
The second QBF solvers comparative evaluation?

Daniel Le Berre1, Massimo Narizzano3,
Laurent Simon2, and Armando Tacchella3

1 CRIL, Université d’Artois,
Rue Jean Souvraz SP 18 – F 62307 Lens Cedex, France

leberre@cril.univ-artois.fr
2 LRI, Université Paris-Sud

Bâtiment 490, U.M.R. CNRS 8623 – 91405 Orsay Cedex, France
simon@lri.fr

3 DIST, Università di Genova,
Viale Causa, 13 – 16145 Genova, Italy

{mox,tac}@.dist.unige.it

Abstract. This paper reports about the 2004 comparative evaluation of
solvers for quantified Boolean formulas (QBFs), the second in a series of
non-competitive events established with the aim of assessing the advance-
ments in the field of QBF reasoning and related research. We evaluated
sixteen solvers on a test set of about one thousand benchmarks, selected
from instances submitted to the evaluation and from those available at
www.qbflib.org. In the paper we present the evaluation infrastructure,
from the criteria used to select the benchmarks to the hardware set up,
and we show different views about the results obtained, highlighting the
strength of different solvers and the relative hardness of the benchmarks
included in the test set.

1 Introduction

The 2004 comparative evaluation of solvers for quantified Boolean formulas
(QBFs) is the second in a series of non-competitive events established with the
aim of assessing the advancements in the field of QBF reasoning and related
research. The non-competitive nature of the evaluation is meant to encourage
the developers of QBF reasoning tools and the users of QBF technology to sub-
mit their work. Indeed, our evaluation does not award one particular solver, but
instead draws a picture of the current state of the art in QBF solvers and bench-
marks. Running the evaluation enables us to collect data regarding the strength
of different solvers and methods, the relative hardness of the benchmarks, and
to shed some light on the open issues for the researchers in the QBF community.

With respect to last year evaluation [1] we have witnessed to an almost 50%
increase in the number of submitted solvers (from eleven to sixteen). While most
of the participants are still complete solvers extending the well-known Davis,
? The authors would like to thank all the participants to the QBF evaluation for

submitting benchmarks and solvers.

Putnam, Logemann, Loveland procedure (DPLL) [2, 3] for propositional satisfia-
bility (SAT), the evaluation also hosted one incomplete solver (WalkQSAT [4]),
a solver based on Q-resolution and expansion of quantifiers (quantor [5]), and
a solver using ZBDDs (Zero-suppressed Binary Decision Diagrams) to obtain
a symbolic implementation of the original DP algorithm extended to QBFs
(QMRes [6]). The number of the participants and the variety of the technologies
deployed confirm the vitality of the research on QBF reasoning tools. Regard-
ing applications of QBF reasoning, three families of benchmarks obtained by
encoding formal verification problems have been submitted, for a total of 88
instances. To these we must add 22 families and 814 instances that have been
independently submitted to www.qbflib.org and that have been evaluated this
year for the first time. Finally, the submission of a generator for model A and
model B random instances [7] allowed us to run the participating solvers on a
wide selection of instances generated according to these probabilistic models.

The evaluation consisted of two steps: (i) running the solvers on a selection
of benchmarks, and (ii) analyzing the results. The first step is subject to the
stringent requirements of getting meaningful results and completing the evalu-
ation in a reasonable time. In order to mate these two requirements, we have
extracted the non-random part of the evaluation test set by sampling the pool of
available benchmarks – more than 5000 benchmarks and 68 families – to extract
a much smaller, yet representative, test set of about five hundred instances. To
these, we added representatives from model A and model B families of random
benchmarks to obtain the final test set. Using the selected test set, we have com-
pleted the first step by running the solvers on a farm of PCs, each solver being
restricted to the same amount of time and memory. The second step consisted
of two stages. In the first stage we considered all the solvers and the benchmarks
of the test set to give a rough, but complete, picture of the state of the art in
QBF. By analyzing the results for problems and discrepancies among the solvers
results, we were able to isolate solvers and instances that turned out to be prob-
lematic, and we removed them from the subsequent analysis. The second stage
is an in-depth account of the results, where we tried to extract a narrow, but
crisp, picture of the current state of the art.

The paper is structured as follows. In Section 2 we briefly describe all the
QBF solvers that participated in the evaluation and all the benchmarks that
we used to construct the test set. In Section 3 we present the first step of the
evaluation, i.e., the choice of the test set and a description of the computing
infrastructure where the evaluation ran. In Section 4 we present the results
of the evaluation first stage, including a discussion about discrepancies in the
results of the solvers and the problems detected in the benchmarks. In Section 5
we restrict our attention to the solvers and the benchmarks that passed the first
stage and we present the result of the evaluation arranged solver-wise in Sub. 5.1,
and benchmark-wise in Sub. 5.2. We conclude the paper in Section 6 with a
balance about the evaluation, including a discussion of some open problems and
challenges for the QBF community at large.

2 Solvers and Benchmarks

Sixteen solvers from eleven different authors participated to the evaluation this
year. The requirements for the solvers where to be able to read the input instance
in a common format (the Q-DIMACS format [8]), and to provide the answer
(sat/unsat) in a given output format. Noticeably, all the solvers complied on
the input requirements, which was not the case on the previous evaluation [1],
while a few solvers required wrapper scripts to adapt the output format (ssolve,
qsat, and semprop) or to load additional applications required to run the solver
(openQBF, requiring the JVM). A short description of the solvers submitted
to the evaluation follows:

CLearn by Andrew G.D. Rowley, is a search-based solver written in C++, featuring
lazy data structures and conflict learning; the heuristic is a simple and efficient
lexicographic ordering based on prefix level (outermost to innermost) and variable
identifier (smallest first).

