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Abstract

Local search algorithms for satisfiability testing are
still the best methods for a large number of prob-
lems, despite tremendous progresses observed on
complete search algorithms over the last few years.
However, their intrinsic limit does not allow them

to addressUNSAT problems. Ten years ago, this
guestion challenged the community without any
answer: was it possible to use local search algo-
rithm for UNSAT formulae? We propose here a first
approach addressing this issue, that can beat the
best resolution-based complete methods. We define
the landscape of the search by approximating the
number of filtered clauses by resolution proof. Fur-
thermore, we add high-level reasoning mechanism,
based on Extended Resolution and Unit Propaga-
tion Look-Ahead to make this new and challenging
approach possible. Our new algorithm also tends
to be the first step on two other challenging prob-
lems: obtaining short proofs fayNSAT problems

and build a real local-search algorithm for QBF.

Introduction

Laurent Simon
Univ Paris-Sud, LRI - CNRS, UMR8623,
INRIA-Futurs, Orsay, F-91405
simon@Iri.fr

formalism into resolution proofs search space. Because state-
of-the-art complete SAT solvers are terribly efficient in prac-
tice, we only callefficienta solver, based on resolution, that
can defeat state-of-the-art resolution-based solvers. For doing
this, we propose to make a greedy walk among the resolution
search space in which, at each step of the local search algo-
rithm, we try to compute abettef’ neighbour proof,.e. a
proof which differs from the previous ones by at most two
clauses, one added by resolution, and one that may have been
removed. To find such a neighbour, we approximate the num-
ber of filtered models by the proof. This is achieved by a
score given to all pairs of literals depending on their frequen-
cies in the formula. As we will show it in our experimental
investigation, the use of higher reasoning mechanism, based
on Extended ResolutidifiRobinson, 196band Unit Propaga-
tion Look-Ahead[LeBerre, 2001 is a key to make this new
and challenging approach possible. Because resolution-based
methods seems to be an efficient way for solving quantified
boolean formulae (QBF), we believe that our algorithm may
be the first step on two other challenging problems: build a
real local-search algorithm for QBF and obtain short proofs
for UNSAT problems and QBF ones.

The paper is organised as follows. We start by introducing
some definitions and notations, then, in section 3, we discuss
previous works done on local search for unsat problems, and

Over the last ten years, a lot of impressive progresses havge present our new approach. Before conclude, we provide
been made in the practical solving of the satisfiability testingsome experiments.

(SAT). All the methods that address this typical NP-Complete
problem may be divided in two categories: Complete onesp  preliminaries and definitions

usually based on the Davis, Logemann and Loveland pro-

cedure[Davis et al, 1962; Moskewiczet al, 2001, can : _ : ; : Al lIEE
prove that a formula is satisfiable or not. Incomplete solverdi IS & variable; or itsnegation-z;. A clauseis a disjunction
(also calledone-sidedsolvers) only give an answer if the Of literalsc; =1, Vi,...Viy, . A unitclause (omono-litera)
instance has a given property (generally if it is satisfiable)iS @ clause restricted to a single literal. A formilas in con-
Most of them, which are based on local search, perform dunctive normal form(CNF) if 3 is a conjunction of clauses
stochastic walk over the search sp&8elmanet al., 1994; : / X .
Hoos and Stutzle, 2004 Those methods give very good re- follows_: given a formulat in CNF, is t_her_e an assignment of
sults on certain classes of problems, like random 3SAT probthe variables’” ¥ such that is satisfiedj.e. all the clauses
lems[LeBerre and Simon, 2006

In 1997,[Selmanet al, 1997 challenged the local search
community with a quest for an efficient local search algorithm

LetV = {z1,...,x,} be aset oboolean variablesaliteral

¥ =¢; Aes... A ey. TheSAT decision problem is defined as

of X are satisfied?

