
GUNSAT: a Greedy Local Search Algorithm for Unsatisfiability

Gilles Audemard�

Univ d’Artois, CRIL - CNRS, FRE2499,
Lens, F-62307

audemard@cril.univ-artois.fr

Laurent Simon
Univ Paris-Sud, LRI - CNRS, UMR8623,

INRIA-Futurs, Orsay, F-91405
simon@lri.fr

Abstract

Local search algorithms for satisfiability testing are
still the best methods for a large number of prob-
lems, despite tremendous progresses observed on
complete search algorithms over the last few years.
However, their intrinsic limit does not allow them
to addressUNSAT problems. Ten years ago, this
question challenged the community without any
answer: was it possible to use local search algo-
rithm for UNSAT formulae? We propose here a first
approach addressing this issue, that can beat the
best resolution-based complete methods. We define
the landscape of the search by approximating the
number of filtered clauses by resolution proof. Fur-
thermore, we add high-level reasoning mechanism,
based on Extended Resolution and Unit Propaga-
tion Look-Ahead to make this new and challenging
approach possible. Our new algorithm also tends
to be the first step on two other challenging prob-
lems: obtaining short proofs forUNSAT problems
and build a real local-search algorithm for QBF.

1 Introduction
Over the last ten years, a lot of impressive progresses have
been made in the practical solving of the satisfiability testing
(SAT). All the methods that address this typical NP-Complete
problem may be divided in two categories: Complete ones,
usually based on the Davis, Logemann and Loveland pro-
cedure[Davis et al., 1962; Moskewiczet al., 2001], can
prove that a formula is satisfiable or not. Incomplete solvers
(also calledone-sidedsolvers) only give an answer if the
instance has a given property (generally if it is satisfiable).
Most of them, which are based on local search, perform a
stochastic walk over the search space[Selmanet al., 1994;
Hoos and Stutzle, 2004]. Those methods give very good re-
sults on certain classes of problems, like random 3SAT prob-
lems[LeBerre and Simon, 2006].

In 1997,[Selmanet al., 1997] challenged the local search
community with a quest for an efficient local search algorithm
for unsatisfiable formulae. We propose here the first success-
ful approach, calledGUNSAT, that pushes the local search

�supported by ANR “Planevo” project noJC0541940.

formalism into resolution proofs search space. Because state-
of-the-art complete SAT solvers are terribly efficient in prac-
tice, we only callefficienta solver, based on resolution, that
can defeat state-of-the-art resolution-based solvers. For doing
this, we propose to make a greedy walk among the resolution
search space in which, at each step of the local search algo-
rithm, we try to compute a ”better” neighbour proof,i.e. a
proof which differs from the previous ones by at most two
clauses, one added by resolution, and one that may have been
removed. To find such a neighbour, we approximate the num-
ber of filtered models by the proof. This is achieved by a
score given to all pairs of literals depending on their frequen-
cies in the formula. As we will show it in our experimental
investigation, the use of higher reasoning mechanism, based
on Extended Resolution[Robinson, 1965] and Unit Propaga-
tion Look-Ahead[LeBerre, 2001] is a key to make this new
and challenging approach possible. Because resolution-based
methods seems to be an efficient way for solving quantified
boolean formulae (QBF), we believe that our algorithm may
be the first step on two other challenging problems: build a
real local-search algorithm for QBF and obtain short proofs
for UNSAT problems and QBF ones.

The paper is organised as follows. We start by introducing
some definitions and notations, then, in section 3, we discuss
previous works done on local search for unsat problems, and
we present our new approach. Before conclude, we provide
some experiments.

2 Preliminaries and definitions
Let V = fx1; : : : ; xng be a set ofboolean variables, a literal
li is a variablexi or itsnegation:xi. A clauseis a disjunction
of literalsci = l1 _ l2:::_ lni . A unit clause (ormono-literal)
is a clause restricted to a single literal. A formula� is in con-
junctive normal form(CNF) if � is a conjunction of clauses
� = c1 ^ c2::: ^ cm. TheSAT decision problem is defined as
follows: given a formula� in CNF, is there an assignment of
the variablesV � such that� is satisfied,i.e. all the clauses
of � are satisfied?

