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1 Introduction

JML is a notation for formally specifying the behavior and interfaces of Java [Arnold-
Gosling-Holmes00] [Gosling-etal00] classes and methods.

The goal of this reference manual is to precisely record the design of JML. We include
both informal semantics (intentions) and where possible formal semantics (usually in the
form of verification conditions). We also discuss the implications for various tools (such
as the run-time assertion checker, static checkers such as ESC/Java, and documentation
generators such as jmldoc [Burdy-etal03]).

We try to give examples and explanations, and we hope that these will be helpful to
readers trying to learn about formal specification using JML. However, this manual is not
designed to give all the background needed to write JML specifications, nor to give the
prospective user an overview of a useful subset of the language. For this background, we
recommend starting with the paper “JML: A notation for detailed design” [Leavens-Baker-
Ruby99], and continuing with the paper “Preliminary Design of JML” [Leavens-Baker-
Ruby02]. Both of these are available from the JML web site ‘http://www.jmlspecs.org/’,
where further readings and examples may also be found.

Readers with the necessary background, and users wanting more details may, we hope,
profit from reading this manual. We suggest reading this manual starting with chapters
1-3, skimming chapter 4 quickly, skimming chapter 5 to get the idea of what declarations
mean in JML (paying a bit more attention in section [[[5.4??]]] to the sorts of declarations),
and then reading the chapters on class specifications (chapter 6) and method specifications
(chapter 7), paying particular attention to the examples. After that, one can use the rest
of this manual as a reference.

The rest of this chapter describes some of the fundamental ideas and background behind
JML.

1.1 Behavioral Interface Specifications

JML is a behavioral interface specification language (BISL) that builds on the Larch
approach [Guttag-Horning93] [Guttag-Horning-Wing85b] and that found in APP [Rosen-
blum95] Eiffel [Meyer92b] [Meyer97]. In this style of specification, which might be called
model-oriented [Wing90a], one specifies both the interface of a method or abstract data
type and its behavior [Lamport89]. In particular JML builds on the work done by Leavens
and others in Larch/C++ [Leavens-Baker99] [Leavens96b] [Leavens97c]. (Indeed, large parts
of this manual are adapted wholesale from the Larch/C++ reference manual [Leavens97c].)

The interface of the method or type is the information needed to use it from other
programs. In the case of JML, this is the Java syntax and type information needed to call
a method or use a type. For a method the interface includes such things as the name of
the method, its number of arguments, its return type, what exceptions it may throw, and
so on. JML specifies interface information using Java’s syntax.

The behavior of a method or type describes the state transformations it can perform.
The behavior of a method is specified by describing: the set of states in which calling the
method is defined, the set of locations the method is allowed to assign to (and hence change),
and the relation between the states before and after the method is invoked. The states for
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which the method is defined can be formally described by a logical assertion, called the
method’s precondition. The allowed relationships between these states and the states that
may result from a call are formally described by another logical assertion called the method’s
postcondition. The set of locations the method is allowed to assign to is described by listing
the names of these locations in what is called the method’s frame axiom [Borgida-etal95].

The behavior of an abstract data type (ADT), which is implemented by a class in Java, is
specified by describing a set of abstract fields for its objects and by specifying the behavior
of its methods (as described above). The abstract fields for an object can be specified
either by using JML’s model and ghost fields [Cheon-etal03], which are specification-only
fields, or by specifying some of the fields used in the implementation as spec_public or
spec_protected. Thus, like other specification languages, such as Z [Hayes93] [Spivey92],
or Fresco [Wills92b] JML requires the user to model an instance as a collection of instance
variables.

In the rest of this section we give a first example of an ADT specification, and then
describe more of the related work behind such specifications and JML’s design in this area.

1.1.1 A First Example

For example, consider the following JML specification of a simple Java abstract class
IntHeap. (An explanation of the notation follows the specification.)

package org.jmlspecs.samples.jmlrefman; // line 1
// line 2

public abstract class IntHeap { // line 3
// line 4

//@ public model non_null int [] elements; // line 5
// line 6

/*@ public normal_behavior // line 7
@ requires elements.length >= 1; // line 8
@ assignable \nothing; // line 9
@ ensures \result // line 10
@ == (\max int j; // line 11
@ 0 <= j && j < elements.length; // line 12
@ elements[j]); // line 13
@*/ // line 14

public abstract /*@ pure @*/ int largest(); // line 15
// line 16

//@ ensures \result == elements.length; // line 17
public abstract /*@ pure @*/ int size(); // line 18

}; // line 19

The interface of this class consists of lines 1, 3, 15, and 18. Line 3 specifies class name,
and the fact that it is both public and abstract. Lines 15 and 18, apart from their comments,
give the interface information for the methods of this class.

The behavior of this class is specified in the JML annotations found in the special
comments that have an at-sign (@) as their first character following the usual comment
beginning. Such lines look like comments to Java, but are interpreted by JML and its
tools. For example, line 5 starts with an annotation comment marker of the form //@, and
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this annotation continues until the // towards the end of the line, which starts a comment
within the annotation which even JML ignores. The other form of such annotations can be
seen on lines 7 through 14 line 17, and on lines 15 and 18. These annotations start with
the characters /*@ and end with either @*/ or */; within such annotations, at-signs (@) at
the beginnings of lines are ignored by JML. (See Chapter 4 [Lexical Conventions], page 13,
for more details about annotations.)

The first annotation, on line 5 of the figure above, gives the specification of a field, named
elements, which is part of this class’s behavioral specification. Ignoring, for the moment
the extra JML modifiers, one should think of this field, in essence, as being declared like:

public int[] elements;

That is, it is a public field with an integer array type. And within specifications it is treated
as such. However, because it is declared in an annotation, this field cannot be manipulated
by Java code. Therefore, for example, the fact that the field is declared public is not a
problem, because it cannot be directly changed by Java code.

Such declarations of fields in annotations should be marked as specification-only fields,
using the JML modifier model.1 A model field should be thought of as an abstraction of
the concrete fields that are used to implement this type and its subtypes. (See Section 10.3
[Represents Clauses], page 36, for a discussion of how to specify the connection between the
concrete fields and such model fields. See also the paper by Cheon et al. [Cheon-etal03])
That is, we imagine that objects that are instances of the type IntHeap have such a field,
whose value is determined by the concrete fields that are known to Java in the actual
object. Of course at runtime, objects of type IntHeap have no such field, the model fields
are purely imaginary. Model fields are thus a convenient fiction that is useful for describing
the behavior of an ADT. One does not have to worry about their cost (in space or time),
and should only be concerned with how they clarify the behavior of an ADT.

The other annotation used on line 5 is non_null. This just says that in any publicly-
visible state, the value of elements must not be null. It is thus a simple kind of invariant
(see Section 10.1 [Invariants], page 28).

In the above specification of IntHeap, the specification of each method precedes its in-
terface declaration. This follows the usual convention of Java tools, such as JavaDoc, which
put such descriptive information in front of the method. In JML, it is also possible to put
the specification just before the semicolon (;) following the method’s interface information
(see Chapter 11 [Method Specifications], page 38), but we will usually not to do that in this
document.

The specification of the method largest is given on lines 7 through 15. Line 7 says that
this is a public, normal behavior specification. JML permits several different specifications
for a given method, which can be of different privacy levels [Ruby-Leavens00]. The modifier
public says that the specification is intended for the use of clients. (If the privacy modifier
had been protected, for example, then the specification would have been intended for
subclasses.)

The keyword normal_behavior tells JML several things. First, it says that the specifica-
tion is a heavyweight method specification, as opposed to a lightweight method specification
like that given on line 17. A heavyweight specification uses one of JML’s behavior keywords,

1 Another way to declare a specification-only field is to use the ghost modifier ([[[Add pxref]]]).
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like normal_behavior, which tells JML that the method specification is intended to be com-
plete. By contrast, a lightweight specification does not use one of JML’s behavior keywords,
which tells JML that the specification is incomplete in the sense of the only contains what
the specifier wanted to write down, and not everything possible.2 Second, the keyword
normal_behavior tells JML that when the precondition of this method is met, then the
method must return normally, without throwing an exception. (See Chapter 11 [Method
Specifications], page 38, for more details.)

The heart of the method specification of largest is found on lines 7 through 13. This
part of the specification gives the method’s precondition, on line 8, frame axiom, on line 9,
and postcondition, on lines 10 through 13. The precondition is contained in the requires
clause. The frame axiom is contained in the assignable clause. The postcondition is
contained in the ensures clause.3

The precondition in the requires clause says that the length of elements must be at
least 1 before this method can be called. If that is not true, then the method is under no
obligation to fulfill the rest of the specified behavior.

The frame axiom in the assignable clause says that the method may not assign to any
locations (i.e. fields of objects) that are visible outside the method and which existed before
the method started execution. (The method may still modify its local variables.) This form
of the frame axiom is quite common.4 Note that in assignable clauses and in assertions,
JML uses keywords that start with a backslash (\), to avoid interfering with identifiers in
the user’s program. Examples of this are \nothing on line 9 and \result on line 10.

The postcondition in the ensures clause, on lines 10 through 13, says that the result of
the method (\result) must be equal to the maximum integer found in the array elements.
This postcondition uses JML’s \max quantifier (lines 11 through 13). Such a quantifier is
always parenthesized, and can consist of three parts. The first is a declaration of some
quantified variables, in this case the integer j on line 11. The second is a range predicate,
on line 12, which constrains the quantified variables. The third is the body of the quantifier,
on line 13, which in this case describes the elements of the array from which the maximum
value is taken.

The methods largest and size are both specified using the JML modifier pure. This
modifier says that the method has no side effects, and allows the method to be used in
assertions if desired.

Line 17 contains the single annotation that makes up the lightweight specification of the
method size. As a lightweight specification with only an ensures clause, this says nothing
about the precondition or frame axiom of size, although the use of pure on line 18 gives
an implicit frame axiom. Such a form of specification is useful when one only cares to state
(the important) part of a method’s specification. It is also useful when first learning JML,

2 Lightweight specifications come from ESC/Java, which does not understand JML’s heavyweight speci-
fication syntax.

3 JML also has various synonyms for these keywords; one can use pre for requires, modifies or
modifiable for assignable, and post for ensures if desired. See Chapter 11 [Method Specifications],
page 38, for more details.

4 However, unlike Larch BISLs and earlier versions of JML, this is not the default for an omitted
assignable clause (see Section 11.9.8 [Assignable Clauses], page 52). Thus line 9 cannot be omitted
without changing the meaning of the specification.
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and when one is using tools, such as ESC/Java, that do not need or understand heavyweight
specifications.

The specifications of the methods largest and size above are very precise: they give a
complete specification of what the methods do. We can also give JML specifications that are
far less detailed. For example, we could just specify that the result of size is non-negative,
with a postcondition

//@ \result >= 0;

instead of the postcondition given earlier.

1.1.2 Historical Precedents

JML combines ideas from Eiffel [Meyer92a] [Meyer92b] [Meyer97] with ideas from
model-based specification languages such as VDM [Jones90] and the Larch family
[Guttag-Horning93] [LeavensLarchFAQ] [Wing87] [Wing90a]. It also adds some
ideas from the refinement calculus [Back88] [Back-vonWright89a] [Back-vonWright98]
[Morgan-Vickers94] [Morgan94] (see Chapter 19 [Refinement], page 78). In this section we
describe the advantages and disadvantages of these approaches.

Formal, model-based languages such as those typified by the Larch family build on
ideas found originally in Hoare’s work. Hoare used pre- and postconditions to describe
the semantics of computer programs in his famous article [Hoare69]. Later Hoare adapted
these axiomatic techniques to the specification and correctness proofs of abstract data types
[Hoare72a]. To specify an ADT, Hoare described a mathematical set of abstract values for
the type, and then specified pre- and postconditions for each of the operations of the type
in terms of how the abstract values of objects were affected. For example, one might specify
a class IntHeap using abstract values of the form empty and add(i,h), where i is an int
and h is an IntHeap. These notations form a mathematical vocabulary used in the rest of
the specification.

There are two advantages to writing specifications with abstract values instead of di-
rectly using Java variables and data structures. The first is that by using abstract values,
the specification does not have to be changed when the particular data structure used in
the program is changed. This permits different implementations of the same specification to
use different data structures. Therefore the specification forms a contract between the rest
of the program in the implementation, which ensures that the rest of the program is also
independent of the particular data structures used [Liskov-Guttag86] [Meyer97] [Meyer92a]
[Parnas72]. Second, it allows the specification to be written even when there are no imple-
mentation data structures, as is the case for IntHeap.

This idea of model-oriented specification has been followed in VDM [Jones90], VDM-
SL [Fitzgerald-Larsen98] [ISO96], Z [Hayes93] [Spivey92], and the Larch family [Guttag-
Horning93]. In the Larch approach, the essential elaboration of Hoare’s original idea is
that the abstract values also come with a set of operations. The operations on abstract
values are used to precisely describe the set of abstract values and to make it possible to
abbreviate interface specifications (pre- and postconditions for methods). In Z one builds
abstract values using tuples, sets, relations, functions, sequences, and bags; these all come
with pre-defined operations that can be used in assertions. In VDM one has a similar
collection of mathematical tools to describe abstract values, and another set of pre-defined
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operations. In the Larch approach, there are some pre-defined kinds of abstract values
(found in Guttag and Horning’s LSL Handbook, Appendix A of [Guttag-Horning93]), but
these are expected to be extended as needed. (The advantage of being able to extend the
mathematical vocabulary is similar to one advantage of object-oriented programming: one
can use a vocabulary that is close to the way one thinks about a problem.)

However, there is a problem with using mathematical notations for describing abstract
values and their operations. The problem is that such mathematical notations are an extra
burden on a programmer who is using a specification language to document programs. In the
case of JML, this is a problem for Java programmers. This is the essential insight that JML
takes from the Eiffel language [Meyer92a] [Meyer92b] [Meyer97]. Eiffel is a programming
language with built-in specification constructs. It features pre- and postconditions, although
it has no direct support for frame axioms. Programmers like Eiffel because they can easily
read the assertions, which are written in Eiffel’s own expression syntax. However, Eiffel does
not provide support for specification-only variables, and it does not provide much explicit
support for describing abstract values. Because of this, it is difficult to write specifications
that are as mathematically complete in Eiffel as one can write in a language like VDM or
Larch/C++.

JML attempts to combine the good features of these approaches. From Eiffel we have
taken the idea that assertions can be written in a language that is based on Java expressions.
We also adopt the “old” notation from Eiffel, which appears in JML as \old, instead
of the Larch-style annotation of names with state functions. To make it easy to write
more complete specifications, however, we use various semantic ideas from model-based
specification languages. In particular we use a variant of abstract value specifications,
where one describes the abstract value of an object implicitly using several model fields.
These specification-only fields allow one to implicitly partition the abstract value of an
object into smaller chunks, which helps in stating frame axioms. More importantly, we hide
the mathematical notation behind a facade of Java classes. This makes it so the operations
on abstract values appear in familiar (although perhaps verbose) Java notation, and also
insulates JML from the details of the particular mathematical logic used to do reasoning.