2.1 Local Search forsaT problems

for unsatisfiable formulae. We propose here the first succes&©c@l seéarch algorithms fosAT problems use a stochastic
ful approach, calledsUNSAT, that pushes the local search V\{alk over total interpretations & (i.e. all variables are as-

*supported by ANR “Planevo” projecf4C0541940.

signed). At eaclstep(or flip), they try to reduce the number
of unsatisfiable clauses (under certain conditions). The next



Algorithm 1: General scheme of a local seaxAT solver

Data :Y a CNF formula
Result : sAT if a model is foundNKNOWN otherwise
begin
for i=1 to MaxTriesdo
Choose a random interpretatién
for j=1 to MaxFlipsdo
if | is a model ofY then returnsarT ;
I = neighbour{);

end
end

returnUNKNOWN ;

Val, 2001 has shown how a simple generalisation of the res-
olution rule, called multi-resolution, allowed to scale-up most
of the resolution based solvers, essentially for compilation
purpose. This two resolution-based solvers will help us mea-
sure the performances GlUNSAT. We callefficienta solver,
based on the resolution rule, that can beat both of them.

Extended Resolution

It is well known that the number of necessary clauses could
be exponential to prove refutation by general resolution proof
(even if no restrictions are imposed in the order of resolu-
tions steps). This is the case for the well known pigeon hole
problem[Haken, 1985 the Urquhart problem§Urquhart,

end

1987 and even the random problenif€hvatal and Sze-
meiédi, 1988. We have here to notice that all those prob-
}_ems needarge clausesi(e. unbounded size) in the resolu-
tion proof before producing .. On a lot of instances, allowing
Ilf;\rge clauses to be generated is essential.

However, it is striking to notice that as soon as one al-
lows the introduction of new variables during the proof (like
lemmas in theorem proving), then short proofs for the above
problems exist.[Tseitin, 1979 introduced this principle as
the extended resolutiorule. If X is a formula, one applica-
tion of this rule allows us to consid&nA (e < 15 Vi,) instead,
wheree is a fresh variable (not appearingi) andl; andl,

2.2 Resolution Proofs are literals from. Even if this rule looks very simple, there

. is no proof system known to be stronger than extended reso-
The resolution rule allows to deduce a new clause (called reyiion Despite its simplicity and its theoretical interests, no
solvent) with the help of two clauses. It plays a central role, 4 ctical applications of extended resolution are used in mod-
in many works based on clausal representations of boolegfyn sar solvers. Some works implicitly use a restriction of it,
formulae, like preprocessing stefisen and Biere, 2005 like symmetry breaking algorithm based on the introduction
of new variables. The work dSimon and del Val, 20Qican
also be viewed as a restriction of this rule, where nodes of the
graph representation of the formula may be viewed as new
propositional variables. However, at the end, the whole prob-
lem remains: even if this rule looks simple, how to choose the
pair of literals to extend?

total interpretation is chosen among the neighbours of the cu
rent one (they differ only on one literal value). After a given
number of steps, a restart is done to jump into an other pal
of the landscapeetcape phage We recall, algorithm 1, the
general scheme of local search algorithmsdar.

A lot of improvements have been proposed in the literature
like tabu searchor the use of different heuristics to find the
next interpretations. The interested reader may refgttms
and Stutzle, 20Q4for a detailed coverage of all methods.

Definition 1 ([Robinson, 196%) Letc; = (z Va; Vas V
...ag)andec; = (mx Vb Vb V...b,) be two clauses.
The clause = (a; Vaa V...a, Vb V...b,) is called the
resolventof the clauses; andc, by performing aesolution
on the variabler. We note: = ¢; ® ¢, this rule.

One may apply the resolution rule many times including on.
resolvent clauses to derive new clause. The obtained clau
is provedby resolution:

Local search foruNSAT problems

After a discussion of previous works, we preseutNsAT,
our new local search algorithm for unsat checking.

