 〈R,+,≤, 1〉, we need to establish a link
between the arithmetical properties of this set, and the structure of automata
recognizing it.

Let n ∈ N>0, r ∈ N>1, and let S ⊆ [0, 1]n be a set recognized in base r by a
RVA A. We associate to each state q of A the language L(q) accepted from q,
as well as the set of vectors S(q) ⊆ [0, 1]n encoded by L(q), i.e., S(q) = {[w]r |
w ∈ L(q)}.

Recall that A is a (deterministic) Muller automaton. For each finite path
q

σ−→ q′ of A, the language L(q′) can be expressed as L(q′) = σ−1L(q) = {w ∈
(Σn

r )ω | σw ∈ L(q)}. Similarly, the set S(q′) can be expressed in terms of S(q).
Denoting by [σ]r the integer vector encoded by σ, i.e., [σ]r = [0σ ? 0ω]r, we get

S(q′) =
{

x ∈ [0, 1]n | [σ]r + x

r|σ|
∈ S(q)

}
.

2 The property is actually known for the domain R, but straightforwardly generalizes
to Rn.
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From this relation and Lemmas 1 and 2, one obtains that S(q′) is (resp.
weakly) recognizable in all bases for which S(q) is (resp. weakly) recognizable.

Consider now the particular case q = q′, i.e., assume that the path labeled
by σ cycles from q to itself. The previous relation becomes

x ∈ S(q) ⇔ x ∈ [0, 1]n ∧ [σ]r + x

r|σ|
∈ S(q).

Remark that the transformation x 7→ ([σ]r + x)/r|σ| admits the fixed point
x = [σ]r/(r|σ| − 1) = [σω]r ∈ [0, 1]n. Translating S(q) so as to move this fixed
point onto 0, one gets

x ∈ S(q)− [σω]r ⇔ x ∈ [0, 1]n − [σω]r ∧
x

r|σ|
∈ S(q)− [σω]r.

This prompts the following definition, adapted from [10].

Definition 1. Let n ∈ N>0, v ∈ [0, 1]n ∩ Qn be a pivot, and f ∈ R≥1 be
a factor. A set S ⊆ [0, 1]n is f -product-stable with respect to the pivot v iff
∀x ∈ [0, 1]n − v : x ∈ S − v ⇔ (1/f)x ∈ S − v.

Intuitively, that a set is f -product-stable with respect to the pivot v means
that the set does not change when it magnified by the zoom factor f around
the fixed point v. Remark that this property is preserved by transformations of
the form x 7→ Cx + a, with C ∈ Qn×n and a ∈ Qn, provided that [0, 1]n ⊆
C[0, 1]n + a, and the new pivot v′ = Cv + a belongs to [0, 1]n.

In summary, if A recognizes the set S ⊆ [0, 1]n in base r, then each reachable
state q of A recognizes a set S(q) ⊆ [0, 1]n that is (resp.weakly) recognizable in
all bases for which S is (resp. weakly) recognizable. Furthermore, if there exists
a cycle q σ→ q, then the set S(q) is r|σ|-product-stable with respect to the pivot
[σω]r. We have thus established a link between a structural property of A (the
presence of a cycle rooted at q) and an arithmetical property of S(q) (its product
stability).

The next step is to show that any recognizable set can be decomposed into
a combination of product-stable sets that can be considered individually.

Consider the set Q1 of states q of A from which there exists a cycle q σ→ q,
with σ ∈ (Σn

r )+. Note that every infinite path of A eventually visits a state in
Q1. Let L be the language of words σi ∈ (Σn

r )∗ labeling finite paths π = q0
σi→ qi

such that q0 is the initial state of A, qi ∈ Q1, q′ 6∈ Q1 for every state q′ distinct
from qi visited by π, and there is only one occurrence of qi in π. The language
L is finite, and it maps each σi ∈ L to a state qi of A. For each such qi, A
admits a cycle rooted at qi, hence there exists vi ∈ Qn ∩ [0, 1]n and li ∈ N>0

such that S(qi) is rli-product-stable with respect to the pivot vi. Note that each
S(qi) is (resp. weakly) recognizable in all bases for which S is (resp. weakly)
recognizable. Moreover, since S =

⋃
σi∈L(1/r|σi|)(S(qi) + [σi]r), we have that S

is definable in 〈R,+,≤, 1〉 if all the sets S(qi) are definable in the same theory.
It follows from this result that, in order to prove that the recognizability

of a set S ⊆ [0, 1]n in multiple bases implies its definability in 〈R,+,≤, 1〉, it
is sufficient to prove this property for sets S that are rl-product-stable, with
l ∈ N>0.
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4 Recognizability in Multiple Bases

In this section, we prove the following results, which generalize to Rn those
developed in [17,10].

