
Polynomial Precise Interval Analysis Revisited

Thomas Gawlitza1, Jérôme Leroux2, Jan Reineke3, Helmut Seidl1, Grégoire Sutre2,
and Reinhard Wilhelm3

1 TU München, Institut für Informatik, I2
80333 München, Germany

{gawlitza, seidl}@in.tum.de
2 LaBRI, Université de Bordeaux, CNRS

33405 Talence Cedex, France
{leroux, sutre}@labri.fr

3 Universität des Saarlandes, Germany
{reineke, wilhelm}@cs.uni-sb.de

Abstract. We consider a class of arithmetic equations over the complete lattice
of integers (extended with−∞ and∞) and provide a polynomial time algorithm
for computing least solutions. For systems of equations with addition and least
upper bounds, this algorithm is a smooth generalization of the Bellman-Ford al-
gorithm for computing the single source shortest path in presence of positive and
negative edge weights. The method then is extended to deal with more general
forms of operations as well as minima with constants. For the latter, a controlled
widening is applied at loops where unbounded increase occurs. We apply this
algorithm to construct a cubic time algorithm for the class of interval equations
using least upper bounds, addition, intersection with constant intervals as well as
multiplication.

1 Introduction

Interval analysis tries to derive tight bounds for the run-time values of variables [2].
This basic information may be used for important optimizations such as safe removals
of array bound checks or for proofs of absence of overflows [4]. Since the very begin-
ning of abstract interpretation, interval analysis has been considered as an algorithmic
challenge. The reason is that the lattice of intervals may have infinite ascending chains.
Hence, ordinary fixpoint iteration will not result in terminating analysis algorithms.
The only general technique applicable here is the widening and narrowing approach
of Cousot and Cousot [3]. If precision is vital, also more expressive domains are con-
sidered [8, 9]. While often returning amazingly good results, widening and narrowing
typically does not compute the least solution of a system of equations but only a safe
over-approximation.

In [11], however, Su and Wagner identify a class of interval equations for which
the respective least solutions can be computed precisely and in polynomial time. As
operations on intervals, they consider least upper bound, addition, scaling with posi-
tive and negative constants and intersection with constant intervals. The exposition of
their algorithms, though, is not very explicit. Due to the importance of the problem,

we present an alternative and, hopefully more transparent approach. In particular, our
methods also show how to deal with arbitrary multiplications of intervals. Our algo-
rithm demonstrates how well-known ideas need only to be slightly extended to provide
a both simple and efficient solution.

We start by investigating equations over integers only (extended with−∞ and∞ as
least and greatest elements of the lattice) using maximum, addition, scaling with posi-
tive constants and minimum with constants as operations. In absence of minima, com-
puting the least solution of such a system of equations can be considered as a generaliza-
tion of the single-source shortest path problem from graphs to grammars in presence of
positive and negative edge weights. A corresponding generalization for positive weights
has been considered by Knuth [6]. Negative edge weights, though, complicate the prob-
lem considerably. While Knuth’s algorithm can be considered as a generalization of
Dijkstra’s algorithm, we propose a generalization of the Bellman-Ford algorithm.

More generally, we observe that the Bellman-Ford algorithm works for all systems
of equations which use operators satisfying a particular semantic property which we
call BF-property. Beyond addition and multiplication with positive constants, positive
as well as negative multiplication satisfies this property. Positive multiplication returns
the product only if both arguments are positive, while negative multiplication returns the
negated product if both arguments are negative. In order to obtain a polynomial algo-
rithm also in presence of minima with constants, we instrument the basic Bellman-Ford
algorithm to identify loops along which values might increase unboundedly. Once we
have short-circuited the possibly costly iteration of such a loop we restart the Bellman-
Ford algorithm until no further increments are found.

In the next step, we consider systems of equations over intervals using least upper
bound, addition, negation, multiplication with positive constants as well as intersections
with constant intervals and arbitrary multiplication of intervals. We show that comput-
ing the least solution of such systems can be reduced to computing the least solution of
corresponding systems of integer equations. This reduction is inspired by the methods
from [5] for interval equations with unrestricted intersections and the ideas of Leroux
and Sutre [7], who first proved that interval equations with intersections with constant
intervals as well as full multiplication can be solved in cubic time.

The rest of the paper is organized as follows. In Section 2, we introduce basic no-
tions and consider methods for general systems of equations over Z . Then we consider
two classes of systems of equations over Z where least solutions can be computed
in polynomial time. In Section 3, we consider systems of integer equations without
minimum. In Section 4, we extend these methods to systems of equations where right-
hand sides are Bellman-Ford functions. These systems can be solved in quadratic time
(if arithmetic operations are executed in constant time). In Section 5, we then present
our cubic time procedure for computing least solutions of systems of integer equations
which additionally use minima with constants. In Section 6, we apply these techniques
to construct a cubic algorithm for the class of interval equations considered by Su and
Wagner [11] — even if additionally arbitrary multiplication of interval expressions is
allowed.

