
Distributed Consistency-Based Diagnosis

Vincent Armant, Philippe Dague, and Laurent Simon

LRI, Univ. Paris-Sud 11, CNRS and INRIA Saclay
Parc Club Université, 4 rue Jacques Monod 91893 Orsay Cedex, France

{vincent.armant,philippe.dague,laurent.simon}@lri.fr

Abstract. A lot of methods exist to prevent errors and incorrect be-
haviors in a distributed framework, where all peers work together for
the same purpose, under the same protocol. For instance, one may limit
them by replication of data and processes among the network. How-
ever, with the emergence of web services, the willing for privacy, and
the constant growth of data size, such a solution may not be applicable.
For some problems, failure of a peer has to be detected and located by
the whole system. In this paper, we propose an approach to diagnose
abnormal behaviors of the whole system by extending the well known
consistency-based diagnosis framework to a fully distributed inference
system, where each peer only knows the existence of its neighbors. Con-
trasting with previous works on model-based diagnosis, our approach
computes all minimal diagnoses in an incremental way, without needs to
get any conflict first.

1 Introduction

Model-Based Diagnosis has been introduced in the late eighties by [14, 11], and
has since been widely used in many successful works. With this formalism, a
logical theory describes the normal (and, optionally, abnormal) behavior of a
physical system, and consistency checking against observations is used to derive
hypotheses over components reliability (called diagnoses), that explain failures.
Even if stronger logic may be used, it is often the case where propositional logic is
chosen to model the system. In this context, diagnosing the system with respect
to observations can be expressed as a classical – and heavily studied – knowledge
based compilation problem: restricted prime implicants [6].

Recent years have seen an increasing number of AI works pushing forward
the power of distributed systems, for instance by adding semantic layers [1]. In
such networks, all systems (or “peers”) are running the same algorithm, and
are working for the same purpose. The framework may however describe two
kinds of settings. One which allows any peer to communicate with any other
peer (generally by means of distributed hash tables, [17]) and the other where
peers only know their neighbors, which is closer to social networks, circuits, and
web services composition. In the latter formalism, reasoning is based on the dec-
laration of logical equivalence of variables between peers (the shared variables),
which locally defines subsystems acquaintances.

2 Vincent Armant, Philippe Dague, and Laurent Simon

valCC

[exOvLine] bkAprvl

laApprvl

hPurch
Bank Credit
Card Service

(CCS)

Solvability
Checking

(SC) Transaction
Approval

(TA)

valCC

[solv]

Loan Agency
service (LAS)

e-shopping
service

(ES)

Bank hire purchase
Service(HPS)

Order Validation
service(OVS)

Option
Checking

(OC)
[ePurch]

[eOpt]

Fig. 1. 3 steps web-payment certification

In this paper, we investigate the problem of diagnosing distributed systems
defined by peers acquaintances. Each peer only knows its neighborhood, and
has a logical model of its normal and abnormal behavior with respect to its own
local variables and its variables shared with its acquaintances, only some of them
are observable. The challenging problem is to build a set of global diagnoses
for the whole system. Our solution directly computes diagnoses (including all
minimal ones for set inclusion) without conflicts analysis, a very hard task which
is generally the first step – and the first bottleneck – of all previous model-based
diagnoses engines, even when efficient algorithms are used [16].

In our approach, we focus on “static” settings of distributed systems (i.e. we
do not deal with connection of new peers or disconnection of existing peers),
in order to easily ensure that diagnoses and observations are consistent. If the
static behavior is not possible in a fully peer-to-peer setting, it is more realistic in
a distributed setting, for instance web services composition, embedded circuits,
and social networks. In many cases, additional layers, like memory of past events
and counters, can even simulate the “static” hypothesis.

In the next section, we introduce our notations, recall the principles of model
based diagnosis and extend it to formulas in Disjunctive Normal Form. In section
3, we introduce our foundations of distributed reasoning for diagnosis. In section
4, we present the distributed algorithm and then we report related work and
conclude.

Example 1 (Three steps web-payment certification). We illustrate the paper by a
toy example of a web-payment certification, see figure 1. The order validation service
(OVS) asks to an eshopping service (ES) for a hire purchase approval (hPurch). In
order to maximize its sales opportunity, (ES) waits for the customer bank approval
(bkAprvl) or a loan agency approval (laAprvl). The bank hire purchase service (HPS)
and the loan agency service (LAS) both check the customer credit card validity (valCC)
by a call to the credit card service (CCS). In the following, we restrict the system to
(HPS) and will refer to its “global description” as the conjunction of the Transaction
Approval (TA), the Solvability Checking (SC) and the Option Checking (OC).

Distributed Consistency-Based Diagnosis 3

2 From CNF Diagnosis to DNF Diagnosis

We assume familiarity with the standard literature on propositional reasoning
and resolution. A literal is a variable v or its negation ¬v. Given a set L of
literals, we denote by L the set of its opposite literals. A Conjunctive Normal
Form formula (CNF) is a conjunction of clauses (disjunctions of literals). A Dis-
junctive Normal Form formula (DNF) is a disjunction of products (conjunctions
of literals). For simplicity, we identify a formula with a set of sets of literals. We
denote by T∧ (resp T∨) the set of sets of literals corresponding to a CNF (resp
DNF).