Theorem 5. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be bases with different
sets of prime factors (i.e., such that there exists a prime factor of one that does
not divide the other). If a set S ⊆ [0, 1]n is both r- and s-recognizable, then it is
definable in 〈R,+,≤, 1〉.

Theorem 6. Let n ∈ N>0 be a dimension, and r, s ∈ N>1 be multiplicatively
independent bases. If a set S ⊆ [0, 1]n is both weakly r- and weakly s-recognizable,
then it is definable in 〈R,+,≤, 1〉.

Our approach is by induction on n. The case n = 1 is an immediate conse-
quence of [17,10]. It remains to address the inductive case where n ≥ 2, assuming
that Theorems 5 and 6 hold for smaller dimensions. Exploiting the results of Sec-
tion 3.2, we only consider w.l.o.g. sets S ⊆ [0, 1]n that are rl-product-stable for
some l ∈ N>0 and pivot v ∈ [0, 1]n ∩ Qn.

4.1 Using s-recognizability

Consider a set S ⊆ [0, 1]n that is recognizable in two bases r, s ∈ N>1. Assume
that there exist l ∈ N>0 and v ∈ [0, 1]n ∩ Qn such that S is rl-product-stable
with respect to the pivot v. We show in this section that there exists an integer
l′ ∈ N>0 such that S is sl

′
-product-stable as well.

We first consider the case v = 0. Let As be a RVA recognizing S in base s.
We assume w.l.o.g. that As has a complete transition relation, hence it admits
an ultimately cyclic path labeled by 0ω, which we denote

q0
0m

−→ [q 0l′

−→]ω,

where q0 is the initial state of As, m ∈ N and l′ ∈ N>0. By the same reasoning
as in Section 3.2, we obtain that the set S(q) encoded in base s by the language
L(q) accepted from q in As is both r- and s-recognizable. Moreover, S(q) is
sl

′
-product-stable with respect to the pivot 0.
Since As is deterministic, it admits only one path from q0 to q labeled by

0m, which leads to S(q) = smS ∩ [0, 1]n. From this relation, and the rl-product-
stability hypothesis on S, it follows that S(q) is rl-product-stable as well, with
respect to the pivot 0.

The set S(q) is thus both rl- and sl
′
-product-stable, with respect to the same

pivot 0. Let us show that these properties imply that S itself is both rl- and
sl

′
-product-stable. By hypothesis, S is rl-product-stable with respect to 0. For

any x ∈ [0, 1]n and k ∈ N, we thus obtain

x ∈ S ⇔ 1
rlk

x ∈ S ⇔ s|σ
′|

rlk
x ∈ s|σ

′|S

⇔ s|σ
′|

rlk
x ∈ S(q),
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if k is chosen large enough to have rlk ≥ s|σ
′|. Since S(q) is sl

′
-product-stable

with respect to 0, we get

s|σ
′|

rlk
x ∈ S(q) ⇔ s|σ

′|−l′

rlk
x ∈ S(q)

⇔ 1
rlksl′

x ∈ S ⇔ 1
sl′

x ∈ S.

proving that S is sl
′
-product-stable with respect to v in the special case v = 0.

The general case v ∈ [0, 1]n ∩ Qn is obtained by decomposing S according
to the 2n possible positions of vectors in [0, 1]n with respect to v. For each
vector a ∈ {−1, 1}n we introduce the matrix Ma = diag(a), the set Da =
(v + MaRn≥0) ∩ [0, 1]n and the set Sa = S ∩ Da. Each set Da is a Cartesian
product of intervals Da = I1 × · · · × In, where for all i ∈ {1, . . . , n},

Ii =
{

[vi, 1] if ai = 1,
[0, vi] if ai = −1.

The vectors a such that Da has a positive volume are identified by intro-
ducing the set A of vectors a such that fi(vi) > 0 for any i ∈ {1, . . . , n}, where
fi(vi) denotes the length of the interval Ii, i.e

fi(vi) =
{

1− vi if ai = 1,
vi if ai = −1.

Since each zero volume set is included into at least one positive volume set,
we have

⋃
a∈ADa = [0, 1]n, which implies S =

⋃
a∈A Sa.