2 Notation and Basic Concepts

Assume we are given a finite set of variables X. We are interested in solving systems
of constraints over the complete lattice Z = Z ∪ {−∞,∞} equipped with the natural
ordering:

−∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . <∞
On Z , we consider the operations addition, multiplication with nonnegative constants,
minimum “∧” and maximum “∨”. All operators are commutative where minimum,
addition, and multiplication also preserve −∞. Moreover for every x > −∞,

x+∞ =∞ 0 · ∞ = 0
x · ∞ =∞ whenever x > 0 x · ∞ = −∞ whenever x < 0

For a finite set X of variables, we consider systems of equations

x = e , x ∈ X

where the right-hand sides e are expressions built from constants and variables from X
by means of maximum, addition, multiplication with positive constants and minimum
with constants. Thus right-hand sides e are of the form

e :: = a | y | e1 ∨ e2 | e1 + e2 | b · e | e1 ∧ a

for variables y ∈ X and a, b ∈ Z where a > −∞ and b > 0. Note that we excluded
general multiplication since multiplication with negative numbers is no longer mono-
tonic. Similar systems of equations have been investigated in [10] where polynomial
algorithms for computing least upper bounds are presented — but only when comput-
ing least solutions over nonnegative integers.

A function µ : X → Z is called a variable assignment. Every expression e defines
a function JeK : (X→ Z)→ Z that maps variable assignments to values, i.e.:

[[a]]µ = a [[x]]µ = µ(x)
[[e1 ∨ e2]]µ = [[e1]]µ ∨ [[e2]]µ [[e1 + e2]]µ = [[e1]]µ+ [[e2]]µ
[[b · e]]µ = b · [[e]]µ [[e ∧ a]]µ = [[e]]µ ∧ a

for a ∈ Z , x ∈ X, b > 0 and expressions e, e1, e2. For a system E of equations, we also
denote the function [[e]] by fx, if x = e is the equation in E for x. A variable assignment
µ is called a solution of E iff it satisfies all equations in E , i.e. µ(x) = fxµ for all
x ∈ X. Likewise, µ is a pre-solution iff µ(x) ≤ fxµ for all x ∈ X. Since the mappings
fx are monotonic, every E has a unique least solution. In the following, we denote by
|E| the sum of expression sizes of right-hand sides of the equations in E . The following
fact states bounds on the sizes of occurring values of variables:

Proposition 1. Assume that E is a system of integer equations with least solution µ∗.
Then we have:

1. If µ∗(x) ∈ Z for a variable x, then:

−(B ∨ 2)|E| ·A ≤ µ∗(x) ≤ (B ∨ 2)|E| ·A

where A and B bound the absolute values of constants a ∈ Z and constant multi-
pliers b ∈ N, respectively, which occur in E .

2. If E does not contain multiplication or addition of variables, the bounds under 1
can be improved to:

Σ− ≤ µ∗(x) ≤ Σ+

where Σ− and Σ+ are the sums of occurrences of negative and positive numbers,
respectively, in E . 2

In order to prove these bounds, we observe that they hold for systems of constraints
without minimum operators. Then we find that for every E , we can construct a system
of equations E ′ without minimum operators by appropriately replacing every minimum
expression by one of its arguments in such a way that E ′ has the same least solution as
E .

Due to Proposition 1, the least solutions of systems of equations over Z are com-
putable by performing ordinary fixpoint iteration over the finite lattice

Za,b = {−∞ < a < . . . < b <∞}

for suitable bounds a < b. This results in practical algorithms if a reasonably small
difference b−a can be revealed. In the following, we consider algorithms whose runtime
does not depend on the particular sizes of occurring numbers – given that operations and
tests on integers take time O(1).

3 Integer Equations without Minimum

We first consider systems of integer equations without minimum. Let us call these sys-
tems disjunctive. Note that we obtain the equational formulation of the single-source
longest path problem for positive and negative edge weights if we restrict systems of
disjunctive equations further by excluding multiplication and addition of variables in
right-hand sides. By replacing all weights a with −a, the latter problem is a reformula-
tion of the single-source shortest path problem (see, e.g., [1]).

In [6], Knuth considers a generalization of the single-source shortest path problem
with nonnegative edge weights to grammars. In a similar sense, computing least solu-
tions of systems of disjunctive constraints can be considered as a generalization of the
single-source shortest path problem with positive and negative edge weights. For the lat-
ter problem, only quadratic algorithms are known [1]. Here, we observe that quadratic
time is also enough for systems of disjunctive constraints:

Theorem 1. The least solution of a disjunctive system E of equations with n variables
can be computed in time O(n · |E|).

Proof. As a generalization of the Bellman-Ford algorithm [1] we propose alg. 1 for
computing the least solution of the system E . The algorithm consists of two nested loops
l1, l2 where the first one corresponds to n rounds of round robin fixpoint iteration, and
the second one differs from the first in widening the value of a variable to∞ whenever
a further increase is observed. Let µ∗ denote the least solution of E . For a formal proof,
let us define F : (X→ Z)→ (X→ Z) by

F (µ)(x) = [[e]]µ if (x = e) ∈ E

Algorithm 1
forall (x ∈ X) µ(x) = −∞;
for (i = 0; i < n; i++)

forall ((x = e) ∈ E)
µ(x) = µ(x) ∨ [[e]]µ;

for (i = 0; i < n; i++)
forall ((x = e) ∈ E)

if (µ(x) 6≥ [[e]]µ) µ(x) =∞;
return µ;

for µ : X→ Z . Additionally we define the variable assignments µi for i ∈ N0 by

µ0(x) = −∞ for x ∈ X
µi = F i(µ0) for i ∈ N.

