SatEx: A Web-based Framework for
SAT Experimentation

Laurent Simon and Philippe Chatalic
Laboratoire de Recherche en Informatique,
U.M.R. CNRS 8623,
Université Paris-Sud,
91405 Orsay Cedex, France
email: {simon,chatalic}@lIri.fr

Abstract are often limited and biased by the experimenter’s point of
view.

In this paper we investigate on properties that should
characterize good SAT experimentations. We first discuss
some general principles that most experimental comparisons
should satisfy and then focus on the specificity of SAT ex-
perimentations. Then we describe SatEx web site, a frame-
work which attempts to address these problems by making
available a large database to research community, gathering
detailed information on the behavior of most current SAT
solvers on most benchmarks. The main motivations for this
work are to give the user a precise enough account of exper-
imentation conditions (in order to give him the possibility to
recreate the experiment with exactly the same conditions) and
to allow him to explore the database by himself and exploits
the results without having to run again the same experiments
for each couple program/benchmark. Anybody should thus
1 Introduction be able to compare his program to others with a minimal ef-

While satisfiability testing remains an interesting area forfort’ just by adding it to the database.

theoretical investigation, most current scientific contributions . . .
leave more and more place to experimentation. In particu2 Towards fair experimental comparisons of
lar, one may no more consider presenting any new algorithm systems

without comparing its results with those of other existing al-

gorithms, on a reasonable set of benchmarks. Eight years ag?xtliimmr gérvr\:e;isss (;Jrzn gf tgati\tlgi %Ogl elfntovf/:i?r? %l:ﬁéfzmse_
the Dimacs challenge on satisfiability testifi] initiated P P g Y ' Y

such systematic comparisons by testing an important nuni€ms able to solve the same task. We further assume that this
ber of different SAT solvers on different benchmarks. Since- performed by running these programs on sets of benchmark

X ; ' . X X instances and that the comparison is performed by analyzing
that frunful meeting, interest in SAT solvmg'hasnt stopped the value of some result parameters. We think that a fair ac-
growing. Stimulated by this kind of competition, many au-

thors have been constantly improving their algorithms andount of such an experimentation should satisfy the following

proposing new benchmark instances, based on real life, &ropemes.
interesting problems, encoded using the SAT formalis&h. Reproducibility This is probably one of the most important
Today, achieving a satisfying experimental comparison is point. Any user should obtain enough information to be
not so easy. While several days where enough at the time able to obtain again by himself the same results under
of the Dimacs challenge, today, such a systematic compari- similar conditions. This requires an absoltrensparen-
son would be much more expensive, especially if one wants cy on the conditions of the experimentation. Character-
to compare all systems on the different benchmarks (in CPU- izing these conditions should be performed at two level-
time, it can take more than one year, even on a recent comput- s. At the logical level, one should be able to obtain the
er). Presenting a new algorithm is therefore a rather tricky ex- ~ complete description of the compilation and execution
ercise. One has to provide the reader with some experimental parameters values, used for each run. At the hardware
evidence supporting the good properties of the algorithm but, level, one should be able to obtain a precise description
due to CPU-time limitations, space constraints, etc, one can- of the machine architecture and parameter values. Since
not afford an extensive comparison with all other systems on ~ machines are improving all the time, one should have
all benchmarks. As a consequence, accounts of experiments some way to compare results obtained on different ma-

SatEx is a web site devoted to SAT experimenta-
tion. It is not only a front end to a database gath-
ering an exhaustive number of executions, but it al-
so allows dynamic results synthesis as well as de-
tailed explorations of experimentation results. Be-
ing dynamically generated and constantly updated
and improved, this site can be considered as an al-
most always up-to-date SAT experimentatioa-
per. To the current time, SatEx presents the re-
sults of more than 450 CPU days on a recent ma-
chine. In a few months, this site has been well
received by the SAT community and has reached
more than 20000 hits. SatEx site is available at
http://www.Iri.fr/"simon/satex/satex.php3.

chines. Clearly the frequency of the processor has to be To our point of view, any fair experimental evaluation of
taken into account, but it is not sufficient. The amount ofan algorithm should keep these three criteriae in mind.
memory and also the cache configuration may also have

a significant impapt on the obtained results. For _examé;) SAT Experimentations : success and pitfalls
ple, the acceleration induced by cache memory is har

to measure in general and can drastically change resultt seems now clear that any claimed advance needs to be sup-
s. Given a binary code, we may, on some instances, olported by some experimental evidence, but, one may wonder
serve a CPU-time ratio d0 between two machines, just whether such experiments are really satisfying and meet the
because of different cache configurations, while on othembove properties.

benchmarks, this ratio may only be»br 3. Therefore, Reproducibility is currently rather difficult to achieve. Al-
the scale up of CPU-time may be really misleading, andhough most SAT solvers are coded in C and may be recom-
should always be reported when used in a comparison.piled without major difficulty, the precise experimentation
Another point of concern is the case of algorithms thatconditions are seldom available. Most systems use a num-
integrate some kind of randomness. Reproducibility carper of parameters, the value of which may have a significant
simply be obtained by including the random numberimpact on performances. Most of the time no hint is given
generation library into the distribution code of the pro- to help adjusting such values. Who has never failed finding
gram (thus making the program independent of the operagain similar results to those reported in a paper?

ating system, which may include its own random num- Exhaustiveness is practically never achieved. There are
ber generation process) and by giving, for each run, theeveral explanations for that. One of them is that, although
random number seed that deterministically generated ththe SAT problem is well defined from a theoretical point of
random number series. view, it is addressed in different ways by the various SAT

ExhaustivenessA satisfying experimentation should also be SCIVers. While some of them just try to answer the decision
asexhaustivas possible. There may be plenty of benCh_problem, others try to exhibit a model of the formula being

marks and it seems hard to restrict the comparison to 5ested for satisfiability, and some of them even try to exhibit
all models of the formula. Some solvers ensure complete-

subset of them if these choices are not well motivated: . : N
Exhaustiveness may be perceived as a real problem pless of the results while others (e.g. incomplete randomized