Definition 2 (Resolution proof[Robinson, 196%) LetX be 31 Previous Work

a CNF formula. A resolution proof of a clausds a succes-

sion of clauseP = ¢;, ¢s, . . ., cx such that: = ¢, and forall  Among the ten challenges proposed ten yeard 8gtmanet
i < k one of the following conditions holds : al., 1997, not so much work has been done to address the
I fifth challenge: "design a practical stochastic local search

procedure for proving unsatisfiability”

e dc,,, ¢, € P(m <iandn <i)suchthat; = ¢, ®c, .
( ) Hybrid solvers

If the empty clause () may be proved by resolution then Almost all previous works on incomplete algorithms for un-
the formulaX is unsatisfiable: The resolution proof system is satisfiability has been done on hybrid solvers only. Some
complete for refutation. Restrictions on general resolution exmethods use a classical local search solver but renord
ist and may still answer bothAT andUNSAT questions (like  goods based on resolvent. However, in the general case,
Ordered Resolution However, in practice, resolution-based those methods improve performance on satisfiable problems
solvers are more suitable to knowledge compilation problemenly [Fang and Ruml, 2004; Shen and Zhang, 4005
atics (preprocessing, prime implicates computation, ...) than With the new interest in QBF solving and the relative fail-
to SAT checking. Directional Resolutidibechter and Rish, ure of direct DPLL extensions on them, some effort have been
1994 is one of the most famous restriction, based on the weltlone on finding new methods, based on resolution or local
known work of[Davis and Putnam, 1980[Simon and del search. The solver WalkQSAGentet al., 2003 has two



Algorithm 2: GUNSAT Letc; =13 Vis... V1, be aclause in the formuld. For
Data X a CNF formula anyc; s.t.n; > 1, itis clear that the clause filter opt—"i of

Result : UNSAT if a derivation of 1 is found, UN- potential models.
KNOWN otherwise

Our first measuredgpth Oof the approximation) estimates
the number of filtered models considering clauses indepen-
dently. Each clause; of lengthn; weightswg(n;) = 27",

The whole weight of the proof may then be measured as
X jwo(n;). Itis however clear that filtered models are not
independent and this measure gives a very inaccurate indica-

begin
for i=1 to MaxTriesdo
for j=1 to MaxFlipsdo
if 2-Saturation( Y) returnsSUNSAT then

returnUNSAT ; ; . X .
if |X| > MaxSizethen tion of thequality of the current proof. It remains at trying to
Remove-One-Clause( ¥) produce as many short clagses_ as poss!ble. _
Add-One-Clause( %) At depth 1 of thg approximation, we fix the granularity to
Add-Extended-Variables( %) literals, by maintaining the estimation of the number of fil-
Simplify-Look-Ahead( ) f[ered _mod_els for each literal. F(_)r each literalve may sum
end its weight in all clauses where it occurs by considering that
ReplaceX by all itsvital clauses; a clausec; of lengthn; > 1 filter out 2"~ of the models
end that contain-l (over its2” ! potential models). If we sup-
returnUNKNOWN pose that all these filtered models are separately and equally
end distributed over all literals in the clause, which is a strong as-

sumption on which our estimation is based, then the clause
c; allows literall to filter outw; (n;) = 2= of the models

distinct phases: the first one is a complete algorithm based ogyntaining-1. Even through this is a refinement of deptlit
DPLL for QBF; the second one use local search to quicklyjs clear that iff occurs in the two clausés\ ¢ andl A —q then
find models. This incomplete solver can prove either the vamis scoring scheme is particularly inappropriate. In some
lidity and the invalidity of a QBF formula, but may never ay it is important to take the locality of common variables
prove It. into account.

RANGER This is what approximation of depth 2 does. The gran-

Ranger[Prestwich and Lynce, 2006s also a local search Ularity is here pairs of literals. For a clause of length
algorithm for UNSAT problems that may looks very similar i the 277 filtered models are supposed as equally dis-
to GUNSAT. In this recent work, arbitrary resolution is per- tfibuted over then;.(n; —1)/2 pairs of literals occurring in
formed in order to generate a large number of the shortegt- Each pairly, 1) appearing ir; is credited a weight of
possible clauses, as fast as possible. To avoid combinatorial:(n;) = ;- —y. The score of a pair of literaly, l»)
explosion, they may remove clauses. As we will see afteris defined as the sum of its weights in all clauses and noted
GUNSAT has a more powerful reasoning mechanism and &/(l,,1,). The score5(c) of a clause: is the sum of the scores
finest heuristic to guide moves whereas Ranger is simpler buif all the pairs of literals it contains. In the remaining sec-

performs many more moves per second. tions,w andS may be used without indices for depth 2.
i The deeper the approximation is, higher the cost to main-
3.2 Skeleton of our local search algorithm tain it. We may refine our measurement by considering

The solvercUNSAT has, for a large part, the same skeletontriplet of literals, but any explicit representation of all pos-
than classical local search algorithms. Intuitively, our algo-sible triplets of literals may be quickly unpracticable on real-
rithm will remove and add new clauses to the set of clauseistic UNSAT benchmarks.