A model is a set of literals that, when assigned to true, allows the evaluation
of a given formula to true. We say that a formula f is satisfiable (or consistent),
denoted by f !|= ⊥, if there exists a model for f . Let f1, and f2 be two formulas,
if all the models of f1 are also models of f2, which is noted f1 |= f2, then f1 is
called an implicant of f2 and f2 is called an implicate of f1. The minimal (with
respect to the order relation induced by inclusion of sets of literals) implicate
clauses (resp. implicant products) of a formula are called the prime implicates
(resp. prime implicants) of this formula. The set of prime implicates is expressed
in CNF whether the set of prime implicants is in DNF. Given a formula f and
a subset V of its variables, the restriction of f on V is denoted by f |V and
corresponds to recursively apply on f the Shannon decomposition operator on
all variables x of f that do not appear in V . This operation, known as forgetting
in Knowledge Compilation, is well known to be a NP-Hard problem. However,
when f is expressed as a DNF, the restriction operator is simply a vocabulary
restriction of all products of f . The restriction of T∨ on a set of literals L can
be defined as T∨|{L} = {I|{L}|∃I ∈ T∨ s.t. I|{L} = I ∩ L}, which is no more a
hard task.

2.1 Centralized Model-Based diagnosis

Like many other works, we adapt the model-based diagnosis framework from [11,
8] to the propositional case. Initially, an observed system is a triple (SD, COMPS,
OBS) where SD is a first order logical formula describing the system behavior,
OBS is a formula describing the observations (that boils down frequently to
values assignment to observable variables) and COMPS is the set of monitored
components, that appear as arguments of the predefined predicate Ab() in SD
(Ab(Ci) denoting that component Ci is abnormal). In propositional logic, we
may merge the whole into a single theory T , with the naming convention: all
variables okCi (called mode variables) encode the correct behavioral modes of
the components Ci, i.e. ¬Ab(Ci). We note F the set of negative mode literals
{...,¬okCi,...} representing faulty components. For a (boolean) observable coded
by a variable v, the elementary observation v = a is coded by v if a equals 1 and
¬v if a equals 0.

Example 2 (Modeling the system). A correct behavior of TA (okTA) will approve
a hire purchase (bkAprvl) if the customer is solvent (solv) and fulfills the condition

4 Vincent Armant, Philippe Dague, and Laurent Simon

(eOpt) of OC. The rule for TA is rewritten as f(TA) : okTA ⇒ (solv ∧ eOpt ⇔
bkAprvl). A normal functioning of SC (okSC) will consider a customer solvent (solv)
if he does not exceed his overdraft limit (¬exOvLine). We obtain f(SC) : okSC ⇒
(¬exOvLine ⇔ solv). A correct behavior of OC (okOC) will satisfy (eOPt) if the
customer asked for hire purchases by internet (ePurch) and his credit card is valid
(valCC). There are only two possible failures for OC: when ePurch keeps its de-
fault value (i.e. no internet purchase) whereas the customer asked for the internet
option, and when the customer card is believed invalid whereas it is valid. The Op-
tion Checking system can thus be encoded by f(OC) : okOC ⇒ (ePurch ∧ valCC ⇔
eOpt) ∧ (¬okOC ⇒ ¬valCC ∨ ¬ePurch). The behavior of HPS is the conjunction
f(HPS) : f(OC) ∧ f(SC) ∧ f(TA).

A diagnosis is a behavioral mode assignment to each component of the sys-
tem, consistent with its theory.

Definition 1 (Minimal Diagnoses). Let T be the theory that describes an
observed system, F the consistent set of all negative mode literals of the system.

& ⊆ F is a diagnosis for T iff T ∪& ∪ {F \&} !|= ⊥

We write Diag(T) the set of diagnoses of T and min⊆(Diag(T)) the set of its
minimal diagnoses.

Intuitively, this definition states that, given any minimal diagnosis &, one
may suppose that all components C ′ that do not appear in& are correct. We may
also notice that, because we can restrict the set of possible failures ((¬okOC ⇒
¬valCC ∨ ePurch) in the previous example), a minimal diagnosis may not be
extended by supposing some component C ′ incorrect (a negative mode literal
candidate for extending a diagnosis can be inconsistent with T and the other
mode literals).

The theorem 3 of [8] states that the minimal diagnoses are the prime impli-
cants of the conjunction of minimal conflicts, where the minimal conflicts (called
minimal conflict sets in [14] and minimal positive conflicts in [8]) are the prime
implicates of the formula SD ∧ OBS, restricted to the mode literals in F . In-
tuitively, a minimal conflict refers to a set of components containing at least a
faulty one. Minimal diagnoses are thus the minimal (for literals set inclusion)
conjunctions of faulty components that can explain all the conflicts, according
to observations.