1.2 What is JML Good For?

JML is a formal specification language tailored to Java. Its basic use is thus the formal
specification of the behavior of Java program modules. As it is a behavioral interface
specification language, JML specifies how to use such Java program modules from within a
Java program; hence JML is not designed for specifying the behavior of an entire program.
So the question “what is JML good for?” really boils down to the following question: what
good is formal specification for Java program modules?

The two main benefits in using JML are
• the precise, unambiguous specification of the behavior of Java program modules (i.e.,

classes and interfaces), and documentation of Java code,
• the possibility of tool support [Burdy-etal03].

A JML specification can be a completely formal contract about an interface and its
behavior. Because it is an interface specification, one can record all the Java details about
the interface, such as the parameter mechanisms, whether the method is final, protected,



Chapter 1: Introduction 7

etc.; if one used a specification language such as VDM-SL or Z, which is not tailored to
Java, then one could not record such details of the interface, which could cause problems in
code integration. For example, in JML one can specify the precise conditions under which
certain exceptions may be thrown, something which is difficult in a specification language
that is not tailored to Java and that doesn’t have the notion of an exception.

In addition to precisely specifying the behavior of a Java class that is visible to its clients,
JML can also be used to document design decisions taken in the implementation of a class,
notably by recording the class invariants that the implementation is designed to maintain.

One can use JML either before coding, or as documentation of the code. The notation
is indifferent to the methodological questions; designing before coding is recommended, but
documentation after the fact is better than none.

Reasons for formal documentation of interfaces and their behavior, using JML, include
the following.

• One can ship the object code for a class library to customers, without sending the
source code. Customers would have documentation that is precise, unambiguous, but
not overly specific. Customers would not have the code, protecting proprietary rights.
In addition, customers would not rely on details of the implementation of the library
that they might otherwise glean from the code, easing the process of improving the
code in future releases.

• One can use a formal specification to analyze certain properties of a design carefully
or formally (see [Hall90] and Chapter 7 of [Guttag-Horning93]). In general, the act of
formally specifying a program module has salutary effects on the quality of the design.

• One can use the JML specification as an aid to careful reasoning about the correctness
of code, or even for formal verification [Huisman01] [Poll-Jacobs00].

There is one additional benefit from using JML. It is that JML allows one to record
not just public interfaces and behavior, but also some detailed design decisions. That is,
in JML, one can specify not just the public interface of a Java class, but also behavior of
a class’s protected and private interfaces. Formally documenting a base class’s protected
interface and “subclassing contract” allows programmers to implement derived classes of
such a base class without looking at its code [Ruby-Leavens00].

Recording the private interface of a class may be helpful in program development or
maintenance. Usually one would expect that the public interface of a class would be speci-
fied, and then separate, more refined specifications would be given for use by derived classes
and for detailed implementation (and friend classes). (See Chapter 19 [Refinement], page 78,
for how to record each level in JML.)

The reader may also wish to consult the “Preliminary Design of JML” [Leavens-Baker-
Ruby02] for a discussion of the goals that are behind JML’s design. Apart from the improved
precision in the specifications and documentation of code, the main advantage of using a
formal specification language, as opposed to informal natural language, is the possibility of
tool support. One specific goal that has emerged over time is that JML should be able to
unify several different tool-building efforts in the area of formal methods.

The most basic tool support for JML – simply parsing and typechecking – is already
useful. Whereas informal comments in code are typically not kept up to date as the code is
changed, the simple act of running the typechecker will catch any JML assertions referring
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to parameter or field names that no longer exist, and all other typos of course. Enforcing
the visibility rules can also provide useful feedback; for example, a precondition of a public
method which refers to a private field of an object is suspect.

Of course, there are more exciting forms of tool support than just parsing and type-
checking. In particular JML is designed to support static analysis (as in ESC/Java [Leino-
etal00]), formal verification (as in the LOOP tool [Huisman01] [Jacobs-etal98]), recording
of dynamically obtained invariants (as in Daikon [Ernst-etal01]), runtime assertion checking
(as in JML’s runtime assertion checker, jmlc [Cheon-Leavens02b] [Cheon03]), unit testing
[Cheon-Leavens02], and documentation (as in JML’s jmldoc tool). The paper by Burdy
et al. [Burdy-etal03] is a recent survey of tools for JML. The utility of these tools is the
ultimate answer to the question of what JML is good for.

1.3 Status and Plans for JML

JML is still in development. As you can see, this reference manual is still a draft, and
there are some holes in it. [[[And some notes for the authors by the authors that look like
this.]]]

Influences on JML that may lead to changes in its design include our desire to specify
programs written using the unique features of MultiJava [Clifton-etal00], an eventual inte-
gration with Bandera [[[refs]]] or other tools for specification of concurrency, aspect-oriented
programming, and the evolution of Java itself [[[refs]]]. Another influence is the ongoing
effort to use JML on examples, in designing the JML tools, and efforts to give a formal
semantics to JML.
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2 Fundamental Concepts

[[[Visibility restrictions in JML vs. Java.]]]
[[[type vs. class and interface.]]]
[[[static vs. instance]]]
[[[Aliasing and such]]]
[[[Model of expression evaluation in assertions and what happens when exceptions occur.

See [Jones95e] [Gries-Schneider95] [Leavens-Wing97a].]]]

2.1 Privacy Modifiers and Visibility

Java code that is not within an annotation uses the usual access control rules for deter-
mining visibility (or accessibility) of Java [Arnold-Gosling-Holmes00] [Gosling-etal00]. That
is, a name declared in package P and type P.T may be referenced from outside P only if
it is declared as public, or if it is declared as protected and the reference occurs within a
subclass of P.T. This name may be referenced from within P but outside of P.T only if it is
declared as public, default access, or protected. Such a name may always be referenced
from within P.T, even if it is declared as private. See the Java language specification
[Gosling-etal00] for details on visibility rules applied to nested and inner classes.

Within annotations, JML imposes some extra rules in addition to the usual Java visibility
rules [Leavens-Baker-Ruby02]. These rules depend not just on the declaration of the name
but also on the visibility level of the context that is referring to the name in question.
This context can for instance be a method specification or an invariant. The visibility level
of such an annotation context can be public, protected, private, or default (package)
visibility. [[[In essence, the visibility of the referring context must intersect that of the
declaration.]]]

Suppose x is a name declared in package P and type P.T.
• An expression in a public annotation context (e.g., in a public method specification)

can refer to x only if x is declared as public.
• An expression in a protected annotation context (e.g., in a protected method specifica-

tion) can refer to x only if x is declared as public or protected, and x must also be
visible according to Java’s rules (so if x is protected, then the reference must either
be from within P or, if it is from outside P, then the reference must occur in a subclass
of P.T ).

• An expression in a default (package) visibility annotation context (e.g., in a default
visibility method specification) can refer to x only if x is declared as public, protected,
or with default visibility, and x must also be visible according to Java’s rules (so if x
has default visibility, then the reference must be from within P).

• An expression in a private visibility annotation context (e.g., in a private method
specification) can refer to x only if x is visible according to Java’s rules (so if x has
private visibility, then the reference must be from within P.T ).

In the following example, the comments on the right show which uses of the various
privacy level names are legal and illegal. Similar examples could be given for method
specifications, history constraints, and so on.



Chapter 2: Fundamental Concepts 10

public class PrivacyDemoLegalAndIllegal {
public int pub;
protected int prot;
int def;
private int priv;

//@ public invariant pub > 0; // legal
//@ public invariant prot > 0; // illegal!
//@ public invariant def > 0; // illegal!
//@ public invariant priv < 0; // illegal!

//@ protected invariant pub > 1; // legal
//@ protected invariant prot > 1; // legal
//@ protected invariant def > 1; // illegal!
//@ protected invariant priv < 1; // illegal!

//@ invariant pub > 1; // legal
//@ invariant prot > 1; // legal
//@ invariant def > 1; // legal
//@ invariant priv < 1; // illegal!

//@ private invariant pub > 1; // legal
//@ private invariant prot > 1; // legal
//@ private invariant def > 1; // legal
//@ private invariant priv < 1; // legal

}

Note that in a lightweight method specification, the privacy level is assumed to be the
same privacy level as the method itself. That is, for example, a protected method with
a lightweight method specification uses a protected annotation context for purposes of
checking proper visibility usage [Leavens-Baker-Ruby02] [Mueller02].

[[[ The following is not true for the revised escjava - David ]]] Note that the old version of
ESC/Java [Leino-Nelson-Saxe00] does not permit one to give privacy modifiers on invariants.
This conflicted with the JML rules, because an invariant with no privacy modifier in its
declaration is assumed to be a default access invariant, and thus tools following the JML
rule will complain if such invariants use names declared to be private. One can fix this
by using a lexical trick in JML, as shown in the following (see Section 4.4 [Annotation
Markers], page 14).

//+@ public // seen by JML
//@ invariant pub > 1; // seen by ESC/Java and JML

The JML keyword spec_public provides a way to make a declaration that has different
visibilities for Java and JML. For example, the following declaration declares an integer
field that Java regards as private but JML regards as public.

private /*@ spec_public @*/ int length;

Thus for example, length in the above declaration could be used in a public method
specification or invariant.
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However, spec_public is more than just a way to change the visibility of a name for
specification purposes. When applied to fields it can be considered to be shorthand for the
declaration of a model field with the same name. That is, the declaration of length above
can be thought of as equivalent to the following declarations, together with a rewrite of the
Java code that uses length to use _length instead (where we assume _x is fresh, i.e., not
used elsewhere).

//@ public model int length;
private int _length; //@ in length;
//@ private represents x <- _length;

The above desugaring allows one to change the underlying field without affecting the
readers of the specification.

2.2 Model and Ghost

In JML one can declare various names with the modifier model; for example one can
declare model types, methods, and fields. One can also declare some fields as ghost fields.
JML also has a model import directive (see Chapter 5 [Compilation Units], page 20), which
imports names.

The meaning of a feature declared with model is that it is only present for purposes of
specification. For example a model type is a type that is used for specification purposes,
a model method is a method that is used for specification purposes, and a model field is
a field that is used for specification purposes. A model import directive imports names
that are used only for specification purposes. A model field should be thought of as the
abstraction of various non-model (Java) fields [Cheon-etal03]. Its value is determined by a
represents clause (see Section 10.3 [Represents Clauses], page 36) and it also can act as a
data group [Leino98] for specifying what non-model fields may change their state when it
is used in frame axioms (see Chapter 12 [Data Groups], page 56). A model method or a
model type, however, is not an abstraction of a non-model method or type.

A ghost field is also only present for purposes of specification. However, unlike a model
field, it does not have a value determined by a represents clause, instead its value is directly
determined by a set-statement (see Chapter 15 [Statements and Annotation Statements],
page 68).

Although these model and ghost names are used only for specifications, JML uses the
same namespace for such names as for normal Java names. Thus, one cannot declare a
field to be both a model (or ghost) field and a normal Java field in the same class (or in a
refinement, see Chapter 19 [Refinement], page 78). Similarly, a method is either a model
method or not. In part, this is done because JML has no syntactic distinction between Java
and JML field access or method calls. This decision makes it an error for someone to use
the same name as a model or ghost feature in an implmentation. In such a case if the Java
code is considered to be the goal, one can either change the name of the JML feature, or
declare the JML feature to be spec_public instead of a model or ghost feature.
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3 Syntax Notation

We use an extended BNF grammar to describe the syntax of JML. The extensions are
as follows [Ledgard80].
• Nonterminal symbols are written as follows: nonterminal. That is, nonterminal symbols

appear in an italic font (in the printed manual).
• Terminal symbols are written as follows: terminal. In a few cases it is also necessary

to quote terminal symbols, such as when using ‘|’ as a terminal symbol instead of a
meta-symbol.

• Square brackets ([ and ]) surround optional text. Note that [ and ] are terminals.
• The notation . . . means that the preceding nonterminal or group of optional text can

be repeated zero (0) or more times.

For example, the following gives a production for a non-empty list of init-declarators,
separated by commas.

init-declarator-list ::= init-declarator [ , init-declarator ] . . .
To remind the reader that the notation ‘. . . ’ means zero or more repetitions, we try to

use ‘. . . ’ only following optional text, although in cases such as the following the brackets
and the enclosed nonterminal could have been omitted.

spec-case-seq ::= spec-case [ also spec-case ] . . .
As in the above examples, we follow the C++ standard’s conventions [ANSI95] in using

nonterminal names of the form X-list to mean a comma-separated list, and nonterminal
names of the form X-seq to mean a sequence not separated by commas.

We use “//” to start a comment (to you, the reader) in the grammar.
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4 Lexical Conventions

This chapter presents the lexical conventions of JML; that is, the microsyntax of JML.
At the end of the chapter, support for international character sets is described.

Throughout this chapter, grammatical productions are to be understood lexically. That
is, no white-space (see Section 4.1 [White Space], page 13) may intervene between the
characters of a token.

The microsyntax of JML is described by the production microsyntax below; it describes
what a program looks like from the point of view of a lexical analyzer [Watt91].

microsyntax ::= lexeme [ lexeme ] . . .
lexeme ::= white-space | lexical-pragma | comment

| annotation-marker | doc-comment | token
token ::= ident | keyword | special-symbol | java-literal

| informal-description

In the rest of this section we provide more details on each of the major nonterminals
used in the above grammar.