¥, trying to deriveL by the resolution rule. The whole prob-

lem is to ensure that our algorithm may be able to performremark 1 (Clauses scoring)if a given clause; has a score
greedy moves the search space. It is also fundamental tog () ~ n;.(n; — 1).wy(n;)/2 thene; is nearly the only one
add a higher level reasoning mechanism to ensure good pragqat filter the models composed by the negation of its literals.
tical results. ThesUNSAT algorithm, detailed in the |ater, is Even if such a clause is |Ong, it should be kept in the proof_
given in algorithm 2. At the opposite, i6(c;) > n;.(n; — 1).w2(n;)/2 then there

. is a little hope that this clause is from great importance in the
3.3 InsideGUNSAT current proof.
Estimation of the number of filtered clauses

Given a set of clauses built onn variables, we want to ap- What are Greedy Moves?

proximate the total number of its potential models that aréNMe now have a scoring scheme for pairs and clauses. If we
directly filtered out (over th@™ potential ones). The mea- try to improve the total sum of clauses scores &vgthen our
sure must be based on explicit information only, and the comalgorithm will look for large clauses in which a lot of frequent
putational effort to obtain it must be polynomially bounded. pairs occur. This is the completely opposite goal.

Otherwise, one may need to exactly count the number of its Instead of trying to improve a measurement over the whole
models, which is clearly harder than the coNP-hard problenproof, we’ll focus onquadrupletsof pairs only. In order to

we are initially facing. derive L, we need a step in our proof wherand—/ are in



Y. Because we perform 2-Saturation with Unit-Clause prop< may be subsumed by some clause&afr may simply be a
agation at each step of our moves (see in the later), suchtautology). If one pair score cannot be improved, then the
case never occurs. So, we have to find two litetalandl, other pairs of the same quadruplet are iteratively tried. If
such that clauseg V Iy, =l V 15, I3 V —ly and =l V =l GUNSAT fails on all pairs of the best quadruplet, then the sec-
can be derived fronE. In other words, we'll try to im- ond quadruplet is tried and so on. This is what the call to
prove the scores of the four pairs built on the same variAdd-One-Clause does.

ables, calledquadrupletsand noted[z;,z-]. Because we
want to localise quadruplets where all pairs have a high scor%
we define the scoré,([z1,22]) over a quadruplet as the
sum of the squares of the scores of its p&if§[z;, z2]) =

emovinguselesglauses

s we have seen, clause scoring will be preferred to a sim-

ple measurement of clause length to localise useless ones.
‘ ‘ This mechanism allows us to keep large clause¥ jres-

S(l1,12)? + S(=ly, 1) + S(ly, =) + S(=l, ~ly)*. Any P

ecially if it is the only one to filter out a large number of
g}g;/sei;ht%tuin: ag?gg(;g?ns;v(ge of one of the best scored quad@éirs. However, it is essential to kegp'lal clagsc_as ir]E. .

' They ensure that we are preserving its unsatisfiability. Vi-
Neighbourhood tal clauses are initial clauses, or any clause that previously
Adding any clause’ ¢ ¥ to ¥ such thatt ¢ may define  subsumed another vital clauses. We also forced the algorithm
the neighbourhood. However, the deduction mechanism muge keep binary clauses. This step is performed by the call to
be restricted to a correct but polynomially bounded and unRemove-One-Clause

complete method. Otherwise, one may redGcaISAT to a Finding a random start

fﬁg%lzgglilttfogny completsaT solver to check it - L and As dgscribed iI’GUN$AT skeleto_n, rgndom start gnd general
We chose to‘ use the 1-Resolution mechanism, neted iteration of the algorithm o_nly differ in the removing or not of
which is defined a8 FL_ ¢ iff ¢ = ¢ ® ¢ ,Where clauses at each step. During the random start|n|t|al|s.at|0n,no
1 2 clauses are removed (except any subsumed clause) in order to

