
Distributed Consistency-Based Diagnosis without Conflicts

Vincent Armant and Philippe Dague and Laurent Simon
Univ. Paris Sud (LRI)& CNRS - INRIA (Saclay)

4 rue Jacques Monod, Parc Club 91400 Orsay

Abstract
Some methods exist to locate errors and incorrect
answers in a distributed framework, where all peers
work together for the same purpose, under the same
protocol. For instance, one may limit them by re-
plication of data and processes among the network.
However, with the emergence of web services, the
willing for privacy, and the constant growth of data
size, such a solution may not be applicable. For
some problems, failure of a peer has to be detec-
ted and located by the whole system. In this paper,
we propose an approach to diagnose abnormal be-
haviors of the whole system by extending the well
known consistency-based diagnosis framework to a
fully distributed inference system, where each peer
only knows the existence of its neighbors. Contras-
ting with previous works on model-based diagno-
sis, our approach computes all minimal diagnoses
in an anytime way, without needs to get any conflict
first.

1 Introduction
Model-Based Diagnosis has been introduced in the late

eighties by [Reiter, 1987; de Kleer and Williams, 1987], and
has since been widely used in many successful works. With
this formalism, a logical theory describes the normal (and,
optionally, abnormal) behavior of a physical system, and in-
consistent observations are used to derive hypotheses over
components reliability (called diagnoses), that explains fai-
lures. Even if stronger logic may be used, it is often the case
where propositional logic is chosen to model the system. In
this context, diagnosing the system with respect to observa-
tions can be expressed as a classical – and heavily studied –
knowledge based compilation problem : restricted prime im-
plicants [Darwiche and Marquis, 2002].

Recent years have seen an increasing number of AI works
pushing forward the power of Distributed system, for instance
by adding semantic layers [Adjiman et al., 2005]. In such net-
works, all systems (or “peers”) are running the same algo-
rithm, and are working for the same purpose. The framework
may however describe two kinds of settings. One which al-
lows any peer to communicate with any other peer (generally
by means of distributed hash tables, [Stoica et al., 2001]) or

the other where peers only know their neighbors, which is
closer to social networks, circuits, and web services compo-
sition. In the latter formalism, reasoning is based on the decla-
ration of logical equivalence of variables between peers (the
shared variables), which locally defines subsystems acquain-
tances.

In this paper, we investigate the problem of diagnosing dis-
tributed systems defined by peers acquaintances. Each peer
only knows its neighborhood, and has a logical model of its
normal and abnormal behavior with respect to its observa-
tions and its shared variables with its acquaintances. The chal-
lenging problem is to build a set of global diagnoses of the
whole system. Our solution directly computes diagnoses (in-
cluding all minimal ones, either for set inclusion or for car-
dinality) without conflicts analysis, a very hard task which
is generally the first step – and the first bottleneck – of all
previous model-based diagnoses engines, even when efficient
algorithms are used [Simon and del Val, 2001].

In our approach, we focus on “static” settings of distributed
systems, in order to easily ensure that diagnoses and observa-
tions are consistent. If the static behavior is not possible in a
fully peer-to-peer setting, it is more realistic in a distributed
setting, for instance web services composition, embedded cir-
cuits, and social networks. In many cases, additional layers,
like memory of past events and counters, can even simulate
the “static” hypothesis.

In the next section, we recall the principles of model based
diagnosis and introduce our notations. In section 2, we ex-
tend model-based diagnoses to formulas in Disjunctive Nor-
mal Form and, section 3, we introduce our fundations of dis-
tributed reasoning for diagnoses. In section 4, we present the
distributed algorithm and then we report related work and
conclude.
Example 1 (Three steps web-payment certification) We
illustrate the paper by an example of a web-payment certification,
figure 1. The order validation service (OVS) asks to an eshopping
service (ES) for a hire purchase approval (hpPurch). In order to
maximize its sales opportunity, (ES) waits for the customer bank
approval (bkAprvl) or a loan agency approval (laAprvl). The bank
hire purchase service (HPS) and the loan agency service (LAS)
both check the customer credit card validity (valCC) by a call to the
credit card service (CCS). In the following, we restrict the system
to (HPS) and will refer to its “global description” as the conjunction
of the Transaction Approval (TA), the Solvability Checking (SC)
and the Option Checking (OC).

valCC

[exOvLine] bkAprvl

laApprvl

hPurch
Bank Credit
Card Service

(CCS)

Solvability
Checking

(SC) Transaction
Approval

(TA)

valCC

[solv]

Loan Agency
service (LAS)

e-shopping
service

(ES)

Bank hire purchase
Service(HPS)

Order Validation
service(OVS)

Option
Checking

(OC)
[ePurch]

[eOpt]

FIG. 1 – 3 steps web-payment certification

2 From CNF Diagnosis to DNF Diagnosis
We assume familiarity with the standard literature on pro-

positional reasoning and resolution. A literal is a variable v
or its negation ¬v. Given a set L of literals, we denote by L
the set of its opposite literals. A Conjunctive Normal Form
formula (CNF) is a conjunction of disjunctions of literals. A
Disjunctive Normal Form formula (DNF) is a disjunction of
conjunctions of literals. For simplicity, we identify a formula
with a set of sets of literals. We denote by T∧ (resp T∨) the
set of sets of literals corresponding to a CNF (resp DNF).