GRL by Andrew G.D. Rowley, is a sibling of CLearn, but with a different learning
method described in [9].

openQBF by Gilles Audemard, Daniel Le Berre and Olivier Roussel, is a search-based
solver written in Java, featuring basic unit propagation and pure literal lookahead,
plus a conflict backjumping lookback engine; the heuristic is derived from Böhm
and Speckenmeyer’s heuristic for SAT.

orsat by Olivier Roussel, is search-based solver written in C++, featuring an algo-
rithm based on relaxations to SAT, plus special purpose techniques to deal with
universal quantifiers; the solver is currently in its early stage of development, so
most of the features found in other, more mature, solvers are missing.

qbfl by Florian Letombe, is a search-based solver written in C, packed with a number
of features: trivial-truth, trivial-falsity, Horn and reverse-Horn formulas detection;
qbflis implemented on top of Limmat (version 1.3), and comes in two flavors:
qbfl-jw uses an extension of the Jeroslow-Wang heuristic for SAT, while qbfl-bs
uses an extension of Böhm and Speckenmeyer’s heuristic for SAT.

qsat by Jussi Rintanen, is a search-based solver written in C, featuring a lookahead
heuristic with failed literal rule, sampling, partial unfolding and quantifier inver-
sion.

QMRes by Guoqiang Pan and Moshe Y. Vardi, written in C and based on a symbolic
implementation of the original DP algorithm, achieved using ZBDDs. The algo-
rithm features multi-resolution, a simple form of unit propagation, and heuristics
to choose the variables to eliminate.

quantor by Armin Biere, is a solver written in C based on Q-resolution (to eliminate
existential variables) and Shannon expansion (to eliminate universal variables),
plus a number of features, such as equivalence reasoning, subsumption checking,
pure literal detection, unit propagation, and also a scheduler for the elimination
step.

QuBE by Enrico Giunchiglia, Massimo Narizzano and Armando Tacchella, is a search-
based solver written in C++ featuring lazy data structures for unit and pure lit-
eral propagation; QuBE comes in two flavors: QuBE-bj, featuring conflict- and
solution-directed backjumping, and QuBE-lrn, featuring conflict and solution
learning; the heuristic is an extension to QBF of zCHAFF heuristic for SAT.

ssolve by Rainer Feldmann and Stefan Schamberger, is a search-based algorithm
written in C, featuring trivial truth and a modified version of Rintanen’s method of

inverting quantifiers. The data structures used are extensions of the data structures
of Max Böhm’s SAT-solver.

semprop by Reinhold Letz, is a search-based solver written in Bigloo (a dialect of
Scheme), featuring dependency directed backtracking and lemma/model caching
for false/true subproblems.

WalkQSAT by Ian Gent, Holger Hoos, Andrew G. D. Rowley, and Kevin Smyth, is
the first incomplete QBF solver based on stochastic search methods. It is a sibling
of CSBJwith WalkSAT as a SAT oracle and guidance heuristic.

yQuaffle by Yinlei Yu and Sharad Malik, is a search-based solver written in C++,
featuring multiple conflict driven learning, solution based backtracking, and inver-
sion of quantifiers.

Most of the solvers mentioned above are described in a booklet [10] prepared for
the evaluation with the contributions of the solvers authors, with the exception
of qsat, ssolve, and semprop, which are described, respectively, in [11], [12],
and [13].

The evaluation received 88 benchmarks divided in 4 different families and a
random generator, all from four different authors:

Biere (1 family, 65 instances) QBF encodings of the following problem: given an 〈n〉-
bit-counter with optional reset (r) and enable (e) signals, check whether it is pos-
sible to reach the state where all 〈n〉 bits are set to 1 starting from the initial state
where all bits are set to 0.

Katz (2 families, 20 instances) QBF encodings of symbolic reachability problems in
hardware circuits.

Lahiri/Seshia (1 family, 3 instances) QBF encodings of convergence testing instances
generated in term-level model checking.

Tacchella A generator for model A and model B random QBF instances, implemented
according to the guidelines described in [7].

In order to obtain the evaluation test set, we have also considered 5558 bench-
marks in 64 families from www.qbflib.org:

Ayari (5 families, 72 benchmarks) A family of problems related to the formal equiv-
alence checking of partial implementations of circuits (see [14]).

Castellini (3 families, 169 benchmarks) Various QBF-based encodings of the bomb-
in-the-toilet planning problem (see [15]).

Gent/Rowley (8 families, 612 benchmarks) Various encodings of the famous “Con-
nect4” game into QBF [16].

Letz (1 family, 14 benchmarks) Formulas proposed in [13] generated according to the
pattern ∀x1x3 . . . xn−1∃x2x4 . . . xn(c1 ∧ cn) where c1 = x1 ∧ x2, c2 = ¬x1 ∧ ¬x2,
c3 = x3∧x4, c4 = ¬x3∧¬x4 , and so on. The instances consists of simple variable-
independent subproblems but they should be hard for standard (i.e., without non-
chronological backtracking) QBF solvers.

Mneimneh/Sakallah (12 families, 202 benchmarks) QBF encodings of vertex eccen-
tricity calculation in hardware circuits [17].

Narizzano (4 families, 4000 benchmarks) QBF-based encoding of the robot naviga-
tion problems presented in [15].

Pan (18 families, 378 benchmarks) Encodings of modal K formulas satisfiability into
QBF (see [18]). The original benchmarks have been proposed during the TANCS’98
comparison of theorem provers for modal logics [19].

Rintanen (5 families, 47 benchmarks) Planning, hand-made and random problems,
some of which have been presented in [20].

Scholl/Becker (8 families, 64 benchmarks) encode equivalence checking for partial
implementations problems (see [21]).

3 Evaluation: test set and infrastructure

As we outlined in Section 1, deciding the test set for the evaluation is compli-
cated by two competing requirements: (i) obtaining meaningful data and (ii)
completing the evaluation in reasonable time. To fulfill requirement (i) in the
case of non-random benchmarks, we decided to extract a suitable subset from
the pool of all the available benchmarks. In particular, we designed the selection
process in such a way that the resulting test set is representative of the initial
pool, yet it is not biased toward specific instances. This cannot be achieved by
simply extracting a fixed proportion of benchmarks from all the available fami-
lies, because some of them dominate others in terms of absolute numbers, e.g.,
the four Robots families account for more than 70% of the instances available
on QBFLIB. In order to remove the bias, we have extracted a fixed number of
instances from each available family. In this way, the extracted test set accounts
for the same number of families as the initial pool (variety is preserved), but
each family contains at most N representatives (bias is removed) We used the
following algorithm:

– if the family in the original pool consists of M < N benchmarks, then extract
all M of them, while

– if the family consists of M > N benchmarks, then extract only N instances
by sampling the original ones uniformly at random.