Res
¢1 and ¢e occur inX. Even if this rule is very simple, fill the proof up toMaxSize clauses
d .

we are already facing a huge neighbourhood. To illustrat
this, let's take a random-SAT formula at a given ratie, 3.4 Other refinements
with n variables and- x n clauses. Before the first move
each literal occurs on average-.n/2 times, andi?.r%.n? /4

clauses may be derived from 1-Resolution on it, which giv

' It has been essential to add three powerful mechanisms to

GUNSAT in order to make it competitive to other resolution-

for the whole formulan? k2.r2/4 potential clauses. For a ®based reasoning systems. The first but essential refinement
i | concerns subsumptions. Before adding a new clause, we

700 variables 8AT formula at thresholdr{ = 4.25), we .
alrea\(/jylhave ovet0'? pch)tentiaI moves tg( rank. F)ear\?:dom rz)gggrm forward/backward subsumption detecti@hang,

moves in this huge neighbourhood may only lead to blind

search for unsatisfiability, without any hope to beat orderedinary clause saturation

resolution-based algorithms likiDechter and Rish, 1994; The power of binary clause saturation has been exploited
Simon and del Val, 2041 with success ifBacchus, 200Pfor preprocessing purposes.
At each step of the walk, binary clauses, related to our

;':dm)? }ih?tbisﬁs rG:ieidyfl\{lr?visi hbourhood is im iol pairs of literals, have a special treatment in the call to
Yy EXpIICIt exploration of the Negnbournood IS IMPOSSIDIE 5_gayration . Each time a new binary clause is found

In practice. However, if we know in advance that we have O ¥, all resolutions between the set of binary clauses are per-
increase the score of one of the bests quadruplets, we may

to increase the score of any of one of ifs pairs ¥rmed to saturat& with it. In order to exploit their full
: . wer, an ivalency literal rchi rformed: if cl
Let [z, z2] be the best scored quadruplein Increasing power, an equivalency literal search is performed: if clauses

th r it . I ts 1o addi l1 V=ly and—ly Vi1 are found iny, then all occurrences of
€ score of any ot 1tS pairdy, [) amounts to a Ing any  are replaced bis andl; is tagged as a new potential extended
new clause containing both andl,. Short clauses will grant

(L1, 12) @ higher score, an_d should be preferreq. However, thga\rll\?r?illg tge?feorniier?g”:r;{gebliigf; sc?:Lrjgg. saturation, the algo-
score of the new clause itself has to be taken into account.rﬁ :
i

we add a short clause with a high score, then this clause w fthm may find new unary clausds. The literall, is then

probably be considered as useless in the next iteration of t ag)up;g: i:eodntlgir:irr:a V;?g lge{gg:ju'zlIbéatggspg?)%?giiti:gg (all
algorithm. Thus, we are looking for a short clause with the '

. ; : re shortened). An inconsistency m foun hi
lowest possible score to filter out new potential models. are shortened) consistency may be found at this step

When looking for this new clause with andi,, we first and then returned to the main algorithm.
try to localise the pivot variable on which we’ll perform the Extended Resolution
resolution rule. If such a pivgt exists, ther6(I1,p) > 0and  When the algorithm has tried to increase the score of a given
S(—p,12) > 0. We thus have to choose a claugeontaining  pair of literals too many-times without any success, we chose
l; andp, and a clause_,, containing—p andl,. To prevent to adopt a tricky solution that really pays: use extended res-
the new clause from having a high score, we only try to genelution (ER) to artificially increase the score of this pair of
erate the new clausefrom the two clauses having the lowest literals.
scores. Because of this restrictions, it is not always possible The extended rule < [; Vv I3 is encoded by the three
to produce a new clausecontainingl; andi» (for instance, clauseg—eVl; Vi), (eV—li) and(eV—is). If necessary, the