cause it requires a lot of CPU-time. However, with the 2/90rithms) don’t. This of course has an incidence on the
relatively low price of computer regarding their perfor- complexity of the underlying algorithms and thus on the kind
mances, it seems difficult today to accept such an argu(and size) of Instances that may be solved by eaCh solver. AC'
ment for restricting the comparison to a subset of benchtUally the existing solvers may be grouped in different fami-
marks or programs. lies depending on their basu_: underlying principles (backtrack
: . . search, constraint propagation, local search,...) and compar-
Mo(i{ggvrfcr:’r € dxgg:;n;enﬁ]téonsrﬁsg:és rsér:ﬁ;ilg gﬁggggigleef?glrsons are often restricted to the algorithm of a given family.
\g/erification or furthér pur)pl)ose for example another tes _Benqhm_grks families used for th? comparison may e}lso
series, where previous membrized executions will btd|f_'fer S|gn|f|c_antly. Instances mean!ngful for some family
natura’IIy omitted emlght not be interesting for other families. Some berjchmark-
: s correspond to models of real world systems, while others
Objectivity When testing an algorithm, one can hardly think have been artificially generated. Some of them have a partic-
to obtain the best results on all benchmarks (in SAT, thisular structure (even among those artificially generated) while
is simply not the case: no algorithm gives the best re-others have been generated in a uniform random manner.
sults on all benchmarks, as pointed out in section 5)For instance, many work have focused their interest on ran-
Thus,bad results should also be reportgtany exhaus- dom generated instances of fixed length clauseg 8-CNF)
tive and objective account. All experimental scienceswhose can be easily generated. Moreover, experimental evi-
are based on bad results as well as good results and dence has revealed a particular region of really hard instances
is clear that bad results can be really interesting if they{8]. To justify such a restriction, it is often argued that any
help to understand the behavior of the algorithm beingCNF formula may be turned into some 3-CNF by an appro-
presented16]. priate transformation. In additiofi20] adds some evidences
Another point related to objectivity is the choice of the that, when most of the structure of a structured instance has
result parameters used for the comparison of algorithmsbeen exploited, the resulting formula can be efficiently solved
It is seldom the case that a single parameter is sufficienwith the same techniques used with random formula.
t to obtain a fair comparison. For instance, computing Today, randomized and incomplete SAT algorithm some-
the only sum of CPU-times on a set of benchmark in-times present very good experimental studlies 24. Statis-
stances doesn’t account for the diversity on instancedical methods have been introduced to report the randomness
Other parameters might also be interesting and brindactor of such experimentation design. In this context, an im-
complementary information (average, median, standargortant effort has been done in the community and some kind
deviation,...). Some parameters might be meaningfubf framework for tests that include randomness seems to e-
for some algorithms and not for others. Therefore, themerge. But, papers describing complete algorithms tested on
justification of the choice of result parameters used fomon randomly-generated instances are often less cautious. A
the comparison should also appeatr. typical presentation is often organized in two main parts: a

description of the algorithm and a experimentation evidenceains more than 29000 execution traces in a 180 Mb database.
that it brings new breakthroughs. Even if this is the case an&atEx allows to investigate the results of the followi2®)

if the experimental part has been carefully performed, thisSAT provers on 1204 benchmarks:

second part is often presented with the aim of increasing the For DLL [24] ones,asat andcsat [12], egsatz
algorithm’s value. Typically, only two or three benchmark [22, nsat and s:at-grasp [25] pos’it [13]
families are presented, on which the new method perform- <o, [1]. sato and sato-3.2.1 ' [37], satz '

s particularly well. Sometimes, one can also see new aris- (23 satz-él3 [21] and satz-215 [2'0] and

ing benchmarks, on which results are impressive but hard to zchéff [27.

compare: independently of the interest of the benchmarks, if

old benchmarks are omitted, it becomes difficult to evaluate ® For DP[9] ones,calcres [4], dr [10] andzres [6;

the fairness of the comparison. In many cases, good results

(which are required to ensure publication) are presented but ¢ For randomizedDLL, ntab (with ntab-back and

bad results are omitted. ntab-back2) [8] andrelsat-200 [4].
The lack of exhaustiveness may also result from a lack of

CPU-time to perform all possible tests and/or also from a lack ® And for other approachebgerhugo [15] andmodoc

of space to report all these results. Such cases generally also [29].

lead to some lack of objectivity. Indeed, the choice of a re- From the very beginning, the source code of any of those
stricted set of systems and instances is inevitably based on tlselvers added to SatEx is verified and, if necessary, modi-
experimenter a-priori point of view on the programs/instancedied in order to delete system-dependent random number gen-
selected for the comparison. Moreover, in most of the casegration (using a classical random number library), as sug-
results are summarized with a single parameter. Since the dgested in section 2. Now, from a benchmark point of view,
tails of executions are not available, it is often not possible tahe database currently contains 1204 benchmarks grouped

9

consider another criteria for the comparison. in the following families: aim, ais , bf, blockworld
, dubois f, g, hole ,ii , jnh , parity , pret , sat-
4 SatEx: A framework based on web plan andssa from[11;18;28; 19, fvp from[30]; ucsc-

; bf anducsc-ssa from [28; 19; beijing from [7; 18;
technologies quasigroup from[32; 1g; sw100-8-0 andsw100-8-
In this section, we show that reproducibility, exhausitivity, 1 from [14, 18’ barrel queueinvar and|0ngmu|t
objectivity and, moreover, incrementality of any experimen-from [3]; pader-easy —andpader-hard from [31] and
tation can be reached through an open-web database. Tigao , generated from the originMiters

web, associated with the low cost of massive storages allows

to keep trace and to dynamically publish all experimentation4.2 SatEx: A Guided Tour

results, down to the smallest detail. For reproducibility, suchrne main page of SatEx, a part of which is given figure 1, is
I d th ; o< v th ame@ﬁlitted in three main parts. The first one presents a summary
Ine and thus run any experiment again in exactly the samgg yo cyrrent experimentations status, similar to the previ-

conditions. Moreover, the memorization of the program out, ;5 oyerview section and, above the top-10 solver part (see
put allows an important saving of CPU-time by publishing ¢oction 5.2), an index section allows to jump to treguent-

exactly what would have been obtained if one had launcheg, ;qked questionpage, the history and the links pages, to

the program Dby its own. This last principle also guaranteesjqynioad all results (CPU-time and answer of each couple of
the incrementality and the sharing of the_database._ Thus, rogram/benchmark) and to go to the main experimentation
somebody wants to compare a new algorithm, they just havg, +'o¢ satex.

to add it to 'ghe base and to check results. Such a Web. SI€ This last part proposes an automatic synthesis of results. In
can be considered as an almost always up-to-date experimep;,

tati It th th ol f CPU e first version of SatEx, only sums of CPU-time over fami-
ationpapet. It hus answers the probiem o CONSUMP-jias of henchmarks were given (time needed for a program to
tion by requiring a minimal cost for any new experimenta-

. ; S finish all the benchmarks of a family, given a maximal time).
tion (each run is launched only once). Those principles arg, yhe cyrrent version, the synthesis includes some refine-
the main fundations of the SatExersion2.0, an experimen- ’

. . - U1 ments such as the average, the standard deviation, the median
tsaet::(zilz)rf]ramework devoted to SAT which we describe in this g 5 5094 interval confidence. Figure 2 gives an example of

a specific synthesis asked by a user. On this example, the user
4.1 SatEx Overview chose_:r_l to view all statistics (_)f the executiongcsbl_/ers and_
i . . 5 families of benchmarks. It is shown that, over this selection,
E_xhaustweness is a strong point of SatEx. Todaﬂthever- posit is the best omfo6 andhfo6l , sato-3.2.1 on
sion gathers experimental results correspond|_ng to _more.thquz and morphed-8-0 , sat-grasp on Joao while
450 CPU-days$ on a recent computer (the maximal time giv- sat,-215 is the best on the sum of the whole CPU-time.
en for each execution is 10000s). Roughly speaking, it con- Now, from this synthesis page, two much more specific
Available at http://www.Iri.fr/"simon/satex/satex.php3 synthesis are possible. For example, the user can choose to
20n the Dimacd11] machine scale benchmark, our Pentium- View the details of all programs behaviors over only one fam-

Il 400MHz under Linux, taken as a reference in the current SatExly (by a click on the magnify glass of the desired row). We
release, has a user time saving of 305%. give in figure 3 the page proposed by SatEx for this kind of