Thus
∨
i∈N0

µi = µ∗ and in particular µi ≤ µ∗ for all i ∈ N. In order to prepare us for
the proof, we introduce the following notion. Variable x µ-depends on x′ iff

F (µ⊕ {x′ 7→ µ(x′) + δ})(x) ≥ F (µ)(x) + δ

for all δ ≥ 0. Here, ⊕ denotes the update operator for variable assignments. We claim:
Claim 1: Let k ≥ 1. Assume that µk+1(x) > µk(x). There exists a y s.t. x µk-depends
on y with µk(y) > µk−1(y). 2

The key observation is stated in the following Claim.
Claim 2: µn(x) = µ∗(x) whenever µ∗(x) <∞.

Proof. Assume µ∗(x) > µn(x). Thus there exists an index k ≥ n s.t. µk+1(x) >
µk(x). Claim 1 implies that there exist variables

xk+1,xk, . . . ,x1

where xk+1 = x and xi+1 µi-depends on xi for i = 1, . . . , k. Since there are at least
n + 1 elements in the sequence xk+1, . . . ,x1, the pigeon-hole principle implies that
there must be a variable x′ which occurs twice. W.l.o.g., let j1 < j2 s.t. x′ = xj1 = xj2 .
Furthermore by assumption µj2(x

′) > µj1(x
′).

By a straight forward induction it follows that

F j2−j1(µj1 ⊕ {x′ 7→ µj1(x
′) + δ})(x′) ≥ µj2(x′) + δ (1)

Let δ := µj2(x
′)− µj1(x′) > 0. Then

µ∗(x′) ≥ F i(j2−j1)(µj2)(x′)
≥ F i(j2−j1)(µj1 ⊕ {x′ 7→ µj1(x

′) + δ})(x′) (monotonicity)
≥ F (i−1)(j2−j1)(µj1 ⊕ {x′ 7→ µj2(x

′) + δ})(x′) (1)
= F (i−1)(j2−j1)(µj1 ⊕ {x′ 7→ µj1(x

′) + 2δ})(x′) (def. δ)
≥ · · · ≥ µj2(x′) + iδ

for every i ∈ N. Since x depends on x′, we conclude that µ∗(x) = ∞. This proves
claim 2. 2

Let µ̂i denote the value of the program variable µ after execution of the i-th nested
loop. By construction µn ≤ µ̂1 ≤ µ∗. Whenever a further increase in the second nested
loop can be observed, we know that µ ≤ µ∗ and by claim 2, that after the modification
µ ≤ µ∗ still holds. Thus, µ̂2 ≤ µ∗.

To show that µ̂2 = µ∗ recall that there are n variables. Therefore, at most n variables
can be set to∞— implying that the least fixpoint is reached after at most n rounds. 2

4 Extension with Positive and Negative Multiplications

Algorithm 1 can be generalized also to systems of equations which utilize a wider range
of operators. We observe:

Proposition 2. For any monotonic function f : (X → Z) → Z , the two following
conditions are equivalent:

(i) for any µ : (X → Z) and any Y ⊆ X, if f(µ ⊕ {y 7→ −∞ | y ∈ Y}) < f(µ)
then there is y ∈ Y such that f(µ⊕ {y 7→ µ(y) + i}) ≥ f(µ) + i for all i ≥ 0.

(ii) for any µ : (X → Z) and any x ∈ X, if f(µ ⊕ {x 7→ −∞}) < f(µ) then
f(µ⊕ {x 7→ µ(x) + i}) ≥ f(µ) + i for all i ≥ 0.

Proof. (i) ⇒ (ii) is trivial. For any µ : (X → Z) and any subset Y ⊆ X, we will
write µY for µY = µ⊕ {y 7→ −∞ | y ∈ Y}. Assume that (ii) holds, and let us prove
by induction on |Y| that (i) holds. The case of Y = ∅ is trivial and the basis |Y| = 1
follows from (ii). To prove the induction step, let Y ⊆ X with |Y| > 1 and assume
that f(µY) < f(µ). Pick some y ∈ Y and let Z = Y \ {y}. If f(µZ) < f(µ) then we
derive from the induction hypothesis that there is z ∈ Z ⊆ Y such that f(µ ⊕ {z 7→
µ(z) + i}) ≥ f(µ) + i for all i ≥ 0. Otherwise, f(µZ ⊕ {y 7→ −∞}) = f(µY) <
f(µ) = f(µZ), and we deduce from (ii) that f(µZ ⊕ {y 7→ µ(y) + i}) ≥ f(µZ) + i
for all i ≥ 0. We come to f(µ ⊕ {y 7→ µ(y) + i}) ≥ f(µ) + i for all i ≥ 0 since
µ ≥ µZ and f(µ) = f(µZ). We have thus shown that (i) holds for all Y ⊆ X. 2

We call a function f : (X → Z) → Z Bellman-Ford function (short: BF-function)
when it is monotonic and it satisfies any (or equivalently all) of the above conditions.