For each a ∈ A, the set Ma(Da−v) takes the form of the Cartesian product
[0, f1(v1)]×· · ·× [0, fn(vn)]. We can thus map the elements of Da onto [0, 1]n by
defining the transformation x 7→ CaMa(x− v), where Ca = diag(1/f1(v1), . . . ,
1/fn(vn)).

We now consider, for each a ∈ A, the set S′a = CaMa(Sa − v). From the
rl-product-stability of S with respect to v, it follows that S′a is rl-product-stable
with respect to 0. By Lemmas 1 and 2, S′a inherits the recognizability properties
of S. Moreover, there exists l′a ∈ N>0 such that S′a is sl

′
a -product-stable with

respect to 0. From this property and the equality Sa = v + M−1
a C−1

a Sa, we
deduce that Sa is sl

′
a -product-stable with respect to v. From S =

⋃
a∈A Sa, it

then follows that S is sl
′
-product-stable, where l′ = lcma∈A(l′a).

In summary, we have established that S, in addition to being rl-product-
stable by hypothesis, is sl

′
-product-stable as well. It remains to show that these

properties, combined with our inductive hypotheses, imply that S is definable
in 〈R,+,≤, 1〉.

4.2 Exploiting Multiple Product Stabilities

We thus consider a set S ⊆ [0, 1]n and two bases r, s ∈ N>1, such that either r and
s are multiplicatively independent and S is weakly r- and weakly s-recognizable,



A Generalization of Semenov’s Theorem 11

or r and s do not share the same set of prime factors3 and S is r- and s-
recognizable. Using the results of Section 4.1, we assume that there exist l, l′ ∈
N>0 and v ∈ [0, 1]n ∩ Qn such that S is both rl- and sl

′
-product-stable with

respect to the pivot v. Our goal is to show that S is definable in 〈R,+,≤, 1〉.
We first prove the following property.

Property 1. For each x ∈ [0, 1]n ∩ Qn such that x 6= v, let hv(x) denote the set
{v +λ(x−v) ∈ [0, 1]n | λ ∈ R>0}. We have either hv(x) ⊆ S, or hv(x) ∩ S = ∅.

Proof sketch. Consider x ∈ [0, 1]n ∩ Qn such that x 6= v. The set hv(x) can be
expressed as an intersection of linear inequalities with rational coefficients, and
is thus weakly recognizable in all bases, as a consequence of Theorems 1 and 2.
From Lemma 1, it follows that the set S′ = S ∩ hv(x) is recognizable both in
bases r and s, by the same type of automaton as S. Besides, S′ is both rl- and
sl

′
-product-stable with respect to the pivot v.
Let C ∈ Qn×n be a non-singular matrix such that C(x − v) = (1, 0, . . . , 0).

Note that the transformation y 7→ Cy maps hv(x) onto a line segment that
is parallel to the first axis. From Lemmas 1 and 2, we have that the set S′′ =
C(S′ − v) ∩ [0, 1]n inherits the recognizability properties of S. Moreover, S′′ is
rl- and sl

′
-product-stable with respect to the pivot 0.

Note that the set S′′ can be decomposed into S′′ = S′′′×{0}n−1, with S′′′ ⊆
[0, 1]. Applying Lemma 3, the set S′′′ has the same recognizability properties
as S hence, by the inductive hypotheses, it is definable in 〈R,+,≤, 1〉. In other
words, S′′′ is equal to a finite union of intervals with rational boundaries.

In addition, we know that S′′′ is rl- and sl
′
-product-stable with respect to

the pivot 0. Since r and s are multiplicatively independent, rl and sl
′

are mul-
tiplicatively independent as well. By Kronecker’s approximation lemma, the set
{rlisl′j ∈]0, 1] | i, j ∈ Z} is dense in ]0, 1], as shown in [19,10]. It follows that if
1 ∈ S′′′ then S′′′ \{0} =]0, 1] and if 1 6∈ S′′′ then S′′′ \{0} = ∅. As a consequence,
hv(x) ∩ S is either empty, or equal to hv(x). ut

Intuitively, Property 1 hints at the fact that the set S has a conical structure.
We formalize this property by the following definition.

Definition 2. A set T ⊆ [0, 1]n is a conical set of vertex v ∈ [0, 1]n iff ∀x ∈
[0, 1]n, f ∈]0, 1] : x ∈ T ⇔ f(x− v) + v ∈ T .

In other words, a conical set is entirely determined by its vertex, and its
intersection with the faces of the hypercube [0, 1]n. It follows that, in order to
establish that S is definable in 〈R,+,≤, 1〉, it suffices to show that this inter-
section is definable in the same theory, and that S is a conical set. We have the
following results.