- csat egsatz relsat satz-215 zchalf
P ————————N———————————€ IR A (v, 1.60) (w161 (. 1.12) (.2.5) (. 201)
1355 1600000 15000.00 1039.94 1600000 588
3670c, 1294] 0 20004 0 16463
The SAT-Ex site attempts to group expert ions around the fund: LS AT problem. Its zim is to gather experiments, ¢ 15355 v 10000.00 1000000 2166.85 10000.00 797
providing executions traces of provers on all henchmarks, It also provides some study on benchmarks and on programs 356':2 204 o . o . 631i1 0 - 22'201
performances, More information about the SatEx can be found here., f 1;]8 v) TRTI TED AT ST oS
19085 X I ¥ X E
Today, the SAT database can be summarized with the following numbers: {5108z, 1913v) (! 107792 0 0 28713
. 1908 10000.00 1917.44 10000.00 10000.00 1174
. Einntdal cg_u t\n;e of the SAT executions databases: 582 days, 20 hours, 53 minutes and 20 seconds { of & P-4 (50965, 1917%) [} 171892 0 0 25639
for L),
» Number of Benchrmarks: 1204, grouped in the folloving families (beijing, bme, dimacs, joan, morphed, others, / 53}3902"7';;%) 25?1'3: 2'35 100%0.00 100%0 o ;20551:
paderhorn, quasigroup, ucsc) 2
» Number of SAT-provers: 23 (asat, calcres, csat, dr, eqsatz, heerhugo, modoe, modoc-2.0, nsat, ntab, ntab_back, c2670-s 10000.00 10000.00 10000.00 10000.00 6.71
ntah_hackz, posit, relsat, relsat-200, sat-grasp, sato, sato-3.2.1, satz, satz-213, satz-215, zchaff, zres). (7#36c, 2940%) o 0 0 0 34563
» Number of exccutions: 30187 2670 10000.00 10000.00 10000.00 10000.00 6.15
(67563, 2703v) 0 [] 0 0 40217
Coming soon (tests are stll ramning): mocloc—2 . 0, the 2000° version of medoc <2670 hug 10000.00 10000.00 213 413.38 0.10
i (66965, 2705v) 0 0 216 0 216
he Site Index 3540 1000000 10000.00 10000.00 1000000 20244
e — e — (95262, 3499v) [] [] [} [] 131742
. and ideas that jus s site, with some papers dealing with the topic. Why doing such a site?
« Frequently Asked Questions and How-To, thus answering several very natural questions about how to navigate in 3540 HLECHLY L LA SL LD S LHLD 13026
I ! ; 1 {93265, 3450v) [] 0 0 0 105205
the site, about its construction, or about the experimental conditions and how to gather some results. Exike SRS Saa58 o TN s
* View synthesis of results of: <3540 | . - . L -
© Any eombination of Solver/Benehmark , where you can choose exactly what solvers and what families of (93165, 3446v) 12423 61516 63 o 50
benchmarks should appear in the summary. cd32s 136.98 3138 6.90 1761 026
© One of the predefined summaries of results, where you choese only a family of selvers and some origins of (1126¢, 392v) 390196 50438 565 0 2327
benchmarks, Summary tables are cached for speed purpose.
® Download all cpu—time results in CSV—format (gzipped, about 125 Kb);
® View challenging benchmarks
» The History, with the (too long) list of things to do; 1 . H H H H
T et Links s o 58 Figure 3: Details for a familyJoao in the example), given a
op 10 Sat—provers set of programsaSat , eqsatz , relsat ,satz-215 and
This renk list is established over all benchmarks of SatEx where restlts are availables, but this renking should be taken with ZC h aff)

care. Itis only indicative and it can give a bad or a wrong idea of some program performances, especially for those which have
been designed for only some specific benchmarks. 4 special (end much more complete) TOP page is Here.

Program Time Used Slow Ratio #Solved #Tested
zchaff 2 days,16h.26m, 115, 100 1183 1204
relsat-200 4days,7h 17m.36s. 1460 1173 1204
BlEE Ddgriinldedid IR OIR ul Details on all Execution of a Family
eqsatz 6days,3h 12m.40s, 228 1162 1204
sato 6days, 23h.20m. 34 s, 260 1157 1204

Program 1 egsatz (v LOT)
satz-215 7days,8h.17m.0s. F7] 1150 1204 Lounch commund . eysatz FILE-NAME
satz-213 7days,12h 41m.3%s 280 1149 1204 Frobiem . Parity-32
sato-3.21 Bdeys,Ph1Sms0s 3l2 1138 1204 Amberof
satz 8days,14h. 59 m. 5. 321 1138 1204 Instances L0
modoc 9days,20h19m 585 367 1128 1204 Problem Family : parity
Froblem Origine © dimacs
H . H K Time SysTime Sat Nb. Nodes NbV Nbe
Figure 1: A part of the SatEx main page > e Time T Sab T Y| Db
}5 par32-1-c 1346.50 118 SAT 3672 1315 5254
p par32-2 22411 015 SAT 651 3176 10253
P pai2-2—c 4829 030 SAT 209 1303 5206
P pari2—3 977860 766 SAT 23827 3176 | 10297
P pari2-3—c 034,14 336 SAT 15123 1325 5294
}5 par32—4 82223 129 SAT 2885 3176 10313
Ser eCliC esis (4 sol VEL'S, amilies par32-4—c 79209 088 SAT 1488 1333 5328
User Specific Symthesis (4 sol 5 familis pel
g }5 par32—5 10000.00 770 ? —_— 3176 10325
Family posit sat-grasp sato-3.2.1 satz-215
T (w1.00) (2000.00) twizl] 92.15) pe) par3Z-5—c 10000.00 796 ? — 1339 5350
83.28 246922.67 960.57 361.37
2.08 10000.00 31.28 11.31
hfot 221 (1.14) 6173.07 (4613.53) 24001 (14.89) 9.03 (3.86) : . : ; :
Pl [L06-317] |[602.48 - 10000.00] | [10.73 - 33.69] [5.49 - 12.08] Figure 4. Detalils for a famlly given one prograleantz
[0.30 - 3.39] [0.08 — 10000.00] [0.36 - 49.36] [211 -1342] . .
0) 2 “0) onParity-32 in the example)
2355 76.68 587 4113
0.07 277 0.18 1.04
p| st 0.06 (0.01) 1.92 (1.58) 0.15 (007} 1.03 (0.04)
140) [0.05 - 0.07] [0.31 - 3.31] [0.09 = 0.21] [L.00 - L.06]
[0.03 - 0.08] [002 - 4.10] [0.01 - 0.27] [0-95 — 1.08]
(401) (401) 140) (40)
10099.87 320 312 10219.96 Execution Details
0.51 012 0.09 230
o um 594.11 (2423.93) 0.19 (0.20) 0.18 (0.28) 60117 (2422.23) _
(i7) [0.17 - 1.48] [0.07 - 0.20] [0.04 - 0.14] A0 - 12! Frogram : sato-3.2.1 (3.21) System Time : 0.00
0.07 - 10000.00 0.03 - 0.79 .01 - 0.90 0.47 — 10000.00 Benchmark : aim-50-1 6-no-4 Instance .
L 1 If 1 I] L] _ aim-50
(16) ({7 (17) (6] Launch : sato-3.2.1 aim-50-1_6-no-4.cnf From
2213016 18240359 220206 31 21045242 Fime s o001 Famity \ aim
10000.00 10000.00 10000.00 10000.00 Nodes Origine . dimacs
Al B monono 10000 b0y 15294 - 10060.001| 0000100 - 10000 Do) 1000000 - 10000, boy Varber Saaply | INSAT
g p b & G by e = Beginduate : 2000-08-24 17:07:11 Vartables 1 50
[21.52 - 10000.00] | [0.81 - 10000.00] | [L.62 - 10000.00] | [7.70 — 10000.00] 0824 17,0711 o i
5) (7} (3) (4)
3190 203 190 1198 . ’
0.35 0.23 0.02 0.12 Dowmload this Trace File
jo| morphed 8-0 0.35 (0.02) 0.23 (0.02) 0.02 (0.01) 012 (0.01)
{1o0) [0.33 - 0.36] [0.21 - 0.25] [0.01 - 0.02] [0.11 - 0.13]
[0.29 - 0.42] [0.18 - 0.29] [0.00 - 0.03] [0.10 - 0.14] .
100) (100} (100) 100) Trace File:
Totwl Cpu—Tome 2d15h 4425k 2413k 2dlin N
~~ LAUNCH ON iasi-linux THE 2000-08-24 17:07:11
Reguired eLEER LGt ZBlmids GAGHTE ~~ satexserv 1.0 INTERNAL MAREUPS: 6911 1 14 21 0