We remark that the class of Bellman-Ford functions is incomparable to the class of
bounded-increasing functions as considered in [7]. Bounded-increasing functions are
monotonic functions f : (X → Z) → Z such that f(µ1) < f(µ2) for all µ1, µ2 :
X → Z with µ1 < µ2, f(λx. − ∞) < f(µ1) and f(µ2) < f(λx.∞). However,
for any bounded-increasing function f : (X → Z) → Z , if (1) f is continuous (i.e.
f(
∨
k µk) =

∨
k f(µk) for every ascending chain µ0 ≤ µ1 ≤ · · ·) and (2) f(λx. −

∞) = −∞ and f(λx.∞) =∞, then f is a Bellman-Ford function.
Let us call a k-ary operator 2 a BF-operator, if the function f2(µ) =

2(µ(x1), . . . , µ(xk)) (for distinct variables xi) is a BF-function.

Clearly, addition itself is a BF-operator as well as the least upper bound operation
and the multiplication with constants. For simulating multiplication of intervals, we
further rely on the following two approximative versions of multiplication:

x ·+ y =
{
x · y if x, y > 0
−∞ otherwise x ·− y =

{
−(x · y) if x, y < 0
∞ otherwise

We call these positive and negative multiplication, respectively. Note that, in contrast to
full multiplication over the integers, both versions of multiplication are monotonic. Ad-
ditionally, they satisfy the conditions for BF-functions and therefore are BF-operators.
By induction on the structure of expressions, we find:

Lemma 1. Assume e is an expression built up from variables and constants by means
of application of BF-operators. Then the evaluation function [[e]] for e is a BF-function.

Let us call an equation x = e BF-equation, if [[e]] is a BF-function. Our key observation
is that the Bellman-Ford algorithm can be applied not only to disjunctive systems of
equations but even to systems of BF-equations. In order to adapt the proof of theorem
1, we in particular adapt the proof of claim 1. We use the same notations from that
proof. Let k ≥ 1 and assume that µk+1(x) > µk(x). Then (x = e) ∈ E for some
expression e. The monotonic function fx = JeK is a Bellman-Ford function where
µk+1(x) = fx(µk) and µk(x) = fx(µk−1), and recall that µk ≥ µk−1.

Let Y = {y ∈ X | µk(y) > µk−1(y)}. Since fx(µk ⊕ {y 7→ −∞ | y ∈ Y}) ≤
fx(µk−1) < fx(µk), we get from Proposition 2 that there is some y ∈ Y such that
f(µk ⊕ {y 7→ µk(y) + i}) ≥ f(µk) + i for all i ≥ 0. Hence, x µk-depends on y, and
moreover, µk(y) > µk−1(y) as y ∈ Y. This completes the proof of this claim.

Altogether, we obtain:

Theorem 2. The least solution of a system E of BF-equations with n variables can be
computed in time O(n · |E|).

It is important here to recall that we consider a uniform cost measure where each op-
erator can be evaluated in time O(1). If besides addition, also positive and negative
multiplication is allowed, then the sizes of occurring numbers may not only be single
exponential, but even double in the occurring numbers. More precisely, assume that µ∗

is the least solution of E x is a variable of E with µ∗(x) ∈ Z. Then

(A ∨ 2)|E|
n

≤ µ∗(x) ≤ (A ∨ 2)|E|
n

where A is an upper bound to the absolute values of constants c ∈ Z occurring in E ,
and n is the number of variables.

5 Integer Equations with Minimum

In this section, we extend the results in the previous section by additionally allowing
minima with constants. For convenience, let us assume that all right-hand sides r in the
system E of equations either are of the following simple forms:

r ::= a | y | 2(y1, . . . ,yk) | y ∧ a

for constants a ∈ Z, variables y and BF-operators 2. Note that now the size |E| of E
is proportional to the number of variables of E . Our main result for systems of such
equations is:

Theorem 3. The least solution of a system E of integer equations using BF-operators
and minima with constants can be computed in time O(|E|3).