Considering all the non-random benchmarks described in Section 2, we have ex-
tracted an evaluation test set of 522 instances divided into 68 families. As for
random instances, the issue is further complicated by the fact that we have sev-
eral parameters to choose when generating the benchmarks, namely the number
of variables, the number of clauses, the number of alternations in the prefix, the
number of literals per clause, the number of existential literals per clause, and
the generation model (either model A or model B). We based our selection of
random benchmarks on the experimental work presented in [22], and we gener-
ated formulas with v = {50, 100, 150} variables, a = {2, 3, 4, 5} alternations in
the prefix, and a fixed number of 5 literals per clause. For each fixed value of a
and v, we generated formulas ranging over clauses-to-variables ratio of 2 to 18
with step 2. We used the above parameters both to generate model A and model
B instances, and a threshold 2 for the number of existential literals in the clause,
which means at least 2 existential literals per clause in model A instances, and
exactly 2 existential literals per clause in model B instances. Notice that while
for model A instances we were able to choose parameters based on the previous
experience of [7, 22], for model B instances, the only experimental account avail-
able is that of [7], which covers only part of the space explored in the evaluation.

Solver Total Sat Unsat Unique
Time # Time # Time # Time

semprop 288 10303.40 133 2985.806 155 7317.55 5 814.56
quantor 284 3997.10 126 2137.25 158 1859.85 10 2624.36
yQuaffle 256 6733.02 110 3152.37 146 3580.65 – –
CLearn 255 11565.30 116 3894.06 139 7671.27 – –
ssolve 245 8736.64 114 3350.96 131 5385.68 – –
GRL 240 11895.90 107 4577.22 133 7318.70 – –
QuBE-bj 239 9426.09 110 4538.27 129 4887.82 – –
QuBE-lrn 237 8270.98 113 3365.83 124 4905.15 1 433.15
QMRes 224 6337.39 122 3315.42 102 3021.97 28 901.54
qsat 218 8375.62 93 3307.13 125 5068.49 7 197.63
qbfl-jw 205 5573.55 83 2849.65 122 2723.90 – –
CSBJ 205 6528.84 98 3407.16 107 3121.68 – –
qbfl-bs 191 3076.62 75 1466.10 116 1610.52 – –
openQBF 185 6598.94 78 3219.56 107 3379.38 – –
WalkQSAT 163 7262.51 83 4113.37 80 3149.14 – –
orsat 73 1243.83 37 1134.74 36 109.09 – –

Table 1. Results of the evaluation first stage (non-random benchmarks).

Overall, the evaluation test set was completed by 432 random formulas divided
into 24 families of 18 samples each, bringing the total number of benchmarks to
954.

As for the computing infrastructure, the evaluation ran on a farm of 10
identical rack-mount PCs, equipped with 3.2Ghz PIV processors, 1GB of RAM
and running Debian/GNU Linux (distribution sarge). Considering that we had
954 benchmarks to run, we split the evaluation job evenly across (9) machines,
using perl scripts to run subsets of 106 benchmarks on all the 16 solvers on
each machine. This methodology has a two points in its favor. First, testing
scripts are extremely lean and simple: one server script, plus as many client
scripts as there are machines running, accounting for less than 100 lines of perl
code. This makes the whole evaluation infrastructure lightweight and easy to
debug. Second, by running clusters of benchmarks on the same machine, we are
guaranteed that small differences that could exist even in identical hardwares,
are compensated by the fact that a given benchmark is evaluated by all the
participants on the very same machine. While noise in the order of one second
does not matter much when comparing benchmarks to decide their hardness,
it can make a big difference when the total runtime on the benchmark is in in
the order of one second or less and we are comparing solvers. Finally, all the
solvers where limited to 900 seconds of CPU time and 900MB of memory: in
the following, when we say that an instance has been solved, we mean that this
happened without exceeding the resource bounds above.

4 Evaluation: first stage results

In Table 1 and Table 2, we present the raw results of the evaluation concern-
ing, respectively, non-random (522 benchmarks) and random (432 benchmarks)
instances. Each table consists of nine columns that for each solver report its
name (column “Solver”), the total number of instances solved and the cumula-
tive time to solve them (columns “#” and “Time”, group “Total”), the number

Solver Total Sat Unsat Unique
Time # Time # Time # Time

QuBE-lrn 426 3452.67 86 93.12 340 3359.55 – –
QuBE-bj 418 4343.98 76 87.12 342 4256.86 – –
ssolve 403 1028.30 86 346.87 317 681.43 1 0.45
semprop 384 3069.28 80 1614.06 304 1455.22 – –
CLearn 338 5267.99 76 1939.28 262 3328.71 – –
GRL 335 5975.14 73 1213.30 262 4761.84 – –
qsat 321 3491.18 60 450.01 261 3041.17 1 208.12
CSBJ 320 5956.06 74 2038.39 246 3917.67 – –
WalkQSAT 316 5838.05 75 2262.17 241 3575.88 – –
openQBF 277 5525.99 64 334.51 213 5191.48 – –
qbfl-jw 263 6380.26 94 58.35 169 6321.91 – –
qbfl-bs 218 3265.93 92 1.06 126 3264.87 – –
yQuaffle 197 3166.62 34 184.69 163 2981.93 – –
QMRes 142 4091.29 53 1594.07 89 2497.22 – –
quantor 120 263.75 52 0.78 68 262.97 – –
orsat 60 1.24 – – 60 1.24 – –

Table 2. Results of the evaluation first stage (random benchmarks).

of instances found satisfiable and the time to solve them (columns “#” and
“Time”, group “Sat”), the number of instances found unsatisfiable and the time
to solve them (columns “#” and “Time”, group “Unsat”), and, finally, the num-
ber of instances uniquely solved and the time to solve them (columns “#” and
“Time”, group “Unique”); a “–” (dash) in the last two columns means that the
solver did not conquer any instance uniquely. Both tables are sorted in descend-
ing order, according to the number of instances solved, and, in case of a tie, in
ascending order according to the cumulative time taken to solve them.