Example 3 (Conflicts and Diagnoses on Scenario 1). Let us suppose the following
scenario: the bank approved a hire purchase for an operation whereas the customer ex-
ceeds his overdraft limit. He had a valid credit card but asked to stop internet purchasing.
In this case the bank service does not fulfill its expected behavior.

We thus look for the minimal subsets of {TA, OC, SC} that may be faulty. This will
be expressed by minimal conjunctions of literals from {¬okTA,¬okOC,¬okSC}, which
are consistent with the formula f(HPS) and the observations {exOvLine, valCC,
¬ePurch, bkAprvl }. The minimal conflicts are (¬okSC ∨ ¬okTA) and (¬okOC ∨
¬okTA). The minimal diagnoses that satisfy these conflicts are: (¬okTA) and (¬okSC∧
¬okOC).

Distributed Consistency-Based Diagnosis 5

Most of previous works on diagnosis compute first the set of conflicts, re-
stricted to mode literals. Then, only when this first stage is over, diagnoses can
be computed. These methods are hopeless for building an incremental diagnostic
engine as all minimal conflicts have to be known before the first diagnosis can be
returned. They are nevertheless motivated by the fact that models of real-world
systems are supposed to be close to CNF. If needed, new variables are usually
added to practically contain the potential blow-up when translating to CNF. Up
to now very few interest has been shown in DNF representations of a system.
However, such a DNF representation is very advantageous for diagnosis: if we
ensure that the set F of mode variables is consistent, which means that no vari-
able appears both positively and negatively in F , then, if T∨ is the description
of an observed system, each product of the restriction T∨|{F} is a diagnosis (not
necessarily minimal).

Lemma 1. Let T∨ be a DNF description of an observed system, and F a con-
sistent set of negative mode literals, then

∀I ∈ T∨, I|{F} ∈ Diag(T)

Sketch of Proof For each I ∈ T∨, I is an implicant of T which is trivially consistent

with T . Let us consider {F \ I|{F}}, which does not contain any literals from I|{F}.

Thus, T ∪ I|{F} ∪ {F \ I|{F}} is consistent and by definition I|{F} is a diagnosis.
Consequently, if we compute at least one implicant of T , we obtain at least

one diagnosis without waiting for conflicts. In practice, our requirement about
a DNF representation of T can be weakened without loss: implicants can be
incrementally computed by an efficient SAT solver or even deduced from a com-
pact, compiled, representation of T that allows efficient production of models
[6]. The result is that, on small systems, or on large – but distributed – systems,
the direct translation from CNF to DNF can be done. The following theorem
states that minimal diagnoses are contained in any DNF description encoding
the observed system.

Theorem 1. Let T be the description of an observed system, and F a consistent
set of negative mode literals:

min⊆(Diag(T)) = min⊆(T∨|{F})

Sketch of Proof A) Let' be a minimal diagnosis, by the definition 1,'∪{F \'} is

consistent with the observed system. Thus, for any DNF representation of the system,

there exists an implicant I consistent with ' ∪ {F \'}. Since I is consistent with

'∪{F \'} we have I|{F\"} = ∅ and thus I|{F} =I|{"}. Because we know that I|{F} is

a diagnosis and' is a minimal one we have I|{"} = '. B) Let I|{F} ∈ min⊆(T∨|{F}),

I|{F} is a diagnosis, suppose that it is not a minimal one. Then there exists a diagnosis

', s.t. ' ⊂ I|{F}. Consequently, there exists l in I|{F} s.t. l is not in '. In this case

'∪ { F \'}∪ I is contradictory. But since '∪ { F \'} is consistent with T∨, then

there exists I ′ *= I s.t. '∪ { F \'}∪ I ′ is consistent and I ′|{F} ⊆ '. We deduce that

I ′|{F} ⊆ ' ⊂ I|{F}. It is contradictory with the fact that I|{F} ∈ min⊆(T∨|{F}).

6 Vincent Armant, Philippe Dague, and Laurent Simon

Example 4 (Finding Diagnoses in DNF theory). Let FHPS = {¬okTA,¬okOC,¬okSC}
be the set of mode literals and T∨HPS the DNF formula of the description of HPS with
observations.

T∨HPS =

(¬okTA ∧ ¬okSC ∧ ¬eOpt ∧ okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬okOC)∨
(¬okTA ∧ ¬solv ∧ ¬okOC)∨
(¬okTA ∧ ¬okSC ∧ ¬eOpt)∨
(¬okTA ∧ ¬solv ∧ ¬eOpt)∨
(¬okSC ∧ ¬okOC ∧ eOpt ∧ solv)

For simplicity, we omitted, in each product, the conjunction of observed literals
exOvLine∧ valCC ∧¬ePurch∧ bkAprvl. Finally, after restriction on FHPS and sub-
sumption elimination, we obtain the two diagnoses {¬okTA, (¬okSC ∧ ¬okOC)}.