Proof. Let µ∗ denote the least solution of E . We introduce the following notions. We
call a sequence P = (y1, . . . ,yk+1) ∈ X∗ a path if for every i = 1, . . . , k, variable
yi+1 occurs in the right-hand side of the equation for yi in E . Thus, given a variable
assignment µ, the path p represents the transformation [[p]]µ : Z 7→ Z defined by

[[p]]µ(z) = [[e1]](µ⊕ {y2 7→ [[e2]](. . . [[ek]](µ⊕ {yk+1 7→ z}) . . .)})

where yi = ei is the equation for yi in E .
The path p is called a cycle iff yk+1 = y1. The cycle p is called simple if the

variables y1, . . . ,yk are pairwise distinct.
In order to enhance alg. 1 for systems with minima, assume that an increase of the

value of the variable x can be observed within the first iteration of the second nested
loop. Then there exists a simple cycle c = (y1, . . . ,yk,y1) that can be repeated until
either all variables yi receive values∞ or the value of the argument e′ in some mini-
mum expression y ∧ a occurring along the cycle exceeds a. In order to deal with this,
we provide the following modified version of the Bellman-Ford algorithm:

1. We initialize the variable assignment µ s.t. every variable is mapped to −∞ and
execute the first phase of alg. 1 which consists of n Round-Robin iterations.

2. Then we perform the second phase. If no increment in the second phase can be
detected, we have reached the least solution and return µ as result.

3. Whenever an increment in the second phase under a current variable assignment
µ is detected, we try to extract a simple cycle c = (y1, . . . ,yk,y1) s.t. f ′c,µ(v) >
v for some v < µ(y1). If this is possible, then we do an accelerated fixpoint
computation on the cycle c to determine new values for the variables y1, . . . ,yk.
We then update the variables with the new values and restart the procedure with
step 2.

This gives us alg. 2. Extra effort is necessary in order to extract cycles in the sec-
ond phase which can be repeated. For that, the algorithm records in the variable time ,
the number of equations evaluated so far. Moreover for every variable x, it records
in modified(x) the last time when the variable x has received a new value, and in
evaluated(x) the last time when the equation for x has been evaluated. Also, it records
for every variable x in pred(x) a variable n the right-hand side of x which may have
caused the increase and can give rise to an increase in the future. If no such occur-
rence exists, then pred(x) is set to ⊥. This is implemented by the function pred(x).
Let µ denote the current variable assignment, and assume that the right-hand side of
x is r. Furthermore, let Y denote the set of variables y occurring in r which have
been modified after the last evaluation of x, i.e., modified(y) ≥ evaluated(x). Since
the value of x has increased, Y is non empty and, in particular, r cannot be equal
to a constant. If r = y, then pred(x) = y. If r = y ∧ c, then pred(x) = ⊥

Algorithm 2
forall (x ∈ X) µ(x) = −∞;

do {
done = true ; time = 0;
forall (x ∈ X) {modified(x) = 0; pred(x) = ⊥; evaluated(x) = 0;
}
for (i = 0; i < n; i++)

forall ((x = e) ∈ E) {
time++;
if ([[e]]µ > µ(x)) {

pred(x) = pred(x);µ(x) = [[e]]µ; modified(x) = time;
}
evaluated(x) = time;

}
forall ((x = e) ∈ E)

if ([[e]]µ > µ(x)) {
µ(x) = [[e]]µ;
if (µ(x) <∞){

widen(x); done = false ; break;
} ;

}
} until (done);
return µ;

if µ(y) ≥ c and pred(x) = y otherwise. Finally, assume r = 2(y1, . . . ,yk) and
let vj = µ(yj) for all j. Furthermore, let v′j = vj if yj 6∈ Y, i.e., has not been
changed since the last evaluation of x, and v′j = −∞ otherwise. Then 2(v′1, . . . , v

′
k) <

2(v1, . . . , vk). Since 2 is a BF-operator, we thus can retrieve an index j such that
2(v1, . . . , vj−1, vj + d, vj+1, . . . , vk) ≥ 2(v1, . . . , vk) + d for all d ≥ 0. Accordingly,
we set pred(x) = yj . The following observation shows that pred can be computed in
time O(1) if the maximal arity of the BF-operators is considered as a constant.

Lemma 2. Consider a BF-function f : (X → Z) → Z and a variable assignment
µ : X → Z and a variable x ∈ X. We have f(µ ⊕ {x 7→ µ(x) + 1}) ≥ f(µ) + 1 iff
f(µ⊕ {x 7→ µ(x) + i}) ≥ f(µ) + i for all i ≥ 0.

Example 1. Let µ := {x 7→ −10,y 7→ 0} and consider the equation z = x ∨ y. Then
for Y = {x,y}, the function call pred(z) returns the variable y.

Now we consider the second phase of alg. 2. Whenever a finite increase of the value
of a variable x is detected, widen(x) is called (see alg. 3).

Algorithm 3 widen(x)
c = (y1, . . . ,yk,y1) = extract cycle(x);

µ(y1) = µ(y1) ∨ eval cycle(c);
for (i = k; i ≥ 2; i−−)

µ(yi) = µ(yi) ∨ fyi(µ);

Within the procedure widen(), the function extract cycle() is used to extract a cycle
which has caused the increase and possibly causes further increases in the future. It
works as follows. The call extract cycle(x) for a variable x looks up the value of
pred(x). If pred(x) 6= ⊥ a variable x1 in the right-hand side for x is returned. Then the
procedure records (x1) and proceeds with the value stored in pred(x1) and so on. Thus,
it successively visits a path according to the information stored in pred until it either
reaches ⊥ or visits a variable for the second time. In the latter case we obtain a simple
cycle (y1, . . . ,yk,y1). With a cyclic permutation modified(y1) is assumed maximal.
In the former case, the empty sequence will be returned.