A model is a set of literals that, when assigned to true, al-
lows the evaluation of a given formula to true. We say that a
formula f is satisfiable (or consistent), denoted by f !|= ⊥,
if there exists a model for f . Let f1, and f2 be two formu-
las, if all the models of f1 are also models of f2, which is
noted f1 |= f2, then f1 is called an implicant of f2 and f2 is
called an implicate of f1. The minimal (with respect to the or-
der relation induced by inclusion of sets of literals) implicate
clauses (resp. implicant products) of a formula are called the
prime implicates (resp. prime implicants) of this formula. The
set of prime implicates is expressed in CNF whether the set
of prime implicants is in DNF. Given a formula f and a sub-
set V of its variables, the restriction of f on V is denoted by
f |V and corresponds to recursively apply on f the Shannon
decomposition operator on all variables x of f that do not ap-
pear in V . This operation, known as forgetting in Knowledge
Compilation, is well known to be a NP-Hard problem. Howe-
ver, when f is expressed as a DNF, the restriction operator is
simply a vocabulary restriction of all products of f . The res-
triction of T∨ on a set of literals L can be defined as T∨|{L}
= {IL | ∃I ∈ T∨ s.t. IL = I ∩ L}, which is no more a hard
task.

2.1 Centralized Model-Based diagnosis
Like many other works, we adapt the model-based diagno-

sis framework from [de Kleer and Williams, 1987; de Kleer
et al., 1992] to the propositional case. Initially, an observed
system is a triple (SD, COMPS, OBS) where SD is a first or-
der logical formula describing the system behavior, OBS is
a formula describing the observations (that boils down fre-
quently to values assignment to observable variables) and
COMPS is the set of monitored components, that appear as
arguments of the predefined predicate Ab() in SD (Ab(Ci)
denoting that component Ci is abnormal). In propositional
logic, we may merge the whole into a single theory T , with

the naming convention : all variables okCi (called mode va-
riables) encode the correct behavioral modes of the compo-
nents Ci, i.e. ¬Ab(Ci). We note F the set of negative mode
literals {...,¬okCi,...} representing faulty components. For a
(boolean) observable coded by a variable v, the elementary
observation v = a is coded by v if a equals 1 and ¬v if a
equals 0.
Example 2 (Modeling the system) A correct behavior of TA
(okTA) will approve a hire purchase (bkAprvl) if the customer is
solvent (solv) and fulfills the condition (eOpt) of OC. The rule for
TA is rewritten as f(TA) : okTA ⇒ (solv∧eOpt ⇔ bkAprvl). A
normal functioning of SC (okSC) will consider a customer solvent
(solv) if he does not exceed his overdraft limit (¬exOvLine). We
obtain f(SC) : okSC ⇒ (¬exOvLine ⇔ solv). A correct be-
havior of OC (okOC) will satisfy (eOPt) if the customer asked
for hire purchases by internet (ePurch) and his credit card is va-
lid (valCC). There are only two possible failures for OC : when
ePurch keeps its default value whereas the customer asked for
this option, and when the customer card is believed invalid whe-
reas it is. The Option Checking system can thus be encoded by
f(OC) : okOC ⇒ (ePurch ∧ valCC ⇔ eOpt) ∧ (¬okOC ⇒
¬valCC ∨ ¬ePurch). The behavior of HPS is the conjunction
f(HPS) : f(OC) ∧ f(SC) ∧ f(TA).

The theorem 3 of [de Kleer et al., 1992] states that the
minimal diagnoses are the prime implicants of the conjunc-
tion of minimal conflicts, where the minimal conflicts (called
minimal conflict sets in [Reiter, 1987] and minimal positive
conflicts in [de Kleer et al., 1992]) are the prime implicates
of the formula SD ∧ OBS, restricted to the mode literals in
F . Intuitively, a minimal conflict refers to a set of compo-
nents containing at least a faulty one. Minimal diagnoses are
thus the smallest conjunctions of faulty components that can
explain all the faults, according to observations.
Definition 1 (Minimal Diagnoses) Let T be the theory that
describes an observed system, F the consistent set of all ne-
gative mode literals of the system.

' ⊆ F is a diagnosis for T iff T ∪' ∪ {F \'} !|= ⊥
We write Diag(T) the set of diagnoses of T and
min⊆(Diag(T)) the set of its minimal diagnoses.

Intuitively, this definition states that, given any minimal
diagnosis' of the observed failure, one may suppose that all
components C ′ that do not appear in ' are correct. We may
also notice that, because we can restrict the set of possible
failures ((¬okOC ⇒ ¬valCC ∨ ePurch) in the previous
example), a diagnosis may not be extended by supposing all
components C ′ incorrect (two negative mode literals exten-
ding a diagnosis may be however mutually exclusive).
Example 3 (Conflicts and Diagnoses on Scenario 1) Let’s
suppose the following scenario : the bank approved a hire purchase
for an operation whereas the customer exceeds his overdraft limit.
He had a valid credit card but asked to stop internet purchasing. In
this case the bank service does not fulfill its expected behavior.