~~ REAL COMMAND: /users/iasi/simon/bin/sato-3.2.1 /users/iasi/simon/These/tests/}

7777777 SATO 3.2.1, 04/2000 on iasi-linux ———--—-

Figure 2: Examp|e of a user Synthesis of families and Pro- e job "/users/iasi/sinon/bin/sato=3.2.1 fusers/iasi/sinon/These/tests/benchs/D
grams. ThIS array ShOWS a SyntheS|S Contalnlng respectlvelyc Input file "/users/iasi/simon/These/tests/benchs/Dimacs/aim-50/aim-50-1 6-no-4
the sum, the median, the mean (with the standard deviation),] L . .

50% interval and the min and max CPU-time values for eactf'9ureé 5: Publication of the standard output with running

cell. Lighter synthesis (displaying only the sum, the mean optatistics for one executiorsgto-3.2.1 ~ on aim-50-
the me%ian) a)r/e also a\(/ailgblg. gonly 1 6-no-4). This figure is cutted for lack of place: the o-

riginal trace file is larger.

Informations about calcres informations (when available) and with a summary of its re-

Quick Holp: This page s cutup 2 main parts sults over all benchmarks, relative to other solvers. An exam-
e e ple of the head of such a page is given figure 6. Informations
e about families of benchmarks are also published (see figure
7). Each page presents three ranking of all solvers over the
‘Cvzlltkkisng:drl‘jxémr;;}::‘n?;;‘in;:ig;i:;vpmcaduranfDavisandPumamasstatadi.nl%n(DPasnpppnsedmthaDLL ConSIdered famlly one based on the sum of CPU'tlme, one
Author: Laurent Siroan on the mean and the last on the median CPU-time needed.
Origine: Laboratoize de en Infomatique, Universty o Pris X, Orsay SatEx also allows comments to be added to each program (in
e e e o e e e S e which compilation options or tricks can also appear) as well
Er o e e ol o on fomide: e oRen evnal e sNCHEG A eerusenil for as to each benchmark family. This last point relies on the
The particularity of CalcRes (in comparison with DR for instance) is that it uses Tries structure to handle sets of clauses and emergence of new tEChniques for SAT. It is clear that curren-

that it has a dynamic heuristic cheice.

t algorithms are so well known and inherits a so important
Tknowledge about optimization that it seems hard to instantly
obtain better results with a new but not yet optimized method.
Nevertheless, we must give new methods a chance to emerge,
and SatEx was also designed for this purpose. The informa-
tion sections allows global comments on solver behavior to

Figure 6: Information page about a given solver. An array o
its results for each families follows.

Information on Family ’Joao’

e e SR A A R be added, and thus should allow fair comparisons between
systems, independently of their optimizations maturity level.
Wazme : Joao #Benchs : 25
Grigin : joao
Joent nee Clausas Dy (017 W00 (8434.63) 4.3 Internal Structure of SatEx

et B2 The versior2.0 of SatEx inherits all the functionalities of the

Taolal Time spent : TODO 2
Best Totaltime : TODO (program) Mean (Std): 3208 (2354.77)

Best Wt Tome TODO Variables sy P s first version and adds a number of new functions in the we-
Gt TODO ftame IR TIe) b page generation process, in the database structure and in
the job submission process. Among the possibilities of Sa-
Listof included) €1355-s, ¢1355, ¢1208-s, 1908, c1908_bug, 26705, c2670, 2670 bug, c3540-s, c3540, . .
senchmarts ¥ e AT st eal s el e e AT e tEx 2.0, one can automatically find some bugs of programs
(by automatically checking the consistency of program result-
Rank Solver Total Time Total Time () Slow factar #TesteddTotal #Faled s with respect to the majority of answers) or find up-to-date
i zchaff Sh54mdPs 21282.77 1.00 25725 2 .
2 heeugo 13b9mss Bsss 23 2525 2 challenging benchmarks (benchmarks not yet solved by any
3 relsat-200 1d0h4m30s B86670.25 407 25725 8 . .
4 ma 14U7hMmiss 100570 708 w05 15 other programs), as reported section 5.1. In order to facil-
¥ e Tiihiat iAGeS G o o itate Fhe comparislon of programs, SatEx also allows to sort
[, Mshibeia Lagsnlomlss DOV 0008 2 W algorithms according to their performances on each families
& ntab back 2d2h8ml5s 180495.44 848 2525 18

of benchmarks (based on the sum, mean or median value), as

Figure 7: Current information page for a familjoao inthe reported for example section 5.2. _ .
examp|e). Two more arrays are below this page: a Sorting From an internal point of view, the main evolution of Sa-

according to the mean and another according to the mediantEx 2.0 has been to design a special job server that dispatches
jobs over a network of 20 biprocessor Linux workstations.

This upgrade has been necessary in order to face the incred-

synthesis, on which each row corresponds to a benchmark difile amount of CPU-ressource required to maintain such a
the given family, and on which results of solvers are symbol-=site. Closely related to this job server, we can find the first
ized by cell colors (this facilitate bugs revealing). In addition of the three databases which make up the heart of SatEx.
to the CPU-time, the number of explored nodes for DLL al-This database is only devoted to job submissions and output
gorithms are also given. The last synthesis (see figure 4 for agrathering over the network. To guarantee an easy program
example) focuses on only one couple of program and bencler benchmark addition, a lot of shell scripts and C program-
mark family. Now, from the two previous synthesis, one cans have been designed. For example, one can add a program
access to the detail of an execution (standard output, launclust by giving information about it (how to launch it, program
ing date and running statistics, as given figure 5) by a click orfamily, ...). Benchmarks addition are also easily done just
one cell of the first table (of figure 3) or by selecting the mag-by adding an entry with the path where CNF file are stored:
nify glass of the last table (of figure 4). By reading this kind informations about them are automatically computed into the
of detail, anybody can check execution conditions and resultslatabase. In order to manage the queue of jobs to be sub-
The availability of trace files guarantees that, if the automatianitted, one can easily add any couple of program/benchmark
synthesis of CPU-time proposed by SatEx is not satisfyingjust by specifying their characteristics (programs and bench-
any other measurement can be later computed just by readimgarks characteristics in the database, such like family or o-
all memorized outputs, without doing the whole experimen-rigin names, addition date, ...). In addition, any couple in
t again. With exhaustiveness, this point clearly answers théhe queue can be seisignedto prevent useless launchs (its
problem of fairness and objectivity. CPU-time is then assumed to be 10000s).