Add-Extended-Variable step may add a fresh variable L | At

by adding all those three clausesitoOf course, we ensured | am50® 221400 T T AT TE0 | A L4 TT00 | 188

that a pair of literals can only appear in at most one extendetm oo o scos 55 oy 127 somat—o7 oy

rule. As we'll see section 4, this very simple rule gives very| _ — 5 (3954) - égzgg . §43%9g()) - %7122
. . aim-. - . fl .

good results in practice. - (1098) (9099) (2009)

i jnh (33 6 0.95 57 8.48 18 68.15 62 4.21

Look Ahead techniques - . ©) ero | | o8 | @0
° . xor - - . R K

The patented &tmarck method Stalmarck, 199% which (6932) (5197)

gives good results in practice on some structured benchmarks,

uses a powerful Look Ahead technique to detect equivalenTable 1. Results on structured instances. %S gives the per-
cies between literals until an inconsistency is found. It uses &entage of solved instances (5 launches per instance). T
reformulation of the initial formula, based on a setrilets ~ means Time (in seconds, averaged of all successful runs), and
(p  q & randp < ¢ = r only). When formulae are ini- F gives the averaged total number of flips.

tially written in CNF, the power of this method may be par-

tially captured by unit-propogation lookahead (LHgBerre, l I LH+ER |
2001 [V IR | %s] WG
: 50 4.25 58 60 (3880)

To enhance the power afUNSAT, we added LH tech- 50 | 5.0 86 | 18(1520)
niques on pairs of literals. The four possible values of pairs Zg igs Z; 1265(2‘;55))
are iteratively propagated ¥, searching for more, implied, 5 50 58 | 67(3340)
unit propagations. If any literdl of ¥ is set to_L in all the 60 [ 6.0 92 [ 16(1094)
four tries, then LH proved that - =i, and the unary clause LT N | gﬁgg
=l is added tax. 70 [ 60 87 | 59(2389)
Restarting Table 2: 3-SAT Random instances - Each category contains
When GUNSAT fails to derive L from X after MaxFlips 100 instances, each instance is solved 50 times

steps, a restart is performed. All clauses, except binary ones
and the set ofital clauses, are removed. To ensure thak- ) i
sAT will explore another part of the search space, we addedPubois and Dequen, 20Dfor random instances outperform
random number to cut ties of quadruplets having the sam&UNSAT. We rather want to compare it with resolution-based
scores up to a givea Each restart is followed by a new ran- SOIVers. _ _
dom generation of quadruplets random numbers. All clauses We compared 4 versions of our solver: the basic one, the
containing at least one extended variables are deleted aftép€ with lookahead (LH) only, with extended resolution only
each restart, including binary ones. (ER) and the one with both of them (LH+ER).

A particularity of our local search algorithm may be em- .
phasised here: because of unit propagation, binary clause s&-1 Structured instances

uration and subsumption deletiod,may evolve from starts  Taple 1 reports the results obtaineddyNSsAT on structured
to restarts. HopefullyX will only evolve to a simpler and  problems. We do not report the original DR performances

simpler formula. [Dechter and Rish, 1994 over the 187 runs, only 47 fin-
ished without a memory allocation error and only 9 instances
4 Experimental evaluation were solved (alkim-50 and 1xor ). ZRes[Simon and del

Val, 200] was able to solve alim-50 , halfaim-100 , but
failed to solveaim-200 andjnh . It was able to solve all
Xor instances, because of its ability to handle large set of

Our results were obtained with a Xeon 3.4Ghz with 2GB
memory. GUNSAT is a prototype written in java and a lot of
optimisations are still planned (Java ARhkedList  data