We thus look for the minimal subsets of { TA, OC, SC } that
may be faulty. This will be expressed by minimal conjunctions of
literals from {¬okTA,¬okOC,¬okSC}, which are consistent with
the formula f(HPS) and the observations {exOvLine, valCC,
¬ePurch, bkAprvl }. The minimal conflicts are (¬okSC ∨
¬okTA) and (¬okOC ∨ fV ∨ ¬okTA). The minimal diagnoses
that satisfy these conflicts are : (¬okTA) and (¬okSC ∧ ¬okOC).

Most of previous work on diagnosis compute first the set
of conflicts, restricted to mode literals. Then, only when this
first stage is over, diagnoses can be computed. These methods
are hopeless for building an anytime diagnostics engine as all
conflicts have to be known before the first diagnoses can be
returned. They are nevertheless motivated by the fact that mo-
dels of real-world are supposed to be close to CNF. If needed,
new variables are usually added to practically contain the po-
tential blow-up when translating to CNF. However, a DNF
representation of a circuit is from great interest : If we ensure
that the set F of mode variables is consistent, which means
that no variables are both positively and negatively in F , then,
if T∨ is the description of an observed system, each product
of the restriction T∨|{F} is a diagnosis (not necessarily mini-
mal).

Lemma 1 Let T∨ be a DNF description of an observed sys-
tem, and F a consistent set of mode literals, then

∀I ∈ T∨, I|{F} ∈ Diag(T)

Sketch of Proof For each I ∈ T∨, I is an implicant of T which is
trivially consistent with T . Let us consider {F \ I|{F}}, which does
not contains any literals from I|{F}. Thus, T ∪ I|{F}∪{F \ I|{F}}
is consistent with T and by definition I|{F} is a diagnosis.

Consequently, if we compute at least one implicant of T ,
we obtain at least one diagnosis without waiting for conflicts.
In practice, our requirement about DNF representation of T
can be weakened without loss : implicants can be incremen-
tally computed by an efficient SAT Solver or even dedu-
ced from a compact, compiled, representation of T that al-
lows efficient production of models [Darwiche and Marquis,
2002]. However, on small systems, or on large – but distribu-
ted – systems, the direct translation from CNF to DNF can be
done. The following theorem states that minimal diagnoses
are contained in any DNF description encoding the observed
system.

Theorem 1 Let T be the description of an observed system,
and F a consistent set of mode literals :

min⊆(Diag(T)) = min⊆(T∨|{F})

Sketch of Proof 1) Let ' be a minimal diagnosis, by the de-
finition 1, ' ∪ {F \'} is consistent with the observed system.
Moreover, for any DNF formula of the system, there exists an im-
plicant I consistent with ' ∪ {F \'}. Since I is consistent with
'∪{F \'} we have I|{F\"} = ∅ and thus I|{F} =I|{"}. Because
we know that I|{F} is a diagnosis and ' is a minimal one we have
I|{"} = '.
2) Let I|{F} ∈ min⊆(T∨), I|{F} is a diagnosis, suppose that it is
not a minimal one. Then there exists a diagnosis ',s.t. ' ⊂ I|{F}.
Consequently, there exists l in I|{F} s.t. l not in ' In this case
' ∪ { F \'} ∪ I is contradictory. But since ' ∪ { F \'} is
consistent with T∨, then there exists I ′ *= I s.t.'∪ { F \'} ∪ I ′

is consistent and I ′|{F} ⊆ '. We deduce that I ′|{F} ⊆ ' ⊂ I|{F}.
It is the contradiction with the fact that I|{F} ∈ min⊆(T∨|{F}).

Example 4 (Finding Diagnoses in DNF) Let FHBS =
{¬okTA, ¬okOC, ¬okSC} be the set of mode literals and T∨HBS

the DNF formula of the description with observations.

T∨HBS =

(¬okTA ∧ ¬okSC ∧ ¬eOpt ∧ okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬okOC)∨
(¬okTA ∧ ¬solv ∧ ¬okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬eOpt)∨
(¬okTA ∧ ¬solv ∧ ¬eOpt)∨
(¬okSC ∧ ¬okOC ∧ eOpt ∧ solv)

For simplicity, we omitted, on each product, the conjunction of
observed literals exOvLine∧valCC∧¬ePurch∧kAprvl. Finally,
after restriction on FHBS and subsumption elimination, we obtain
the two diagnoses {¬okTA, (¬okSC ∧ ¬okOC)}.

By the lemma 1 we know that each implicant contains a
diagnosis. By the theorem 1 we states that all DNF descrip-
tion of the observed system contains the set of minimal diag-
noses. Now, suppose that we monitor and diagnose a distri-
buted system consists of diagnosis engine which gradually
compute local implicants from the monitored subsystem. A
consistent composition of locals implicants from each diag-
nosis engine is also an implicant for the global system. We
note that, as soon as each diagnosis engine return it first im-
plicant, we can start the composition task. In the next section
we precise the notion of distributed system which differ from
the usual notion of system in Diagnosis by taking into ac-
count the shared and local acquaintance of a subsystem. We
take advantage of this characterization for forgetting symbols
and optimize the composition task.