2.1 Local Search forSAT problems
Local search algorithms forSAT problems use a stochastic
walk over total interpretations of� (i.e. all variables are as-
signed). At eachstep(or flip), they try to reduce the number
of unsatisfiable clauses (under certain conditions). The next

Algorithm 1 : General scheme of a local searchSAT solver

Data : � a CNF formula
Result : SAT if a model is found,UNKNOWN otherwise
begin

for i=1 to MaxTriesdo
Choose a random interpretationI;
for j=1 to MaxFlipsdo

if I is a model of� then returnSAT ;
I = neighbour(I);

end
end
returnUNKNOWN ;

end

total interpretation is chosen among the neighbours of the cur-
rent one (they differ only on one literal value). After a given
number of steps, a restart is done to jump into an other part
of the landscape (escape phase). We recall, algorithm 1, the
general scheme of local search algorithms forSAT.

A lot of improvements have been proposed in the literature,
like tabu searchor the use of different heuristics to find the
next interpretations. The interested reader may refer to[Hoos
and Stutzle, 2004] for a detailed coverage of all methods.

2.2 Resolution Proofs
The resolution rule allows to deduce a new clause (called re-
solvent) with the help of two clauses. It plays a central role
in many works based on clausal representations of boolean
formulae, like preprocessing steps[Eén and Biere, 2005].

Definition 1 ([Robinson, 1965]) Let c1 = (x _ a1 _ a2 _
: : : an) and c2 = (:x _ b1 _ b2 _ : : : bm) be two clauses.
The clausec = (a1 _ a2 _ : : : an _ b1 _ : : : bm) is called the
resolventof the clausesc1 andc2 by performing aresolution
on the variablex. We notec = c1
 c2 this rule.

One may apply the resolution rule many times including on
resolvent clauses to derive new clause. The obtained clause
is provedby resolution:

Definition 2 (Resolution proof [Robinson, 1965]) Let� be
a CNF formula. A resolution proof of a clausec is a succes-
sion of clauseP = c1; c2; : : : ; ck such thatc = ck and for all
i � k one of the following conditions holds :

� ci 2 �

� 9cm; cn 2 P (m < i andn < i) such thatci = cm
 cn

If the empty clause (?) may be proved by resolution then
the formula� is unsatisfiable: The resolution proof system is
complete for refutation. Restrictions on general resolution ex-
ist and may still answer bothSAT andUNSAT questions (like
Ordered Resolution). However, in practice, resolution-based
solvers are more suitable to knowledge compilation problem-
atics (preprocessing, prime implicates computation, ...) than
to SAT checking. Directional Resolution[Dechter and Rish,
1994] is one of the most famous restriction, based on the well
known work of [Davis and Putnam, 1960]. [Simon and del

Val, 2001] has shown how a simple generalisation of the res-
olution rule, called multi-resolution, allowed to scale-up most
of the resolution based solvers, essentially for compilation
purpose. This two resolution-based solvers will help us mea-
sure the performances ofGUNSAT. We callefficienta solver,
based on the resolution rule, that can beat both of them.

Extended Resolution
It is well known that the number of necessary clauses could
be exponential to prove refutation by general resolution proof
(even if no restrictions are imposed in the order of resolu-
tions steps). This is the case for the well known pigeon hole
problem[Haken, 1985], the Urquhart problems[Urquhart,
1987] and even the random problems[Chvátal and Sze-
meŕedi, 1988]. We have here to notice that all those prob-
lems needlarge clauses (i.e. unbounded size) in the resolu-
tion proof before producing?. On a lot of instances, allowing
large clauses to be generated is essential.