Looking at the results on non-random instances in Table 1, we can see that all
the solvers, with the only exception of orsat, were able to conquer at least 25%
of the instances in this category. On the other hand, only two solvers, namely
semprop and quantor, were able to conquer more than 50% of the instances.
Overall, this indicates that given the current state of the art in QBF reasoning,
the performance demand of the application domains is still exceeding the ca-
pabilities of most solvers. The performance of the solvers is also pretty similar:
excluding orsat, there are only 125 instances (less than 25% of the total) sepa-
rating the strongest solver (semprop), from the weakest solver (WalkQSAT),
and the number of instances solved by the strongest five participants are in the
range [288-245] spanning only 43 instances (less than 10% of the total). Some
difference arises when considering the number of instances uniquely solved by a
given solver: QMRes, quantor, semprop, qsat and QuBE-lrn are the only
solvers able to conquer, respectively, 28, 10, 7, 5 and 1 instance. Noticeably, the
strongest solvers in this respect, QMRes and quantor, are not extensions of
the DPLL algorithm as all the other participants, indicating that the technolo-
gies on which they are based provide an interesting alternative to the classic
search-based paradigm.

Looking at the results on random instances in Table 2, we can see that all the
solvers, again with the only exception of orsat, were able to conquer at least
25% of the instances in this category, and six solvers were able to conquer more
than 75% of the instances. Overall, this indicates that the choice of parameters

for the generation of random instances resulted in a performance demand well
within the capabilities of most solvers. The performance of the solvers is however
rather different: even excluding orsat, there are 306 instances (about 70% of
the total) separating the strongest QuBE-lrn, from the weakest quantor, and
the number of instances solved by the strongest five participants are spread over
88 instances (about 20% of the total). There is no relevant change in the picture
above when considering the number of instances uniquely solved by a given
solver, since only ssolve and qsat are able to uniquely conquer one instance
each. Noticeably, some of the strongest solvers on random instances, namely
semprop, ssolve and CLearn, are also among the strongest solvers on non-
random benchmarks, indicating that these search-based engines feature relatively
robust algorithms.

As we have anticipated in Section 1, a few discrepancies in the results of the
solvers were detected during the analysis of the first stage results. A total of 32
discrepancies were detected, of which 9 regarding non-random instances, and the
remaining regarding random instances. For each of the discrepancies we reran the
solvers reporting a result different from the majority of the other solvers and/or
the expected result of the benchmark. We also inspected the instances, looking
for weird syntax and other pitfalls that may lead a correct solver to report an
incorrect result. At the end of this analysis we excluded from the second stage
the following solvers:

– QuBE-bj and QuBE-lrn, responsible for all the discrepancies detected on
random instances; although the satisfiability status of the random bench-
marks is not known in advance, the two solvers do not agree with each other
in 10/23 cases, and in 7/23 cases they do not agree with the majority of
solvers.

– qsat, reporting as unsatisfiable the benchmark k ph n-21 of the k ph n fam-
ily in the Pan series: these benchmarks ought to be satisfiable by construction
(in modal K), and the correctness of the translations is not taunted by any
other evidence in our data.

– CLearnand GRL, reporting as unsatisfiable the benchmark s27 d2 s of the
s 27 family in the Mneimneh/Sakallah series; the benchmark is both declared
satisfiable by its authors and by all the other solvers.

We have also excluded the following benchmarks:

– the Connect2 family (Gent/Rowley), since on some of its instances qbfl-bs,
qbfl-jw, QMResand WalkQSAT, reported apparently incorrect results,
if compared to the majority of the other solvers: examining the instances,
it turns out that they contain existentially quantified sets declared as sepa-
rate but adjacent lists in the Q-DIMACS prefix. Although the Q-DIMACS
standard does not disallow this syntax, we believe that this might be the
cause of the problems,for some solvers are not prepared to handle this kind
of input correctly.

– the Logn family (Rintanen), since two of its instances are pure SAT with un-
bound variables containing an empty input clause: their correct satisfiability

Category Solver Total Sat Unsat Unique
Time # Time # Time # Time

quantor 74 2854.87 34 1424.66 40 1430.21 10 2624.36
semprop 71 2064.38 29 294.58 42 1769.8 2 545.51
yQuaffle 68 1239.56 28 319.56 40 920 – –
qbfl-jw 65 967.25 26 311.44 39 655.81 – –

Formal CSBJ 59 1247.82 27 371.96 32 875.86 – –
Verification ssolve 59 1814.76 26 231.47 33 1583.29 – –

qbfl-bs 56 262.61 25 244.81 31 17.8 – –
QMRes 51 1838.81 28 1166.75 23 672.06 10 171.24
openQBF 49 1459.92 20 170.26 29 1289.66 – –
WalkQSAT 40 1599.04 21 771.14 19 827.9 – –
orsat 27 774.68 20 718.77 7 55.91 – –

yQuaffle 100 3261.00 37 1763.32 63 1497.68 4 1843.74
ssolve 93 2786.63 35 353.63 58 2433.00 – –
qbfl-jw 92 2243.19 30 706.42 62 1536.77 – –
semprop 88 3935.57 27 348.03 61 3587.54 2 563.87
quantor 85 479.50 28 311.18 57 168.32 1 37.35

Planning qbfl-bs 84 569.73 21 0.79 63 568.94 – –
CSBJ 84 1052.90 30 872.49 54 180.41 – –
openQBF 80 3404.27 27 1867.38 53 1536.89 – –
WalkQSAT 55 143.52 16 0.69 39 142.83 – –
QMRes 37 2513.36 18 490.71 19 2022.65 – –
orsat 38 65.04 11 13.47 27 51.57 – –

QMRes 132 1980.92 74 1657.88 58 323.04 20 749.35
quantor 117 635.82 63 401.31 54 234.51 – –
semprop 117 4293.44 70 2339.32 47 1954.12 6 281.64
ssolve 81 4115.79 48 2762.40 33 1353.39 – –
yQuaffle 76 2212.21 38 1051.83 38 1160.38 1 179.42

Miscellaneous WalkQSAT 62 5517.68 44 3340.22 18 2177.46 – –
CSBJ 54 4222.49 36 2158.17 18 2064.32 – –
openQBF 46 1710.80 26 1160.66 20 550.14 – –
qbfl-bs 41 2243.40 29 1220.50 12 1022.90 – –
qbfl-jw 38 2362.21 27 1831.79 11 530.42 – –
orsat 7 403.59 6 402.50 1 1.09 – –

Table 3. Results of the evaluation second stage (non-random benchmarks).

status is thus “false”, but some of the solvers (namely QMRes, sempropand
yQuaffle) report them as satisfiable.

