
FAST Extended Release (Tool Paper)

Sébastien Bardin1, Jérôme Leroux2, and Gérald Point2

1 LSV: ENS de Cachan & CNRS,
61, av. Pdt. Wilson, 94235 Cachan Cedex, France.

bardin@lsv.ens-cachan.fr
2 LABRI: Uni. Bordeaux 1 & CNRS,

351, cours de la Libération
F-33405 Talence cedex, France
{leroux,point}@labri.fr

Abstract. Fast is a tool designed for the analysis of counter systems,
i.e. automata extended with unbounded integer variables. Despite the
reachability set is not recursive in general, Fast implements several in-
novative techniques such as acceleration and circuit selection to solve
this problem in practice. In its latest version, the tool is built upon an
open architecture: the Presburger library is manipulated through a clear
and convenient interface, thus any Presburger arithmetics package can
be plugged to the tool. We provide four implementations of the inter-
face using Lash, Mona, Omega and a new shared automata package
with computation cache. Finally new features are available, like di�erent
acceleration algorithms.

Keywords: counter systems veri�cation, acceleration, generic Presburger inter-
face, automata with cache computation.

1 Introduction

The automatic veri�cation of reactive systems is a major �eld of research. A
popular way of modeling such systems is by means of (synchronized) automata
extended with variables. The automata represent the control structure of the
system, while variables encode data. Fast is a tool for the analysis of systems
manipulating unbounded integer variables. We check safety properties by com-
puting the reachability set of the systems. Even if this reachability set is not
necessarily recursive, we use innovative techniques (acceleration, �attening, re-
duction) to increase convergence. Fast relies heavily on Presburger arithmetics
for both system/properties speci�cation and symbolic representation of in�nite
sets of states. Fast theoretical background is described in [7, 2, 1, 3].

In our opinion, the following facts make Fast a valuable tool for counter
system analysis. (1) Since counter systems and Presburger constraints are very
expressive, Fast can be applied to a large spectrum of applications and the tool is
not tied to a particular speci�c case-study. (2) Despite the inherent theoretical
limitations, the analysis succeeds in most practical cases. (3) Fast design is



fully based on a clear theoretical framework. Abilities and limits of the tool are
identi�ed: the tool is complete relatively to the class of �attable systems [3]. Since
many decidable subclasses of counter systems are �attable [8], Fast provides
a uni�ed and e�cient veri�cation algorithm for many well-studied classes of
counter systems. (4) Finally the user can guide the tool via a script language,
which is useful since termination cannot be guaranteed.

Experimentations. Fast has been tested over a pool of 40 in�nite-state systems,
and the computation succeeded in around 80% of the tests [2, 1]. In [5] Fast
is used to prove properties of a class of communication protocols manipulating
counters and queues. A comparison of Fast and other tools in [3] shows that
Fast provides a very e�cient engine for (forward) reachability set computation
of counter systems.

Extended Release. This new version provides the following improvements: (1) an
open architecture based on an analysis engine and a convenient interface (API)
for Presburger arithmetics. We provide adaptations of the standard packages
Lash [9],Mona [10] and Omega [11] to the API; (2) a new Presburger package
implementing the API via shared automata [6] equipped with a computation
cache; (3) various add-ons both in the analysis engine and in the interface.

2 Open architecture

The architecture of the tool has been redesigned, and the tool is now divided in
two parts: on the one side, a counter system analysis engine built upon a generic
Presburger API; on the other side various implementations of this API. These
di�erent libraries can be re-used easily in various applications, independently of
Fast and counter system analysis, corresponding to a recurrent demand.

The generic Presburger programming interface (Genepi). The API requires
only basic operations on Presburger formulas such as conjunction, disjunction,
negation, (inverse) projection and satis�ability testing. The API is easy to use,
and it is also quite easy to adapt existing Presburger packages to the API.

Implementations of the API. We provide three implementations of the API based
upon standard packages Lash, Mona and Omega. The Mona implementation
corresponds to the former version of Fast.

Potential applications. People concerned with Presburger packages can take ad-
vantage of our open architecture and API in at least two ways. (1) Presburger
developers. People interested in developing a Presburger package can easily linked
it to Faster and use the tool and the 40 case-studies as intensive benchmarking
for their package. (2) Presburger users. People interested in developing any ap-
plication requiring Presburger arithmetics can use our generic Presburger API,
and then select through the set of implementations which one �ts most their
application.