However, it is striking to notice that as soon as one al-
lows the introduction of new variables during the proof (like
lemmas in theorem proving), then short proofs for the above
problems exist.[Tseitin, 1970] introduced this principle as
theextended resolutionrule. If � is a formula, one applica-
tion of this rule allows us to consider�^(e, l1_l2) instead,
wheree is a fresh variable (not appearing in�) andl1 andl2
are literals from�. Even if this rule looks very simple, there
is no proof system known to be stronger than extended reso-
lution. Despite its simplicity and its theoretical interests, no
practical applications of extended resolution are used in mod-
ernSAT solvers. Some works implicitly use a restriction of it,
like symmetry breaking algorithm based on the introduction
of new variables. The work of[Simon and del Val, 2001] can
also be viewed as a restriction of this rule, where nodes of the
graph representation of the formula may be viewed as new
propositional variables. However, at the end, the whole prob-
lem remains: even if this rule looks simple, how to choose the
pair of literals to extend?

3 Local search forUNSAT problems
After a discussion of previous works, we presentGUNSAT,
our new local search algorithm for unsat checking.

3.1 Previous Work
Among the ten challenges proposed ten years ago[Selmanet
al., 1997], not so much work has been done to address the
fifth challenge: ”design a practical stochastic local search
procedure for proving unsatisfiability”.

Hybrid solvers
Almost all previous works on incomplete algorithms for un-
satisfiability has been done on hybrid solvers only. Some
methods use a classical local search solver but recordno-
goods, based on resolvent. However, in the general case,
those methods improve performance on satisfiable problems
only [Fang and Ruml, 2004; Shen and Zhang, 2005].

With the new interest in QBF solving and the relative fail-
ure of direct DPLL extensions on them, some effort have been
done on finding new methods, based on resolution or local
search. The solver WalkQSAT[Gent et al., 2003] has two

Algorithm 2 : GUNSAT

Data : � a CNF formula
Result : UNSAT if a derivation of? is found, UN-

KNOWN otherwise
begin

for i=1 to MaxTriesdo
for j=1 to MaxFlipsdo

if 2-Saturation(�) returnsUNSAT then
returnUNSAT ;

if j�j > MaxSizethen
Remove-One-Clause(�)

Add-One-Clause(�) ;
Add-Extended-Variables(�) ;
Simplify-Look-Ahead(�) ;

end
Replace� by all itsvital clauses;

end
returnU N K N O W N;

end

distinct phases: the first one is a complete algorithm based on
DPLL for QBF; the second one use local search to quickly
find models. This incomplete solver can prove either the va-
lidity and the invalidity of a QBF formula, but may never
prove it.

RANGER
Ranger[Prestwich and Lynce, 2006] is also a local search
algorithm for UNSAT problems that may looks very similar
to GUNSAT. In this recent work, arbitrary resolution is per-
formed in order to generate a large number of the shortest
possible clauses, as fast as possible. To avoid combinatorial
explosion, they may remove clauses. As we will see after,
GUNSAT has a more powerful reasoning mechanism and a
finest heuristic to guide moves whereas Ranger is simpler but
performs many more moves per second.

3.2 Skeleton of our local search algorithm
The solverGUNSAT has, for a large part, the same skeleton
than classical local search algorithms. Intuitively, our algo-
rithm will remove and add new clauses to the set of clauses
�, trying to derive? by the resolution rule. The whole prob-
lem is to ensure that our algorithm may be able to perform
greedy movesin the search space. It is also fundamental to
add a higher level reasoning mechanism to ensure good prac-
tical results. TheGUNSAT algorithm, detailed in the later, is
given in algorithm 2.

3.3 InsideGUNSAT

Estimation of the number of filtered clauses
Given a set of clauses� built onn variables, we want to ap-
proximate the total number of its potential models that are
directly filtered out (over the2n potential ones). The mea-
sure must be based on explicit information only, and the com-
putational effort to obtain it must be polynomially bounded.
Otherwise, one may need to exactly count the number of its
models, which is clearly harder than the coNP-hard problem
we are initially facing.