By the lemma 1 we know that each implicant contains a diagnosis. The
theorem 1 states that any DNF description of the observed system contains
the set of minimal diagnoses. Now, suppose that we monitor and diagnose a
distributed system by the means of a distributed diagnostic architecture made
up of local diagnostic engines which gradually compute local implicants from the
monitored subsystems. A consistent composition of local implicants from each
diagnostic engine is actually an implicant for the global system. We note that,
as soon as each diagnostic engine returns its first implicant, the composition
task can start. In the next section we precise the notion of distributed system
which differs from the usual notion of system in diagnosis by taking into account
the shared and local acquaintance of each subsystem. We take advantage of this
characterization for forgetting symbols and optimizing the composition task.

3 Diagnosing Peer-To-Peer Settings

We formalize our distributed model based diagnosis framework by means of
Peer-to-Peer Inference Systems (P2PIS) proposed by [9], and extended in [1] for
distributed reasoning. In a P2PIS, a so-called “inference peer” has only a partial
knowledge of the global network (generally restricted to its acquaintance) and
may have local information, only known by itself. In our work, an inference peer
will for instance model the expected behavior of a real peer, a web service, or
a subcircuit, of a distributed system. Let us denote by T the description of the
global observed system. T is the (virtual) conjunction of all local theories Tp of
peers p. Of course, in our framework, T will never be explicitly gathered and
privacy of local knowledge will be ensured. T is built on the global variables
vocabulary V (excluding mode variables), which can be partitioned into shared
variables Sh and local variables Loc

– Sh = {v|∃p != p′s.t. v appears both in Tp and in Tp′}
– Loc = V \ Sh

In addition to this partition, we have to add mode variables in order to be
able to diagnose the system. We denote by F the set of all mode variables of
the system. Obviously, in order to build a global diagnosis, exchange of mode

Distributed Consistency-Based Diagnosis 7

variables between peers has to be possible. Thus, the network will allow formulas
built on variables from Sh ∪ F to be sent from peer to peer. We denote by
Vp, Shp, Locp, Fp the vocabulary, the shared variables, the local variables and
the mode variables symbols of any inference peer p.

3.1 A network of DNF models

In the previous section, we assumed that we were able to work directly on the
DNF of T . Because T here is a conjunction of formulas, we may push this
hypothesis to all Tp. If the first hypothesis, i.e. in the centralized case, may not
be considered as a realistic one, at the opposite small peers will admit relatively
small DNF encoding, and thus the second hypothesis, i.e. in the distributed case,
is of practical interest. If all Tp are in DNF, then writing T in DNF can be done
by the distribution property of ∧ over ∨. More formally, we use the following
operator for this purpose:

Definition 2 (Distribution (⊗)).
T∨

1 ⊗ T∨
2 = {I1 ∧ I2|I1 ∈ T∨

1 , I2 ∈ T∨
2 , I1 ∧ I2 !|= ⊥}

One may notice that inconsistent products are deleted, and, if the result is
minimized, then this operator is exactly the clause-distribution operator of [16],
but applied to DNF and products.

Because of privacy, and for efficiency purpose, let us introduce the following
lemma stating that instead of distributing all theories before restricting the
result to mode variables, one may first restrict all theories to shared and mode
variables without loss.

Lemma 2. Let T∨ be a description of an observed P2P system, F a consistent
set of negative mode literals:

(⊗T∨
p)|{Sh,F} = ⊗(T∨

p |{Shp,Fp})

Sketch of Proof Let I (resp. I ′) an implicant of T∨p , (resp. T∨p′). Local symbols from

I do not appear in I ′, thus inconsistencies between I and I ′ can only come from shared

symbols.

With this lemma and the first theorem we can show that minimal diagnoses
can be computed with shared and mode literals only.

Theorem 2. Let T be a description of an observed P2P system, F a consistent
set of negative mode literals:

min⊆(Diag(T)) = min⊆((⊗(T∨
p |{Shp,Fp}))|{F})

Sketch of Proof Let T∨ be a DNF global description of the observed system s.t.

T∨ ≡ T . By theorem 1 we know that min⊆(Diag(T)) = min⊆(T∨|{F}). We have

T∨|{F} = T∨|{Sh,F}|{F} since the restriction of T∨ on shared and faulty symbols does

not delete any faulty symbol. Moreover, because T∨ ≡ ⊗T∨p , we deduce by the lemma

2 that min⊆(Diag(T)) = min⊆((⊗T∨p |{(Shp,Fp)})|{F}).

8 Vincent Armant, Philippe Dague, and Laurent Simon

3.2 Distributions with Trees

We now focus on the distribution of consistent diagnoses between diagnostic
engines. Here we consider that any peer may be able to initiate a diagnosis and
may ask its neighborhood to help him for this task. When receiving a request for
a diagnosis by an initiator, a peer will also query its acquaintances, according to
its observation values, and will begin to answer to its initiator as soon as possible.
Thus, the initial request will flood into the network top-down and answers will
converge to the initial peer with a bottom-up traversal of the network. Implicitly,
for a given request for a diagnosis, any peer will maintain who was its local
initiator, and thus an implicit tree will be built in the network for each request.