4.1 White Space

Blanks, horizontal and vertical tabs, carriage returns, formfeeds, and newlines, collec-
tively called white space, are ignored except as they serve to separate tokens. Newlines
and carriage returns are special in that they cannot appear in some contexts where other
whitespace can appear, and are also used to end Java-style comments (see Section 4.3
[Comments], page 14).

white-space ::= non-nl-white-space | end-of-line
non-nl-white-space ::= a blank, tab, or formfeed character
end-of-line ::= newline | carriage-return | carriage-return newline
newline ::= a newline character
carriage-return ::= a carriage return character

4.2 Lexical Pragmas

ESC/Java [Leino-etal00] has a single kind of “lexical pragma”, nowarn, whose syntax is
described below in general terms. The JML checker currently ignores these lexical pragmas,
but nowarn is only recognized within an annotation. Note that, unlike ESC/Java, the
semicolon is mandatory. This restriction seems to be necessary to prevent lexical ambiguity.

lexical-pragma ::= nowarn-pragma
nowarn-pragma ::= nowarn [ spaces [ nowarn-label-list ] ] ;
spaces ::= non-nl-white-space [ non-nl-white-space ] . . .
nowarn-label-list ::= nowarn-label [ spaces ] [ , [ spaces ] nowarn-label [ spaces ] ] . . .
nowarn-label ::= letter [ letter ] . . .
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4.3 Comments

Both kinds of Java comments are allowed in JML: old C-style comments and new C++-
style comments. However, if what looks like a comment starts with the at-sign (@) character,
or with a plus sign and an at-sign (+@), then it is considered to be the start of an annotation
by JML, and not a comment. Furthermore, if what looks like a comment starts with an
asterisk (*), then it is a documentation comment, which is parsed by JML.

comment ::= C-style-comment | C++-style-comment
C-style-comment ::= /* [ C-style-body ] C-style-end
C-style-body ::= non-at-plus-star [ non-star-slash ] . . .

| + non-at [ non-star-slash ] . . .
| stars-non-slash [non-star-slash] . . .

non-star-slash ::= non-star
| stars-non-slash

stars-non-slash ::= * [ * ] . . . non-slash
non-at-plus-star ::= any character except @, +, or *
non-at ::= any character except @
non-star ::= any character except *
non-slash ::= any character except /
C-style-end ::= [ * ] . . . */
C++-style-comment ::= // [ + ] end-of-line

| // non-at-plus-end-of-line [ non-end-of-line ] . . . end-of-line
| //+ non-at-end-of-line [ non-end-of-line ] . . . end-of-line

non-end-of-line ::= any character except a newline or carriage return
non-at-plus-end-of-line ::= any character except @, +, newline, or carriage return
non-at-end-of-line ::= any character except @, newline, or carriage return

4.4 Annotation Markers

If what looks to Java like a comment starts with an at-sign (@) as its first character,
then it is not considered a comment by JML. We refer to the tokens between //@ and the
following end-of-line, and between pairs of annotation start ( /*@ or /*+@ ) and end ( */ or
@*/ or @+*/ ) markers as annotations.

Annotations must hold entire grammatical units of JML specifications, in the sense that
an annotation must hold all the text that is parsed in any given production of the grammar
contained in this reference manual. [[[ Clarification needed. ]]] For example the following
is illegal, because the postcondition is split over two annotations, and thus each contains a
fragment instead of a complete grammatical unit.

//@ ensures 0 <= x // illegal!
//@ && x < a.length;

Implementations are not required to check for such errors. However, note that ESC/Java
[Leino-Nelson-Saxe00] assumes that such units are not split into separate annotations, and
so effectively does check for them.

Annotations look like comments to Java, and are thus ignored by it, but they are sig-
nificant to JML. One way that this can be achieved is by having JML drop (ie., ignore)
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the character sequences that are annotation-markers: //@, //+@, /*@, /*+@, and @+*/, @*/.
The at-sign (@) in @*/ is optional, and more than one at-sign may appear in the other
annotation markers. However, JML will recognize jml-keywords only within annotations.

Within annotations, on each line, initial white-space and any immediately following
at-signs (@) are ignored. The definition of an annotation marker is given below.

annotation-marker ::= //@ | //+@
| /*@ | /*+@ | @+*/ | @*/ | */

ignored-at-in-annotation ::= @

4.5 Documentation Comments

If what looks like a C-style comment starts with an asterisk (*) then it is a documen-
tation comment. The syntax is given below. The syntax doc-comment-ignored is used for
documentation comments that are ignored by JML.

doc-comment ::= /** [ * ] . . . doc-comment-body */
doc-comment-ignored ::= doc-comment

At the level of the rest of the JML grammar, a documentation comment that does not
contain an embedded JML method specification is essentially described by the above, and
the fact that a doc-comment-body cannot contain the two-character sequence */.

However, JML and javadoc both pay attention to the syntax inside of these documenta-
tion comments. This syntax is really best described by a context-free syntax that builds on
a lexical syntax. However, because much of the documentation is free-form, the context-free
syntax has a lexical flavor to it, and is quite line-oriented. Thus it should come as no sur-
prise that the first non-whitespace, non-asterisk (ie., not *) character on a line determines
its interpretation.

doc-comment-body ::= [ description ] . . .
[ tagged-paragraph ] . . .
[ jml-specs ]

description ::= doc-non-empty-textline
tagged-paragraph ::= paragraph-tag [ doc-non-nl-ws ] . . .

[ doc-atsign ] . . . [ description ] . . .
jml-specs ::= jml-tag [ method-specification ] end-jml-tag

[ jml-tag [ method-specification ] end-jml-tag ] . . .

The microsyntax or lexical grammar used within documentation comments is as follows.
Note that the token doc-nl-ws can only occur at the end of a line, and is always ignored
within documentation comments. Ignoring doc-nl-ws means that any asterisks at the be-
ginning of the next line, even in the part that would be a JML method-specification, is also
ignored. Otherwise the lexical syntax within a method-specification is as in the rest of JML.
This method specification is attached to the following method or constructor declaration.
(Currently there is no useful way to use such specifications in the documentation comments
for other declarations.) Note the exception to the grammar of doc-non-empty-textline.
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paragraph-tag ::= @author | @deprecated | @exception
| @param | @return | @see
| @serial | @serialdata | @serialfield
| @since | @throws | @version
| @ letter [ letter ] . . .

doc-atsign ::= @
doc-nl-ws ::= end-of-line [ doc-non-nl-ws ] . . . [ * [ * ] . . . [ doc-non-nl-ws ] . . . ]
doc-non-nl-ws ::= non-nl-white-space
doc-non-empty-textline ::= non-at-end-of-line [ non-end-of-line ] . . .
jml-tag ::= <jml> | <JML> | <esc> | <ESC>
end-jml-tag ::= </jml> | </JML> | </esc> | </ESC>
A jml-tag marks the (temporary) end of a documentation comment and the
beginning of text contributing to a method specification. The corresponding
end-jml-tag marks the reverse transition.
The end-jml-tag must match the corresponding jml-tag.

4.6 Tokens

Character strings that are Java reserved words are made into the token for that reserved
word, instead of being made into an ident token. Within an annotation this also applies to
jml-keywords. The details are given below.

ident ::= letter [ letter-or-digit ] . . .
letter ::= _, $, a through z, or A through Z
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter-or-digit ::= letter | digit

Several strings of characters are recognized as keywords or reserved words in JML. These
fall into three separate categories: Java keywords, JML predicate keywords (which start
with a backslash), and JML keywords. Java keywords are truly reserved words, and are
recognized in all contexts. The nonterminal java-keywords represents the reserved words
in Java (as in the JDK version 1.4). JML keywords are only recognized as such if they
occur outside of a spec-expression but within an annotation. JML predicate keywords are,
as their name implies, used within spec-expressions; they are also used in store-ref-lists and
constrained-lists. The details are given below.

keyword ::= java-keyword | jml-predicate-keyword | jml-keyword
jml-predicate-keyword ::= \duration | \elemtype

| \everything | \exists
| \forall | \fresh | \invariant_for
| \is_initialized | \lblneg | \lblpos
| \lockset | \max | \min
| \nonnullelements | \nothing | \not_modified
| \not_specified | \num_of |\old
| \other | \private_data | \product
| \reach | \result | \space
| \such_that | \sum | \type
| \typeof | \TYPE | \working_space
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jml-keyword ::= abrupt_behavior | accessible_redundantly | accessible
| also | assert_redundantly
| assignable_redundantly | assignable
| assume_redundantly | assume | axiom
| behavior | breaks_redundantly | breaks
| callable_redundantly | callable | choose_if
| choose | code_contract
| constraint_redundantly | constraint
| constructor | continues_redundantly | continues
| decreases_redundantly | decreases
| decreasing_redundantly | decreasing
| diverges_redundantly | diverges | duration_redundantly
| duration | ensures_redundantly
| ensures | example | exceptional_behavior
| exceptional_example | exsures_redundantly | exsures
| field | forall
| for_example | ghost
| implies_that | helper | hence_by_redundantly
| hence_by | initializer | initially
| instance | invariant_redundantly | invariant
| loop_invariant_redundantly | loop_invariant
| maintaining_redundantly | maintaining
| measured_by_redundantly | measured_by | method
| model_program | model | modifiable_redundantly
| modifiable | modifies_redundantly | modifies
| monitors_for | monitored | non_null
| normal_behavior | normal_example | nowarn
| old | or | post_redundantly | post
| pre_redundantly | pre
| pure | readable | refine
| represents_redundantly | represents | requires_redundantly
| requires | returns_redundantly | returns
| set | signals_redundantly | signals
| spec_protected | spec_public | static_initializer
| uninitialized | unreachable
| weakly | when_redundantly | when
| working_space_redundantly | working_space

The following describes the special symbols used in JML. The nonterminal java-special-
symbol is the special symbols of Java, taken without change from Java [Gosling-Joy-
Steele96].

special-symbol ::= java-special-symbol | jml-special-symbol
java-special-symbol ::= java-separator | java-operator
java-separator ::= ( | ) | { | } | ‘[’ | ‘]’ | ; | , | .
java-operator ::= = | < | > | ! | ~ | ? | :

| == | <= | >= | != | && | ‘||’ | ++ | --
| + | - | * | / | & | ‘|’ | ^ | % | << | >> | >>>
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| += | -= | *= | /= | &= | ‘|=’ | ^= | %= | <<= | >>= | >>>=
jml-special-symbol ::= ==> | <== | <==> | <=!=> | -> | <- | <: | .. | ‘{|’ | ‘|}’

The nonterminal java-literal represents Java literals which are taken without change
from Java [Gosling-Joy-Steele96].

java-literal ::= integer-literal | floating-point-literal | boolean-literal
| character-literal | string-literal | null-literal

integer-literal ::= decimal-integer-literal | hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= decimal-numeral [ integer-type-suffix ]
decimal-numeral ::= 0 | non-zero-digit [ digits ]
digits ::= digit [ digit ] . . .
digit ::= 0 | non-zero-digit
non-zero-digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer-type-suffix ::= l | L
hex-integer-literal ::= hex-numeral [ integer-type-suffix ]
hex-numeral ::= 0x hex-digit [ hex-digit ] . . . | 0X hex-digit [ hex-digit ] . . .
hex-digit ::= digit | a | b | c | d | e | f

| A | B | C | D | E | F
octal-integer-literal ::= octal-numeral [ integer-type-suffix ]
octal-numeral ::= 0 octal-digit [ octal-digit ] . . .
octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

floating-point-literal ::= digits . [ digits ] [ exponent-part ] [ float-type-suffix ]
| . digits [ exponent-part ] [ float-type-suffix ]
| digits exponent-part [ float-type-suffix ]
| digits [ exponent-part ] float-type-suffix

exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E
signed-integer ::= [ sign ] digits
sign ::= + | -
float-type-suffix ::= f | F | d | D

boolean-literal ::= true | false

character-literal ::= ’ single-character ’ | ’ escape-sequence ’
single-character ::= any character except ’, \, carriage return, or newline
escape-sequence ::= \b // backspace

| \t // tab
| \n // newline
| \r // carriage return
| \’ // single quote
| \" // double quote
| \\ // backslash
| octal-escape
| unicode-escape

octal-escape ::= \ octal-digit [ octal-digit ]
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| \ zero-to-three octal-digit octal-digit
zero-to-three ::= 0 | 1 | 2 | 3
unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit

string-literal ::= " [ string-character ] . . . "
string-character ::= escape-sequence

| any character except ", \, carriage return, or newline

null-literal ::= null

An informal-description looks like (* some text *). It is used in predicates and store-ref
expressions. The exact syntax is given below.

informal-description ::= (* non-star-close [ non-star-close ] . . . *)
non-star-close ::= non-star

| stars-non-close
stars-non-close ::= * [ * ] . . . non-close
non-close ::= any character except )
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5 Compilation Units

A compilation unit in JML is similar to that in Java, with some additions. It consists
of, in order,
• an optional package definition,
• an optional JML refines declaration,
• zero or more import and model import definitions,
• and one or more type definitions.

The following is the syntax of compilation units in JML. The compilation-unit rule is
the start rule for the JML grammar.

compilation-unit ::= [ package-definition ]
[ refine-prefix ]
[ import-definition ] . . .
[ type-definition ] . . .

package-definition ::= package name ;
import-definition ::= [ model ] import name-star ;
name ::= ident [ . ident ] . . .
name-star ::= ident [ . ident ] . . . [ . * ]

5.1 Package definition

The meaning of a package-definition is the same as in Java [Gosling-etal00].

5.2 Refines declaration

See Chapter 19 [Refinement], page 78, for a discussion of the refine-prefix and its uses.

5.3 Import and model import declaration

The meaning of an import-definition without the model keyword is the same as in Java
[Gosling-etal00]. When the model keyword is used, the import is only effective within JML
annotations. An import-definition may have a model keyword modifier if and only if it is
within an annotation. The syntax

/*@ model @*/ import name-star ;

is legal, but the model modifier has no additional effect. [[[ The above seems contradictory,
though the last statement is the current behavior - DRCok]]]

5.4 Class and interface definitions

A compilation unit may have one or more type definitions. At most one of them may be
declared public. If there is a public type definition, the name of that type must match
the file name, as is the case for the Java implementation on the given platform. Class and
interface definitions are described in Chapter 6 [Type Definitions], page 21.
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6 Type Definitions

The following is the syntax of type definitions. The order of the modifier productions
suggests the relative order for writing the modifiers in code and specifications, with public
before all other modifiers, and non_null last. Note that although the modifiers grammar
non-terminal is used in many places throughout the grammar, not all modifiers are semanti-
cally permitted in conjunction with every grammar construct. See the discussion regarding
each grammar construct and in [[[ Appendix ?]]] for the semantic limitations.

type-definition ::= [ doc-comment ] modifiers class-or-interface-def
| ;

class-or-interface-def ::= class-definition | interface-definition
type-spec ::= type [ dims ] | \TYPE [ dims ]
type ::= reference-type | builtInType
reference-type ::= name
modifiers ::= [ modifier ] . . .
modifier ::= public | private | protected

| spec_public | spec_protected
| abstract | static |
| model | ghost | pure
| final | synchronized
| instance | helper
| transient | volatile
| native | strictfp
| const1

| monitored | uninitialized
| non_null

class-definition ::= class ident [ extends name [ weakly ] ]
[ implements-clause ] class-block

interface-definition ::= interface ident [ interface-extends ] class-block
interface-extends ::= extends name-weakly-list
implements-clause ::= implements name-weakly-list
name-weakly-list ::= name [ weakly ] [ , name [ weakly ] ] . . .
class-block ::= { [ field ] . . . }

The modifiers spec_public, spec_protected, model, ghost, pure, instance, helper,
monitored, uninitialized, non_null are JML and not Java modifiers and are only allowed
in annotation comments.

Type declarations in Java may contain
• field declarations,
• method declarations,
• constructor declarations,
• class and interface declarations, and
• static and non-static initializer blocks.

They may also contain these JML declarations:

1 const is reserved but not used in Java
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• ghost fields,
• model fields,
• model methods and constructors,
• model types (classes and interfaces),
• initializer and static initializer declarations, and
• several kinds of specification clauses (invariant, constraint, represents, axiom).

Each of these may be placed wherever a Java type declaration element may be placed. The
specification clauses are discussed in the next chapter. The other elements are discussed
here.