3 Direct Diagnosis of Distributed Settings
We formalize our distributed model based diagnosis fra-

mework by means of Peer-to-Peer Inference Systems (P2PIS)
proposed by [Halevy et al., 2003], and extended in [Adjiman
et al., 2005] for distributed reasoning. In a P2PIS, a so-called
“inference peer” has only a partial knowledge of the global
network (generally restricted to its acquaintance) and may
have local information, only known by itself. In our work, an
inference peer will for instance model the expected behavior
of a real peer, a web service, or a subcircuit, of a distribu-
ted system. Let us denote by T the description of the global
observed system. T is the (virtual) conjunction of all local
theories Tp of peers p. Of course, in our framework, T will
never be explicitly gathered and privacy will be ensured on
local knowledge. T is built on the global vocabulary V (ex-
cluding mode variables), which can be partitioned into shared
variables Sh and local variables Loc

– Sh = {v|∃p, p′s.t. v appears both in Tp and in Tp′}
– Loc = V \ Sh
In addition to this partition, we have to add mode variables

in order to be able to diagnose the system. We denote by F the
set of all mode variables of the system. Obviously in order to
built global diagnoses, exchange of mode variables between
peers has to be possible. Thus, the network will allow for-
mulas build on variables from SH ∪ F to be sent from peer
to peer. We denote by Vp, Shp, Locp, Fp the vocabulary, the
shared variables, the local variables and the mode variables
symbols of any inference peer p.

3.1 A network of DNF models
In the previous section, we assumed that we were able to

work directly on the DNF of T . Because T here is a conjonc-
tion of formula, we may push this hypothesis to all Tp. If the

first hypothesis may not be considered as a realistic one, at
te opposite small peers will admit relatively small DNF en-
coding, and thus the second one is of a practical interest. If
all Tp are in DNF, then writing T in DNF can be done by the
distribution property of ∧ over ∨. More formally, we use the
following operator for this purpose :
Definition 2 (Distribution (⊗))
T∨

1 ⊗ T∨
2 = {I1 ∧ I2|I1 ∈ T∨

1 , I2 ∈ T∨
2 , I1 ∧ I2 !|= ⊥}

One may notice that inconsistent products are deleted, and,
if the result is minimised, then this operator is exactly the
clause-distribution operator of [Simon and del Val, 2001], but
applied to DNF and products.

Because of privacy, and for efficiency purpose, let us intro-
duce the following lemma stating that instead of distributing
all theories before restricting the result to mode variables, one
may first restrict all theories to shared and mode variables wi-
thout loss.
Lemma 2 Let T∨ be a description of an observed P2P sys-
tem, F a consistent set of mode literals :

(⊗T∨
p)|{Sh,F} = ⊗(T∨

p |{Shp,Fp})

Sketch of Proof Let I (resp. I ′) implicant of T∨p , (resp. T∨p′), local
symbols from I does not appear in I ′, thus inconsistencies between
I and I ′ can only come with shared symbols.

With this lemma and the first theorem we can show that
minimal diagnoses can be computed with shared and mode
literals only.
Theorem 2 Let T∨ be a description of an observed P2P sys-
tem, F a consistent set of mode literals :

min⊆(Diag(T)) = min⊆((⊗(Tp|{Shp,Fp}))|{F})

Sketch of Proof Let T be a the global description of an ob-
served system s.t. T∨ ≡ T . By theorem 1 we know that
min⊆(Diag(T)) = min⊆(T∨|{F}). We have T∨|{F} =
T∨|{Sh,F}|{F} since the restriction of T∨ on shared and faulty
symbols do not delete any faulty symbols. Moreover, because
T∨ ≡ ⊗T∨p we deduce by the lemma 2 that min⊆(Diag(T)) =
min⊆((⊗Tp|{(Shp,Fp)})|{F}).

3.2 Distributions with Trees
We now focus on the distribution of consistent diagnoses

between diagnostics engines. Here we consider that any peer
may be able to initiate a diagnosis and may ask its neighbo-
rhood to help him for this. When receiving a request for a
diagnosis by an initiator, a peer will also query its acquain-
tances, according to its observation values and will begin to
answer to its initiator as soon as possible. Thus, the initial re-
quest will flood into the network top-down and answers will
converge to the initial peer with a bottom-up traversal of the
network. Implicitly, for a given request for a diagnosis, all
peers will maintain who was its local initiator, and thus an
implicit tree will be built in the network for each request.

We use this tree to efficiently compute the distribution of
peers theories. Let us denote by Ap the subtree rooted in p
and child(Ap, Ap′) a relation between Ap′ Ap s.t. Ap′ is a
subtree of Ap. We note by ShAp the variables shared by Ap

and any other peer in the distributed system. We note TAp the

theory defined as the conjunction of all peers occurring in the
the subtree rooted in p.