We use this tree to efficiently compute the distribution of peers theories.
Let us denote by Ap the subtree rooted in p and by child(Ap, Ap′) the relation
between Ap′ and Ap s.t. Ap′ is a subtree of Ap. We note by ShAp the variables
shared by Ap and any other peer in the distributed system. We note TAp the
theory defined as the conjunction of the theories of all peers occurring in the
subtree rooted in p.

TAp =

T∨
p |{Fp,Shp}, if ! ∃p′s.t.child(Ap, Ap′) is set.

(T∨
p |{Fp,Shp} ⊗

⊗
{Ap′ |child(Ap,Ap′)}

TAp′)|{ShAp ,FAp}, otherwise

The next theorem shows that we can compute global diagnoses by gradually
forgetting shared acquaintances which correspond to local acquaintances of a
subtree.

Theorem 3. Let T be the global description of an observed system, child(Ap, Ap′)
a relation defining a Tree on T rooted in r. then:

min⊆(Diag(T)) = min⊆(TAr)

Sketch of Proof We use the theorem 2 and inductively prove that ∀p, T Ap =

(⊗
q∈Ap

T∨q |{Shq,Fq})|{ShAp ,FAp}. Concerning the root r, we note that ShAr=∅, conse-

quently min⊆(T Ar) only contains the set of minimal diagnoses.

Thus, intuitively, as soon as we know that a given variable cannot imply any
inconsistency in other parts of the tree, we remove it. As answers will go back
to the root, peers will filter out useless variables, and, hopefully, will reduce the
number and the size of possible answers.

4 Algorithm

In this section, we present our message-passing algorithm M2DT, standing for
“Minimal Diagnoses by Distributed Trees” (see algorithm 1). We call neighbor of
p a peer that shares variables with p. As previously, A stands for the distributed
cover tree, dynamically built by the algorithm. We write Ap the subtree of A
rooted in p. For a tree A and a peer p, p’s parent and p’s children will be in-
cluded, by construction, in p’s neighborhood. Let us recall that TAp is defined

Distributed Consistency-Based Diagnosis 9

as the theory (more exactly a subpart of the whole theory, sufficient for diagnos-
tic purpose) of the observed subsystem defined by the conjunction of all peers
occurring in the whole subtree Ap. We call r-implicant of TAp a restriction of
one implicant of TAp to its mode variables and shared vocabulary.

4.1 A general view on M2DT

At the beginning, a given peer, called the starter, broadcasts a request of diagno-
sis (reqDiag) to its neighborhood. When a peer receives its first reqDiag, it sets
the sender as its parent and broadcasts the request to its remaining neighbors,
in order to flood the network. This first stage of the algorithm aims at building
a distributed cover tree: as the request goes along the network, the relationship
(parent, p) is set and defines the distributed cover tree A. As soon as one peer
knows that it is a leaf in A, it answers by sending its r-implicants (respDiag)
to its parent and thus begins the second stage of the algorithm. When an inter-
mediate node receives r-implicants from one of its children, there are two cases.
If it already knows the role of all its neighborhood (parent, direct children and
peers that can either occur deeper in the current subtree or elsewhere in the
cover tree), it extends all new r-implicants by distributing them over its own
r-implicants and those already received from all other children. It then filters
out useless variables and sends all resulting implicants to its parent. If it does
not know the role of all its neighborhood, it stores the received r-implicants for
a future use. With this algorithm, global diagnoses converge to the starter peer.
When a peer does not wait any more for any message, it sends its termination
message to its parent. When a peer has received all termination messages from
all its children, it sends its termination message to its parent (third and last
stage of the algorithm). When the starter peer receives the termination mes-
sage, we are sure that it already received the set of minimal diagnoses from all
its children.

4.2 Structures and algorithm

A message can be a request of diagnosis reqDiag, a response respDiag or a
notification of termination endDiag. The structure of a message msg is the
following one:

msg.Type: takes its values in {reqDiag, respDiag, endDiag}, matching the
three stages of the algorithm.

msg.Desc: defined only when msg.Type = respDiag, represents the descen-
dants of the sender of the message that participated in building the consid-
ered r-implicant.

msg.rImpl: defined only when msg.Type = respDiag, is an r-implicant of the
subtree rooted in the sender of the message.

A peer p sets its parent to the first peer in its neighborhood that sent it a
reqDiag message. For all other reqDiag messages that p may receive, it adds

10 Vincent Armant, Philippe Dague, and Laurent Simon

the sender to the set NotChild. This set stores all peers that are not direct
children of p (peers that can occur deeper in the subtree rooted in p or that
do not occur in this subtree). All peers p′ that send to p at least one respDiag
message are stored in Child. The array TChild, defined in each peer p only for
its direct children p′, associates to each child peer p′ a DNF theory TChild[p′].
TChild[p′] stores all r-implicants received so far from p′. This set will be known
to be complete when p will receive an endDiag message from p′. In order to
detect additional useless variables, p also stores in Desc all known descendant of
p (peers occurring in the subtree rooted in p). All local variables of all peers are
already deleted by the algorithm, but one may now consider as “local” a variable
that is guaranteed to occur only in the current subtree and not elsewhere. This
is the case for shared variables that are shared only by peers that occur in the
current subtree.