Type definitions that appear as elements of compilation units are called top-level types.
Type definitions may also appear as elements within a type definition (nested and inner
type definitions). Class definitions may also appear as statements within a statement block.

6.1 Type modifiers

The following keywords may be used as modifiers for a type definition. They are placed
just before the class or interface keyword.

6.1.1 abstract

[[[ discussion needed - classes only ]]]

6.1.2 pure

A type definition may be modified with the JML modifier keyword pure. This may occur
where a Java access or static keyword may be placed. The effect of declaring a type pure
is that all constructor and method declarations within the type are automatically pure. It
does not imply that any derived type is necessarily pure.

6.1.3 model

A type definition modified with the model keyword indicates that the type defined is
only used in annotations. The entire type definition must be contained within an annota-
tion comment, and consequently annotations within the type definition do not need to be
separately enclosed in annotation comments, as is demonstrated in the example below. The
scope rules for a model type definition are the same as for Java type definitions, except that
a model type definition is not in scope for any Java code, only for annotations.

[[[ May a model type definition appear in more than one specification file of a refinement
sequence, with any member declarations being combined together? I’d prefer that it only
be allowed to appear once and be required to be completely defined in one spec file - easier
for tools. – DRCok ]]]

Example:
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public class Example {

private int i;

/*@
model public class ModelExample {

ghost int j;

requires true;
ensures i > 0;
public void m();

requires i > 0;
ensures i > 1;
public void inc() {
set j = 0;
++i;
}
}
@*/
}

[[[ discussion needed ]]]

6.1.4 weakly

[[[ discussion needed ]]]
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7 Field declarations

7.1 Java Field Declarations

[[[ discussion needed]]]

[[[ This section ought to be moved to a section describing all the elements of a type
declaration. ]]] The following gives the syntax of fields.

field ::= [ doc-comment ] . . . modifiers member-decl
| modifiers jml-declaration
| [ method-specification ] [ static ] compound-statement
| method-specification static_initializer
| method-specification initializer
| axiom predicate ;
| ;

member-decl ::= variable-decls | method-decl
| class-definition | interface-definition

variable-decls ::= [ field ] type-spec variable-declarators ; [ jml-data-group-clause ] . . .
variable-declarators ::= variable-declarator [ , variable-declarator ] . . .
variable-declarator ::= ident [ dims ] [ = initializer ]
initializer ::= expression | array-initializer
array-initializer ::= { [ initializer-list ] }
initializer-list ::= initializer [ , initializer ] . . . [ , ]
method-decl ::= method-specification

modifiers method-or-constructor-keyword
[ type-spec ] method-head method-body

| method-or-constructor-keyword
[ type-spec ] method-head
[ method-specification ]
method-body

method-or-constructor-keyword ::= method | constructor
method-head ::= ident ( [ param-declaration-list ] )

[ dims ] [ throws-clause ]
method-body ::= compound-statement | ;
throws-clause ::= throws name [ , name ] . . .
param-declaration-list ::= param-declaration [ , param-declaration ] . . .
param-declaration ::= [ param-modifier ] . . . type-spec ident [ dims ]
param-modifier ::= final | non_null

In a non-Java file, such as a file with suffix ‘.refines-java’ (see Chapter 19 [Refine-
ment], page 78), one can omit the initializer of a variable-declarator, even one declared to
be final. In such a file, one can also omit the body of a method-decl. Of course, in a
‘.java’ file, one must obey all the rules of Java for declarations that are not in annotations.

[[[ JML tools allow methods in Java files to omit method bodies. ]]] [[[ jml-var-assertions
is not defined, and has changed ]]]



Chapter 7: Field declarations 25

7.2 Ghost Fields

[[[ discussion needed]]]

7.3 Model Fields

[[[ discussion needed]]]

7.4 JML Modifiers for Fields

7.4.1 non null

[[[ needs discussion ]]]

7.4.2 monitored

[[[ needs discussion ]]]

7.4.3 instance

[[[ needs discussion ]]]
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8 Methods and constructors

[[[ discussion needed ]]]

8.1 Java methods and constructor declarations

[[[ discussion needed ]]]

8.2 Model Methods and Constructors

[[[ discussion needed]]]

8.3 Modifiers for Routines

[[[ needs discussion ]]]

8.3.1 pure

[[[ needs discussion ]]]

8.3.2 non null

[[[ needs discussion ]]]

8.3.3 helper

[[[ needs discussion ]]]

8.4 Modifiers for Formal Parameters

8.4.1 non null

[[[ needs discussion ]]] [[[ comments on inheritance! ]]]
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9 Other elements of type declarations

[[[ discussion needed ]]]

9.1 Nested type definitions

[[[ discussion needed ]]]

9.2 Model Types

[[[ discussion needed]]]

9.3 Initializer blocks

[[[ discussion needed]]]

9.4 initializer and static initializer declarations

[[[ discussion needed - semantics unclear ]]]

9.5 Type specifications

Type specifications within a type definition are JML annotations; these are discussed in
Chapter 10 [Type Specifications], page 28.
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10 Type Specifications

This chapter describes the way JML allows one to specify ADTs. [[[It should also start
with some introductory examples...]]]

The following gives the syntax of behavioral specifications for types.
jml-declaration ::= invariant | history-constraint

| represents-decl | initially-clause
| monitors-for-clause | readable-if-clause

The various parts of type specifications and the assertions that can be added to variable
declarations are described below.

[[[ Discussion of modifiers allowed on type specifications. ]]]

10.1 Invariants

[[[ Most of the following discussion ought to be moved to a subsection of Fundamental
Concepts, and then this section can be shortened to reflect the ‘reference manual’ content
regarding invariants - namely the rules regarding their syntax and semantics. Besides a lot
of the discussion applies to other forms of specs as well. – DRCok ]]]

The syntax of an invariant declaration is as follows.
invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly

An example of an invariant is given below. The invariant in the example has default
(package) visibility, and says that in every state that is a visible state for an object of type
Invariant, the object’s field b is not null and the array it refers to has exactly 6 elements.
In this example, no postcondition is necessary for the constructor since the invariant is an
implicit postcondition for it.

package org.jmlspecs.samples.jmlrefman;

public abstract class Invariant {

boolean[] b;

//@ invariant b != null && b.length == 6;

//@ assignable b;
Invariant() {

b = new boolean[6];
}

}

Invariants are properties that have to hold in all visible states. The notion of visible
state is of crucial importance in the explanation of the semantics of both invariants and
constraints. A state is a visible state for an object o if it occurs in one of the following:
• at end of a non-helper constructor invocation that is initializing o,
• at the beginning of a non-helper destructor invocation that is finalizing o,
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• at the beginning or end of a non-helper non-static method invocation with o as the
receiver,

• at the beginning or end of a non-helper static method invocation for a method in o’s
class or some superclass of o’s class, or

• when no constructor, destructor, non-static method invocation with o as receiver, or
static method invocation for a method in o’s class or some superclass of o’s class is in
progress.

Note that visible states for an object o do not include states at the beginning and end of
invocations of constructors, destructors, and methods declared with the helper modifier.

A state is a visible state for a type T if it occurs after static initialization for T is
complete and it is a visible state for some object that has type T.

JML distinguishes static and instance invariants. These are mutually exclusive and any
invariant is either a static or instance invariant. An invariant may be explicitly declared to
be static or instance by using one of the modifiers static or instance in the declaration
of the invariant. An invariant declared in a class declaration is, by default, an instance
invariant. An invariant declared in an interface declaration is, by default, a static invariant.

For example, the invariant declared in the class Invariant above is an instance invariant,
because it occurs inside a class declaration. If Invariant had been an interface instead of
a class, then this invariant would have been a static invariant.

A static invariant may only refer to static fields of an object. An instance invariant, on
the other hand, may refer to both static and non-static fields.

The distinction between static and instance invariants also affects when the invariants
are supposed to hold. A static invariant declared in a type T must hold in every state that
is a visible state for type T. An instance invariant declared in a type T must hold for every
object o of type T, for every state that is a visible state for o.

For reasoning about invariants we make a distinction between assuming, establishing,
and preserving an invariant. A method or constructor assumes an invariant if the invariant
must hold in its pre-state. A method or constructor establishes an invariant if the invariant
must hold in its post-state. A method or constructor preserves an invariant if the invariant
is both assumed and established.

JML’s verification logic enforces invariants by making sure that each non-helper method,
constructor, or destructor:
• assumes the static invariants of all types, T, for which its pre-state is a visible state for

T,
• establishes the static invariants of all types, T, for which its post-state is a visible state

for T,
• assumes the instance invariants of all objects, o, for which its pre-state is a visible state

for o, and
• establishes the instance invariants of all objects, o, for which its post-state is a visible

state for o.

This means that each non-helper constructor found in a class C preserves the static
invariants of all types, including C, that have finished their static initialization, establishes
the instance invariant of the object under construction, and, modulo creation and deletion
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of objects, preserves the instance invariants of all other objects. (Objects that are cre-
ated by a constructor must have their instance invariant established; and objects that are
deleted by the action of the constructor can be assumed to satisfy their instance invariant
in the constructor’s pre-state.) Note in particular that, at the beginning of a constructor
invocation, the instance invariant of the object being initialized does not have to hold yet.

Furthermore, each non-helper non-static method found in a type T preserves the static
invariants of all types that have finish their static initialization, including T, and, modulo
creation and deletion of objects, preserves the instance invariants of all objects, in particular
the receiver object.

The semantics given above is highly non-modular, but is in general necessary for the
enforcement of invariance when no mechanisms are available to prevent aliasing problems,
or when constructs like (concrete) public fields are used [Poetzsch-Heffter97]. Of course,
one would like to enforce invariants in a more modular way. By a modular enforcement of
invariants, we mean that one could verify each type independently of the types that it does
not use, and that a well-formed program put together from such verified types would still
satisfy the semantics for invariants given above. That is, each type would be responsible for
the enforcement of the invariants it declares and would be able to assume, without checking,
the invariants of other types it uses.

To accomplish this ideal, it seems that some mechanism for object ownership and alias
control [Noble-Vitek-Potter98] [Mueller-Poetzsch-Heffter00] [Mueller-Poetzsch-Heffter00a]
[Mueller-Poetzsch-Heffter01a] [Mueller02] seems necessary. However, this mechanism is still
not a part of JML, although some design work in this direction has taken place [Mueller-
Poetzsch-Heffter-Leavens02].

On the other hand, people generally assume that there are no object ownership alias
problems; this is perhaps a reasonable strategy for some tools, like run-time assertion check-
ers, to take. The alternative, tracking which types and objects are in visible states, and
checking every applicable invariant for every type and object in a visible state, is obviously
impractical.

Therefore, assuming or ignoring the problems with object ownership and alias control,
one obtains a simple and more modular way to check invariants. This is as follows.

• Each non-helper constructor declared in a class C, must preserve the static invariant of
C, if C is finished with its static initialization, and must establish the instance invariant
of the object being constructed.

• Each non-helper non-static method declared in a type T, must preserve the static
invariant of T, if T is finished with its static initialization, and must preserve the
instance invariant of the receiver object.

• Each non-helper static method declared in a type T, must preserve the static invariant
of T, if T is finished with its static initialization.

When doing such proofs, one may assume the static invariant of any type (that is finished
with its static initialization), and one may also assume the instance invariant of any other
object.

In this more modular style of checking invariants, one can think of all the static invariants
in a class as being implicitly conjoined to the pre- and postconditions of all non-helper
constructors and methods, and the instance invariants in a class as being implicitly conjoined
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to the postcondition of all non-helper constructors, and to the pre- and postconditions of
all non-helper methods.

As noted above, helper methods and constructors are exempt from the normal rules for
checking invariants. That is because the beginning and end of invocations of these helper
methods and constructors are not visible states, and therefore they do not have to preserve
or establish invariants. Note that only private methods and constructors can be declared
as helper.

The following subsections discuss other points about the semantics of invariants:
• Invariants can be declared static; see Section 10.1.1 [Static vs. instance invariants],

page 31.
• Invariants can be declared with the access modifiers public, protected, and private,

or be left with default access; see Section 10.1.3 [Access Modifiers for Invariants],
page 32.

• Invariants should also hold in case a constructor or method terminates abruptly, by
throwing an exception; see Section 10.1.2 [Invariants and Exceptions], page 32.

• A class inherits all visible invariants specified in its superclasses and superinterfaces;
see Section 10.1.4 [Invariants and Inheritance], page 33.

• Although some aspects of invariants are discussed in isolation here, the full explanation
of their semantics can only be given considered together with that of method specifica-
tions. After all, a method only has to preserve invariants when one of the preconditions
(i.e., requires clauses) specified for that method holds. So invariants are an integral
part of the explanation of method specifications in Chapter 11 [Method Specifications],
page 38.

• When considering an individual method body, remember that invariants should not
just hold in the beginning and the end of it, but also at any program point halfway
where another (non-helper) method or constructor is invoked. After all, these program
points are also visible states, and, as stated above, invariants should hold at all visible
states.

• A method invocation on an object should not just preserve the instance invariants of
that object and the static invariants of the class, but it should preserve the invariants
of all other (reachable) objects as well [Poetzsch-Heffter97].

It should be noted that the last two points above are not specific to Java or JML, but
these are tricky issues that have to be considered for any notion of invariant in an object-
oriented languages. Indeed, these two issues make the familiar notion of invariant a lot
more complicated than one might guess at first sight!

10.1.1 Static vs. instance invariants

As discussed above (see Section 10.1 [Invariants], page 28), invariants can be declared
static or instance. Just like a static method, a static invariant cannot refer to the current
object this and thus cannot refer to instance fields of this or non-static methods of the
type.

Instance invariants must be established by the constructors of an object, and must be
preserved by all non-helper instance methods. Static methods can neither assume nor
establish instance invariants, because such invariants are meaningless to them.
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Static invariants must be established by the static initialization of a class, and must
be preserved by all non-helper constructors and methods, i.e., by both static and instance
methods.

The table below summarizes this:
| static non-helper non-helper non-helper
| initialization static method constructor instance method

--------------------------------------------------------------------
static | establish preserve preserve preserve
invariant |

|
instance | (irrelevant) (irrelevant) establish preserve
invariant |

A word of warning about terminology. In standard Java terminology static members are
also called class members. However, static invariants should never be called class invariants!
This would conflict with the standard use of the term “class invariant” in the literature,
where “class invariant” always means instance invariant.

10.1.2 Invariants and Exceptions

Methods and constructors should preserve and establish invariants both in the case
of normal termination and in the case of abrupt termination (i.e., when an exception is
thrown). In other words, invariants are implicitly included in both normal postconditions,
i.e., ensures clauses, and in exceptional postconditions, i.e., signals clauses, of methods
and constructors.