TAp =

T∨
p |{Fp,Shp}, if ! ∃p′s.t.child(Ap, Ap′) is set.

(T∨
p |{Fp,Shp} ⊗

⊗
{Ap′ |child(Ap,Ap′)}

TAp′)|{ShAp ,FAp}

otherwise
The next theorem shows that we can compute global diag-

noses by gradually forgetting shared acquaintance which cor-
respond to local acquaintance of a subtree.

Theorem 3 Let T be the global description of an observed
system, Child(Ap, Ap′) a relation defining a Tree on T roo-
ted in r. then :

min⊆(Diag(T)) = min⊆(TAr)

Sketch of Proof We use the theorem 2 and inductively prove that
∀p, T Ap = (⊗

q∈Ap

T∨q |{Shq,Fq})|{ShAp ,FAp}. Concerning the root

r, we note ShAr =∅, consequently min⊆(T Ar) only contains the
set of minimal diagnosis.

Thus, intuitively, as soon as we know that a given variable
cannot imply any inconsistencies in other parts of the tree, we
remove it. As answers will go back to the root, peers will filter
out useless variables, and, hopefully, will reduce the number
and the size of possible answers.

4 Algorithm
In this section, we present our message-passing algo-

rithm M2DT, standing for “Minimal Diagnoses by Distribu-
ted Trees”, algorithm 1. We call neighbor of p a peer that
shares variables with p. As previously, A stands for the dis-
tributed cover tree, dynamically built by the algorithm. We
write Ap the subtree of A rooted in p. For a tree A and a
peer p, p’s parents and p’s children will be included, by
construction, in p’s neighborhood. Let us recall that TAp is
defined as the theory of the observed subsystem defined by
the conjunction of all peers occuring in the whole subtree Ap.
We call r-implicant of TAp a restriction of one implicant of
TAp on its mode variables and shared vocabulary.

4.1 A bird’s eye on M2DT
At the beginning, a given peer, called starter, broadcasts a

request of diagnosis (reqDiag) to its neighborhood. When a
peer receives its first reqDiag, it sets the sender as his parent
and broadcasts the request to its remaining neighbors, in or-
der to flood the network. This first stage of the algorithm aims
at building a distributed cover tree : as the request goes along
the network, the relationship (parent, p) is set and defines the
distributed cover tree A. As soon as one peer knows that it is
a leaf in A, it answers by sending its r-implicants (respDiag)
to its parent and thus begins the second stage of the algorithm.
When an intermediate nodes receives r-implicants from its
children, there are two cases. If it already knows the role of
all its neighborhood (parent, direct children and peers that can
either occur deeper in the current subtree or elsewhere in the
cover tree), it extends all new r-implicants by distributing it
over its own r-implicants and those received from all other

children. It then filters out useless variables and send all re-
sulting implicants to its parent. If it doesn’t knows the role
of all its neighborhood, it stores the received r-implicant for
a future use. With this algorithm, global diagnoses converge
to the starter peer. When a peer has received all termination
messages from all its children, its sends its termination mes-
sage to its parent(third and last stage of the algorithm). When
the starter peer receives the termination message, we are sure
that it already received the set of minimal diagnoses from all
its children.

4.2 Structures and algorithm
A message can be a request of diagnosis reqDiag, a res-

ponse respDiag or a notification of termination endDiag.
The structure of a message msg is the following one :

msg.Type : takes its values in {reqDiag, respDiag,
endDiag}, matching the three stages of the algorithm.

msg.Desc : defined only when msg.Type = respDiag. re-
presents the descendants of the sender of the message
that participated in building the considered implicant.

msg.rImpl : defined when msg.Type = respDiag is a r-
implicant of the subtree rooted in the sender of the mes-
sage.

A peer p sets its parent to the first peer in its neighbo-
rhood that sent it a reqDiag message. For all other reqDiag
messages that p may receive, it adds the sender to the set
NotChild. This set stores all peers that are not direct children
of p (peers that can occur deeper in the subtree rooted in p or
that do not occur in this subtree). All peers p′ that send to p at
least one respDiag message are stored in Child. The array
TChild, defined in each peer p only for its direct children, as-
sociates a peer p′ with a DNF theory TChild[p′]. TChild[p′]
stores all r-implicants received so far from p′. This set will be
known to be complete when p will receive a endDiag mes-
sage from p′. In order to detect additional useless variables,
p also stores in Desc all known descendant of p (peers oc-
curing in the subtree rooted in p). All local variables of all
peers are already deleted by the algorithm, but one may now
consider as “local” a variable that is guaranteed to occur only
in the current subtree and not elsewhere. This is the case for
shared variables that are shared only by peers that occur in
the current subtree.

To detect and notify termination, p maintains a list of
peers from which messages are still waited. This list is called
waitEnd and initially sets to all neighbors (Neighborhood).
A peer leaves the list if it is the father, if it is not a direct des-
cendant or if it is a direct child that notified termination.

4.3 Primitives of M2DT
checkEnd (waitEnd, p′) Checks and propagates the termi-

nation. First, it removes p′ from the waitEnd list of p.
If waitEnd is empty, it sends the termination message
and terminates.

extends (I, T∨
p , TChild,Desc) Extends the implicant I

from p′ by distributing it on the local theory T∨
p and all

set TChild[p”] that are defined and different from p′.