. . ighly structured clauses.
structure are for instance used and may be greatly |mproved5]. . ,
In addition, our current implementation use an explicit repre- It is clear that proposed refinements (LookAhead and Ex-

sentation of all pairs, which is a very costly operation. We aretended Resolution) and especially their combination provide

planning to manipulate only the Tap* best pairs of literals arealistic local search solver foNSAT problems.
in our next versions. .
Because of these two weak points, we selected instancg's2 Random instances
with only a very restricted number of clauses and variableSable 2 reports results on random instances with different
(aim, xor andjnh). Furthermore, like other local search algo- number of variables (from 50 to 70) and different ratio (4.25,
rithms, GUNSAT has a lot of parameters to tune and some of5 and 6). We only report results for ER+LH because all other
them may be improved in the near future. We chose to perversions olGUNSAT were only able to solve at most 1% of the
form 50 restarts and to fix the number of flips to 6 times theinstances. The solver DR cannot solve either these instances.
initial number of clauses. ZRes solves only instances with 50 variables at the threshold
As we have previously said, our purpose is not here tan 250 seconds on averad®restwich and Lynce, 200@&lso
compareGUNSAT to state-of-the-art SAT solvers. It is clear reports bad results on random instances with RANGER.
that conflict learning solvers likgcHAFF [Moskewicz et Even on hard examples for resolution based algorithms,
al., 2001 for structured instances and solvers likeNFS ~ GUNSAT LH+ER showed promising results, in comparison



with resolution based solvers and RANGER, especially fofFang and Ruml, 20¢4H. Fang and W. Ruml. Complete lo-

large clause/variable ratios. cal search for propositional satisfiability. proceedings
One may also notice the very low number of flips in all  of AAAI pages 161-166, 2004.

the cases, which mean that the obtained proof length is shoffgentet al, 2003 I. Gent, H. Hoos, A. Rowley, and

in comparison with ZRes experimentations on random in- K sSmyth. Using stochastic local search to solve quan-

stances. tified boolean formulae. IfProc.of CP pages 348-362,
2003.
5 Conclusion and future work [Haken, 1985 A. Haken. The intractability of resolution.

We report the first good results on local search for unsatisfia- Theorical Computer Scienc89:297-308, 1985.

bility since[Selmaret al, 1997 challenged the community. [Hoos and Stutzle, 2004H. Hoos and T. Stutzle Stochas-
GUNSAT differs from classical local search algorithm in its  tic Local Search, Foundations and Applicationglorgan
high-cost flip mechanism. Finding and adding good clauses, Kaufmann / Elsevier, 2004.

while maintaining the score of all pairs, is a costly — but Nec| eBerre and Simon, 2006D. LeBerre and L. Simon, edi-

essary —task to prevent a blind local searebNsAT 'eé‘”ﬁs .. tors. Special Volume on the SAT 2005 competitions and
from start to restarts and may be able to prove unsatisfiability evaluations volume 2. Journal on Satisfiability, Boolean
start after restarts, by suddenly finding a derived unit clause Modeling and Computation, 2006. '

before starting again with this new high-valuable clause. W .
showed that LH techniques with ER are two key points tol-€Berre, 2001 D. LeBerre. Exploiting the real power of
allow local search on resolution proofs. With both mecha- Unit propagation lookahead. Rroceedings of SAR001.
nisms, made possible by our scoring based on pairs of littMoskewiczet al, 2001 M. Moskewicz, C. Madigan,
erals, GUNSAT was able to defeat state-of-the-art resolution Y. Zhao, L. Zhang, and S. Malik. Chaff : Engineering
based solvers. an efficient sat solver. IfProceedings of DACpages
Those good results should be relativized by the fact that 530-535, 2001.

GUNSAT cannot yet challenge state of the art DPLL solvers [prestwich and Lynce, 2006S. Prestwich and I. Lynce. Lo-
However, those solvers have two main drawbacks: they cal search for unsatisfiability. IProceedings of SAT
hardly exhibit a proof of unsatisfiability of the initial formula  pages 283-296, 2006.

that can be checked by a third-party trusted algorithm an?Robinson 1965 J. Robinson. A machine-oriented logic

they seem to reach their limit when extended to QBF solv- . I i
ing. Resolution-based algorithms may be the next generation based on the resolution principl2dCM 12:23-41, 1965.

of efficient QBF solving, with a short proof checking made [Selmaretal, 1994 B. Selman, H. Levesque, and
possible. In this new and still promising area, we believe that D. Mitchell. A New Method for Solving Hard Sat-

GUNSAT may take a good p|ace. |sf|ab|I|ty Problems. In Proceedings of AAAI pages
440446, 1994
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