The last part of the experimentation regards the publica- When a new release of the SatEx is considered, for in-
tion of manual and automatic informations about solvers andgtance when a new solver has been added and all tests have
benchmarks. Thus, each solver has its own page with sonmgeen completed, this first database is compiled into a new

one. During this stage, cache tables are computed in order ®of them are challenge ones, ahdf them are known to be
reduce the web server usage. Program ranking tables, statsslved byeqsatz in a larger amount of time:

tics.fo.r each co_uple of program and families (mean, standard , 1909 ,£2000 , from thef family.

deviation, median, max, min and 50% interval) and a lot of

other small cache tables (such like the statistics appearing the ® 9125.17 ,9125.18 ,g250.15 ,g250.29 , from theg fam-
main page or the list of challenging benchmarks) are comput- ~ 'Y:

ed. This second database is connected to a local intranet webe par32-5-¢c , par32-5 , from theParity-32 family.
server to test the new release in real conditions. At last, this
database is copied to the real web server and the new relea
is officially published. This last separation was also neede
for obvious security reasons.

In addition, SatEx provides a list of benchmarks solved by
ﬁly one or two provers. When we read the following list,
is striking to remark the number of different program that
solves such virtually challenging benchmarks. Today, these
16 benchmarks are:

S SatEx: aSnapshot e 2dIx_ca_mc_ex_bp_f 2dIx_cc_mc_ex_bp_f

We give here a taste of what a user can learn by visiting Sa- 9vliw_bp_mc , from thefvp family (solved byzchaff).
tEx. This section can be viewed as a SAT experimental state- ¢ 3pitadd_31 , from theBeijing family (solved bysatz-
of-the-art report, focusing only on solvers currently reported 215, whichissatz-214 (not available in SatEx) with detec-
in SatEx. Of course, the reader is strongly encouraged to vis- tion of implied literals[20]).

it SatEx site to see an up-to-date version of this report. Note , .3540-s ,c6288-s , ¢6288 , from theJoao family (solved
that the current version reports some buggy results from some py zchaff andheerhugo).

solvers on particular instances, mostly due to long formu-
lae parsing problems (our versionssaftz , ntab , ntab-

back , ntab-back2 , modoc andnsat are concerned by e par32-1-c , par32-1 , par32-2-c , par32-2 ,
such small problems on really rare benchmarks). This kind par32-3-c , par32-3 , par32-4-c ,par32-4 , from
of problem mustn’t be considered as an important one: asim- theParity-32 family (solved byeqgsatz).

ple modification in the solver can often fix it. Anyway, at the .

publication time, SatEx results contains some bugs of whict?-2 AN Attempt of Solver Ranking

the reader of this report should be aware (we are currentlyve give on figure 8 the ranking of solvers proposed by SatEx.
setting all buggies answers to thesignedstatus and, to the Of course, such ranking must be taken with great care. First-
best of our knowledge, those bugs don’t change our curreny, it is only indicative and it can give a bad or a wrong idea of
report). some program performances, especially for those which have
From the very beginning of SatEx, we wanted to presenbeen designed for only some specific benchmarks. Secondly,
SatEx results following32], where results were given with a this ranking can be easily modified by adding to the SatEx
sum of CPU- time over each familiesWe give on figures 9, some particular benchmarks (e.g. random uniform formulae,
10 and 11 (at the end of this paper) such a synthesis for afbrmulae with a lot of equivalency clauses, structured bench-
solvers and all families in the SatEx. Best results for a giv-marks...). And, lastly, the CPU cut-off parameter may be also
en row is written in bold. As we can see, this kind of reportmisleading. What happens to this list if we modify this value?
already needs three pages and one can hardly think reportingwe give on the same figure (fig. 8) a first answer to this
much more informations in such a hardcopy synthesis, whiclyuestion by considering the whole database with two smaller
strongly encourage our web publication idea underlying Sacut off parameters in the 3 last columns of the figure (respec-
tEX. tively with values 1000s and 200s instead of 10000s). We
We will not fully comment these tables here. Neverthelesscompute the same top while discarding results that needed
one remark that can be drawn from these tables is that thei@ore than 1000 seconds (or respectively 200s, on which we
is no algorithm surpassing all others on all benchmarks. Foalso provide the number of solved instances). One conclusion
instancezchaff , which gives really impressive results (see that may be drawn is that, surprisingly, the cut-off principle
section 5.2), fails on some hard instances, even on structurd strong enough for this kind of ranking. Besides the case

e f600 , from thef family (solved bysatz).

ones barrel orhfo6 for example). of sato , most solvers keeps more or less the same place in
_ the ranking. If this suggests that a satisfying experimentation
5.1 Challenging benchmarks can be drawn from small cut-off values, it also suggests that

considering 10000s is large enough in most cases and should

challenging benchmark section. A challenge is here defineut bad solvers at a disadvantage by bounding their perfor-
ances with a large CPU-time value. One last remark can

as a benchmark not yet solved by any program during th e raised from this figure: the robustness of the cut-off val-

given time. This part of SatEx allows one to easily find up- X be d h X f bench K
to-date challenges, which is often a hard task today. We shoW€ €an. In great part, be due to the easiness of benchmarks,

that, surprisingly, over th€204 considered benchmarks, only most of which can be easily solved by recent and optimized
solvers. Inthe future, some new and much harder benchmark-
3In such a table, if a solver can’t handle a benchmark in less tha (for example from VLS[?], where new huge benchmarks
10000s, then this cut off parameter is taken as the time needed t@re available) will be added and will certainly change the ro-
the solver (we discuss in section 5.2 this choice) bustness of the cut-off choice.

One of the new functionalities of SatEx0 is to propose a

Program Total Time #Solved | #Tested| Rank || Rank | Rank | #Solved
1000s| 200s | 200s
zchaff 2d,16h,28h 1183 1204 1 1 3 1147
relsat-200 4d,7h,17h 1173 1204 2 2 1 1149
relsat 5d,18h,18h 1158 1204 3 3 2 1137
egsatz 6d,3h,12h 1162 1204 4 5 8 1119
sato 6d,23h,20h 1157 1204 5 12 12 1056
satz-215 7d,8h,17h 1150 1204 6 4 4 1114
satz-213 7d,12h,41h 1149 1204 7 6 6 1108
sato-3.2.1 8d,9h,15h 1138 1204 8 8 7 1105
satz 8d,14h,59h 1136 1204 9 7 5 1106
modoc 9d,20h,19h 1128 1204 10 11 11 1074
ntab-back2 10d,9h,59h 1120 1204 11 9 9 1082
ntab-back 11d,5h,29h 1111 1204 12 10 10 1083
sat-grasp 19d,7h,44h 1055 1204 13 13 13 994
csat 21d,18h,17h 1031 1204 14 14 15 967
posit 22d,15h,45h| 1020 1204 15 15 14 967
nsat 27d,11h,31h 988 1204 16 16 16 923
heerhugo 32d,5h,43h 946 1204 17 18 18 862
ntab 33d,18h,15h 921 1204 18 17 17 885
asat 39d,14h,14h 871 1204 19 19 19 823

zres 96d,17h,10h 408 1204 20 21 21 99
calcres 99d,12h,37h 353 1204 21 20 20 221
dr 131d,15h,25h 67 1204 22 22 22 64

Figure 8: Top solvers as given in SatEx and crossing values for different cut-off parameters

More lightly, one can also note that DP-based solvers holdhould also be added for each solver as suggested in section
the tail of the list. As two of them were proposed by us, those4.2. For this purpose, we opened a forum on Sat Live!, show-
bad results give us a kind of authorization (at least a moraing the complementarity of the two dynamic web-based ap-
one) for the comparison and the ranking of other works. Weproaches.
hold ourselves our own last places. 6.1 Scaling-up CPU-time results