To detect and notify termination, p maintains a list of peers from which
messages are still waited. This list is called waitEnd and initially set to all
neighbors of p (Neighborhood). A peer leaves the list if it is the parent, if it is
not a direct descendant or if it is a direct child that notified termination.

4.3 Primitives of M2DT

checkEnd (waitEnd, p′) Checks and propagates the termination. First, it re-
moves p′ from the waitEnd list of p. If waitEnd is empty, it sends the
termination message and terminates.

extends (I, T∨
p , TChild,Desc) Extends the implicant I from p′ by distributing

it on the local theory T∨
p and all sets TChild[p”] that are defined and different

from p′. This primitive, which is only called when the local subtree is entirely
known, computes
(T∨

p |{Fp,Shp} ⊗ I ⊗
p” %=p′

TChild[p”])|{ShAp ,FAp}

One may notice that ShAp is not directly known. It is deduced from Desc: we
associate in Desc to each shared variable the unique identifiers of all peers
that share it. Thus, one may check if all peers that share a given shared
variable are “local” to the subtree, only with the help of the set Desc.

flush (T∨
p , TChild,Desc) Sends the distribution of all implicants stored in the

TChild array and the local theory. This primitive is called only when the
local subtree is known to be complete for the first time with a reqDiag mes-
sage, which means that the last unknown neighbor sent to p a message “I am
not your direct child”. We thus have to flush all previously stored implicants
(if any) to p’s parent. This primitive computes
(T∨

p |{Fp,Shp} ⊗
p” %=p′

TChild[p”])|{ShAp ,FAp}

One may notice that this primitive will be called for all leaves of the dis-
tributed tree A.

Distributed Consistency-Based Diagnosis 11

Algorithm 1 Peer p receives a message msg from peer p′

1: switch msg.Type
2:
3: case : reqDiag
4: /*A distributed tree is built*/
5: if parent is not set then /* Flooding alg.*/
6: parent ← p′

7: send to all p neighborhood \p′ : msg [reqDiag]
8: else /* p’ is not a direct child */
9: NotChild ← NotChild ∪ {p′}

10: end if
11: /* Flushes all stored implicants when the subtree is known */
12: if {parent} ∪ Child ∪NotChild = Neighborhood
13: Π ← flush(T∨p , TChild, Desc)
14: for all I ∈ Π
15: send to parent msg [respDiag,I,Desc ∪ {p}]
16: end for
17: end if
18: /* p′ is either the parent or not a direct child*/
19: checkEnd(waitEnd, p′)
20:
21: case : respDiag
22: /* Stores the diag, or extends and propagates it */
23: Child ← Child ∪ {p′}
24: Desc ← Desc ∪msg.Desc
25: TChild[p′] ← TChild[p′] ∪msg.rImpl
26: /* Extends msg.rImpl only if the subtree is already known */
27: if {parent} ∪ Child ∪NotChild = Neighborhood
28: Π ← extends(msg.rImpl, T∨p , TChild, Desc)
29: for all I ∈ Π
30: send to parent msg [respDiag,I,Desc ∪ {p}]
31: end for
32: Tresult ← min⊆(Tresult ∪Π)
33: end if
34:
35: case : endDiag
36: /* Notifies termination of this child, and propagates if needed*/
37: checkEnd(waitEnd, p′)
38: end switch

4.4 Properties

In the following we assume a FIFO channel between two connected peers and
no lost message. The acquaintance graph is connected and the global theory is
satisfiable. Messages processing is considered as “atomic”, which simply means
that the messages are treated one by one by each peer.

Let us first emphasize some observations.

12 Vincent Armant, Philippe Dague, and Laurent Simon

Lemma 3. If a peer, p, sends a reqDiag to one of its neighbors, p′, this message
is the only one from p to p′.

Proof A peer broadcasts the reqDiag to each of its neighbors (except its parent) just

after having set as its parent the sender of the first received reqDiag. Because of the

condition line 5, p does not have the opportunity to send other reqDiag. Concerning

respDiag and endDiag they are sent to the parent only.

If we now focus on the first event carried out by each peer:

Lemma 4. All peers, except the starter, will receive a first event, which will be
a reqDiag message.

Proof To receive a respDiag or an endDiag, p has to be a parent of some peer. But

to become a parent, p must send a reqDiag to at least one peer, and thus p will have

to receive reqDiag first. Consequently, since the acquaintance graph is connected, and

because a peer broadcasts reqDiag to its neighbors, then each peer will receive a first

reqDiag (we rely on the well known flooding algorithm in a graph to ensure this).

With these lemmas we have the following property:

Property 1 (Distributed cover Tree). The relation (parent,p), built when p re-
ceives its first reqDiag, defines a distributed cover tree.