The data obtained by disregarding the above solvers and benchmarks is free of
any discrepancy. Clearly, for instances that were conquered by just one solver,
and for which we do not know the satisfiability status in advance, the possibility
that the solver is wrong still exists, but we consider this as unavoidable given
the current state of the art.1

5 Evaluation: second stage results

5.1 Solver-centric view

In Table 3 we report second stage results about non-random benchmarks (510
benchmarks, 11 solvers), divided into three categories:

Formal Verification 29 families and 220 benchmarks, including Ayari, Biere,
Katz, Mneimneh/Sakallah, and Scholl/Becker instances.

1 Notice that the same problem exists in the SAT competition when a solver is the
only one to report about an instance and the answer is “unsatisfiable”.

Category Solver Total Sat Unsat Unique
Time # Time # Time # Time

ssolve 187 1025.92 64 346.64 123 679.28 16 498.75
semprop 168 3055.93 58 1602.71 110 1453.22 – –
CSBJ 104 5629.68 52 1722.02 52 3907.66 – –
WalkQSAT 100 5461.75 53 1896.45 47 3565.3 – –
qbfl-jw 94 1926.84 72 0.64 22 1926.2 – –
qbfl-bs 91 378.23 72 0.74 19 377.49 – –

Model A openQBF 69 3092.8 42 183.21 27 2909.59 – –
yQuaffle 53 1375.92 27 139.79 26 1236.13 – –
QMRes 31 1591.19 31 1591.19 0 0 – –
quantor 30 0.61 30 0.61 0 0 – –
orsat 0 0 0 0 0 0 – –

ssolve 216 2.38 22 0.23 194 2.15 – –
semprop 216 13.35 22 11.35 194 2 – –
CSBJ 216 326.38 22 316.37 194 10.01 – –
WalkQSAT 216 376.3 22 365.72 194 10.58 – –

Model B openQBF 208 2433.19 22 151.3 186 2281.89 – –
qbfl-jw 169 4453.42 22 57.71 147 4395.71 – –
yQuaffle 144 1790.7 7 44.9 137 1745.8 – –
qbfl-bs 127 2887.7 20 0.32 107 2887.38 – –
QMRes 111 2500.1 22 2.88 89 2497.22 – –
quantor 90 263.14 22 0.17 68 262.97 – –
orsat 60 1.24 0 0 60 1.24 – –

Table 4. Results of the evaluation second stage (random benchmarks).

Planning 16 families and 122 benchmarks, including Castellini, Gent/Rowley,
Narizzano, and part of Rintanen instances.

Miscellaneous 21 families and 168 benchmarks, including Letz, Pan and the
remaining Rintanen instances.

Table 3 is arranged analogously to Tables 1 and 2, except an additional column
that indicates the category. The solvers are classified independently for each
category, and in descending order according to the number of instances solved:
in case of ties, the solvers are prioritized according the time taken to solve the
benchmarks, shortest time first.

Looking at Table 3, the first observation is that the solvers performed slightly
better on the planning category: the strongest one in the category (yQuaffle)
solves 82% of the instances, the weakest one (orsat) solves about 30% of the in-
stances, and 7 out of the 11 solvers admitted to the second stage are able to solve
more than 50% of the category. On the other hand, the strongest solver in the
miscellaneous category (QMRes) solves 78% of the instances, but most of the
solvers (8 out of 11) do not go beyond the 50% threshold; in the formal verifica-
tion arena, the strongest solver in the category (quantor) does not get beyond
a mere 33% of the total instances. Also significant is the fact that in the plan-
ning category the strongest solver is DPLL-based (yQuaffle), while both in
the formal verification category and in the miscellaneous category the strongest
solvers (respectively quantor and QMRes) express alternative paradigms.

Focusing on formal verification category, we can see that all the solvers are
pretty much in the same capability ballpark. Considering the three strongest
solvers, namely quantor, semprop and yQuaffle, we can see that both
quantor and semprop are able to uniquely conquer 10 and 2 instances, re-
spectively, while yQuaffle is subsumed by the portfolio constituted by all the

other solvers. At the same time, quantor, with 38.58s average solution time,
and semprop, with 29.07s average solution time, seem to be slightly less opti-
mized than yQuaffle, which fares a respectable 18.22s average solution time.
Among the other solvers, it is worth noting that qbfl-jw and qbfl-bs perform
quite nicely in terms of average solution time (14.88s and 4.68s, respectively),
and QMRes stands out for its ability to conquer 10 instances that defied all the
other participants.

As for the planning category, we can see that given the relative easiness of
the benchmarks selected for the evaluation, the differences between the solvers
are substantially smoothed. This is also witnessed by the fact that only 4, 2
and 1 instances where uniquely conquered by, respectively, yQuaffle (which
is also the strongest in this category), semprop and quantor. One possible
explanation of these results is that most of the benchmarks in this category,
with the only exception of Gent and Rowley’s connect[3-9] families, have been
around for quite some time, so developers had access to them for tuning their
solvers before the evaluation.

Finally, considering the miscellaneous category, the first thing to be observed
is that most of these benchmarks come from the Pan families. Since such bench-
marks are derived from translations of structured modal K instances [19], and the
translation algorithm applied is the same for all the benchmarks, it is reasonable
to assume that the original structure, although obfuscated by the translation,
carries over to the QBF instances. In conclusion, the best solvers in this category
are probably those that can discover and take advantage of such a hidden struc-
ture. Looking at the results it seems that QMRes, both the strongest solver,
and the only one able to conquer 20 instances (more than 10% of the total),
is clearly the strongest reasoner in this category. Also quantor and semprop
perform quite nicely by conquering 117 instances: semprop, although slightly
slower than quantor on average, is also able to uniquely conquer 6 instances.
Noticeably, the fourth strongest solver (ssolve) trails the path of the strongest
three at a consistent distance (36 instances, about 20% of the total instances).