Algorithm 1 Peer p receives a message msg from peer p′

1: switch msg.Type
2:
3: case : reqDiag /* and p *= starter*/
4: /*A distributed tree is built*/
5: if parent is not set then /* Flooding alg.*/
6: parent ← p′

7: send to all p neighborhood\p′ : msg [reqDiag]
8: else /* p’ is not a direct child */
9: NotChild ← NotChild ∪ p′

10: end if
11: /* Flush all stored implicants when the subtree is known */
12: if {parent}∪Child∪NotChild = Neighborhood
13: Π ← flush(T∨

p , TChild,Desc)
14: for all I ∈ Π
15: send to parent msg [respDiag,I ,Desc ∪ p]
16: end for
17: end if
18: /* p′ is either our father or not a direct child*/
19: checkEnd(waitEnd, p′)
20:
21: case : respDiag
22: /* Stores the diag, or extends and propagate it */
23: Child ← Child ∪ p′

24: Desc ← Desc ∪msg.Desc
25: TChild[p′] ← TChild[p′] ∪msg.rImpl
26: /* Extend msg.rImpl only if the subtree is already known */
27: if {parent}∪Child∪NotChild = Neighborhood
28: Π ← extends(msg.rImpl, T∨

p , TChild,Desc)
29: for all I ∈ Π
30: send to parent msg [respDiag,I ,Desc ∪ p]
31: end for
32: if p is the starter
33: Tresult ← min⊆(Tresult ∪Π)
34: end if
35: end if
36:
37: case : endDiag
38: /* Notify termination of this child, and propagate if needed*/
39: checkEnd(waitEnd, p′)
40: end switch

This primitive, which is only called when the local sub-
tree is entirely known, computes
(T∨|{Fp,Shp} ⊗ I ⊗

p” %=p′
TChild[p”])|{ShAp ,FAp}

One may notice that ShAp is not directly known. It is
deduced from Desc : we associate each shared variable
with the unique identifiers of all peers that share it. Thus,
one may check if all peers that share a given shared va-
riables are “local” (i.e. in Desc) to the subtree, only with
the help of the set Desc.

flush (T∨
p , TChild,Desc) Sends the distribution of all im-

plicants stored in the TChild arrays and the local theory.
This primitive is called only when the local subtree is
known to be complete for the first time with a reqDiag
message. which means that the last unknown neighbor
sent us a message “I’m not your direct child”. We thus

have to flush all previously stored (if any) to our father.
This primitive computes
(T∨|{Fp,Shp} ⊗

p” %=p′
TChild[p”])|{ShAp ,FAp}

One may notice that this primitive will be called for all
leaves of the distributed tree A.

4.4 Properties
In the following we assume a FIFO channel and no lost

message. The acquaintance graph is logically connected and
the global theory is satisfiable. messages processing is consi-
dered as “atomic”, which simply means that messages are
treated one by one by each peer.

Let us first emphasize some observations.
Lemma 3 If a peer, p, sends a reqDiag to one of its neigh-
bors, p′, this message is the only one from p to p′.
Proof A peer broadcasts the reqDiag to each of its neighbors (wi-
thout the parent) just after having set as a parent the sender of the
first received reqDiag. Because of the condition line 5, p does not
have the opportunity to sent other reqDiag. Concerning respDiag
and endDiag they are sent to the parent only.

If we now focus on the first event caries out by each peer :
Lemma 4 All peers, except starter, will receive a first event,
which will be a reqDiag message.
Proof To receive a respDiag or a endDiag, p have to be a parent
of some peer. But to become a parent, p must send a reqDiag to
at least one peer, and thus p would have to receive reqDiag first.
Consequently, since the acquaintance graph is connected, and be-
cause a peer broadcasts reqDiag to its neighbors, then each a peer
will receive a first reqDiag (we rely on the well known flooding
algorithm in a graph to ensure this).

With these lemmas we have the following property :
Property 1 (Distributed cover Tree) The relation
(parent,p), built when p receives its first reqDiag, de-
fines a distributed cover tree over the distributed system.
Sketch of Proof Let n be the number of peers, req1(p) be the
reception of the first diagnosis request by p. Since the peer starter
does not gets a parent, by the previous lemma we know that flooding
reqDiag will build n-1 connections (parent,p). Suppose a cycle is
defined by these connections and an order < s.t. req1(p) < req1(p

′)
if req1(p) is former than req1(p

′). Let us take p in the cycle, there
exists p′ in the cycle s.t. p′ got p as parent then req1(p) < req1(p

′).
If we follows the "parent" connection in the cycle, we have by transi-
tivity that req1(p

′) < req1(p). Consequently, we cannot have cycle
by the "parent" connection.