In the future, we also plan to add support for evaluating ran-
6 Related and Future Work domized and local search algorithms, for which thousands
Historically, previous web-based work were proposed beforeuns are needed for each benchmark. The special job serv-
SatEx. One of the most important one is Sat[18]. This er was also designed in this aim. But, this imply to scale-up
web site proposes to distribute benchmarks and solvers. T&PU-time from different machines. This is one of the biggest
day, this site is simply the best reference of the topic. Theproblem facing SatEx evolution. We also find problem again
strong point of SatLib is its benchmark distribution sectionwhen we want to anticipate and follow computer evolution,
and its important number of pages detailing each benchmarkwhich must be taken into account to provide an up-to-date
s families proposed for downloading — most of benchmarkssite in even a couple of years. One of the solutions for this
included in SatEx are indeed from SatlLib —. Unfortunately,can be to launch all previous failed executions again, with the
the solver section is not so complete and a lot of programsame cut-off parameter on more recent machines and then to
s in SatEx were directly requested from their author or theirautomatically upgrade the results of the whole database by
web site. One of the weakness of SatLib is its static aspectcaling-up all its results to a new reference machine. But,
and, in this context, SatEx fully complete SatLib by provid- scaling-up CPU-time is a hard — and mostly impossible —
ing detailed experimental information on all this benchmarkstask. It seems impossible to find a law for scaling results in
and solvers. As Satilib is already well known and often usedh fully satisfying way: too many factors play important roles
by the community, we doesn’t plan to distribute benchmark4n an execution (Main memory, CPU family, cache memory
s or solvers directly from SatEx. Another web project, Satsize and configuration, bus size, operating systems, compiler-
Live! [2], was proposed to facilitate and encourage discuss, . ..), and the problem will be even much worse in the future:
sion and diffusion of ideas and papers. One of the policiedt is believed for example that no simple law (with less than
of Sat Live! isupdatingand, in this sense, it also fully com- hundreds factors) exists to transform a CPU-time report from
pletes the SatLib web site by providing constantly fresh in-a Pentium Ill to the fully new Pentium 4 architecture.
formations about papers and solvers. At last, the reader should be aware of another CPU-time

Now, from a SatEx point of view, the near future first im- report problem. For instance, CPU-time measurements are
plies some important benchmark additions. For instance, raref a limited precision for very quick answers and, even on
dom formulae are not well represented in the current versiothe same computer, 20% error is often observed on small
and should allow a more satisfying representation of algoCPU-time values (due to small errors in CPU-time operating
rithm performances. Comments (including tricks for solvers)system measurement). A reported time smaller than a dozen

seconds is clearly imprecise enough to bias a comparison, and
especially when this comparison reports the sum of hundreds
imprecise small values.

Some partial solutions are indeed possible. First, we can
forget our job server, focusing for now on executions on the
same machine. When significantly faster machines will be
available, we launch the whole experiments again on a net-
work built with only the same machines. If this can be eas-
ily done by reusing all the SatEx architecture, this solution
is clearly unsatisfying from the incrementality point of view.
Another solution can be based on approximation and bound-
ing of the scaling process. This require an important experi-
mental study of programs behavior over the different architec-
ture but should be fully satisfying for providing a good taste
of program behavior and comparison. The last and certainly
most satisfying answer is to forget architecture problems and
to build a new SatEx based on a kind of virtual machine on
which C compiler are available, and to base the whole exper-
imentation process on this machine. Cpu-time reports will be
then independent of the machine running the virtual one.
Aknowledgements: Authors would like to thank Daniel Le
Berre for fruitful discussion about SatEx from the very begin-
ning, and of course all solvers and benchmarks authors whose
works are reported in SatEx.

7 Conclusion

In this paper, we have tried to define properties that charac-
terize good experimentations. We have noticed that almost
all current SAT experimentations aren’t fully satisfying, al-
though they often rely on their experimental results to vali-
date their new approach. We propose a different approach of
experimentation, based on the publication of detailed result-
s as well as an automatic synthesis that uses a dynamic and
constantly evolving web site. For instance, all the results of
zchaff , an efficient new solver, were available only some
days after its public release and anybody had the opportuni-
ty of comparing its results with previous approaches. In this
sense, we think that a tool like SatEx is at least as important
for the community as a new scientific result.

We think that, for incrementality, homogeneity, transparen-
¢y, program/benchmark distribution and program behavior
study (which is the basis of experimentation in other areas), a
project like SatEx is necessary. Moreover, we think that this
framework could also be used in other fields, where bench-
marking plays an important role to compare and motivate new
approaches. The web technology allow us to publish all the
details of all executions that are presented in any paper re-
porting an experimental analysis. Such a framework will at
least guarantee fairness and unbiased results to be published.

asat calcres csat dr egsatz heerhugo modoc nsat
aim-100 4471.54 166839.92 0.90 240000.00 1.73 1.72 0.30 0.18
aim-200 130040.78 | 240000.00 0.77 240000.00 2.48 4.60 1.20 1.35
aim-50 0.60 80995.24 9.57 172050.33 3.89 1.31 0.12 0.06
ais 118.23 30621.24 1.79 40000.00 3.15 2632.66 33.76 3145.74
barrel 11813.07 50650.75 | 30882.91 | 70000.08 13.15 10047.34 | 15923.16 | 80000.00
Beijing 106170.40 | 160000.00 | 94820.58 | 151022.98 | 66484.11 | 120084.15 | 29259.35 | 91751.40
bf 30102.79 20270.06 | 29611.84 | 40000.00 44.81 11.26 5.76 10000.33
blockworld 10071.89 50009.58 134.23 60000.42 6189.93 20061.68 | 20004.29 | 19280.21
dubois 54398.16 2.42 100729.21 1.37 0.39 0.96 72479.47 0.44
f 30000.00 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00 | 30000.00
fvp 40000.00 40000.00 | 40000.00 | 40000.00 | 34954.60 | 30211.16 | 40000.00 | 10000.30
g 40000.00 40000.00 | 40000.00 | 40000.00 | 40000.00 | 40000.00 | 40000.00 | 40000.00
hfo3 128.21 400000.00 33.62 400000.00 387.05 236491.02 | 12476.28 | 332088.31
hfo3l 2.13 400000.00 1.55 400000.00 10.96 48336.30 23.26 2364.96
hfo4 198.20 400000.00 109.46 400000.00 | 1093.24 | 320669.22 | 1985.01 | 371181.91
hfo4l 2.43 400000.00 1.92 400000.00 11.53 204891.98 7.96 353.41
hfo5 218.16 400000.00 162.53 400000.00 | 1312.78 292061.75| 1211.70 | 341623.47
hfo5I 2.46 400000.00 2.44 400000.00 16.33 210290.31 5.70 105.80
hfo6 238.09 400000.00 219.17 400000.00 | 1130.80 | 321003.22 924.82 295112.34
hfo6l 3.48 400000.00 4.52 400000.00 43.42 224831.48 7.50 64.75
hole 158.64 40205.66 131.47 40639.76 4467.96 26409.21 283.95 11444.67
ii-16 51176.43 | 100000.00 | 50072.16 | 100000.00 261.18 76976.01 17946.93 | 56146.66
ii-32 503.60 170000.00 59.63 170000.00 390.58 31048.15 | 25265.59 | 20488.35
ii-8 48118.72 | 130000.08 | 10924.14 | 130000.10 11.52 15.59 1.74 0.80
inh 1.43 500000.00 1.63 500000.00 8.30 929.25 2.76 14.10
Joao 221827.73 | 250000.00 | 210754.62| 250000.00 | 165538.39| 49146.65 | 190127.91| 150015.70
longmult 29897.40 | 120100.66 | 31587.56 | 140011.19 | 24329.35| 93378.31 | 125206.79| 32071.97
morphed-8-0 8.32 1000000.00 11.47 1000000.00 24.21 123.28 3.84 291
morphed-8-1 23934.39 | 1000000.00f 10016.94 | 1000000.00 23.95 114.15 4.13 3.038
Parity-16 60.53 100000.00 119.91 100000.00 3.26 94658.63 490.12 840.61
Parity-32 100000.00 | 100000.00 | 100000.00{ 100000.00 | 38929.71 | 100000.00 | 100000.00| 100000.00
Parity-8 0.17 13.10 0.68 50002.95 0.53 1.15 0.23 0.18
pret-150 40000.00 40000.00 | 40000.00 27.71 0.14 11.13 40000.00 0.27
pret-60 111.36 0.70 40000.00 0.99 0.14 2.03 202.24 0.09
Quasigroup 120787.26 | 220000.00 | 8196.47 | 220000.00 | 9544.89 145102.33 | 41995.12 | 31520.82
gueueinvar 22615.42 80576.83 2797.93 100000.00 55.10 35000.89 | 23957.10 | 10571.31
satplan 45718.63 90000.00 6243.13 90000.00 6194.54 20553.68 | 20781.92 | 26163.90
ssa 30369.78 3495.33 3614.57 60021.63 6.04 4.92 2.53 20000.59
ucsc-bf 1817410.75| 520368.31 | 921310.88| 2060116.50| 98378.53 270.74 126.47 183948.38
ucsc-ssa 410186.22 | 24875.73 | 77667.95 | 940034.69 88.30 49.91 49.94 103986.69
Figure 9: Synthesis (sum of cpu time temps CPU) from SatEXx, part (A), number of solved instances not reported