In Table 4 we report second stage results about random benchmarks (432
benchmarks, 11 solvers), divided into two categories:

Model A 12 families and 216 benchmarks, generated according to the guide-
lines presented in Section 3 to cover the space a = {2, 3, 4, 5}, v = {50, 100, 150},
where a is the number of alternations in the prefix and v is the number of
variables: each of the 12 families corresponds to a given setting of a, v and
contains formulas with a ratio r clauses/variables in the range 2 to 18 (step
2), and 2 instances per each value of a, v, and r.

Model B 12 families and 216 benchmarks, generated according to the same
parameters as model A families.

Table 4 is arranged analogously to Table 3.
Looking at Table 4, the first observation is that the solvers performed very

well on model B instances: the strongest one in the category (ssolve) solves
100% of the instances, the weakest one (orsat) solves about 27%, and 9 out of
the 11 solvers admitted to the second stage are able to solve more than 50% of

the instances in this category. Model A instances turned out to be slightly more
difficult to solve since the strongest solver (again ssolve) conquered about 86%
of the instances, and with the only exception of ssolve and semprop, all the
other solvers do not go beyond the 50% threshold. Noticeably, most solvers that
do very well on non-random instances have troubles with the random ones: this
is the case of QMRes, quantor and yQuaffle, and the phenomenon is par-
ticularly evident on model A instances. This seems to validate analogous results
in SAT, where solvers that are extremely good on non-random instances, fail to
be effective on random ones. On the other hand ssolve and semprop partially
contradict this result, in that they are the most effective on random instances,
and still reasonably effective on non-random instances as we have seen before.
While QMRes and quantor abandon the top positions on the random bench-
marks, WalkQSAT performs much better on this kind of instances, possibly
indicating that its incomplete algorithm is much more suited to random rather
than structured instances. On the other hand, quantor and QMRes results,
are a clear indication that their non-DPLL based algorithms have been tuned
heavily on structured instances, and are possibly less adequate for randomly
generated ones.

5.2 Benchmark-centric view

In Table 5 we show the classification of the non-random benchmarks included
in the evaluation test set according to the solvers admitted to the second stage.
Table 5 consists of nine columns where for each family of instances we report the
name of the family (column Family), the number of instances included in the
family, the number of instances solved, the number of such instances found SAT
and the number found UNSAT (group “Overall”, columns “N”, “#”, “S”, “U”,
respectively), the time taken to solve the instances (column “Time”), the number
of easy, medium and medium-hard instances (group “Hardness”, columns “EA”,
“ME”, “MH”). The number of instances solved and the cumulative time taken
for each family is computed considering the “SOTA solver”, i.e., all the second
stage solvers running in parallel. A benchmark is thus solved if at least one of the
solvers conquers it, and the time taken is the best among the times of the solvers
that conquered the instance. The benchmarks are classified according to their
hardness with the following criteria: easy benchmarks are those solved by all the
solvers, medium benchmarks are those solved by at least two solvers, medium-
hard benchmarks are those solved by one reasoner only, and hard benchmarks
are those that remained unsolved. Finally, Table 5 is divided into three sections
grouping respectively, families of formal verification, planning and miscellaneous
benchmarks.

According to the data summarized in Table 5, the non-random part of the
evaluation second stage consisted of 510 instances, of which 383 have been solved,
172 declared satisfiable and 211 declared unsatisfiable, resulting in 38 easy, 289
medium, 56 medium-hard, and 127 hard instances (respectively, the 7%, 56%,
10%, and 24% of the test set). These results indicate that the selected non-
random benchmarks are not trivial for current state-of-the-art QBF solvers,

Family Overall Time Hardness
N # S U EA ME MH

Adder 8 6 2 4 132.54 0 2 4
C432 8 8 3 5 1787.99 0 5 3
C499 8 5 3 2 19.97 0 4 1
C5315 8 4 2 2 437.76 0 3 1
C6288 8 1 1 0 3.93 0 0 1
C880 8 2 2 0 1.66 0 2 0
comp 8 8 4 4 0.62 0 8 0
counter 8 4 4 0 0.05 2 2 0
DFlipFlop 8 8 0 8 3.16 1 7 0
jmc quant1 8 3 2 1 18.68 0 1 2
jmc quant2 8 3 2 1 11.45 0 0 3
MutexP 7 7 7 0 7.30 2 5 0
s1196 6 0 0 0 – 0 0 0
s1269 8 0 0 0 – 0 0 0
s27 4 4 1 3 4.43 1 3 0
s298 8 1 1 0 452.96 0 0 1
s3271 8 8 0 8 1.90 0 8 0
s3330 8 1 1 0 154.87 0 0 1
s386 8 0 0 0 – 0 0 0
s499 8 3 3 0 70.41 0 1 2
s510 8 0 0 0 – 0 0 0
s641 8 1 1 0 350.81 0 0 1
s713 8 1 1 0 287.14 0 0 1
s820 8 0 0 0 – 0 0 0
SzymanskiP 8 8 0 8 211.20 0 8 0
term1 8 8 4 4 164.71 0 7 1
uclid 3 0 0 0 – 0 0 0
VonNeumann 8 8 0 8 16.40 0 8 0
z4ml 8 8 4 4 0.03 5 3 0

Blocks 8 8 2 6 215.02 0 7 1
Connect3 8 8 0 8 6.92 0 8 0
Connect4 8 8 0 8 3.31 3 5 0
Connect5 8 8 0 8 6.72 1 7 0

Family Overall Time Hardness
N # S U EA ME MH

Connect6 8 8 0 8 2.99 1 7 0
Connect7 8 8 0 8 5.22 0 8 0
Connect8 8 8 0 8 6.29 0 8 0
Connect9 3 3 0 3 2.81 0 3 0
RobotsD2 8 8 6 2 256.12 0 8 0
RobotsD3 8 7 6 1 2411.13 0 4 3
RobotsD4 8 7 5 2 580.83 0 5 2
RobotsD5 8 8 4 4 871.52 0 7 1
Toilet 8 8 5 3 7.75 2 6 0
ToiletA 8 8 1 7 6.99 3 5 0
ToiletC 8 8 3 5 0.95 4 4 0
ToiletG 7 7 7 0 0.07 6 1 0