Let ci = l1 _ l2::: _ lni be a clause in the formula�. For
anyci s.t.ni � 1, it is clear that the clause filter out2n�ni of
potential models.

Our first measure (depth 0of the approximation) estimates
the number of filtered models considering clauses indepen-
dently. Each clauseci of lengthni weightsw0(ni) = 2n�ni .
The whole weight of the proof may then be measured as
�n
i=1w0(ni). It is however clear that filtered models are not

independent and this measure gives a very inaccurate indica-
tion of thequalityof the current proof. It remains at trying to
produce as many short clauses as possible.

At depth 1 of the approximation, we fix the granularity to
literals, by maintaining the estimation of the number of fil-
tered models for each literal. For each literall, we may sum
its weight in all clauses where it occurs by considering that
a clauseci of lengthni � 1 filter out 2n�ni of the models
that contain:l (over its2n�1 potential models). If we sup-
pose that all these filtered models are separately and equally
distributed over all literals in the clause, which is a strong as-
sumption on which our estimation is based, then the clause
ci allows literall to filter outw1(ni) =

2n�ni
ni

of the models
containing:l. Even through this is a refinement of depth0, it
is clear that ifl occurs in the two clausesl^ q andl^:q then
this scoring scheme is particularly inappropriate. In some
way, it is important to take the locality of common variables
into account.

This is what approximation of depth 2 does. The gran-
ularity is here pairs of literals. For a clauseci of length
ni, the 2n�ni filtered models are supposed as equally dis-
tributed over theni:(ni � 1)=2 pairs of literals occurring in
ci. Each pair(l1; l2) appearing inci is credited a weight of
w2(ni) = 2n�1�ni

ni:(ni�1) . The score of a pair of literal(l1; l2)
is defined as the sum of its weights in all clauses and noted
S(l1; l2). The scoreS(c) of a clausec is the sum of the scores
of all the pairs of literals it contains. In the remaining sec-
tions,w andS may be used without indices for depth 2.

The deeper the approximation is, higher the cost to main-
tain it. We may refine our measurement by considering
triplet of literals, but any explicit representation of all pos-
sible triplets of literals may be quickly unpracticable on real-
istic UNSAT benchmarks.

Remark 1 (Clauses scoring)If a given clauseci has a score
S(ci) ' ni:(ni � 1):w2(ni)=2 thenci is nearly the only one
that filter the models composed by the negation of its literals.
Even if such a clause is long, it should be kept in the proof.
At the opposite, ifS(ci) � ni:(ni � 1):w2(ni)=2 then there
is a little hope that this clause is from great importance in the
current proof.

What are Greedy Moves?
We now have a scoring scheme for pairs and clauses. If we
try to improve the total sum of clauses scores over�, then our
algorithm will look for large clauses in which a lot of frequent
pairs occur. This is the completely opposite goal.

Instead of trying to improve a measurement over the whole
proof, we’ll focus onquadrupletsof pairs only. In order to
derive?, we need a step in our proof wherel and:l are in

�. Because we perform 2-Saturation with Unit-Clause prop-
agation at each step of our moves (see in the later), such a
case never occurs. So, we have to find two literalsl1 andl2
such that clausesl1 _ l2, :l1 _ l2, l1 _ :l2 and:l1 _ :l2
can be derived from�. In other words, we’ll try to im-
prove the scores of the four pairs built on the same vari-
ables, calledquadrupletsand noted[x1; x2]. Because we
want to localise quadruplets where all pairs have a high score,
we define the scoreSq([x1; x2]) over a quadruplet as the
sum of the squares of the scores of its pairsSq([x1; x2]) =
S(l1; l2)

2 + S(:l1; l2)
2 + S(l1;:l2)

2 + S(:l1;:l2)
2. Any

move that enhance the score of one of the best scored quadru-
plets is thus a greedy move.

Neighbourhood
Adding any clausec0 =2 � to � such that� ` c0 may define
the neighbourhood. However, the deduction mechanism must
be restricted to a correct but polynomially bounded and un-
complete method. Otherwise, one may reduceGUNSAT to a
single call to any completeSAT solver to check if� ` ? and
then add it to�.