Now we know that a distributed cover tree will be built but,
at this point, a peer p will only know its parent, but not its
direct children. This can be deduced by the respDiag mes-
sages, when all children of p will send him their r-implicants.
respDiag messages are only sent when the state of all neigh-
bors of p are known (Parent, Child, NotChild).
Lemma 5 Let p be a peer, p′ be one of its neighbors. If p′

does not get p as father, p will receive a reqDiag from p′.
Sketch of Proof Let p′ a neighbor of p that does not accept p as
its father. When p sent to it a reqDiag, p′ already had a parent in
order to refuse p as its parent. Consequently p had also sent to p′ a
reqDiag.

With this lemma, we can easily show the main property :

Property 2 Let Ap be the subtree rooted in p and built by the
algorithm, TAp , the theory of Ap as previously defined, p will
send to its parent the r-implicants of TAp .

Sketch of Proof Let us recursively show this property with the
maximal depth, dmax, of the subtree Ap, rooted in p. If dmax=0, p
is a leaf, none of its neighbors gets it as parent. Nevertheless, with
the previous lemma, we know that each of them will send a reqDiag
to it. Consequently p will know the state of its neighbors and satisfy
the condition (Father ∪ Child ∪ NotChild = Neighborhood).
Then p will send all r-implicants of T∨p computing by the primi-
tives flush. If dmax ≥ 0, suppose the property true for all children
p′ of p : we thus guarantee that p will receive from each of them
their r-implicants and will store them in its TChild arrays. Concer-
ning the other neighbors (NotChild), p will receive from them a
reqDiag. Consequently, p will know the state of all its neighbo-
rhood and satisfy the condition (Father ∪ Child ∪ NotChild =
Neighborhood). Since the global theory is satisfiable p will be able
to build at least one r-implicant of T Ap either by the method extends
or by the method flush.

Since TResult is minimized, the peer starter will save in it
the minimal diagnoses. The correction, the completeness and
the termination of the algorithm is a direct consequence of the
previous property. The termination is shown by this property :

Property 3 The last event carried out by a peer is sending
the endDiag message to its parent.

Sketch of Proof Similarly to the previous theorem, we can recursi-
vely show this property by the maximal depth, dmax. If dmax = 0, p
will receive a reqDiag from all its neighbors and the set waitEnd
will be empty . Then p will send the message end after the set of
r-implicants of T∨p . If dmax ≥ 0, since p will receive reqDiag
from peers in NotChild and endDiag from its children. Then, the
set waitEnd will be empty. As soon as possible, it will send r-
implicants to its parents. p will send endDiag as its last message.

hPurch

(CCS)
¬ valCC

(LAS)
¬ okLAS ∨
¬laAprvl ∨
valCC ∧ laAprvl

(ES)
¬okES ∧ hPurch ∨
laAprvl ∧ hPurch ∨
bkAprvl ∧ hPurch

(OVS)
hPurch ∧ …∨

…

(HPS)
valCC ∧ bkAprvl ∨
bkAprvl ∧ ¬okOC ∨
¬okTA ∨
¬bkAprvl ∨
¬valCC ∧ bkAprvl ∧ ¬ okOC

¬ valCC
¬ valCC ∧ ¬ bkAprvl

bkAprvlvalCC

laAprvl

¬ okLAS

…

¬ okLAS ∧ hPurch

…

FIG. 2 – M2DT algorithm

Example 5 (M2DT Illustration) A customer has made a hire
purchase by internet whereas his credit card was not valid : the
service CCS observed ¬valCC and the service ES observed
hPurch. OV S starts the analysis and sends a diagnosis request to
ES. ES begins the computation of T∨ES |{ShES ,FES} and forwards
the request to its neighbors HPS and LAS. HPS and LAS receive
the diagnosis request from ES and both forward a diagnosis request
to CCS. CCS receives the request from HPS then forwards it to

LAS. When LAS receives request from CCS it has already re-
ceived one from ES, so it does not answer. At this step, LAS has
received a message from all its neighborhood, then it starts to send
its implicants to ES. When CCS receives the request from LAS, it
does not answer and sends its implicant ¬valCC to HPS. Simul-
taneously, ES gets ¬laAprvl from LAS and HPS gets ¬valCC
from CCS. At this step, ES did not received any message from any
of its neighbors, unlike HPS, which can send to ES the implicant
¬bkAprvl ∧¬valCC built from the 4th implicant of its theory and
¬valCC. At this step, ES received a message from its neighbors. It
builds ¬okLAS∧¬bkAprvl∧hPurch∧¬valCC from its theory
and its received implicants. ES removes ¬bkAprvl and ¬valCC
which are shared variables only occuring in the subtree rooted in
ES and send ¬okLAS ∧hPurch to OV S. At this step OV S have
its first diagnosis.