The requirement that invariants hold after abrupt termination of a method or constructor
may seen excessively strong. However, it is the only sound option in the long run. After
all, once an object’s invariant is broken, no guarantees whatsoever can be made about
subsequent method invocations on that object. When faced with a method or constructor
that may violate an invariant in case it throws an exception, one will typically try to
strengthen the precondition of the method to rule out this exceptional behavior or try to
weaken the invariant. Note that a method that does not have any side effects when it throws
an exception automatically preserves all invariants.

10.1.3 Access Modifiers for Invariants

Invariants can be declared with any one of the Java access modifiers private, protected,
and public. Like class members, invariants declared in a class have package visibility if
they do not have one of these keywords as modifier. Similarly, invariants declared in an
interface implicitly have public visibility if they do not have one of these keywords as
modifier.

The access modifier of an invariant affects which members, i.e. which fields and which
(pure) methods, may be used in it, according to JML’s usual visibility rules. See Section 2.1
[Privacy Modifiers and Visibility], page 9, for the details and an example using invariants.

The access modifier of invariants do not affect the obligations of methods and construc-
tors to maintain and establish them. That is, all non-helper methods are expected to
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preserve invariants irrespective of the access modifiers of the invariants and the methods.
For example, a public method must preserve private invariants as well as public ones.

[[[ JML’s visibility restrictions still allow some highly dubious invariants. E.g., a private
invariant can refer to a public field, which, if this public field is not final, means the invariant
is not really enforceable. Tools should warn about (or forbid??) invariants which refer to
non-final non-model fields that have a looser access control than the invariant itself has. ]]]

10.1.4 Invariants and Inheritance

Each type inherits all the instance invariants specified in its superclasses and superin-
terfaces. [[[Erik wrote: “Static invariants are not inherited”, but there seems to be some
kind of static field inheritance in Java...]]]

The fact that (instance) invariants are inherited is one of the reasons why the use of
the keyword super is not allowed in invariants. [[[ Is this true? - I don’t understand this.
DRCok ]]]

10.2 Constraints

History constraints [Liskov-Wing93b] [Liskov-Wing94], which we call constraints for
short, are related to invariants. But whereas invariants are predicates that should hold
in all visible states, history constraints are relationships that should hold for the combina-
tion of each visible state and any visible state that occurs later in the program’s execution.
Constraints can therefore be used to constrain the way that values change over time.

The syntax of history constraints in JML is as follows.

history-constraint ::= constraint-keyword predicate
[ for constrained-list ] ;

constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [ , method-name ] . . .
method-name ::= method-ref [ ( [ param-disambig-list ] ) ]
method-ref ::= method-ref-start [ . method-ref-rest ] . . .

| new reference-type
method-ref-start ::= super | this | ident | \other
method-ref-rest ::= this | ident | \other
param-disambig-list ::= param-disambig [ , param-disambig ] . . .
param-disambig ::= type-spec [ ident [ dims ] ]

Because methods will not necessarily change the values referred to in a constraint, a
constraint must always describe reflexive and transitive relations.

For example, the constraints in the example below say that the value of field a and the
length of the array b will never change, and that the length of the array c will only ever
increase.

package org.jmlspecs.samples.jmlrefman;

public abstract class Constraint {
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int a;
//@ constraint a == \old(a);

boolean[] b;

//@ invariant b != null;
//@ constraint b.length == \old(b.length) ;

boolean[] c;

//@ invariant c != null;
//@ constraint c.length >= \old(c.length) ;

//@ requires bLength >= 0 && cLength >= 0;
Constraint(int bLength, int cLength) {

b = new boolean[bLength];
c = new boolean[cLength];

}
}

Note that, unlike invariants, constraints can – and typically do – use the JML keyword
\old.

A constraint declaration may optionally explicitly list one or more methods. It is the
listed methods that must respect the constraint. If no methods are listed, then all non-helper
methods of the class (and any subclasses) must respect the constraint. A method respects
a history constraints iff the pre-state and the post-state of a non-static method invocation
are in the relation specified by the history constraint (modulo static initialization). So one
can think of history constraints as being implicitly included in the postcondition of relevant
methods. However, history constraints do not apply to constructors and destructors, since
constructors do not have a pre-state and destructors do not have a post-state.

Private methods declared as helper methods do not have to respect history constraints,
just like these do not have to preserve invariants.

A few points to note about history constraints:
• Constraints can be declared static; see Section 10.2.1 [Static vs. instance constraints],

page 35.
• Constraints can be declared with the access modifiers public, protected, and private;

see Section 10.2.2 [Access Modifiers for Constraints], page 35.
• Constraints should also hold if a method terminates abruptly by throwing an exception.
• A class inherits all constraints specified in its superclasses and superinterfaces; see

Section 10.2.3 [Constraints and Inheritance], page 36.
• Although some aspects of constraints are discussed in isolation here, the full expla-

nation of their semantics can only be given considered together with that of method
specifications. After all, a method only has to respect constraints when one of the
preconditions (ie. requires clauses) specified for that method holds. So constraints
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are an integral part of the explanation of method specifications in Chapter 11 [Method
Specifications], page 38.

• When considering an individual method body, remember that constraints not only have
to hold between the pre-state and the post-state, but between all visible state that arise
during execution of the method. So, given that any program points in the method where
(non-helper) methods or constructors are invoked are also visible states, constraints
should also hold between the pre-state and any such program points, between these
program points themselves, and between any such program points and the post-state.

• A method invocation on an object o should not just respect the constraints of o, but
should respect the constraints of all other (reachable) objects as well.

These aspects of constraints are discussed in more detail below.

10.2.1 Static vs. instance constraints

History constraints can be declared static. Non-static constraints are also called
instance constraints. Like a static invariant, a static history constraint cannot refer to the
current object this or to its fields.

Static constraints should be respected by all constructors and all methods, i.e., both
static and instance methods.

Instance constraints must be respected by all instance methods.

The table below summarizes this:

| static non-helper non-helper non-helper
| initialization static method constructor instance method

--------------------------------------------------------------------
static | (irrelevant) respect respect respect
invariant |

|
instance | (irrelevant) (irrelevant) (irrelevant) respect
invariant |

Instance constraints are irrelevant for constructors, in that here there is no pre-state for
a constructor that can be related (or not) to the post-state. However, if a visible state arises
during the execution of a constructor, then any instance constraints have to be respected.

In the same way, and for the same reason, static constraints are irrelevant for static
initialization.

10.2.2 Access Modifiers for Constraints

The access modifiers public, private, and protected pose exactly the same restrictions
on constraints as they do on invariants, see Section 10.1.3 [Access Modifiers for Invariants],
page 32.
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10.2.3 Constraints and Inheritance

Any class inherits all the instance constraints specified in its superclasses and superin-
terfaces. [[[Static constraints are not inherited.]]] [[[ But they still apply to subclasses, no
? - David]]]

The fact that (instance) constraints are inherited is one of the reasons why the use of
the keyword super is not allowed in constraints. [[[ Needs explanation - David ]]]

10.3 Represents Clauses

The following is the syntax for represents clauses.

represents-decl ::= represents-keyword store-ref-expression l-arrow-or-eq spec-expression ;
| represents-keyword store-ref-expression \such_that predicate ;

represents-keyword ::= represents | represents_redundantly
l-arrow-or-eq ::= <- | =

The first form of represents clauses is called a functional abstraction and the second
form is called a relational abstraction.

• The left-hand side of a represents clause must be a reference to a model field (See
Section 7.1 [Fields], page 24, for details of model fields).

• In a functional abstraction form, the type of right-hand side of a represents clause
must be assignment-compatible to the type of left-hand side.

[[[ I would expect that a represents clause would be static iff the corresponding model
variable is static. - David ]]]

A represents clause can be declared as static (See Chapter 6 [Type Definitions],
page 21, for static declarations). In a static represents clause, only static elements can
be referenced both in the left-hand side and the right-hand side. In addition, the following
restriction is enforced.

• A static represents clause must be declared in the type where the model field on
the left-hand side is declared.

Unless explicitly declared as static, a represents clause is non-static (for exceptions
see see Chapter 6 [Type Definitions], page 21). A non-static represents clause can refer
to both static and non-static elements on the right-hand side.

• A non-static represents clause must not have a static model field in its left-hand
side.

• A non-static represents clause must be declared in a type descended from (or nested
within in) the type where the model field on the left-hand side is declared.

Note that represents clauses can be recursive. That is, a represents clause may name a
field on its right hand side that is the same as the field being represented (named on the left
hand side). It is the specifier’s responsibilty to make sure such definitions are well-defined.
But such recursive represents clauses can be useful when dealing with recursive datatypes
[Mueller-Poetzsch-Heffter-Leavens02].
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10.4 Initially Clauses

initially-clause ::= initially predicate ;

10.5 Axioms

[[[ description needed ]]]

10.6 Readable If Clauses

readable-if-clause ::= readable ident if predicate ;

10.7 Monitors For Clause

The monitors-for-clause is adapted from ESC/Java. It specifies an object and a set of
objects, one of which must be locked for the first object to be accessed.

monitors-for-clause ::= monitors_for ident l-arrow-or-eq spec-expression-list ;
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11 Method Specifications

Although the use of pre- and postconditions for specification of the behavior of methods
is very standard, JML offers some features that are not so standard. A good example is
the distinction between normal and exceptional postconditions (in ensures and signals
clauses, respectively), and the specification of frame conditions using assignable clauses.
Another example is the use of privacy modifiers to specify for different readers, and the use
of redundancy [Tan94] [Leavens-Baker99]. [[[ Are we using this document as a reference
manual or to motivate the design of JML as well? In any case the last sentence above needs
improvement- David]]]

JML provides two constructs for specifying methods and constructors:
• pre- and postconditions, and
• model programs.

This chapter only discusses the first of these, which is by far the most common. Model
programs are discussed in Chapter 17 [Model Programs], page 73.

11.1 Basic Concepts in Method Specification

[[[Discuss the “client viewpoint” here and give some basic examples here.]]]
[[[Perhaps discuss other common things to avoid repeating ourselves below...]]]

11.2 Organization of Method Specifications

The following gives the syntax of behavioral specifications for methods. We start with
the top-level syntax that organizes these specifications.

method-specification ::= specification | extending-specification
extending-specification ::= also specification
specification ::= spec-case-seq [ redundant-spec ]

| redundant-spec
spec-case-seq ::= spec-case [ also spec-case ] . . .

Redundant specifications (redundant-spec) are discussed in Chapter 16 [Redundancy],
page 72.

A method-specification of a method in a class or interface must start with the keyword
also if this method is already declared in the parent type that the current type extends, in
one of the interfaces the class implements, or in a previous file of the refinement sequence
for this type. Starting a method-specification with the keyword also is intended to tell the
reader that this specification is in addition to some specifications of the method that are
given in the superclass of the class, one of the interfaces it implements, or in another file in
the refinement sequence.

A method-specification can include any number of spec-cases, joined by the keyword
also, as well as a redundant-spec. Aside from the redundant-spec, each of these compo-
nents specifies a property that must be satisfied by the implementation of the method or
constructor in question. A method-specification must satisfy all the specified properties
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together. (So, speaking loosely, its meaning is the “conjunction” of the semantics of these
individual components.)

The spec-cases in a method-specification can have several forms:

spec-case ::= lightweight-spec-case | heavyweight-spec-case
| model-program | code-contract-spec

Model programs are discussed in Chapter 17 [Model Programs], page 73. The remainder
of this chapter concentrates on lightweight and heavyweight behavior specification cases.
JML distinguishes between

• heavyweight specification cases, which start with one of the keywords behavior,
normal_behavior or exceptional_behavior (these are also called behavior, normal
behavior, and exceptional behavior specification cases, respectively), and

• lightweight specification cases, which do not contain one of these behavior keywords.

A lightweight specification case is similar to a behavior specification case, but with
different defaults [Leavens-Baker-Ruby02]. It also is possible to desugar all such specification
cases into behavior specification cases [Raghavan-Leavens00].

11.3 Access Control in Specification Cases

Heavyweight specification cases may be declared with an explicit access modifier, ac-
cording to the following syntax.

privacy ::= public | protected | private

The access modifier of a heavyweight specification case cannot allow more access than
the method being specified. So a public method may have a private behavior specifica-
tion, but a private method may not have a public public specification. A heavyweight
specification case without an explicit access modifier is considered to have default (package)
access.

Lightweight specification cases have no way to explicitly specify an access modifier, so
their access modifier is implicitly the same as the method being specified. For example, a
lightweight specification of a public method has public access, implicitly, but a lightweight
specification of a private method has private access, implicitly. Note that this is a
different default than that for heavyweight specifications, where an omitted access modifier
always means package access.

The access modifier of a specification case affects only which annotations are visible in
the specification and does not affect the semantics of a specification case in any other way.

JML’s usual visibility rules apply to specification cases. So, for example, a public spec-
ification case may only refer to public members, a protected specification case may refer
to both public and protected members, as long as the protected members are otherwise
accessible according to Java’s rules, etc. See Section 2.1 [Privacy Modifiers and Visibility],
page 9, for more details and examples.

11.4 Lightweight Specification Cases
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Syntax

The following is the syntax of lightweight specification cases. These are the most concise
specification cases.

lightweight-spec-case ::= generic-spec-case
generic-spec-case ::= [ spec-var-decls ] [ spec-header ] simple-spec-body

| [ spec-var-decls ] [ spec-header ] {| generic-spec-case-seq |}
generic-spec-case-seq ::= generic-spec-case [ also generic-spec-case ] . . .
spec-header ::= requires-clause
simple-spec-body ::= simple-spec-body-clause [ simple-spec-body-clause ] . . .
simple-spec-body-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause | signals-clause

As far as the syntax is concerned, the only difference between a lightweight specification
cases and a behavior-specification-case (see Section 11.6 [Behavior Specification Cases],
page 41) is that the latter has the keyword behavior and possibly an access control modifier.

A lightweight specification case always has the same access modifier as the method being
specified, see Section 11.3 [Access Control in Specification Cases], page 39. To specify a
different access control modifier, one must use a heavyweight specification.

Semantics

A lightweight specification case can be understood as syntactic sugar for a behavior
specification case, except that the defaults for omitted specification clauses are different for
lightweight specification cases than for behavior specification cases. So, for example, apart
from the class names, method m in class Lightweight below

package org.jmlspecs.samples.jmlrefman;

public abstract class Lightweight {

protected boolean P, Q, R;
protected int X;

/*@ requires P;
@ assignable X;
@ ensures Q;
@ signals (Exception) R;
@*/

protected abstract int m() throws Exception;
}

has a specification that is equivalent to that of method m in class Heavyweight below.
package org.jmlspecs.samples.jmlrefman;

public abstract class Heavyweight {
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protected boolean P, Q, R;
protected int X;

/*@ protected behavior
@ requires P;
@ diverges \not_specified;
@ assignable X;
@ when \not_specified;
@ working_space \not_specified;
@ duration \not_specified;
@ ensures Q;
@ signals (Exception) R;
@*/

protected abstract int m() throws Exception;
}

As this example illustrates, the default for an omitted clause in a lightweight specifica-
tion is \not_specified for every clause [Leavens-Baker-Ruby02]. It is intended that the
meaning of \not_specified may vary between different uses of a JML specification. For
example, a static checker might treat a requires clause that is \not_specified as if it
were true, while a verification logic would need to treat it as if it were false.