We chose to use the 1-Resolution mechanism, noted`1Res,
which is defined as� `1Res c iff c = c1
 c2 where
c1 and c2 occur in �. Even if this rule is very simple,
we are already facing a huge neighbourhood. To illustrate
this, let’s take a randomk-SAT formula at a given ratior,
with n variables andr � n clauses. Before the first move,
each literal occurs on averagek:r:n=2 times, andk2:r2:n2=4
clauses may be derived from 1-Resolution on it, which give
for the whole formulan3:k2:r2=4 potential clauses. For a
700 variables 3SAT formula at threshold (r = 4:25), we
already have over1010 potential moves to rank. Random
moves in this huge neighbourhood may only lead to blind
search for unsatisfiability, without any hope to beat ordered
resolution-based algorithms like[Dechter and Rish, 1994;
Simon and del Val, 2001].

Finding the bests Greedy Moves
Any explicit exploration of the neighbourhood is impossible
in practice. However, if we know in advance that we have to
increase the score of one of the bests quadruplets, we may try
to increase the score of any of one of its pairs.

Let [x1; x2] be the best scored quadruplet in�. Increasing
the score of any of its pairs(l1; l2) amounts to adding any
new clause containing bothl1 andl2. Short clauses will grant
(l1; l2) a higher score, and should be preferred. However, the
score of the new clause itself has to be taken into account. If
we add a short clause with a high score, then this clause will
probably be considered as useless in the next iteration of the
algorithm. Thus, we are looking for a short clause with the
lowest possible score to filter out new potential models.

When looking for this new clause withl1 and l2, we first
try to localise the pivot variable on which we’ll perform the
resolution rule. If such a pivotp exists, thenS(l1; p) > 0 and
S(:p; l2) > 0. We thus have to choose a clausecp containing
l1 andp, and a clausec:p containing:p andl2. To prevent
the new clause from having a high score, we only try to gen-
erate the new clausec from the two clauses having the lowest
scores. Because of this restrictions, it is not always possible
to produce a new clausec containingl1 andl2 (for instance,

c may be subsumed by some clause of� or may simply be a
tautology). If one pair score cannot be improved, then the
other pairs of the same quadruplet are iteratively tried. If
GUNSAT fails on all pairs of the best quadruplet, then the sec-
ond quadruplet is tried and so on. This is what the call to
Add-One-Clause does.

Removinguselessclauses
As we have seen, clause scoring will be preferred to a sim-
ple measurement of clause length to localise useless ones.
This mechanism allows us to keep large clauses in�, es-
pecially if it is the only one to filter out a large number of
pairs. However, it is essential to keepvital clauses in�.
They ensure that we are preserving its unsatisfiability. Vi-
tal clauses are initial clauses, or any clause that previously
subsumed another vital clauses. We also forced the algorithm
to keep binary clauses. This step is performed by the call to
Remove-One-Clause .

Finding a random start
As described inGUNSAT skeleton, random start and general
iteration of the algorithm only differ in the removing or not of
clauses at each step. During the random start initialisation, no
clauses are removed (except any subsumed clause) in order to
fill the proof up toMaxSize clauses.

3.4 Other refinements
It has been essential to add three powerful mechanisms to
GUNSAT in order to make it competitive to other resolution-
based reasoning systems. The first but essential refinement
concerns subsumptions. Before adding a new clause, we
perform forward/backward subsumption detection[Zhang,
2005].

Binary clause saturation
The power of binary clause saturation has been exploited
with success in[Bacchus, 2002] for preprocessing purposes.
At each step of the walk, binary clauses, related to our
pairs of literals, have a special treatment in the call to
2-Saturation . Each time a new binary clause is found
in �, all resolutions between the set of binary clauses are per-
formed to saturate� with it. In order to exploit their full
power, an equivalency literal search is performed: if clauses
l1_:l2 and:l1_ l2 are found in�, then all occurrences ofl1
are replaced byl2 andl1 is tagged as a new potential extended
variable to be used in the latter search.