ntab

ntab-back

ntab-back2

posit

relsat

relsat-200 sat-grasp
aim-100 13395.03 1117.15 6.42 310.56 1.46 2.04 0.52
aim-200 74575.71 30213.42 810.12 111169.93| 2.28 3.55 8.29
aim-50 0.6 0.57 0.5 0.42 2.72 2.55 0.24
ais 19.02 21.6 31.52 0.71 26.9 44 253.15
barrel 30313.67 30365.52 30392.46 50000.95 | 32248.14 11872.8 41204.48
Beijing 130022.9 130019.63 111494.68 91038.86 | 24370.74 24024.57 34978.47
bf 30071.16 10028.3 10008.2 20022.69 6.34 2.18 21
blockworld 20000.67 20000.66 20000.67 10015.6 618.9 491.88 1510.41
dubois 55537.98 54682.96 55579.96 63167.4 0.18 0.27 9.65
f 30000 30000 30000 30000 30000 30000 30000
fvp 40000 30000.2 30000.19 40000 30022.31 30006.79 30009.3
g 40000 40000 40000 40000 40000 40000 40000
hfo3 118.14 157.49 224.48 47.96 196.93 309.78 168115.47
hfo3l 3.02 3.6 4.84 1.83 5.08 6.39 129.54
hfo4 288.01 356.59 500.45 91.23 710.13 569.51 287870.12
hfo4l 4.19 4.9 6.2 1.56 7.31 7.56 204.47
hfo5 508.62 579.25 786.75 112.12 973.98 561.13 293962.22
hfo5I 5.01 5.59 7.09 1.78 13.07 16.18 106.42
hfo6 585.95 622.51 831.14 88.28 1059.85 595.52 246922.67
hfo6l 7.08 7.55 9.52 2.55 45.33 68.68 76.68
hole 21.67 27.92 34.67 279.41 786.58 1113.67 11520.25
ii-16 10726.18 5.72 4.98 20040.67 | 115.63 62.41 10102.68
ii-32 3.87 3.87 3.71 10099.87 | 952.69 812.22 3.2
ii-8 1.28 14 1.35 5.43 4.05 2,94 5.01
jnh 2.53 2.67 2.72 1.62 11.5 6.93 5.69
Joao 200042.89 | 180495.44 170179.78 | 220130.16| 150184.3 86670.25 182403.59
longmult 100011.99 90015.54 90014.27 14461.11 | 80743.97 41243.77 82309.19
morphed-8-0 7.34 8.02 8.34 34.9 7.2 9.15 23.03
morphed-8-1 7.52 7.6 8.38 10521.62 7.81 9.3 22.86
Parity-16 61.22 83.85 106.58 24.45 151.7 117.04 18710.47
Parity-32 100000 100000 100000 100000 100000 100000 100000
Parity-8 0.35 0.35 0.4 0.31 0.46 0.48 0.18
pret-150 40000 40000 40000 40000 0.58 0.4 2.63
pret-60 383.02 558.23 624.74 323.07 0.1 0.08 0.23
Quasigroup 62303.24 62372.76 33777.16 100073.17| 2864.29 2347.83 86544.53
queueinvar 22665.81 24694.4 4155.49 51534.56 643.6 236.04 764.23
satplan 50001.11 26047.6 20006.86 20027.71 633.5 492.93 1549.14
ssa 23103.43 10338.2 11631.79 10061.91 8.49 2.52 2.68
ucsc-bf 1668129.12| 24039.17 44677.9 871828.06| 357.73 117.22 84.18
ucsc-ssa 174027.27 33299.29 54045.06 32022.82 | 118.79 25.57 25.88

Figure 10: Synthesis (sum of cpu time) from SatEx, part (B), number of solved instances not reported