Chain 8 8 8 0 9.25 0 8 0
Impl 8 8 8 0 0.06 4 4 0
k branch n 8 4 4 0 269.07 0 1 3
k branch p 8 3 0 3 5.86 0 1 2
k d4 n 8 8 8 0 32.64 0 1 7
k d4 p 8 8 0 8 12.44 0 7 1
k dum n 8 8 8 0 5.34 0 8 0
k dum p 8 8 0 8 6.88 0 8 0
k grz n 8 8 8 0 1069.34 0 7 1
k grz p 8 8 0 8 9.19 0 7 1
k lin n 8 8 8 0 21.54 1 6 1
k lin p 8 8 0 8 4.80 0 8 0
k path n 8 8 8 0 3.55 0 8 0
k path p 8 8 0 8 11.84 0 8 0
k ph n 8 7 7 0 184.35 1 5 1
k ph p 8 3 0 3 1.46 0 3 0
k poly n 8 8 8 0 5.59 0 8 0
k poly p 8 8 0 8 0.15 0 8 0
k t4p n 8 8 8 0 94.10 0 2 6
k t4p p 8 8 0 8 22.92 0 4 4
Tree 8 8 2 6 4.82 1 7 0

Table 5. Classification of non-random benchmarks (second stage data)

since there is a little number of easy instances, and a substantial percentage of
medium-to-hard instances. At the same time, the test set is not overwhelming,
since most of the non-easy instances could be considered of medium difficulty,
i.e., they are solved by at least two solvers.

The cumulative results about Table 5 are not balanced across each single
category: formal verification families contributed 110 hard and 22 medium-
hard benchmarks, planning families contributed only 2 hard and 7 medium-hard
benchmarks, and the miscellaneous families (essentially the Pan families) con-
tributed 15 hard and 27 medium-hard benchmarks. The families submitted for
the evaluation resulted pretty hard for the solvers: only 4 out of 8 instances
in the counter (Biere) benchmarks, 3 out of 8 in the jmc (Katz) benchmarks,
and none of the uclid (Lahiri/Seshia) benchmarks were solved. Quite interesting
are also the results for the Mneimneh/Sakallah’s and Gent/Rowley’s families,
which have never been extensively tested before: the benchmarks in the for-
mer resulted quite hard in accordance to what reported in [17] (only 20% of the
instances solved), while the latter resulted well within the capabilities of the cur-
rent state-of-the-art solvers, but not trivial (100% of the instances solved, only
5 easy instances). Among the “older” benchmarks, the Adder family (Ayari),
and the C499, C5315, C6288, and C880 families (Scholl/Becker) are still quite
challenging as they resulted in the last year evaluation [1].

Family Overall Time Hardness
N # S U EA ME MH

2qbf-5cnf-50var 18 18 3 15 17.63 0 15 3
2qbf-5cnf-100var 18 17 2 15 453.77 0 13 4
2qbf-5cnf-150var 18 14 2 12 46.41 0 11 3
3qbf-5cnf-50var 18 18 9 9 17.83 0 18 0
3qbf-5cnf-100var 18 17 8 9 6.7 0 15 2
3qbf-5cnf-150var 18 16 8 8 23.16 0 16 0
4qbf-5cnf-50var 18 18 6 12 10.18 0 17 1
4qbf-5cnf-100var 18 16 4 12 2.49 0 15 1
4qbf-5cnf-150var 18 17 5 12 6.38 0 15 2
5qbf-5cnf-50var 18 17 10 7 9.07 0 17 0
5qbf-5cnf-100var 18 15 9 6 21.7 0 15 0
5qbf-5cnf-150var 18 16 10 6 48.98 0 16 0

Family Overall Time Hardness
N # S U EA ME MH

2qbf-5cnf-50var 18 18 1 17 0.45 0 18 0
2qbf-5cnf-100var 18 18 1 17 7.49 0 18 0
2qbf-5cnf-150var 18 18 0 18 0.58 0 18 0
3qbf-5cnf-50var 18 18 2 16 0.01 11 7 0
3qbf-5cnf-100var 18 18 2 16 0.1 2 16 0
3qbf-5cnf-150var 18 18 2 16 0.15 0 18 0
4qbf-5cnf-50var 18 18 2 16 0.15 0 18 0
4qbf-5cnf-100var 18 18 2 16 0.19 0 18 0
4qbf-5cnf-150var 18 18 2 16 0.28 0 18 0
5qbf-5cnf-50var 18 18 4 14 0.1 1 17 0
5qbf-5cnf-100var 18 18 2 16 0.22 0 18 0
5qbf-5cnf-150var 18 18 2 16 0.53 0 18 0

Table 6. Classification of random benchmarks (second stage data)

In Table 6 we show the classification of the random benchmarks included
in the evaluation test set according to the solvers admitted to the second stage.
Table 6 is arranged similarly to Table 5: Table 6 (left) is about model A instances,
Table 6 (right) is about model B instances. According to the data summarized
in Table 6, the random part of the evaluation second stage consisted of 432
instances, of which 415 have been solved, 98 declared satisfiable and 317 declared
unsatisfiable, resulting in 14 easy, 385 medium, 16 medium-hard, and 17 hard
instances. These results indicate that the selected non-random benchmarks are
not trivial for current state-of-the-art QBF solvers, although less challenging
than the non-random ones. All other things being equal, model A instances
provide a much more challenging test set than model B instances. Using model
A instances, an increasing number of variables determines an increase in the
number of hard instances in the case of 2- and 3-qbfs, but this is not confirmed
in the case of 4- and 5-qbfs. The number of alternations seems not correlated
with the hardness: considering 150 variables benchmarks, there are 4 hard 2-
qbfs, 2 hard 3-qbfs, 1 hard 4-qbf, and 2 hard 5-qbfs. Although the number of
samples is too small for each single point to draw definitive conclusions, the
variety of solvers used for the evaluation supports the conclusions drawn in [22],
and restated also in [1], that model A instances seem to show a counterintuitive
relationship between hardness and the number of alternations in their prefix.