In JML, a completely omitted specification is taken to be a lightweight specification.

11.5 Heavyweight Specification Cases

There are three kinds of heavyweight specification cases, called behavior, normal be-
havior, and exceptional behavior specification cases, beginning (after an optional privacy
modifier) with the one of the keywords behavior, normal_behavior, or exceptional_
behavior, respectively.

heavyweight-spec-case ::= behavior-spec-case
| exceptional-behavior-spec-case
| normal-behavior-spec-case

Like lightweight specification cases, normal behavior and exceptional behavior specifica-
tion cases can be understood as syntactic sugar for special kinds of behavior specification
cases [Raghavan-Leavens00].

11.6 Behavior Specification Cases

The behavior specification case is the most general form of specification case. All other
forms of specification cases simply provide some syntactic sugar for special kinds of behavior
specification cases.
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Syntax

As far as the syntax is concerned, the only difference between a behavior specification
case and a lightweight one is the keyword behavior, and the optional access control modifier.

behavior-spec-case ::= [ privacy ] behavior generic-spec-case

Semantics

To explain the semantics of a behavior specification case we make a distinction between
flat and nested specification cases:

• Flat specification cases are of the form
behavior

[ spec-var-decls ] [ spec-header ] simple-spec-body

i.e., of the form
behavior

[ spec-var-decls ] [ spec-header ]
simple-spec-body-clause [ simple-spec-body-clause ] . . .

A flat specification case is just made up of a sequence of method specification clauses, ie.
require, ensures, etc. clauses, and its semantics is explained directly in Section 11.6.1
[Semantics of flat behavior specification cases], page 42.

• Nested specification cases are all other specification cases. They use the special brackets
{| and |} to nest specification clauses and possibly also also inside these brackets to
join several specification cases.
A nested specification case can be syntactically desugared into a list of one or more
simple specification cases, joined by the also keyword [Raghavan-Leavens00]. This is
explained in Section 11.6.5 [Semantics of nested behavior specification cases], page 44.

Invariants and constraints

The semantics of a behavior specification case for a method or constructor in a class
depends on the invariants and constraints that have been specified. This is discussed in
Section 10.1 [Invariants], page 28 and Section 10.2 [Constraints], page 33. In a nutshell,
methods must to preserve invariants and respect constraints, and constructors must estab-
lish invariants.

11.6.1 Semantics of flat behavior specification cases

Below we explain the semantics of a simple behavior specification case with precisely
one requires clause, one ensures clause, one when clause one assignable clause one
accessible clause, and at least one diverges clause.

A behavior specification case can contain any number of these clauses, but, as explained
in Section 11.9 [Method Specification Clauses], page 47, any behavior specification case is
equivalent with a behavior specification case of this form.
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11.6.2 Non-helper methods

The semantics of a specification
behavior
requires P;
diverges D;
assignable A;
when W;
ensures Q;
signals (E1 e1) R1;
...
signals (En en) Rn;

also
code_contract
accessible C;
callable p();

for a non-helper instance method m is as follows. [[[ What about duration and work-
ing space clauses? - David ]]]

If the method is invoked in a pre-state where
• the precondition P holds, and
• all applicable invariants hold

then either:
• the Java virtual machine throws an error that inherits from java.lang.Error, or
• if the execution of the method does not terminate (i.e., it loops forever or exits without

returning or throwing an exception), the predicate D holds in the pre-state, or
• the method terminates by returning or throwing an exception, and:

during execution of the method (which includes all called methods and construc-
tors), only locations that either did not exist in the pre-state, that are local to
the method (including the method’s formal parameters), or that are either named
by the assignable clause’s list A, or are dependees (see Chapter 12 [Data Groups],
page 56) of such locations, are assigned to by the method, and
in all visible states, all applicable invariants and history constraints hold, as ex-
plained in detail in Section 10.1 [Invariants], page 28 and see Section 10.2 [Con-
straints], page 33, and
if the execution of the method terminates normally, then the normal postcondition
Q holds, as do all applicable invariants and history constraints, and
if the execution of the method terminates throwing an exception of type Ei, then
the exceptional postcondition Ri holds, with the exception object thrown substi-
tuted for ei, as do all invariants and constraints, and
in the body of the method, only the locations mentioned in the accessible clause
list C are directly accessed, and
in the body of the method, only the methods mentioned in the callable clause list
p are directly called.
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Note that if there is more than one signals clause, and the types Ei are related in the
subclass hierarchy, then more than one of the exceptional postconditions Ri may apply if
an exception is thrown. This is explained in detail in See Section 11.9.4 [Signals Clauses],
page 49.

If the formal parameters of the method are used in a (normal or exceptional) post-
condition, then these always take the value the parameters had in the pre-state, and not
the value they have in the post-state, as explained in See Section 11.9.5 [Parameters in
Postconditions], page 50.

11.6.3 Non-helper constructors

The semantics of a flat specification case for a (non-helper) constructor is the same as
that for a (non-helper) method given above, except that:

any instance invariants of the object being initialized by the constructor are not as-
sumed to hold in the precondition,
any instance constraints do not have to be established as implicit part of the postcon-
dition of the constructor.

These two differences are also discussed in Section 10.1 [Invariants], page 28 and Sec-
tion 10.2 [Constraints], page 33.

11.6.4 Helper methods and constructors

The semantics of a flat specification case for a helper method (or constructor) is the
same as that for a non-helper method (or constructor) given above, except that:
• the instance invariants for the current object and the static invariants for the current

class are not assumed to hold in the pre-state, and do not have to be established in the
post-state.

• the instance constraints for current object and the static constraints for the current
class do not have to be established in the post-state

These differences are also discussed in Section 10.1 [Invariants], page 28 and Section 10.2
[Constraints], page 33.

11.6.5 Semantics of nested behavior specifications

We now explain how all behavior specification cases can be desugared into a list of one
or more flat specification cases joined by the also keyword [Raghavan-Leavens00]. The
semantics of a behavior specification case is then simply the semantics of this desugared
version. The meaning of a such a list of specification cases is explained in Section 11.2
[Organization of Method Specifications], page 38, the meaning of a single simple specification
case is explained in Section 11.6.1 [Semantics of flat behavior specification cases], page 42.

[ spec-var-decls ] [ spec-header ]
{| GenSpecCase1

also
...
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also
GenSpecCase1

|}

can be desugared into
[ spec-var-decls ] [ spec-header ]

GenSpecCase1

also
...

also
[ spec-var-decls ] [ spec-header ]

GenSpecCasen

[[[EXAMPLE]]]

11.7 Normal Behavior Specifications Cases

A normal_behavior specification case is just syntactic sugar for a behavior specification
case with an implicit signals clause

signals (java.lang.Exception) false;

ruling out abrupt termination, ie. the throwing of any exception.
The following gives the syntax of the body of a normal behavior specification case.

normal-behavior-spec-case ::= [ privacy ] normal_behavior normal-spec-case
normal-spec-case ::= [ spec-var-decls ] normal-spec-body

| [ spec-var-decls ] [ spec-header ] {| normal-spec-case-seq |}
normal-spec-case-seq ::= normal-spec-case [ also normal-spec-case ] . . .
normal-spec-body ::= normal-spec-clause [ normal-spec-clause ] . . .
normal-spec-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause

As far as syntax is concerned, the only difference with the base behavior specification
case is that normal behavior specification cases use a different behavior keyword and cannot
include signals-clauses.

The semantics of a normal behavior specification case is the same as the behavior
specification case obtained by adding the following signals-clause

signals (java.lang.Exception) false;

So a normal behavior specification case specifies a precondition which guarantees normal
terminates; i.e., it prohibits the method from throwing an exception.

11.8 Exceptional Behavior Specifications Cases

The following gives the syntax of the body of an exceptional behavior specification case.
exceptional-behavior-spec-case ::= [ privacy ] exceptional_behavior exceptional-
spec-case
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exceptional-spec-case ::= [ spec-var-decls ] exceptional-spec-body
| [ spec-var-decls ] [ spec-header ] {| exceptional-spec-case-seq |}

exceptional-spec-case-seq ::= exceptional-spec-case [ also exceptional-spec-case ] . . .
exceptional-spec-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
exceptional-spec-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | signals-clause

As far as syntax is concerned, the only difference from a standard behavior specification
case is that an exceptional behavior specification case uses a different behavior keyword and
cannot include an ensures clause.

The semantics of a exceptional behavior specification case is the same as the behavior
specification case obtained by adding the following ensures clause.

ensures false;

So an exceptional behavior specification case specifies a precondition which guarantees
that the method throws an exception, i.e., a precondition which prohibits the method from
terminating normally.

11.8.1 Pragmatics of Exceptional Behavior Specifications Cases

Note that an exceptional behavior specification case says that an exception must be
thrown if its precondition is met (assuming the diverges clause predicate is false, as is the
default.) Beware of the difference between specifying that an exception must be thrown and
specifying that an exception may be thrown. To specify that an exception may be thrown
you should not use an exceptional behavior, but should instead use a behavior specification
case [Leavens-Baker-Ruby02].

For example, the following method specification

package org.jmlspecs.samples.jmlrefman;

public abstract class InconsistentMethodSpec {

/** A specification that can’t be satisfied. */
/*@ public normal_behavior
@ requires z <= 99;
@ assignable \nothing;
@ ensures \result > z;
@ also
@ public exceptional_behavior
@ requires z < 0;
@ assignable \nothing;
@ signals (IllegalArgumentException) true;
@*/

public abstract int cantBeSatisfied(int z)
throws IllegalArgumentException;

}
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is inconsistent because the preconditions z <= 99 and z < 0 overlap, for example when
z is -1. When both preconditions hold then the exceptional behavior case specifies that an
exception must be thrown and the normal behavior case specifies that an exception may
not be thrown, but the implementation cannot both throw and not throw an exception.

Similarly, multiple exceptional specification cases with overlapping preconditions may
give rise to an inconsistent specification. [[[For example,]]]

This specification is inconsistent (ie. it is impossible to come up with an implementation
that meets this specification), because if [[[..]]] and [[[...]]] then the specification requires
that two different exception are thrown, which is clearly impossible.

11.9 Method Specification Clauses

The different kinds of clauses that can be used in method specifications are discussed
in this section. See Section 11.4 [Lightweight Specification Cases], page 39, for the overall
syntax that ties these clauses together.

11.9.1 Specification Variable Declarations

The syntax of spec-var-decls is as follows.
spec-var-decls ::= forall-var-decls [ old-var-decls ]

| old-var-decls
forall-var-decls ::= forall-var-decl [ forall-var-decl ] . . .
forall-var-decl ::= forall quantified-var-decl ;
old-var-decls ::= old-var-decl [ old-var-decl ] . . .
old-var-decl ::= old type-spec spec-variable-declarators ;

11.9.2 Requires Clauses

A requires clause specifies a precondition of method or constructor. Its syntax is as
follows.

requires-clause ::= requires-keyword pred-or-not ;
requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified

The predicate in a requires clause can refer to any visible fields and to the parameters
of the method. See Section 2.1 [Privacy Modifiers and Visibility], page 9, for more details
on visibility in JML.

Any number of requires clauses can be included a single specification case. Multiple
requires clauses in a specification case mean the same as a single requires clause whose pre-
condition predicate is the conjunction of these precondition predicates in the given requires
clauses. For example,

requires P;
requires Q;

means the same thing as:
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requires P && Q;

[[[How do we deal with \not_specified for this conjunction semantics?]]] [[[ Also explain
the meaning if P or Q throws an exception. Is the above equivalence true if Q is defined
only if P is true (i.e. making use of the short-circuit nature of &&)? ]]]

When a requires clause is omitted in a specification case, a default requires clause is
used. For a lightweight specification case, the default precondition is \not_specified.
The default precondition for a heavyweight specification case is true.

11.9.3 Ensures Clauses

An ensures clause specifies a normal postcondition, i.e., a property that is guaranteed
to hold at the end of the method (or constructor) invocation in the case that this method
(or constructor) invocation returns without throwing an exception. The syntax is as follows
See Section 11.9.2 [Requires Clauses], page 47, for the syntax of pred-or-not.

ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post

| ensures_redundantly | post_redundantly

A predicate in an ensures clause can refer to any visible fields, the parameters of
the method, \result if the method is non-void, and may contain expressions of the from
\old(E). See Section 2.1 [Privacy Modifiers and Visibility], page 9, for more details on
visibility in JML.

Informally,
ensures Q;

means
if the method invocation terminates normally (ie. without throwing an excep-
tion), then predicate Q holds in the post-state.

In an ensures clause, \result stands for the result that is returned by the method.
The postcondition Q may contain expressions of the form \old(e). Such expressions are
evaluated in the pre-state, and not in the post-state, and allow Q to express a relation
between the pre- and the post-state. If parameters of the method occur in the postcondition
Q, these are always evaluated in the pre-state, not the post-state. In other words, if a method
parameter x occurs in Q, it is treated as \old(x). For a detailed explanation of this see
Section 11.9.5 [Parameters in Postconditions], page 50.

Any number of ensures clauses can be given in a single specification case. Multiple
ensures clauses in a specification case mean the same as a single ensures clause whose
postcondition predicate is the conjunction of the postcondition predicates in the given
ensures clauses. So

ensures P;
ensures Q;

means the same as
ensures P && Q;

[[[ Also explain the meaning if P or Q throws an exception. Is the above equivalence
true if Q is defined only if P is true (i.e. making use of the short-circuit nature of &&)? ]]]
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When an ensures clause is omitted in a specification case, a default ensures clause is
used. For a lightweight specification case, the default precondition is \not_specified.
The default precondition for a heavyweight specification case is true.

11.9.4 Signals Clauses

In a specification case a signals clause specifies the exceptional or abnormal postcon-
dition, i.e., the property that is guaranteed to hold at the end of a method (or constructor)
invocation when this method (or constructor) invocation terminates abruptly by throwing
a given exception.

The syntax is as follows See Section 11.9.2 [Requires Clauses], page 47, for the syntax of
pred-or-not.

signals-clause ::= signals-keyword
( reference-type [ ident ] ) [ pred-or-not ] ;

signals-keyword ::= signals | signals_redundantly
| exsures | exsures_redundantly

In a signals-clause of the form
signals (E e) P;

E has to be a subclass of java.lang.Exception, and the variable e is bound in P. If
E is a checked exception (i.e., if it does not inherit from java.lang.RuntimeException
[Arnold-Gosling-Holmes00] [Gosling-etal00]), it must either be one of the exceptions listed
in the method or constructor’s throws clause, or a subclass or a superclass of such a declared
exception.