10

sato sato-3.2.1 satz satz-213 satz-215 zchaff zres
aim-100 0.14 0.14 1.9 1.58 1.91 0.21 160189.27
aim-200 0.45 0.35 2.35 2.29 2.55 0.7 217412.23
aim-50 0.08 0.09 7.27 3.59 3.8 0.14 8350.63
ais 0.24 0.29 0.53 0.55 0.66 57.92 30013.04
barrel 10417.7 11225.41 24670.02 | 12575.32 7494.03 912.22 50862.7
Beijing 44078.88 23814.7 70066.74 | 32086.73 21290.58 | 20268.12| 146296.55
bf 1.25 6.23 6.13 6.22 12.59 0.63 14008.88
blockworld 244.58 782.48 10003.62 1286.26 1048.68 41.31 50009.41
dubois 0.56 0.19 39771.01 | 54129.45 49967.97 0.2 47.23
f 30000 30000 25576.86 30000 30000 30000 30000
fvp 30006.35 40000 36908.74 | 36927.21 30455.28 | 1224.86 40000
g 40000 40000 40000 40000 40000 40000 40000
hfo3 3479.41 759.99 24.5 23.57 26.35 1756.19 400000
hfo3l 7.07 4,57 2 2.55 3.23 5.42 400000
hfo4 33785.92 2390.02 210.84 177.01 182.53 6506.1 400000
hfo4l 8.5 5.68 3.96 4.43 5.18 6.62 400000
hfo5 42986.17 1839.89 288.53 276.48 279.23 3267.82 400000
hfo5I 6.34 5.47 9.96 10.9 11.52 5.32 400000
hfo6 23675.85 960.57 362.57 360.49 361.37 1151.53 400000
hfo6l 5.87 5.87 38.7 40.4 41.13 4.6 400000
hole 180.5 81.64 100.95 129.59 144.2 42.81 21027.13
ii-16 2.14 30007.98 49.15 47.99 46.17 69.23 100000
ii-32 5.19 3.12 10213.66 | 10225.97 10219.96 3.41 170000
ii-8 0.43 0.44 2.41 2.7 2.77 0.79 120151.65
jnh 0.99 0.86 6.65 7.7 8.15 1.46 500000
Joao 199291.88 220206.31 190332.83| 210349.48 | 210452.42 | 21289.77| 201957.88
longmult 22270.98 7590.25 46541.15 | 38165.44 42955.44 | 4502.49 | 120992.63
morphed-8-0 1.99 1.9 8.85 10.24 11.94 3.83 1000000
morphed-8-1 1.83 2.01 543.05 12027.97 12102.34 3.95 1000000
Parity-16 152.81 230.88 70.16 56.84 62.37 29 98486.32
Parity-32 100000 100000 100000 100000 100000 100000 100000
Parity-8 0.1 0.08 0.43 0.48 0.59 0.14 189.39
pret-150 1.19 933.53 40000 40000 40000 0.15 23.97
pret-60 0.11 0.13 215.62 404.94 143.38 0.04 3.82
Quasigroup 1087.7 337.61 50361.22 1049.75 986.16 845.89 220000
queueinvar 20400.45 21586.18 21133.79 1458.83 10040.4 15.39 61344.6
satplan 242.83 1111.79 10069.59 1226.86 1069.87 43.17 90000
ssa 1.59 8508.05 425.64 427.04 273.77 0.89 11824.02
ucsc-bf 63.83 84620.58 9750.18 9922.81 6324.15 22.28 490168.97
ucsc-ssa 22.62 97525.28 17364.5 17069.68 18587.83 6.83 62866.28

Figure 11: Synthesis (sum of cpu time temps CPU) from SatEx, part (C), number of solved instances not reported

11

References

[1]

(2]
(3]

[4]

(5]

(el

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R.J. Bayardo and R. Schrag. Using CSP look-back tech-
nigues to solve real-world sat instances1#h Nation-
al Conference on Atrtificial Intelligencpages 203-208,
1997.

Daniel Le Berre.
http://lwww.satlive.org.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs. I®ro- [
ceedings of Tools and Algorithms for the Analy-
sis and Construction of Systems (TACAS'99), num-
ber 1579 in LNCS1999. Benchmarks available at
http://www.cs.cmu.edu/"modelcheck/bmc.

The Sat Live! web site.

Ph. Chatalic and L. Simon. Davis and Putnam 40 years
later: a first experimentation. Technical Report 1237,
LRI, Orsay, France, 2000.

Ph. Chatalic and L. Simon. Multi-resolution on com-
pressed sets of clauses. 18th International Confer-
ence on Tools with Artificial Intelligence, ICTAI-2000
pages 2-10, 2000.

Ph. Chatalic and L. Simon. Zres: the old DP meets ZB{22]

DDs. InProceedings of the 17th Conference of Auto-
mated Deduction (CADEpages 449-454, 2000.

James Crawford. International competition and sympo{23]

sium on satisfiability testing. March 1996.

J.M. Crawford and L.D. Auton. Experimental results
on the crossover point in random 3sAttificial Intelli-
gence 81, 1996.

M. Davis and H. Putnam. A computing procedure for
guantification theoryJournal of the ACMpages 201—
215, 1960.

R. Dechter and I. Rish. Resolution versus search: T-

wo strategies for satlournal of Automated Reasoning [26]

24(1/2):225-275, February 2000.

The DIMACS challenge benchmarks. from the site ft-
p://ftp.rutgers.dimacs.edu/challenges/sat.

O. Dubois, P. André, Y. Boufkhad, and J. Carlier. Sat
versus unsat. IDimacs challenge on Satisfiability Test-
ing, 1993.

Jon William Freeman.lmprovements to propositional
satisfiability search algorithmsPhD thesis, University
of Pennsylvania, 1995.

lan P. Gent, Holger H. Hoos, Patrick Prosser, and Toby

Walsh. Morphing: Combining structure and random—[30]

ness. InProceedings of the Sixteenth National Confer-
ence on Artificial Intelligence (AAAI'99)ages 654—
660, Orlando, Florida, 1999.

Jan Friso Groote and Joost P. Warners. The prop05|[-
tional formula checker heerhugdournal of Automated

Reasoning24(1/2):101-125. [3

J. N. Hooker. Needed: An empirical science of algo-
rithms. Operations Resear¢d2:201-212, 1994.

12

(18]

[20]

[21]

[24]

[27]

(28]

(29

31] Available for

[17] Holger H. Hoos and Thomas Stiitzle. Local search al-

gorithms for sat: An empirical evaluationlournal of
Automated Reasoning4:421-481, 2000.

Holger H. Hoos and Thomas StiitzlBAT20000: High-
lights of Satisfiability Research in the year 20@8ap-
ter SATLIB: An Online Resource for Research on SAT,
pages 283-292. Frontiers in Artificial Intelligence
and Applications. Kluwer Academic, 2000. (web site:
http://lwww.satlib.org).

9 Henry Kautz and Bart Selman. Pushing the envelope :

Planning, propositional logic, and stochastic search. In
Proceedings of the Twelfth National Conference on Ar-
tificial Intelligence (AAAI'96) pages 1194-1201, 1996.

Daniel Le Berre. Exploiting the real power of unit
propagation lookahead. IRroceedings of the Work-
shop on Theory and Applications of Satisfiability Test-
ing (SAT2001)Boston University, Massachusetts, US-
A, June 14th-15th 2001. to appear.

Chu-Min Li. A constrained based approach to narrow
search trees for satisfiabilitylInformation processing
letters 71:75-80, 1999.

Chu-Min Li. Integrating equivalency reasoning into
davis-putnam procedure. the proceedings of AAAI-
200Q pages 291-296, 2000.

Chu-Min Li and Anbulagan. Heuristics based on unit
propagation for satisfiability problems. Rroceedings
of IJCAI'97, pages 366—371, 1997.

G. Logeman M. Davis and D. Loveland. A machine
program for theorem-provingCommunications of the
ACM, pages 394-397, 1962.

[25] Jodo P. Marques-Silva and Karem A. Sakallah. Grasp:

A search algorithm for propositional satisfiabilitiZEE
Transactions on Computerd8(5):506-521, 1999.

David G. Mitchell and Hector J. Levesque. Some pit-
falls for experimenters with random satrtificial Intel-
ligence 81(1-2):111-125, March 1996.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering an
Efficient SAT Solver. InProceedings of the 38th Design
Automation Conference (DAC’01June 2001.

Allen van Gelder and Yumi Tsuji. Instances from circuit
fault analysis. Available ih11] repository.

Allen VanGelder and Fumiaki Kamiya. The partial re-
habilitation of propositional resolution. Technical Re-
port UCSC-CRL-96-04, 1996.

Miroslav N. Velev. Formal verification of superscalar
and VLIW processors benchmarks (FVP-UNSAT.1.0).
Available at http://www.ece.cmu.edu/"mvelev.

downloading at
http://sat.inesc.pt/benchmarks/cnf/uni-paderborn.

Hantao Zhang. SATO: An efficient propositional prover.
In CADE-14 LNCS 1249, pages 272-275, 1997.