While performing the binary clause saturation, the algo-
rithm may find new unary clausesl1. The literal l1 is then
propagated in the whole formula by unit propagation (all
clauses containingl1 are deleted, all clauses containing:l1
are shortened). An inconsistency may be found at this step
and then returned to the main algorithm.

Extended Resolution
When the algorithm has tried to increase the score of a given
pair of literals too many-times without any success, we chose
to adopt a tricky solution that really pays: use extended res-
olution (ER) to artificially increase the score of this pair of
literals.

The extended rulee , l1 _ l2 is encoded by the three
clauses(:e_l1_l2), (e_:l1) and(e_:l2). If necessary, the

Add-Extended-Variable step may add a fresh variable
by adding all those three clauses to�. Of course, we ensured
that a pair of literals can only appear in at most one extended
rule. As we’ll see section 4, this very simple rule gives very
good results in practice.

Look Ahead techniques
The patented Stålmarck method[St̊almarck, 1994], which
gives good results in practice on some structured benchmarks,
uses a powerful Look Ahead technique to detect equivalen-
cies between literals until an inconsistency is found. It uses a
reformulation of the initial formula, based on a set oftriplets
(p , q , r andp , q) r only). When formulae are ini-
tially written in CNF, the power of this method may be par-
tially captured by unit-propogation lookahead (LH)[LeBerre,
2001].

To enhance the power ofGUNSAT, we added LH tech-
niques on pairs of literals. The four possible values of pairs
are iteratively propagated in�, searching for more, implied,
unit propagations. If any literall of � is set to? in all the
four tries, then LH proved that� ` :l, and the unary clause
:l is added to�.

Restarting
When GUNSAT fails to derive? from � after MaxFlips
steps, a restart is performed. All clauses, except binary ones
and the set ofvital clauses, are removed. To ensure thatGUN-
SAT will explore another part of the search space, we added
random number to cut ties of quadruplets having the same
scores up to a given�. Each restart is followed by a new ran-
dom generation of quadruplets random numbers. All clauses
containing at least one extended variables are deleted after
each restart, including binary ones.

A particularity of our local search algorithm may be em-
phasised here: because of unit propagation, binary clause sat-
uration and subsumption deletion,� may evolve from starts
to restarts. Hopefully,� will only evolve to a simpler and
simpler formula.

4 Experimental evaluation
Our results were obtained with a Xeon 3.4Ghz with 2GB
memory. GUNSAT is a prototype written in java and a lot of
optimisations are still planned (Java APILinkedList data
structure are for instance used and may be greatly improved).
In addition, our current implementation use an explicit repre-
sentation of all pairs, which is a very costly operation. We are
planning to manipulate only the Top-M best pairs of literals
in our next versions.

Because of these two weak points, we selected instances
with only a very restricted number of clauses and variables
(aim, xor andjnh). Furthermore, like other local search algo-
rithms, GUNSAT has a lot of parameters to tune and some of
them may be improved in the near future. We chose to per-
form 50 restarts and to fix the number of flips to 6 times the
initial number of clauses.

As we have previously said, our purpose is not here to
compareGUNSAT to state-of-the-art SAT solvers. It is clear
that conflict learning solvers likeZCHAFF [Moskewicz et
al., 2001] for structured instances and solvers likeKCNFS

basic LH ER LH + ER
% S T (F) % S T (F) % S T (F) % S T (F)

aim-50 (8) 12 2.14 100 1.41 60 15.14 100 1.58
(26) (146) (1749) (142)

aim-100 (8) 10 36.83 55 11.93 27 139.74 97 49.37
(3954) (923) (4998) (1726)

aim-200 (8) 0 - 60 63.62 5 739.00 85 201.29
(1098) (9099) (2009)

jnh (33) 6 0.95 57 8.48 18 68.15 62 4.21
(0) (276) (986) (687)

xor (39) 0 - - 1.5 308.83 11 31.91
(6932) (5197)

Table 1: Results on structured instances. %S gives the per-
centage of solved instances (5 launches per instance). T
means Time (in seconds, averaged of all successful runs), and
F gives the averaged total number of flips.