The procedure eval cycle() does the accelerated fixpoint computation on a given
cycle. The function eval cycle() takes a simple cycle c = (y1, . . . ,yk,y1). Let f :=
[[c]]µ and assume that f(v) > v for some v ≤ µ(y1). Then eval cycle() computes∨
i∈N f

i(v). As monotonic functions over a linear order are distributive over ∧, note
that f(z) can be written as

f(z) = f ′(z) ∧ b′

for some unary BF-function f ′ and b′ ∈ Z . Since f(v) > v, b′ ≥ f ′(v) > v. Therefore,∨
i∈N

f i(v) = b′ = f(∞)

We conclude that
∨
i∈N f

i(v) can be computed in time linear to the size of the simple
cycle c. Furthermore,

∨
i∈N f

i(v) ≤ µ∗(y1) by construction. Thus, we have shown the
following claim:

Claim 1: Assume that c is a simple cycle which starts with the variable y1. Assume that
µ ≤ µ∗ and v ≤ µ(y1) are s.t. f(v) := [[c]]µ(v) > v. Then v′ :=

∨
i∈N f

i(v) ≤ µ∗(y1)
and v′ can be computed in time linear to the size of c. 2

For a formal proof of correctness of the algorithm, let µi denote the variable assignment
µ before the i-th extraction of a simple cycle and ci the value of c after the i-th extraction
of a simple cycle. Thereby ci can be ⊥. Let furthermore µ′i denote the value of µ after
the i-th call of the procedure widen().

First, we show that the widening is correct, i.e., µ′i ≤ µ∗ for all i. For that, we only
need to consider the case in which the i-th extraction leads to a simple cycle ci and
not to ⊥. Thanks to Claim 1, we only need to show that the assertions of Claim 1 are
fulfilled for every call of the procedure widen() in which extract cycle extracts a
simple cycle. Thus we must show:

Claim 2: Assume that ci 6= ⊥ is a simple cycle which starts with the variable y1. Then
([[ci]]µi)(v) > v for some value v < µi(y1).

Proof. Assume that ci = (y1, . . . ,yk,y1) where yj = ej is the equation for yj . Ob-
serve that the algorithm always records an occurrence of a variable which possibly has
caused the increase. Therefore, by monotonicity, [[ej]]µi is at least the current value
µi(yj) of the left-hand side yj . This means for the cycle ci that

µi(y1) ≤ [[e1[µi(y2)/y2]]]µi ∧ . . . ∧ µi(yk−1) ≤ [[ek−1[µi(yk)/yk]]]µi

as well as
µi(yk) ≤ [[ek[v/y1]]]µi

where v is the value of the variable y1 at the last point in time where the evaluation
of the equation yk = ek lead to an increase. As modified(y1) is maximal, we get
v < µi(y1). Since by construction, ([[ci]]µi)(v) ≥ µi(y1) > v, the assertion follows. 2

Assume again that ci = (y1, . . . ,yk,y1) is a simple cycle and assume as induction
hypothesis, that the variable assignment µ′i−1 after the (i− 1)-th widening is less than
or equal to the least solution µ∗ of the system E . Since the variable assignment µi
before the extraction of the cycle ci is computed by fixpoint iteration, it follows that
µi ≤ µ∗. Let v′ denote the values returned from the i-th call of eval cycle(). By
Claim 1, v′ ≤ µ∗(y). Since the rest of procedure widen() consists in ordinary fixpoint
iteration, we obtain µ′ ≤ µ∗.

Thus by construction, alg. 2 returns µ∗ — whenever it terminates. In order to prove
termination, let M(E) denote the set of minimum expressions occurring in E . We show
the following claims which imply that a progress occurs at each increase of a variable’s
value in the second phase, i.e., either one further variable receives the value∞ or an-
other minimum can (conceptually) be replaced by its constant argument.

Claim 3: Assume that ci = ⊥. Then
– either there exists a variable x such that µ′i−1(x) <∞ and µi(x) =∞;
– or there exists a subexpression y ∧ a from M(E) s.t. µ′i−1(y) < a and µi(y) ≥ a.

Proof. ci = ⊥ implies that the procedure pred() returned ⊥ for one of the equations
x = e in the same iteration of the main loop. This is because all values of pred()
reachable within n steps by extract cycle() have been modified during this iteration.
Longer paths would imply finding a simple cycle. However, the procedure pred() only
returns ⊥ if some minimum a is reached which had not been reached before. 2

From Claim 3 and the fact that the sequence (µ′i) is increasing we conclude that for
every i,

{x ∈ X | µ′i(x) =∞}) {x ∈ X | µ′i−1(x) =∞}

or
{x ∧ a ∈M(E) | [[x]]µ′i ≥ a}) {x ∧ a ∈M(E) | [[x]]µ′i−1 ≥ a}.