Informally,
signals (E e) P;

means
If the method (or constructor) invocation terminates abruptly by throwing an
exception of type E, then predicate P holds in the final state for this exception
object E.

A signals clause of the form
signals (E e) R;

is equivalent to the signals clause
signals (java.lang.Exception e) (e instanceof E) ==> R;

Several signals clauses can be given in a single lightweight, behavior or exceptional
behavior specification case. Multiple signals clauses in a specification case mean the same
as a single signals clause whose exceptional postcondition predicate is the conjunction of the
exceptional postcondition predicates in the given signals clauses. This should be understood
to take place after the desugaring given above, which makes all the signals clauses refer to
exceptions of type java.lang.Exception. Also, the names in the given signals clauses have
to be standardized [Raghavan-Leavens00]. So for example,

signals (E1 e) R1;
signals (E2 e) R2;

means the same as
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signals (Exception e) ((e instanceof E1) ==> R1)
&& ((e instanceof E2) ==> R2);

Note that this means that if an exception is thrown that is both of type E1 and of type
E2, then both R1 and R2 must hold.

[[[EXAMPLE]]]
Beware that a signals clause specifies when a certain exception may be thrown, not

when a certain exception must be thrown. To say that an exception must be thrown in
some situation, one has to exclude that situation from other signals clauses and from ensures
clause (and any diverges clauses).

[[[EXAMPLE?]]]

11.9.5 Parameters in Postconditions

Parameters of methods are passed by value in Java, meaning that parameters are local
variables in a method body, which are initialized when the method is called with the values
of the parameters for the invocation.

This leads us to the following two rules:
• The parameters of a method or constructor can never be listed in the its assignable

clause.
• If parameters of a method (or constructor) are used in a normal or exceptional post-

condition for that method (or constructor), i.e., in an ensures or signals clause, then
these always have their value in the pre-state of the method (or constructor), not the
post-state. In other word, there is an implicit \old() placed around any occurrence of
a formal parameter in a postcondition.

The justification for the first convention is that clients cannot observe assignments to the
parameters anyway, as these are local variables that can only be used by the implementation
of the method. Given that clients can never observe these assignments, there is no point in
making them part of the contract between a class and its clients.

The justification for the second convention is that clients only know the initial values
of the parameter that they supply, and do not have any knowledge of the final values that
these variables may have in the post-state.

The reason for this is best illustrated by an example. Consider the following class and its
method specifications. Without the convention described above the implementations given
for methods notCorrect1 and notCorrect2 would satisfy their specifications. However,
clearly neither of these satisfies the specification when read from the caller’s point of view.

package org.jmlspecs.samples.jmlrefman;

public abstract class ImplicitOld {

/*@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;
@*/

public static int notCorrect1(int x) throws Exception {
x = 5;
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return 4;
}

/*@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;
@*/

public static int notCorrect2(int x) throws Exception {
x = -1;
throw new Exception();

}

/*@ ensures 0 <= \result && \result <= x;
@ signals (Exception) x < 0;
@*/

public static int correct(int x) throws Exception {
if (x < 0) {

throw new Exception();
} else {

return 0;
}

}
}

The convention above rules out such pathological implementations as notCorrect1
above; because mention of a formal parameter name, such as x above, in postconditions
always means the pre-state value of that name, e.g., \old(x) in the example above.

11.9.6 Diverges Clauses

The diverges clause is a seldom-used feature of JML. It says when a method may loop
forever or otherwise not return to its caller, by either throwing an exception or returning
normally. The syntax is as follows See Section 11.9.2 [Requires Clauses], page 47, for the
syntax of pred-or-not.

diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly

When a diverges clause is omitted in a specification case, a default diverges clause is used.
For a lightweight specification case, the default diverges condition is \not_specified. The
default diverges condition for a heavyweight specification case is false. Thus by default,
heavyweight method specification cases are total correctness specifications [Dijkstra76]. Ex-
plicitly writing a diverges clause allows one to obtain a partial correctness specification
[Hoare69]. Being able to specify both total and partial correctness specification cases for a
method leads to additional power [Hesselink92] [Nelson89].

As an example of the use of diverges, consider the exit method in the following class.
(This example is simplified from the specification of Java’s System.exit method. This
specification says that the method can always be called (the implicit precondition is true),
may always not return to the caller (i.e., diverge), and may never return normally, and
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may never throw an exception. Thus the only thing the method can legally do, aside from
causing a JVM error, is to not return to its caller.

package org.jmlspecs.samples.jmlrefman;

public abstract class Diverges {

/*@ public behavior
@ diverges true;
@ assignable \nothing;
@ ensures false;
@ signals (Exception) false;
@*/

public static void abort();

}

The diverges clause is also useful to specify things like methods that are supposed to
abort the program when certain conditions occur, although that isn’t really good practice
in Java. In general, it is most useful for examples like the one given above, when you want
to say when a method cannot return to its caller.

11.9.7 When Clauses

The when clause allows concurrency aspects of a method or constructor to be specified
[Lerner91] [Sivaprasad95]. A caller of a method will be delayed until the condition given in
the when clause holds. (Note that support for concurrency in JML is in its infancy.)

The syntax is as follows See Section 11.9.2 [Requires Clauses], page 47, for the syntax of
pred-or-not.

when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly

When a when clause is omitted in a specification case, a default when clause is used.
For a lightweight specification case, the default when condition is \not_specified. The
default when condition for a heavyweight specification case is true.

[[[ Need an example of a when clause and how it is used. ]]]

11.9.8 Assignable Clauses

An assignable clause gives a frame axiom for a specification. It says that, from the
client’s point of view, only the locations named (and their dependees) can be assigned to
during the execution of the method. However, locations that are local to the method (or
methods it calls) and locations that are created during the method’s execution are not
subject to this restriction.

The syntax is as follows. See Section 13.3 [Store Refs], page 66, for the syntax of store-ref.
assignable-clause ::= assignable-keyword conditional-store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly

| modifiable | modifiable_redundantly
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| modifies | modifies_redundantly
conditional-store-ref-list ::= conditional-store-ref

[ , conditional-store-ref ] . . .
conditional-store-ref ::= store-ref [ if predicate ]

| other-ref [ if predicate ]
other-ref ::= \other [ store-ref-name-suffix ] . . .

When an assignable clause is omitted in a specification case, a default assignable clause
is used. This default has a default conditional-store-ref-list. For a lightweight specification
case, the default conditional-store-ref-list is \not_specified. The default conditional-
store-ref-list for a heavyweight specification case is \everything.

If one wants the opposite of the default for a heavyweight specification case, one can
specify that a method cannot assign to any locations by writing:

assignable \nothing;

Using the modifier pure on a method achieves the same effect as specifying assignable
\nothing, but does so for the method’s entire specification as opposed to a single
specification-case.

11.9.9 Working Space Clauses

A working-space-clause can be used to specify the maximum amount of heap space used
by a method, over an above that used by its callers. The clause applies only to the particular
specification case it is in, of course This is a adapted from the work of Krone, Ogden, and
Sitaraman on RESOLVE [Krone-Ogden-Sitaraman03].

working-space-clause ::= working-space-keyword \not_specified ;
| working-space-keyword spec-expression [ if predicate ] ;

working-space-keyword ::= working_space | working_space_redundantly

The spec-expression in a working space clause must have type int. It is to be understood
in units of bytes.

The spec-expression in a working space clause may use \old and other JML operators
appropriate for postconditions. This is because it is considered to be evaluated in the post-
state, and provides a guarantee of the maximum amount of additional space used by the
call. In some cases this space may depend on the \result, exceptions thrown, or other
post-state values.

In both lightweight and heavyweight specification cases, an omitted working space clause
means the same as a working space clause of the following form.

working_space \not_specified;

See Section 13.1.7 [Backslash working space], page 59, for information about the
\working_space expression that can be used to describe the working space needed by
a method call. See Section 13.1.6 [Backslash space], page 59, for information about the
\space expression that can be used to describe the heap space occupied by an object.

11.9.10 Duration Clauses

A duration clause can be used to specify the maximum (i.e., worst case) time needed
to process a method call in a particular specification case. [[[ Tools are simpler if the



Chapter 11: Method Specifications 54

argument can simply be an arbitrary expression rather than a method call. – DRCok ]]]
This is a adapted from the work of Krone, Ogden, and Sitaraman on RESOLVE [Krone-
Ogden-Sitaraman03].

duration-clause ::= duration-keyword \not_specified ;
| duration-keyword spec-expression [ if predicate ] ;

duration-keyword ::= duration | duration_redundantly

The spec-expression in a duration clause must have type long. It is to be understood in
units of [[[the JVM instruction that takes the least time to execute, which may be thought
of as the JVM’s cycle time.]]] The time it takes the JVM to execute such an instruction can
be multiplied by the number of such cycles to arrive at the clock time needed to execute
the method in the given specification case. [[[This time should also be understood as not
counting garbage collection time.]]]

The spec-expression in a duration clause may use \old and other JML operators appro-
priate for postconditions. This is because it is considered to be evaluated in the post-state,
and provides a guarantee of the maximum amount of additional space used by the call. In
some cases this space may depend on the \result, exceptions thrown, or other post-state
values. [[[ But if the method throws an exception, then \result is not valid. - DRCok]]]

In both lightweight and heavyweight specification cases, an omitted duration clause
means the same as a duration clause of the following form.

duration \not_specified;

See Section 13.1.5 [Backslash duration], page 59, for information about the \duration
expression that can be used in the duration clause to specify the duration of other methods.

11.9.11 Measured By Clauses

[[[ No longer a clause in this section. ]]]

A measured by clause can be used in a termination argument for a recursive specification.

measured-clause ::= measured-by-keyword \not_specified ;
| measured-by-keyword spec-expression [ if predicate ] ;

measured-by-keyword ::= measured_by | measured_by_redundantly

The spec-expression in a measured by clause must have type int.

In both lightweight and heavyweight specification cases, an omitted measured by clause
means the same as a measured by clause of the following form.

measured_by \not_specified;

11.9.12 Accessible Clauses

accessible-clause ::= accessible-keyword conditional-store-ref-list ;
accessible-keyword ::= accessible | accessible_redundantly

When an accessible clause is omitted in a code contract specification case, a default
accessible clause is used. This default has a default object-ref-list which is \everything.

[[[ Need some discussion of the meaning of an accessible clause. ]]]
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11.9.13 Callable Clauses

callable-clause ::= callable-keyword callable-methods-list ; callable-keyword ::=
callable | callable_redundantly callable-methods-list ::= method-name-list |
store-ref-keyword

When a callable clause is omitted in a code contract specification case, a default callable
clause is used. This default has a default callable-methods-list which is \everything.

[[[ Need some discussion of the meaning of an callable clause. ]]]
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12 Frame Conditions and Data Groups

[[[ discussion needed ]]]

12.1 Data Groups

[[[ needs discussion - general usage, default data groups, use in modifies statements ]]]
The following is the syntax for in and maps data group clauses.

jml-data-group-clause ::= in-group-clause | maps-into-clause
in-group-clause ::= in-keyword group-list ;
in-keyword ::= in | in_redundantly
group-list ::= group-name [ , group-name ] . . .
group-name ::= [ group-name-prefix ] ident
group-name-prefix ::= super . | this .
maps-into-clause ::= maps-keyword member-field-ref \into group-list ;
maps-keyword ::= maps | maps_redundantly
member-field-ref ::= ident . maps-member-ref-expr

| maps-array-ref-expr [ . maps-member-ref-expr ]
maps-member-ref-expr ::= ident | *
maps-array-ref-expr ::= ident maps-spec-array-dim [ maps-spec-array-dim ] . . .
maps-spec-array-dim ::= ‘[’ spec-array-ref-expr ‘]’

See [Leino98].

12.2 Static Data Group Inclusions

[[[ in, in_redundantly, needs discussion ]]]

12.3 Dynamic Data Group Mappings

[[[ maps, maps_redundantly, \into needs discussion ]]]
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13 Predicates and Specification Expressions

13.1 Predicates

The following gives the syntax of predicates and specification expressions. Within a
spec-expression, one cannot use any of the operators (such as ++, --, and the assignment
operators) that would necessarily cause side effects. See Section 13.2 [Specification Expres-
sions], page 64, for the syntax of expressions.

predicate ::= spec-expression
spec-expression-list ::= spec-expression [ , spec-expression ] . . .
spec-expression ::= expression

jml-primary ::= \result
| \old ( spec-expression )
| \not_modified ( store-ref-list )
| \fresh ( spec-expression-list )
| \reach ( spec-expression )
| \duration ( expression )
| \space ( spec-expression )
| \max ( spec-expression )
| \working_space ( expression )
| informal-description
| \nonnullelements ( spec-expression )
| \typeof ( spec-expression )
| \elemtype ( spec-expression )
| \type ( type )
| \lockset
| \is_initialized ( reference-type )
| \invariant_for ( spec-expression )
| ( \lblneg ident spec-expression )
| ( \lblpos ident spec-expression )
| spec-quantified-expr

set-comprehension ::= { type-spec quantified-var-declarator
‘|’ set-comprehension-pred }

set-comprehension-pred ::= postfix-expr . has ( ident )
&& predicate

spec-quantified-expr ::= ( quantifier quantified-var-decls ; [ [ predicate ] ; ]
spec-expression )

quantifier ::= \forall | \exists | \max | \min | \num_of | \product | \sum
quantified-var-decls ::= type-spec quantified-var-declarator

[ , quantified-var-declarator ] . . .
quantified-var-declarator ::= ident [ dims ]
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spec-variable-declarators ::= spec-variable-declarator
[ , spec-variable-declarator ] . . .

spec-variable-declarator ::= ident [ dims ] [ = spec-initializer ]
spec-array-initializer ::= { [ spec-initializer

[ , spec-initializer ] . . . [ , ] ] }
spec-initializer ::= spec-expression

| spec-array-initializer

All of the JML keywords that can be used in expressions which would otherwise start
with an alphabetic character start with a backslash (\), so that they cannot clash with the
program’s variable names.

The new expressions that JML introduces are described below. Several of the descrip-
tions below quote, without attribution, descriptions from [Leavens-Baker-Ruby02].

13.1.1 \result

The JML keyword \result can only be used in ensures clauses of a non-void method.
Its value is the value returned by the method. Its type is the return type of the method;
hence it is a type error to use \result in a void method or in a constructor. The keyword
\result can only be used in an ensures-clause; it cannot be used, for example, in precondi-
tions or in signals clauses. [[[ ALso can be used in duration and workingspace specifications
– DRCok]]]

13.1.2 \old

The JML keyword \old can be used in both normal and exceptional postconditions (ie.
in ensures and signals clauses), and in history constraints. An expression of the form
\old(Expr) refers to the value that the expression Expr had in the pre-state of a method.
The type of \old(Expr) is simply the type of Expr. [[[ ALso can be used in duration and
workingspace specifications – DRCok]]] [[[ Would be nice to use \old in assert, assume, set
statements – DRCok ]]]

13.1.3 \not_modified

The JML keyword \not_modified can be used in both normal and exceptional precon-
ditions (ie. in ensures and signals clauses), and in history constraints. It asserts that the
values of objects [[[ why not simply expressions ? – DRCok ]]] are the same in the post-state
as in the pre-state; for example, \not_modified(xval,yval) says that xval and yval have
the same value in the pre- and post-states (in the sense of an equals method).