LH + ER
V R % S T (F)

50 4.25 58 60 (3880)
50 5.0 86 18 (1520)
50 6.0 97 5 (545)

60 4.25 35 126 (5785)
60 5.0 68 67 (3346)
60 6.0 92 16 (1094)

70 4.25 23 189 (6626)
70 5.0 51 187 (6193)
70 6.0 87 59 (2389)

Table 2: 3-SAT Random instances - Each category contains
100 instances, each instance is solved 50 times

[Dubois and Dequen, 2001] for random instances outperform
GUNSAT. We rather want to compare it with resolution-based
solvers.

We compared 4 versions of our solver: the basic one, the
one with lookahead (LH) only, with extended resolution only
(ER) and the one with both of them (LH+ER).

4.1 Structured instances

Table 1 reports the results obtained byGUNSAT on structured
problems. We do not report the original DR performances
[Dechter and Rish, 1994]: over the 187 runs, only 47 fin-
ished without a memory allocation error and only 9 instances
were solved (allaim-50 and 1xor). ZRes[Simon and del
Val, 2001] was able to solve allaim-50 , half aim-100 , but
failed to solveaim-200 and jnh . It was able to solve all
xor instances, because of its ability to handle large set of
highly structured clauses.

It is clear that proposed refinements (LookAhead and Ex-
tended Resolution) and especially their combination provide
a realistic local search solver forUNSAT problems.

4.2 Random instances

Table 2 reports results on random instances with different
number of variables (from 50 to 70) and different ratio (4.25,
5 and 6). We only report results for ER+LH because all other
versions ofGUNSAT were only able to solve at most 1% of the
instances. The solver DR cannot solve either these instances.
ZRes solves only instances with 50 variables at the threshold
in 250 seconds on average.[Prestwich and Lynce, 2006] also
reports bad results on random instances with RANGER.

Even on hard examples for resolution based algorithms,
GUNSAT LH+ER showed promising results, in comparison

with resolution based solvers and RANGER, especially for
large clause/variable ratios.

One may also notice the very low number of flips in all
the cases, which mean that the obtained proof length is short,
in comparison with ZRes experimentations on random in-
stances.

5 Conclusion and future work
We report the first good results on local search for unsatisfia-
bility since[Selmanet al., 1997] challenged the community.
GUNSAT differs from classical local search algorithm in its
high-cost flip mechanism. Finding and adding good clauses,
while maintaining the score of all pairs, is a costly – but nec-
essary – task to prevent a blind local search.GUNSAT learns
from start to restarts and may be able to prove unsatisfiability
start after restarts, by suddenly finding a derived unit clause
before starting again with this new high-valuable clause. We
showed that LH techniques with ER are two key points to
allow local search on resolution proofs. With both mecha-
nisms, made possible by our scoring based on pairs of lit-
erals,GUNSAT was able to defeat state-of-the-art resolution
based solvers.

Those good results should be relativized by the fact that
GUNSAT cannot yet challenge state of the art DPLL solvers.
However, those solvers have two main drawbacks: they
hardly exhibit a proof of unsatisfiability of the initial formula
that can be checked by a third-party trusted algorithm and
they seem to reach their limit when extended to QBF solv-
ing. Resolution-based algorithms may be the next generation
of efficient QBF solving, with a short proof checking made
possible. In this new and still promising area, we believe that
GUNSAT may take a good place.

References
[Bacchus, 2002] F. Bacchus. Enhancing davis putnam with

extended binary clause reasoning. Inproceedings of AAAI,
pages 613–619, 2002.