6 Conclusions

The final balance of the second QBF comparative evaluation can be summarized
as follows:

– 16 solvers participated, 15 complete and 1 incomplete: 13 search-based algo-
rithms, 1 (quantor) based on Q-resolution and expansion, and 1 (QMRes)
based on a symbolic implementation.

– 88 formal verification benchmarks, plus a random generator were submitted.
– State-of-the-art solvers, both for random and non-random benchmarks, have

been identified; also, a total of 144 challenging benchmarks that cannot be
solved by none of the participants have been identified to set the reference
point for future developments in the field.

– Some of the challenges outlined last year in [1] have been tackled by the
participants this year: Challenge 1, about the 2003 hard benchmarks, was
attempted by most solvers with noticeable progress made; Challenge 8, about
alternative paradigms to search-based QBF solvers, was undertaken quite
successfully by quantor and QMRes; finally, all the other challenges have
been at least surfaced by most of the participants, a good indicator of the
stimulus that the QBF evaluation is providing to the researchers.

The evaluation also evidenced some critical points:

– The QBF evaluation is still a niche event if compared to the SAT competi-
tion: 55 SAT solvers from 27 authors and 999 benchmarks were submitted
this year to the SAT competition.

– QBF encoding of real-world applications (e.g., Ayari’s hardware verification
problems, Sakallah’s vertex eccentricity problems, etc.) contributed a lot to
the pool of 144 challenging benchmarks. This shows that QBF developers
must improve the performance of their solvers before these can be practical
for industrial-sized benchmarks.

– The question of how to check the answer of the QBF solvers in an effective
way is still unanswered. Specifically, the questions of what is a good certifi-
cate of satisfiability/unsatisfiability for QBF, and, if this proves too huge to
be practical, what is a good approximation of such certificate, remain open.

The last point is not only an issue for the QBF evaluation, but also for the
implementation of QBF solvers: indeed, while only two versions of one solver were
found incorrect in the SAT competition, we had problems with 4 solvers in the
QBF evaluation. Overall, the evaluation showed the vitality of QBF as a research
area. Despite some technological limitations and some maturity issues, it is our
opinion that the development of effective QBF solvers and the use of QBF-based
automation techniques can be regarded as promising research directions.

References

1. D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the SAT’03
evaluation of QBF solvers. In Sixth International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT 2003), volume 2919 of Lecture Notes in
Computer Science. Springer Verlag, 2003.

2. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM, 7(3):201–215, 1960.

3. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394–397, 1962.

4. A. G. D. Rowley I. P. Gent, H. H. Hoos and K. Smyth. Using stochastic local
search to solve quantified boolean formulae. In 9th Conference on Principles and
Practice of Constraint Programming (CP 2003), volume 2833 of Lecture Notes in
Computer Science. Springer Verlag, 2003.

5. A. Biere. Resolve and Expand. In Seventh Intl. Conference on Theory and Appli-
cations of Satisfiability Testing, 2004. Extended Abstract.

6. Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures for qbf. In 10th
Conference on Principles and Practice of Constraint Programming (CP 2004),
2004.

7. Ian Gent and Toby Walsh. Beyond NP: the QSAT phase transition. In Proc. of
AAAI, pages 648–653, 1999.

8. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001. www.qbflib.org.

9. Andrew G D Rowley Ian P Gent. Solution learning and solution directed backjump-
ing revisited. Technical Report APES-80-2004, APES Research Group, February
2004.

10. D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella, editors. Second QBF
solvers evaluation. Pacific Institute of Mathematics, 2004. Available on-line at
www.qbflib.org.

11. Jussi Rintanen. Partial implicit unfolding in the Davis-Putnam procedure for
quantified Boolean formulae. In Logic for Programming, Artificial Intelligence and
Reasoning. 8th International Conference, number 2250 in LNAI, pages 362–376.
Springer, 2001.

12. R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate
quantified boolean formula. In Proceedings of the Seventeenth National Conference
in Artificial Intelligence (AAAI’00), pages 285–290, 2000.

13. R. Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. In Proceedings of Tableaux 2002, LNAI 2381, pages 160–175. Springer,
2002.

14. Abdelwaheb Ayari and David Basin. Bounded model construction for monadic
second-order logics. In 12th International Conference on Computer-Aided Verifi-
cation (CAV’00), number 1855 in LNCS, pages 99–113. Springer-Verlag, 2000.

15. C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based planning in complex
domains: Concurrency, constraints and nondeterminism. Artificial Intelligence,
147(1):85–117, 2003.

16. Andrew G D Rowley Ian P Gent. Encoding connect 4 using quantified boolean
formulae. Technical Report APES-68-2003, APES Research Group, July 2003.

17. M. Mneimneh and K. Sakallah. Computing Vertex Eccentricity in Exponentially
Large Graphs: QBF Formulation and Solution. In Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT 2003), volume 2919 of
Lecture Notes in Computer Science. Springer Verlag, 2003.

18. Guoqiang Pan and Moshe Y. Vardi. Optimizing a BDD-based modal solver. In
Proceedings of the 19th International Conference on Automated Deduction, 2003.

19. P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for the
propositional modal logics k, kt, s4. Journal of Automated Reasoning, 24(3):297–
317, 2000.

20. Jussi Rintanen. Improvements to the evaluation of quantified boolean formulae.
In Proceedings of the Sixteenth International Joint Conferences on Artificial Intel-
ligence (IJCAI’99), pages 1192–1197, Stockholm, Sweden, July 31-August 6 1999.
Morgan Kaufmann.

21. C. Scholl and B. Becker. Checking equivalence for partial implementations. In
38th Design Automation Conference (DAC’01), 2001.

22. E. Giunchiglia, M. Narizzano, and A. Tacchella. An Analysis of Backjumping and
Trivial Truth in Quantified Boolean Formulas Satisfiability. In Seventh Congress
of the Italian Association for Artificial Intelligence (AI*IA 2001), volume 2175 of
Lecture Notes in Artificial Intelligence. Springer Verlag, 2001.