3 The shared automata package

We have also developed from scratch an implementation of the API using shared
automata introduced by Couvreur in [6]. These automata share their strongly
connected components in a bdd-like manner. It allow to implement important
features for intensive computation, such as cache computation and constant-time
equality testing. Our library is functional, but the computation cache is not yet
well optimized. However it has already permitted to speed up computation time
by a factor 3. The shared automata package is called PresTaf.

4 New features in analysis

The tool has been extended with new capacities, both in the analysis engine
and in the interface. (1) One can specify the acceleration algorithm, choosing
between standard acceleration and convex acceleration [1]. The last one considers
restricted functions but is more e�cient. Di�erent search heuristics are also
available. (2) One can specify some circuits to be used during the analysis. (3)
Finally we developed a tool to transform a Petri net in pnml format into a Fast
model. The language pnml [4] describes various extensions of Petri nets and it
is under standardization.

5 Comparison of Presburger libraries

We present in �gure 1 the performances (time spent in seconds) of Faster
depending on our di�erent implementations of Presburger arithmetics. Columns
V and T denote respectively the number of variables and transitions in the
system. All these systems have in�nite reachability sets, except Dekker.

system V T Mona
∗
Lash PresTaf

∗∗
Omega

Central Server system 13 8 5.94 91.1 7.20 43.3
Consistency Protocol 12 8 77.4 2400 140 50.3
Producer/Consumer Java 18 14 446 2520 57.6 ≥ 3600
CSM - N 13 13 13.1 241 12.5 616
Dekker ME 22 22 11.4 287 12.8 ≥ 3600
Last-in First-served 17 10 0.65 8.12 1.13 13.9
Multipoll 17 20 7.25 283 8.55 295
SWIMMING POOL 9 6 44.1 993 48.6 ≥ 3600

∗ This implementation corresponds to the former version of Fast.
∗∗ A computation cache is available, but not yet optimized.

Fig. 1. Comparison of di�erent Presburger implementations

Even though the computation cache implemented in PresTaf is not fully
optimized, �gure 1 shows that PresTaf and Mona have signi�cantly the same



execution time. Lash seems outperformed by the two previous libraries. Recall
that (1) Lash provides Presburger implementation for negative and non-negative
integers, thanks to more complex algorithms, and (2) Lash does not imple-
ment any computation cache. Omega is also outperformed. The tool appears to
compute unduly complicated Presburger formulas (even with the simpli�cation
method provided by the package), while Lash, Mona and PresTaf bene�t
from canonical representations of formulas.

In the previous table, the memory used is not given because, due to cache
computation, this value is not representative. Without computation cache, since
the internal representations of Lash,Mona and PresTaf are slightly the same,
the three implementations require slightly the same amount of memory.

Availability. Faster,Genepi andPresTaf are available at http://altarica.
labri.fr/. The tool, the API and the libraries are freely available under the
GPL license. The analysis engine is written in C++ and the di�erent implemen-
tations of the API are written in C. Faster has been tested on an Intel PC
running Linux and gcc 4.0.2.

Acknowledgments. We are grateful to Jean-Michel Couvreur for providing
us advices on the implementation of shared automata, and to Ales Smrcka for
adapting Omega source code to recent compilers.

References

1. S. Bardin, A. Finkel, and J. Leroux. Faster acceleration of counter automata. In
TACAS'2004. LNCS 2988. Springer, 2004.

2. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Sym-
bolic Transition systems. In CAV'2003. LNCS 2725. Springer, 2003.

3. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbolic
model checking. In ATVA'2005. LNCS 3707. Springer, 2005.

4. J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, and M. Weber. The Petri Net Markup Language: Concepts,
technology and tools. In ICATPN'2003. LNCS 2679. Springer, 2003.

5. J. Billington, G. E. Gallasch, and L. Petrucci. FAST veri�cation of the class of stop-
and-wait protocols modelled by coloured Petri nets. Nordic Journal of Computing.
To appear.

6. J.-M. Couvreur. A bdd-like implementation of an automata package. In CIAA'2004.
LNCS 3317. Springer, 2004.

7. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications
to broadcast protocols. In FST&TCS'2002. LNCS 2556. Springer, 2002.

8. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In ATVA'2005.
LNCS 3707. Springer, 2005.

9. Lash homepage. http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
10. Mona homepage. http://www.brics.dk/mona/index.html
11. Omega homepage. http://www.cs.umd.edu/projects/omega/