Sketch of Proof Let n be the number of peers, req1(p) be the reception of the first

diagnosis request by p. Since the starter peer does not get any parent, by the previous

lemma we know that flooding reqDiag will build n-1 connections (parent,p). Suppose

a cycle is defined by these connections and an order < s.t. req1(p) < req1(p
′) if req1(p)

is former than req1(p
′). Let us take p in the cycle, there exists p′ in the cycle s.t. p′

got p as parent, then req1(p) < req1(p
′). If we follow the ”parent” connection in the

cycle, we have by transitivity that req1(p
′) < req1(p). Consequently, we cannot have

cycle by the ”parent” connection.

Now we know that a distributed cover tree will be built but, at this point, a
peer p will only know its parent, but not its direct children. This can be deduced
by the respDiag messages, when all children of p will send it their r-implicants.
respDiag messages are only sent when the state of all neighbors of p are known
(Parent, Child, NotChild).

Lemma 5. Let p be a peer, p′ be one of its neighbors. If p′ does not get p as
parent, p will receive a reqDiag from p′.

Sketch of Proof Let p′ be a neighbor of p that does not accept p as its parent.

When p sent to it a reqDiag, p′ already had a parent in order to refuse p as its parent.

Consequently p had also sent to p′ a reqDiag.

With this lemma, we can easily show the following property:

Property 2. Let Ap be the subtree rooted in p and built by the algorithm, TAp ,
the theory of Ap as previously defined, then p will send to its parent the r-
implicants of TAp .

Sketch of Proof Let us prove this property recursively, with respect to the maximal

depth, dmax, of the subtree Ap, rooted in p. If dmax=0, p is a leaf, none of its neighbors

Distributed Consistency-Based Diagnosis 13

gets it as parent. Nevertheless, with the previous lemma, we know that each of them

will send a reqDiag to it. Consequently, p will know the state of its neighbors and

satisfy the condition (parent ∪ Child ∪NotChild = Neighborhood). Then p will send

all r-implicants of T∨p computed by the flush primitive. If dmax > 0, suppose the

property true for all children p′ of p: we thus guarantee that p will receive from each of

them their r-implicants and will store them in its TChild array. Concerning the other

neighbors (NotChild), p will receive from them a reqDiag. Consequently, p will know

the state of all its neighborhood and satisfy the condition (parent∪Child∪NotChild =

Neighborhood). Since the global theory is satisfiable p will be able to build at least

one r-implicant of T Ap either by the method extends or by the method flush.

Since TResult is minimized, the starter peer will save in it the minimal
diagnoses. The correction and the completeness of the algorithm are a direct
consequence of the previous property. The termination of the algorithm is shown
by the following one:

Property 3. The last event carried out by a peer is sending the endDiag message
to its parent.

Sketch of Proof Similarly to the previous property, we can show this property

recursively with respect to the maximal depth, dmax. If dmax = 0, p will receive a

reqDiag from all its neighbors and the set waitEnd will be empty. Then p will send

the message end after the set of r-implicants of T∨p . If dmax > 0, p will receive a reqDiag

from peers in NotChild and an endDiag from its children. Then, the set waitEnd will

be empty. As soon as possible, p will send r-implicants to its parent and an endDiag

as its last message.

hPurch

(CCS)
¬ valCC

(LAS)
¬ okLAS ∨
¬laAprvl ∨
valCC ∧ laAprvl

(ES)
¬okES ∧ hPurch ∨
laAprvl ∧ hPurch ∨
bkAprvl ∧ hPurch

(OVS)
hPurch ∧ …∨

…

(HPS)
valCC ∧ bkAprvl ∨
bkAprvl ∧ ¬okOC ∨
¬okTA ∨
¬bkAprvl ∨
¬valCC ∧ bkAprvl ∧ ¬ okOC

¬ valCC
¬ valCC ∧ ¬ bkAprvl

bkAprvlvalCC

laAprvl

¬ okLAS

…

¬ okLAS ∧ hPurch

…

Fig. 2. M2DT algorithm

Example 5 (M2DT Illustration). A customer made a hire purchase by internet whereas
his credit card was not valid: the service CCS observed ¬valCC and the service ES
observed hPurch. OV S starts the analysis and sends a diagnosis request to ES. ES be-
gins the computation of T∨ES |{ShES ,FES} and forwards the request to its neighbors HPS
and LAS. HPS and LAS receive the diagnosis request from ES and both forward a
diagnosis request to CCS. CCS forwards the request to LAS. When LAS receives the
request from CCS it has already received one from ES, so it does not answer. At this

14 Vincent Armant, Philippe Dague, and Laurent Simon

step, LAS has received a message from all its neighborhood, then it starts to send its
implicants to ES. When CCS receives the request from LAS, it does not answer and
sends its implicant ¬valCC to HPS. Simultaneously, ES gets ¬laAprvl from LAS and
HPS gets ¬valCC from CCS. At this step, ES did not received any message from any
of its neighbors, unlike HPS, which can send to ES the implicant ¬bkAprvl∧¬valCC
built from the 4th implicant of its theory and ¬valCC. At this step, ES received a
message from its neighbors. It builds ¬okLAS∧¬bkAprvl∧hPurch∧¬valCC from its
theory and its received implicants. ES removes ¬bkAprvl and ¬valCC which are shared
variables only occurring in the subtree rooted in ES and sends ¬okLAS ∧ hPurch to
OV S. At this step OV S gets its first diagnosis.