Accordingly, the algorithm can perform at most O(|E|) iterations of the outer while-
loop. Since every iteration of the outer loop of the algorithm can be executed in time
O(n · |E|), the assertion follows. 2

Example 2. Consider the following system of equations:

x = y ∧ 5 y = z ∧ 3 z = −17 ∨ z + 2

The first three rounds of Round-Robin iteration give us:

0 1 2
x −∞ −∞ −15
y −∞ −15 −13
z −15 −13 −11

Since the value of x still increases during the next round of evaluation, we call the
function widen() with the variable x. Within widen() the function extract cycle
is called which returns the simple cycle (z, z). — giving us the new value ∞ for z.
Restarting the Round-Robin iteration for all variables, reveals the least solution:

µ∗(x) = 3 µ∗(y) = 3 µ∗(z) =∞

6 Intervals

In this section, we consider systems of equations over the complete lattice of integer
intervals. Let

I = {∅} ∪ {[z1, z2] ∈ Z2 | z1 ≤ z2, z1 <∞,−∞ < z2}

denote the complete lattice of intervals partially ordered by the subset relation (here
denoted by “v”). The empty interval ∅ is also denoted by [∞,−∞]. It is the least
element of the lattice while [−∞,∞] is the greatest element, and the least upper bound
“t” is defined by:

[a1, a2] t [b1, b2] = [a1 ∧ b1, a2 ∨ b2]

Here, we consider systems of equations over I similar to the ones we have considered
over Z with the restriction that at least one argument of every intersection is constant.
Instead of multiplication with positive constants only, we now also support negation as
well as full multiplication of interval expressions. For a fixed set X of variables, we
consider expressions e of the form

e ::= a | y | c · e | −e | e1 t e2 | e1 + e2 | e u a | e1 · e2

where a ∈ I, c > 0 is a positive integer constant, and y is a variable from X.
As for expressions over Z , we rely on an evaluation function [[e]] for interval ex-

pressions e built up from variables and constants by means of applications of operators.
The function [[e]] then maps variable assignments µ : X → I to interval values. Note
that (in contrast to the integer case) full multiplication of intervals still is monotonic.
Therefore, every system of interval equations has a unique least solution.

Our goal is to reduce solving of systems of equations over intervals, to solving of
systems equations over integers. For that, we define the functions (·)+, (·)− : I → Z
which extract from an interval the upper and negated lower bound, respectively. These
functions are defined by:

∅+ = ∅− = −∞ [a, b]+ = b [a, b]− = −a

where [a, b] ∈ I. Thus x+ denotes the upper bound and x− denotes the negated lower
bound of x ∈ I. In the following, we indicate how operations on intervals can be
realized by means of integer operations on interval bounds.

Assume x, y ∈ I are intervals and c > 0. Then we have:

(c · x)− = c · x−
(c · x)+ = c · x+

(−x)− = x+

(−x)+ = x−

(x t y)− = x− ∨ y−
(x t y)+ = x+ ∨ y+

(x+ y)− = x− + y−

(x+ y)+ = x+ + y+

(x u y)− = (x+ + y−); (x− + y+);x− ∧ y−
(x u y)+ = (x+ + y−); (x− + y+);x+ ∧ y+

(x · y)− = −(x−·y−) ∨ −(x+·y+) ∨ x−·y+ ∨ x+·y−
= (x−·−y− ∧ 0) ∨ (x+·−y+ ∧ 0) ∨ x−·+y+ ∨ x+·+y−

(x · y)+ = x−·y− ∨ x+·y+ ∨ −(x−·y+) ∨ −(x+·y−)
= x−·+y− ∨ x+·+y+ ∨ (x−·−y+ ∧ 0) ∨ (x+·−y− ∧ 0)

Here, the operator x; y returns −∞ if x < 0 and y otherwise. This operator can be
expressed by means of positive multiplication together with a minimum with 0:

x ; y = (((x+ 1) ·+ 1) ∧ 0) + y

Additionally, we observe that w.r.t. the interval bounds, interval multiplication can be
expressed through positive and negative multiplications together with minima with 0.

Every system E of interval equations gives rise to a system E± of integer equations
over Z for the upper and negated lower bounds for the interval values of the variables
from E . For every variable x of the interval system E , we introduce the two integer
variables x−,x+. The variable x+ is meant to receive the upper interval bound of x
whereas the variable x− is meant to receive the negated lower interval bound of x.

Every equation x = e of E then gives rise to the equations x− = [e]− and x+ =
[e]+ of E± for the new integer variables corresponding to the left-hand side x where the
new right-hand sides [e]− and [e]+ are obtained by the following transformations:

[[a1, a2]]− = −a1 [[a1, a2]]+ = a2

[x]− = x− [x]+ = x+

[c · e]− = c · [e]− [c · e]+ = c · [e]+
[−e]− = [e]+ [−e]+ = [e]−

[e1 t e2]− = [e1]− ∨ [e2]− [e1 t e2]+ = [e1]+ ∨ [e2]+

[e1 + e2]− = [e1]− + [e2]− [e1 + e2]+ = [e1]+ + [e2]+

[e u a]− = ([e]+ + a−); ([e]− + a+); [e]− ∧ a−
[e u a]+ = ([e]+ + a−); ([e]− + a+); [e]+ ∧ a+