Property 2. For each i ∈ {1, 2, . . . , n} and λ ∈ {0, 1}, let Fλ,i = {x ∈ [0, 1]n |
xi = λ}. The set S ∩ Fλ,i is definable in 〈R,+,≤, 1〉.

3 Note that this constraint implies that r and s are multiplicatively independent.
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Proof sketch. Let i ∈ {1, 2, . . . , n} and λ ∈ {0, 1}. We first build the permutation
matrix C ∈ {0, 1}n×n such that Cx = (x1, . . . , xi−1, xi+1, . . . , xn, xi) for any
x = (x1, . . . , xn) ∈ Rn. The set Fλ,i is definable in 〈R,+,≤, 1〉, hence it is
weakly r-recognizable. From Lemmas 1 and 2, the set S′ = C(S ∩ Fλ,i) inherits
the recognizability properties of S. Moreover, we have S′ = S′′ × {λ}, where
S′′ ⊆ [0, 1]n−1 has the same recognizability properties as well, as a consequence
of Lemma 3. The result then follows from the inductive hypotheses. ut

Property 3. The set S is conical with respect to the vertex v.

Proof sketch. Let S′ be the intersection of S with the faces of the hypercube
[0, 1]n. We have established that S′ is definable in 〈R,+,≤, 1〉. The set S′ can
thus be expressed as a finite Boolean combination of linear constraints with
rational coefficients. As a consequence, there exists a set S′′ ⊆ [0, 1]n that is
definable in 〈R,+,≤, 1〉, conical with respect to the vertex v, and that coincides
with S′ over the faces of [0, 1]n and over the vertex v. Applying Property 1, we
obtain S′′ ∩ Qn = S ∩ Qn. From Theorem 4, we then have S = S′′. ut

5 Internal Structure of RVA

In Section 4, we have proved Theorems 5 and 6, which broadly state that if
a set S ⊆ [0, 1]n is recognizable or weakly recognizable in two bases r and
s that are sufficiently different, then this set is definable in 〈R,+,≤, 1〉. As a
corollary, such sets are then weakly recognizable in every base r ∈ N>1 [11].
This result is significant, since it establishes that the class of weak deterministic
automata is sufficient for representing all the sets that are recognizable by RVA
regardless of the numeration base. As mentioned earlier, the advantage of using
weak deterministic automata in actual applications comes from the fact that
these automata are basically as easy to handle algorithmically as finite-word
ones [20].

We now use Theorems 5 and 6, together with other results obtained in Sec-
tion 4, in order to get some insight into the internal structure of RVA recog-
nizing the subsets of [0, 1]n definable in 〈R,+,≤, 1〉. As explained in Section 3,
this is equivalent to studying the structure of RVA recognizing sets definable in
〈R,Z,+,≤〉, staying within the part of automata that reads the fractional part
of vectors (i.e., in the sub-automata whose initial states are the destinations of
transitions labeled by “?”).

Let n ∈ N>0 be a dimension, r ∈ N>1 be a base, and S ⊆ [0, 1]n be a set de-
finable in 〈R,+,≤, 1〉. We consider a weak and deterministic RVA A recognizing
S in base r. We assume w.l.o.g. that A is complete as well as minimal (in the
sense of [14]).

As observed in Section 3.2, for each state q ofA, the set S(q) ⊆ [0, 1]n encoded
by the language L(q) accepted from q can be derived from S by a transformation
that is definable in 〈R,+,≤, 1〉. It follows that each S(q) is itself definable in that
theory.
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In addition, it has been established in Section 4.2 that, for the states q that
belong to non-trivial strongly connected components of A (i.e., such that there
exists at least one cycle from q to itself), the set S(q) is a conical set. It is
however worth noticing that the vertex of this conical set may not be uniquely
determined. For instance, every element of the conical set {(0, λ) | λ ∈ [0, 1]} is
one of its vertices. We have the following result.

Theorem 7. Let n ∈ N>0, and T ⊆ [0, 1]n be a conical set. The vertices of T
form a bounded affine space {v + ν1u1 + · · ·+ νmum ∈ [0, 1]n | ν1, . . . , νm ∈ R},
with m ∈ N and v,u1, . . . ,um ∈ Rn.

Proof sketch. It is sufficient to prove that, if v1,v2 ∈ [0, 1]n are two distinct
vertices of T , then each point on the line segment L = {µv1+(1−µ)v2 ∈ [0, 1]n |
µ ∈ R } linking v1 and v2 is also a vertex of T . This can be achieved by showing
that T is invariant under any translation parallel to L that stays within [0, 1]n,
i.e., that x ∈ T ⇔ x + µ(v1 − v2) ∈ T for all x ∈ [0, 1]n and µ ∈ R such that
x + µ(v1 − v2) ∈ [0, 1]n.