[Chvátal and Szemerédi, 1988] V. Chvátal and E. Sze-
meŕedi. Many hard examples for resolution.Journal of
the ACM, 35:759–768, 1988.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A com-
puting procedure for quantification theory.Journal of the
ACM, pages 201–215, 1960.

[Daviset al., 1962] M. Davis, G. Logemann, and D. Love-
land. A machine program for theorem-proving.Commu-
nications of the ACM, 5(7):394–397, July 1962.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Directional
resolution: the davis-putnam procedure, revisited. Inpro-
ceedings of KR, pages 134–145, 1994.

[Dubois and Dequen, 2001] O. Dubois and G. Dequen. A
backbone-search heuristic for efficient solving of hard 3–
sat formulae. InProceedings of IJCAI, 2001.

[Eén and Biere, 2005] N. Eén and A. Biere. Effective pre-
processing in sat through variable and clause elimination.
In in proceedings of SAT, pages 61–75, 2005.

[Fang and Ruml, 2004] H. Fang and W. Ruml. Complete lo-
cal search for propositional satisfiability. Inproceedings
of AAAI, pages 161–166, 2004.

[Gentet al., 2003] I. Gent, H. Hoos, A. Rowley, and
K. Smyth. Using stochastic local search to solve quan-
tified boolean formulae. InProc.of CP, pages 348–362,
2003.

[Haken, 1985] A. Haken. The intractability of resolution.
Theorical Computer Science, 39:297–308, 1985.

[Hoos and Stutzle, 2004] H. Hoos and T. Stutzle.Stochas-
tic Local Search, Foundations and Applications. Morgan
Kaufmann / Elsevier, 2004.

[LeBerre and Simon, 2006] D. LeBerre and L. Simon, edi-
tors. Special Volume on the SAT 2005 competitions and
evaluations, volume 2. Journal on Satisfiability, Boolean
Modeling and Computation, 2006.

[LeBerre, 2001] D. LeBerre. Exploiting the real power of
unit propagation lookahead. InProceedings of SAT, 2001.

[Moskewiczet al., 2001] M. Moskewicz, C. Madigan,
Y. Zhao, L. Zhang, and S. Malik. Chaff : Engineering
an efficient sat solver. InProceedings of DAC, pages
530–535, 2001.

[Prestwich and Lynce, 2006] S. Prestwich and I. Lynce. Lo-
cal search for unsatisfiability. InProceedings of SAT,
pages 283–296, 2006.

[Robinson, 1965] J. Robinson. A machine-oriented logic
based on the resolution principle.JACM, 12:23–41, 1965.

[Selmanet al., 1994] B. Selman, H. Levesque, and
D. Mitchell. A New Method for Solving Hard Sat-
isfiability Problems. InProceedings of AAAI, pages
440–446, 1994.

[Selmanet al., 1997] B. Selman, H. Kautz, and
D. McAllester. Ten challenges in propositional rea-
soning and search. InProc. of IJCAI, pages 50–54,
1997.

[Shen and Zhang, 2005] H. Shen and H. Zhang. Another
complete local search method for sat. Inin proceedings
of LPAR, pages 595–605, 2005.

[Simon and del Val, 2001] L. Simon and A. del Val. Efficient
consequence finding. Inproceedings of IJCAI, pages 359–
365, 2001.

[St̊almarck, 1994] G. St̊almarck. A system for determining
propositional logic theorem by applying values and rules
to triplets that are generated from a formula. US Patent
5,276,897; Canadian Patent 2,018,828; European Patent 0
403 545; Swedish Patent 467 076, 1994.

[Tseitin, 1970] G. Tseitin. On the complexity of derivation
in propositional calculus.Studies in Constructive Mathe-
matics and Mathematical Logic, 2:466–483, 1970.

[Urquhart, 1987] A. Urquhart. Hard examples for resolution.
JACM, 34(1):209–219, 1987.

[Zhang, 2005] L. Zhang. On subsumption removal and on
the fly cnf simplification. Inproceedings of SAT, volume
3569 ofLNCS, pages 482–489, 2005.