5 Related Works

Our approach has been preceded by many pieces of work. Methods from [2] ex-
tend the ATMS principles of [7] in order to incrementally compute the set of
conflicts in a distributed framework. However, those methods have still to wait
for all conflicts before having a chance to get the first diagnosis. Many other
works try to take advantage of the system topology, for instance by using de-
composition properties of the model [5, 13]. Similarly [12] searches for diagnoses
into a partitioned graph by assigning values for shared variables and maintaining
a local consistency. The global diagnosis is thus distributed in all local diagnoses.
This method however does not guarantee the minimality and supposes a global
system description, which is not our case. In [3], local diagnoses from each agent
(peer) are synchronized such that to obtain at the end a compact representation
of global diagnoses. But the algorithm searches only for the set of diagnoses
with minimal cardinality whereas we look for the set of all minimal diagnoses
for subset inclusion. In [15], agents update their sets of local diagnoses in order
to be consistent with a global one. However, the algorithm cannot guarantee
that any combination of agents local minimal diagnoses is also a global minimal
diagnosis. In [4, 10], a supervisor, that knows the global communication archi-
tecture between peers, coordinates the diagnosis task by dialoguing with local
diagnosers. Thus the computation of global diagnoses from local ones is cen-
tralized. Due to the privacy constraint, in our framework a peer just knows its
neighbors, no peer knows the network architecture and computation of global
diagnoses is distributed, no peer playing a special role.

6 Conclusion

We proposed a distributed algorithm to compute the minimal diagnoses of a
distributed Peer-to-Peer setting in an incremental way, with the help of a dis-
tributed cover tree of the acquaintance graph of the peers. Our algorithm takes
advantage of the DNF representation of the local theories of the peers in order
to compute global diagnoses without needs to get conflicts first. However, one
has to notice that, in practice, peers do not have to rewrite their local theories
in DNF. They may compute answers to requests “on the fly” and thus allow

Distributed Consistency-Based Diagnosis 15

our algorithm to work on CNF encoding of the peers. Developing this technique
will be our next investigation, along with experimental testing and scaling-up
study of our algorithm on real examples, such as conversational web services.
We can already state the many advantages offered by our approach: we ensure
privacy issues, in particular no peer has the global knowledge; we never compute
the set of conflicts before computing the diagnoses; we take advantage of the
natural structure of the network, which can be generally decomposed such as to
obtain a small number of shared variables; we take advantage of the distributed
cpu power of the whole network; lastly, we restrict the vocabulary of diagnoses
as soon as possible. Future lines of research will include the study of dynamic
Peer-to-Peer systems.

References

1. P. Adjiman, P. Chatalic, M.-C Rousset, and Laurent Simon. Distributed reasoning
in a peer-to-peer setting. IJCAI’2005, 2005.

2. C. Beckstein, R. Fuhge, and G. Kraetzschmar. Supporting assumption-based rea-
soning in a distributed environment. Workshop on Distributed Artificial Intelli-
gence, 1993.

3. J. Biteus, E. Frisk, and M. Nyberg. Distributed diagnosis by using a condensed
local representation of the global diagnoses with minimal cardinality. DX-06, 2006.

4. L. Console, C. Picardi, and D. Theseider Dupré. A framework for decentralized
qualitative model-based diagnosis. IJCAI’2007, 2007.

5. A. Darwiche. Model-based diagnosis using structured system descriptions. Journal
of AI Research, 8:165–222, 1998.

6. A. Darwiche and P. Marquis. A knowledge compilation map. Journal of AI Re-
search, 17:229–264, 2002.

7. J. de Kleer. An assumption-based tms. Artificial Intelligence, 28:127–162, March
1986.

8. J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diagnoses and sytems.
Artificial Intelligence, 56:197–222, August 1992.

9. A. Halevy, Z. Ives, and I. Tatarinov. Schema mediation in peer data management
systems. In: ICDE’O3, pages 505–516, March 2003.

10. M. Kalech and A. Gal Kaminka. On the design of social diagnosis algorithms for
multi-agent teams. IJCAI’2003, 2003.

11. J.de Kleer and Brian C. Williams. Diagnosing multiple faults. Artificial Intelli-
gence, 32(1):97–130, April 1987.

12. J. Kurien, X. Koutsoukos, and F. Zhao. Distributed diagnosis of networked, em-
bedded systems. DX-02, 2002.

13. G. Provan. A model-based diagnosis framework for distributed systems. DX-02,
2002.

14. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–96, April 1987.

15. N. Roos, A. ten Teije, and C. Witteveen. A protocol for multi agent diagnosis with
spatially distributed knowledge. AAMAS 2003, 2003.

16. L. Simon and A. del Val. Efficient consequence finding. IJCAI’01, 2001.
17. I. Stoica, R. Morris, D. Karger, M.F. Kaasshoek, and H. Balakrishnan. Chord: a

scalable peer-to-peer lookup service for internet applications. In ACM SIGCOMM
2001, 2001.