Let x be an arbitrary vector in [0, 1]n. Consider an arbitrary value µ ∈ R≥0

such that x + µ(v1 − v2) ∈ [0, 1]n. (Note that restricting µ to be non negative
does not weaken the property.)

We define x′ = x + µ(v1 − v2) and f = 1/(1 + µ). Since T is a conical set
w.r.t. the vertex v1, we have x ∈ T if and only if f(x−v1) +v1 ∈ T . Exploiting
the conical structure of T w.r.t. the vertex v2, we then get x′ ∈ T if and only if
f(x′ − v2) + v2 ∈ T . By replacing x′ by x + µ(v1 − v2) we deduce the equality

f(x′ − v2) + v2 = f(x− v1) + v1

which yields x ∈ T ⇔ x′ ∈ T . ut
We are now ready to describe the structure of A: Its initial state is the root

of a (possibly empty) acyclic structure, composed of states belonging to trivial
strongly connected components, and leading to states q belonging to non-trivial
components. For each such state q, the set S(q) ⊆ [0, 1]n is conical. Such a set
is entirely characterized by the affine space containing its vertices, a Boolean
value stating whether these vertices belong or not to S(q), and the intersection
of the set with the 2n faces of the hypercube [0, 1]n. This intersection can be
expressed in terms of at most 2n subsets of [0, 1]n−1 (in the bottom case n = 1,
this degenerates into the two extremities of the interval [0, 1]), which are known
to be recognizable in 〈R,+,≤, 1〉.

Those observations could lead to a more efficient data structure for represent-
ing canonically the subsets of [0, 1]n that are definable in additive arithmetic.
For instance, RVA could be represented implicitly, by using BDDs for describing
their initial acyclic structure [21] and linking this structure to representations
of conical sets. These sets could be described by encoding separately the affine
space containing their vertices and the faces of their enclosing hypercube. These
faces could themselves be represented by the same type of structure applied to
subsets of [0, 1]n−1. The bottom layer of such a hierarchical representation would
correspond to individual rational numbers, which could be encoded explicitly.
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The detailed study of such a representation system, and its application to de-
cision procedures for 〈R,+,≤, 1〉 and 〈R,Z,+,≤〉, will be the subject of future
work.

6 Conclusions

In this paper, we have characterized the subsets of Rn, with n ∈ N>0, that are
recognizable by RVA, or weak deterministic RVA, in multiple bases. Precisely, we
have established that the sets that are either weakly recognizable in two multi-
plicatively independent bases, or recognizable in two bases that do not share the
same set of prime factors, are exactly those that are definable in the first-order
theory 〈R,Z,+,≤〉. These results were already known for the particular case
n = 1 [17,10]. They generalize to automata operating on real vectors Semenov’s
theorem, which states that the sets of integer vector that are recognizable in
multiplicatively independent bases are those that are definable in Presburger
arithmetic. The theory 〈R,Z,+,≤〉 can indeed be seen as an extension of Pres-
burger arithmetic to mixed integer and real variables [22]. It is worth mentioning
that, in the case of (non weak) recognizability, the condition on the numeration
bases cannot be replaced by multiplicative independence. Indeed, there exist
subsets of R that are simultaneously recognizable in two multiplicatively inde-
pendent bases, but without being definable in additive arithmetic [10].

An important corollary of our results is that every subset of Rn that is
recognizable in every base r ∈ N>1 can be recognized by a weak deterministic
automaton. This provides a theoretical justification to the use of these automata
for representing sets of integer and real vectors, in addition to their practical
advantages.

As an additional contribution, we have obtained interesting insight into the
structure of weak deterministic automata recognizing sets definable in the the-
ory 〈R,Z,+,≤〉. In future work, we will address the problem of exploiting this
structure in order to develop more efficient symbolic representation systems for
subsets of Rn, as well as an improved decision procedure for 〈R,Z,+,≤〉. Our aim
is to be able to benefit from the advantages of automata-based symbolic repre-
sentations, which mainly reside in their easy algorithmic manipulation and their
canonicity, while managing to avoid some of their drawbacks, such as the un-
necessarily large size of automata obtained from some classes of constraints [23].
This could be achievable by keeping a part of the transition relation of RVA
implicit. Such a representation would also simplify the problem of extracting
formulas from automata recognizing arithmetic sets [24,25].
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