5 Related Works
Our approach has been preceded by many pieces of work.

Methods from [Masson and Johnson, 1989] and [Beckstein et
al., 1993] extend the ATMS principles of [de Kleer, 1986] in
order to incrementally computes the set of conflicts in a distri-
buted framework. However, those methods have still to wait
for all conflicts before having a chance to get the first diag-
noses. Many other works try to take advantage of the system
topology, for instance by using decomposition properties of
the model [Darwiche, 1998; Provan, 2002]. Similarly [Kurien
et al., 2002] search a set of diagnosis into a partitioned graph
by assigning values for shared variables and maintaining a lo-
cal consistency. The global diagnosis is thus distributed in all
local diagnoses. This method however do not guarantee the
minimality and suppose a global system description, which is
not our case. Some work [Biteus et al., 2006] synchronizes lo-
cal diagnosis from each agent (peer) such that it will contain a
compact representation of global diagnoses at the end. The al-
gorithm search for the set of minimal diagnosis with minimal
cardinality whereas we look for the set of all minimal diag-
nosis. In [Roos et al., 2003], agents update their sets of local
diagnoses in order to be consistent with a global one. Ho-
wever, the algorithm cannot guarantee that any combination
of agent local minimal diagnoses are also a global minimal
diagnosis.

6 Conclusion
We proposed a distributed algorithm to compute minimal

diagnoses of a distributed setting in anytime, with the help of
a distributed cover tree of the acquaintance graph of peers.
Our algorithm takes advantage of the DNF representation of
local theories of peers in order to compute global diagnoses
without conflicts. However, one has to notice that in practice,
peers don’t have to rewrite their local theories in DNF. They
may compute answers to requests “on the fly” and thus allow
our algorithm to work on CNF encoding of peers. Our ap-
proach have many other advantages : we never compute the
set of conflicts before computing the diagnoses, we take ad-
vantage of the natural structure of the network, which can be
decomposed by the small number of shared variables, we take
advantage of the distributed cpu power of the whole network
and, and last, we restrict the vocabulary of diagnoses as soon
as possible.

Références
[Adjiman et al., 2005] Philippe Adjiman, Phillipe Chatalic,

M.-C Rousset, and Laurent Simon. Distributed reasoning
in a peer-to-peer setting. IJCAI’2005, 2005.

[Beckstein et al., 1993] C. Beckstein, R. Fuhge, and
G. Kraetzschmar. Supporting assumption-based reasoning
in a distributed environment. 12th International Workshop
on Distributed Artificial Intelligence, 1993.

[Biteus et al., 2006] Jonas Biteus, Erik Frisk, and Mattias
Nyberg. Distributed diagnosis by using a condensed local
representation of the global diagnoses with minimal cardi-
nality. International Workshop on Principles of Diagnosis
(DX-06), Spain, 2006.

[Darwiche and Marquis, 2002] A. Darwiche and P. Marquis.
A knowledge compilation map. Journal of AI Research,
17 :229–264., 2002.

[Darwiche, 1998] Adnan Darwiche. Model-based diagnosis
using structured system descriptions. Journal of Artificial
Intelligence Research, 8 :165–222, 1998.

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1) :97–130, April 1987.

[de Kleer et al., 1992] Johan de Kleer, Alan K. Mackworth,
and Raymond Reiter. Characterizing diagnoses and sy-
tems. Artificial Intelligence, 56 :197–222, August 1992.

[de Kleer, 1986] Johan de Kleer. An assumption-based tms.
Artificial Intelligence, 28 :127–162, March 1986.

[Halevy et al., 2003] A. Halevy, Z. Ives, and I. Tatarinov.
Schema mediation in peer data management systems. In :
ICDE’O3, pages 505–516, March 2003.

[Kurien et al., 2002] J. Kurien, X. Koutsoukos, and F. Zhao.
Distributed diagnosis of networked, embedded systems.
International Workshop on Principles of Diagnosis (DX-
02), Austria, 2002.

[Masson and Johnson, 1989] Cindy L. Masson and Row-
land R. Johnson. Datms : A framework for distributed as-
sumption based reasonning. In Distributed artificial intel-
ligence, volume 2, pages 293–317. Morgan Kaufman Pu-
blishers Inc., 1989.

[Provan, 2002] Gregory Provan. A model-based diagnosis
framework for distributed systems. International Work-
shop on Principles of Diagnosis (DX-02), Austria, 2002.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1) :57–96, April
1987.

[Roos et al., 2003] Nico Roos, Annette ten Teije, and Cees
Witteveen. A protocol for multi agent diagnosis with
spatially distributed knowledge. 2nd International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems, Australia, 2003.

[Simon and del Val, 2001] L. Simon and A. del Val. Efficient
consequence finding. In 17th International Joint Confe-
rence on Artificial Intelligence (IJCAI’01), pages 359–
365, Seattle, Washington, USA, 2001.

[Stoica et al., 2001] I. Stoica, R. Morris, D. Karger, M.F.
Kaasshoek, and H. Balakrishnan. Chord : a scalable peer-
to-peer lookup service for internet applications. In Confe-
rence on applications, technologies, architecture and pro-
tocols for computer communications, 2001.

	1 Introduction
	2 From CNF Diagnosis to DNF Diagnosis
	2.1 Centralized Model-Based diagnosis

	3 Direct Diagnosis of Distributed Settings
	3.1 A network of DNF models
	3.2 Distributions with Trees

	4 Algorithm
	4.1 A bird's eye on M2DT
	4.2 Structures and algorithm
	4.3 Primitives of M2DT
	4.4 Properties

	5 Related Works
	6 Conclusion