[e1 · e2]− = ([e1]−·−[e2]− ∧ 0) ∨ ([e1]+·−[e2]+ ∧ 0) ∨ [e1]−·+[e2]+ ∨ [e1]+·+[e2]−

[e1 · e2]+ = [e1]−·+[e2]− ∨ [e1]+·+[e2]+ ∨ ([e1]−·−[e2]+ ∧ 0) ∨ ([e1]+·−[e2]− ∧ 0)

We have:

Proposition 3. Assume that E is a system of equations over the complete lattice of
intervals, and E± is the corresponding system for the negated lower and upper interval
bounds of values for the variables of E . Let µ and µ± denote the least solutions of E and
E±, respectively. Then for every variable x of E , (µ(x))− = µ±(x−) and (µ(x))+ =
µ±(x+). 2

Proposition 3 follows by standard fixpoint induction. By Proposition 3, computing least
solutions of systems of interval equations reduces to computing least solutions of sys-
tems of equations over Z using the BF operators maximum, addition, multiplication
with positive constants, positive and negative multiplications together with minima with
constants. Thus, theorem 3 is applicable, and we obtain:

Theorem 4. The least solution of a system E of interval equations can be computed in
time O(|E|3).

Note that before application of theorem 3, we must instroduce auxiliary variables for
simplifying complex interval expressions in right-hand sides of E . Furthermore, the
transformations [.]− and [.]+ may produce composite expressions which we again de-
compose by means of auxiliary variables. The number of these fresh variables, how-
ever, is linear in the number of occurring multiplications and thus altogether bounded
by O(|E|).

7 Conclusion

We presented a cubic time algorithm for solving systems of integer equations where
minimum is restricted to always have at least one constant argument. The methods re-
lied on a subtle generalization of the Bellman-Ford algorithm for computing shortest
paths in presence of positive and negative edge weights. We also observed that this al-
gorithm is still applicable when right-hand sides of equations not only contain maxima,
addition and multiplication with constants, but additionally use positive and negative
multiplications.

In the second step, we showed how solving systems of interval equations with addi-
tion, full multiplication and intersection with constant intervals can be reduced to solv-
ing systems of integer equations. In particular, the restricted variants of multiplication
allowed us to simulate full interval multiplication as well as to construct tests whether
or not the intersection of an interval with a constant interval is empty. The one hand,
our methods thus clarifies the upper complexity bound for solving systems of interval
equations with intersection with constant intervals as presented by Su and Wagner [11];
on the other hand the approach generalizes the system of equations considered in [11]
by additionally allowing full multiplication of intervals.

Our algorithms were designed to be uniform, i.e., have run-times independent of
occurring numbers — given that arithmetic operations are counted as O(1). This is a
reasonable assumption when multiplication is allowed with constants only. It is also

reasonable in presence of full multiplication for intervals — given that numbers are
from a fixed finite range only.

In [5], the ideas presented here have been extended to work also for systems of
interval equations with full multiplication as well as with arbitrary intersections.

References

1. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. 2nd Edition.
MIT Press, Cambridge, MA, U.S.A., 2001.

2. P. Cousot and R. Cousot. Static Determination of Dynamic Properties of Programs. In
Second Int. Symp. on Programming, pages 106–130. Dunod, Paris, France, 1976.

3. P. Cousot and R. Cousot. Comparison of the Galois Connection and Widening/Narrowing
Approaches to Abstract Interpretation. JTASPEFL ’91, Bordeaux. BIGRE, 74:107–110, Oct.
1991.

4. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTRÉE Analyser. In European Symposium on Programming (ESOP), volume 3444 of
LNCS, pages 21–30. Springer, 2005.

5. T. Gawlitza and H. Seidl. Precise Fixpoint Computation Through Strategy Iteration. In
European Symposium on Programming (ESOP), pages 300–315. Springer Verlag, LNCS
4421, 2007.

6. D. E. Knuth. A Generalization of Dijkstra’s algorithm. Information Processing Letters (IPL),
6(1):1–5, 1977.

7. J. Leroux and G. Sutre. Accelerated Data-Flow Analysis. In Static Analysis, 14th Int. Symp.
(SAS), pages 184–199. LNCS 4634, Springer, 2007.

8. A. Miné. Relational Abstract Domains for the Detection of Floating-Point Run-Time Er-
rors. In European Symposium on Programming (ESOP), volume 2986 of LNCS, pages 3–17.
Springer, 2004.

9. A. Miné. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In
Verification, Model Checking, and Abstract Interpretation, 7th Int. Conf. (VMCAI), pages
348–363. LNCS 3855, Springer Verlag, 2006.

10. H. Seidl. Least and Greatest Solutions of Equations over N . Nordic Journal of Computing
(NJC), 3(1):41–62, 1996.

11. Z. Su and D. Wagner. A Class of Polynomially Solvable Range Constraints for Interval
Analysis Without Widenings. Theor. Comput. Sci. (TCS), 345(1):122–138, 2005.