The type of a \not_modified expression is boolean.

13.1.4 \fresh

The operator \fresh asserts that objects were freshly allocated; for example,
\fresh(x,y) asserts that x and y are not null and that the objects bound to these
identifiers were not allocated in the pre-state. The arguments to \fresh can have any
reference type, and the type of the overall expression is boolean
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Note that it is wrong to use \fresh(this) in the specification of a constructor, because
Java’s new operator allocates storage for the object; the constructor’s job is just to initialize
that storage.

13.1.5 \duration

\duration, which describes the specified maximum number of virtual machine cycle
times needed to execute the method call or explicit constructor invocation expression that
is its argument; e.g., \duration(myStack.push(o)) is the maximum number of virtual
machine cycles needed to execute the call myStack.push(o), according to the contract of
the static type of myStack’s type’s push method, when passed argument o. Note that the
expression used as an argument to \duration should be thought of as quoted, in the sense
that it is not to be executed; thus the method or constructor called need not be free of side
effects. Note that the argument to \duration is an expression instead of just the name of
a method, because because different method calls, i.e., those with different parameters, can
use take different amounts of space [Krone-Ogden-Sitaraman03].

The argument expression passed to \duration must be a method call or explicit con-
structor invocation expression; the type of a \duration expression is long. [[[ Why not
make this simply an arbitrary expression? - DRCok ]]]

For a given Java Virtual Machine, a virtual machine cycle is defined to be the minimum
of the maximum over all Java Virtual Machine instructions, i, of the length of time needed
to execute instruction i.

13.1.6 \space

\space, which describes the amount of heap space, in bytes, allocated to the object
refered to by its argument [Krone-Ogden-Sitaraman03]; e.g., \space(myStack) is number
of bytes in the heap used by myStack, not including the objects it contains. The type of
the spec-expression that is the argument must be a reference type, and the result type of a
\space expression is long.

13.1.7 \working_space

\working_space, which describes the maximum specified amount of heap space, in bytes,
used by the method call or explicit constructor invocation expression that is its argument;
e.g., \working_space(myStack.push(o)) is the maximum number of bytes needed on the
heap to execute the call myStack.push(o), according to the contract of the static type of
myStack’s type’s push method, when passed argument o. [[[ Why not allow the argument to
be an expression ? - DRCok ]]] Note that the expression used as an argument to \working_
space should be thought of as quoted, in the sense that it is not to be executed; thus the
method or constructor called need not be free of side effects. The detailed arguments are
needed in the specification of the call because different method calls, i.e., those with differ-
ent parameters, can use take different amounts of space [Krone-Ogden-Sitaraman03]. The
argument expression must be a method call or explicit constructor invocation expression;
the result type of a \working_space expression is long.
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13.1.8 \reach

The \reach expression allows one to refer to the set of objects reachable from some
particular object. The syntax \reach(x) denotes the smallest JMLObjectSet containing
the object denoted by x, if any, and all objects accessible through all fields of objects in
this set. That is, if x is null, then this set is empty otherwise it contains x, all objects
accessible through all fields of x, all objects accessible through all fields of these objects,
and so on, recursively. If x denotes a model field (or data group), then \reach(x) denotes
the smallest JMLObjectSet containing the objects reachable from x or reachable from the
objects referenced by fields in that data group.

13.1.9 \nonnullelements

The operator \nonnullelements can be used to assert that an array and its elements
are all non-null. For example, \nonnullelements(myArray), is equivalent to [Leino-Nelson-
Saxe00]

myArray != null &&
(\forall int i; 0 <= i && i < myArray.length;

myArray[i] != null)

13.1.10 Subtype operator

The relational operator <: compares two reference types and returns true when the
type on the left is a subtype of the type on the right [Leino-Nelson-Saxe00]. Although the
notation might suggest otherwise, this operator is also reflexive; a type will compare as <:
with itself. In an expression of the form E1 <: E2, both E1 and E2 must have type \TYPE;
since in JML \TYPE is the same as java.lang.Class the expression E1 <: E2 means the
same thing as the expression E2.isAssignableFrom(E1).

13.1.11 \typeof

The operator \typeof returns the most-specific dynamic type of an expression’s value
[Leino-Nelson-Saxe00]. The meaning of \typeof(E) is unspecified if E is null. If E
has a static type that is a reference type, then \typeof(E) means the same thing as
E.getClass(). For example, if c is a variable of static type Collection that holds an
object of class HashSet, then \typeof(c) is HashSet.class, which is the same thing as
\type(HashSet). If E has a static type that is not a reference type, then \typeof(E)
means the instance of java.lang.Class that represents its static type. For example,
\typeof(true) is Boolean.TYPE, which is the same as \type(boolean). Thus an ex-
pression of the form \typeof(E) has type \TYPE, which JML considers to be the same as
java.lang.Class.

13.1.12 \elemtype

The \elemtype operator returns the most-specific static type shared by all elements
of its array argument [Leino-Nelson-Saxe00]. For example, \elemtype(\type(int[])) is
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\type(int). The argument to \elemtype must be an expression of type \TYPE, which JML
considers to be the same as java.lang.Class, and its result also has type \TYPE.

[[[ It might be helpful for consistency among tools if we defined \elemtype(t) where t is
not an array type - perhaps to be one common value such as \typeof(null). ]]]

13.1.13 \type

The operator \type can be used to introduce literals of type \TYPE in expressions. An
expression of the form \type(T), where T is a type name, has the type \TYPE. Since in
JML \TYPE is the same as java.lang.Class, an expression of the form \type(T) means
the same thing as T.class. For example, in

\typeof(myObj) <: \type(PlusAccount)

the use of \type(PlusAccount) is used to introduce the type PlusAccount into this ex-
pression context.

13.1.14 \lockset

The \lockset primitive denotes the set of locks held by the current thread. It is of type
JMLObjectSet. (This is an adaptation from ESC/Java [Leino-etal00] [Leino-Nelson-Saxe00]
for dealing with threads.)

13.1.15 \max

The \max operator returns the "largest" (as defined by <) of a set of lock objects, given
a lock set as an argument. (This is an adaptation from ESC/Java [Leino-etal00] [Leino-
Nelson-Saxe00] for dealing with threads.)

13.1.16 \is_initialized

The \is_initialized operator returns true just when its reference-type argument is a
class that has finished its static initialization. It is of type boolean.

13.1.17 \invariant_for

The \invariant_for operator returns true just when its argument satisfies the invariant
of its static type; for example, \invariant_for((MyClass)o) is true when o satisfies the
invariant of MyClass. The entire \invariant_for expression is of type boolean.

13.1.18 \lblneg and \lblpos

Parenthesized expressions that start with \lblneg and \lblpos can be used to attach
labels to expressions [Leino-Nelson-Saxe00]; these labels might be printed in various mes-
sages by support tools, for example, to identify an assertion that failed. Such an expression
has a label and a body ; for example, in
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(\lblneg indexInBounds 0 <= index && index < length)

the label is indexInBounds and the body is the expression 0 <= index && index < length.
The value of a labeled expression is the value of its body, hence its type is the type of its
body. The idea is that if this expression is used in an assertion and its value is false (e.g.,
when doing run-time checking of assertions), then a warning will be printed that includes
the label indexInBounds. The form using \lblpos has a similar syntax, but should be used
for warnings when the value of the enclosed expression is true.

13.1.19 Universal and Existential Quantifiers

The quantifiers \forall and \exists, are universal and existential quantifiers (respec-
tively). For example,

(\forall int i,j; 0 <= i && i < j && j < 10; a[i] < a[j])

says that a is sorted at indexes between 0 and 9. The quantifiers range over all potential
values of the variables declared which satisfy the range predicate, given between the semi-
colons (;). If the range predicate is omitted, it defaults to true. Since a quantifier quantifies
over all potential values of the variables, when the variables declared are reference types,
they may be null, or may refer to objects not constructed by the program; one should use
a range predicate to eliminate such cases if they are not desired. The type of a universal
and existential quantifier is boolean. [[[ May the bound formal identifier in a quantifier
expression be any identifier, or must it not redeclare a local variable? - DRCok ]]]

13.1.20 Generalized Quantifiers

The quantifiers \max, \min, \product, and \sum, are generalized quantifiers that return
the maximum, minimum, product, or sum of the values of the expressions given, where
the variables satisfy the given range. The range predicate must be of type boolean. The
expression in the body must be a built-in numeric type, such as int or double; the type
of the quantified expression as a whole is the type of its body. The body of a quantified
expression is the last top-level expression it contains; it is the expression following the
range predicate, if there is one. As with the universal and existential quantifiers, if the
range predicate is omitted, it defaults to true. For example, the following equations are all
true (see chapter 3 of [Cohen90]):

(\sum int i; 0 <= i && i < 5; i) == 0 + 1 + 2 + 3 + 4
(\product int i; 0 < i && i < 5; i) == 1 * 2 * 3 * 4
(\max int i; 0 <= i && i < 5; i) == 4
(\min int i; 0 <= i && i < 5; i-1) == -1

For computing the value of a sum or product, Java’s arithmetic is used. The meaning
thus depends on the type of the expression. For example, in Java, floating point numbers
use the IEEE 754 standard, and thus when an overflow occurs, the appropriate positive
or negative infinity is returned. However, Java integers wrap on overflow. Consider the
following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)
== Float.POSITIVE_INFINITY
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(\sum int i; i == Integer.MAX_VALUE || i == 1; i)
== Integer.MAX_VALUE + 1
== Integer.MIN_VALUE

When the range predicate is not satisfiable, the sum is 0 and the product is 1; for
example:

(\sum int i; false; i) == 0
(\product double d; false; d*d) == 1.0

When the range predicate is not satisfiable for \max the result is the smallest number
with the type of the expression in the body; for floating point numbers, negative infinity is
used. Similarly, when the range predicate is not satisfiable for \min, the result is the largest
number with the type of the expression in the body.

13.1.21 Numerical Quantifier

The numerical quantifier, \num_of, returns the number of values for its variables for
which the range and the expression in its body are true. Both the range predicate and the
body must have type boolean, and the entire quantified expression has type long. The
meaning of this quantifier is defined by the following equation (see p. 57 of [Cohen90]).

(\num_of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L)

13.1.22 Set Comprehension

The set comprehension notation can be used to succinctly define sets. For example, the
following is the JMLObjectSet that is the subset of non-null Integer objects found in the
set myIntSet whose values are between 0 and 10, inclusive.

new JMLObjectSet {Integer i | myIntSet.has(i) &&
i != null && 0 <= i.getInteger() && i.getInteger() <= 10 }

The syntax of JML limits set comprehensions so that following the vertical bar (|)
is always an invocation of the has method of some set on the variable declared. (This
restriction is used to avoid Russell’s paradox [Whitehead-Russell25].) In practice, one either
starts from some relevant set at hand, or one can start from the sets containing the objects
of primitive types found in org.jmlspecs.models.JMLObjectSet and (in the same Java
package) JMLValueSet. The type of such an expression is the type named following new,
which must be JMLObjectSet or JMLValueSet.

[[[ May the bound variable hide other variables that are in scope? – DRCok]]]

13.1.23 <==> and <=!=>

[[[ discussion needed ]]]

13.1.24 ==> and <==

[[[ discussion needed ]]]



Chapter 13: Predicates and Specification Expressions 64

13.1.25 informal predicates

[[[ discussion needed ]]]

13.1.26 primitives for safe arithmetic

[[[ discussion needed ]]]

13.1.27 lockset membership

[[[ discussion needed]]]

13.2 Specification Expressions

The JML syntax for expressions extends the Java syntax with several operators and
primitives.

The precedence of operators in JML expressions is similar to that in Java The precedence
levels are given in the following table, where the parentheses, quantified expressions, [], .,
and method calls on the first three lines all have the highest precedence, and for the rest,
only the operators on the same line have the same precedence.

highest new () \forall \exists \max \min
\num_of \product \sum informal-description
[] . and method calls

unary + and - ~ ! (typecast)
* / %
+ (binary) - (binary)
<< >> >>>
< <= > >= <: instanceof
== !=
&
^
|
&&
||
==> <==
<==> <=!=>
?:

lowest = *= /= %= += -= <<= >>= >>>= &= ^= |=

The following is the syntax of Java expressions, with JML additions. The additions are
the operators ==>, <==, <==>, <=!=>, and <:, and the syntax found under the nonterminals
jml-primary, set-comprehension, and spec-quantified-expr (see Chapter 13 [Predicates and
Specification Expressions], page 57). The JML additions to the Java syntax can only be
used in assertions and other annotations. Furthermore, within assertions, one cannot use
any of the operators (such as ++, --, and the assignment operators) that would necessarily
cause side effects.
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expression-list ::= expression [ , expression ] . . .
expression ::= assignment-expr
assignment-expr ::= conditional-expr [ assignment-op assignment-expr ]
assignment-op ::= = | += | -= | *= | /= | %= | >>=

| >>>= | <<= | &= | ‘|=’ | ^=
conditional-expr ::= equivalence-expr

[ ? conditional-expr : conditional-expr ]
equivalence-expr ::= implies-expr [ equivalence-op implies-expr ] . . .
equivalence-op ::= <==> | <=!=>
implies-expr ::= logical-or-expr

[ ==> implies-non-backward-expr ]
| logical-or-expr <== logical-or-expr

[ <== logical-or-expr ] . . .
implies-non-backward-expr ::= logical-or-expr

[ ==> implies-non-backward-expr ]
logical-or-expr ::= logical-and-expr [ ‘||’ logical-and-expr ] . . .
logical-and-expr ::= inclusive-or-expr [ && inclusive-or-expr ] . . .
inclusive-or-expr ::= exclusive-or-expr [ ‘|’ exclusive-or-expr ] . . .
exclusive-or-expr ::= and-expr [ ^ and-expr ] . . .
and-expr ::= equality-expr [ & equality-expr ] . . .
equality-expr ::= relational-expr [ == relational-expr] . . .

| relational-expr [ != relational-expr] . . .
relational-expr ::= shift-expr < shift-expr

| shift-expr > shift-expr
| shift-expr <= shift-expr
| shift-expr >= shift-expr
| shift-expr <: shift-expr
| shift-expr [ instanceof type-spec ]

shift-expr ::= additive-expr [ shift-op additive-expr ] . . .
shift-op ::= << | >> | >>>
additive-expr ::= mult-expr [ additive-op mult-expr ] . . .
additive-op ::= + | -
mult-expr ::= unary-expr [ mult-op unary-expr ] . . .
mult-op ::= * | / | %
unary-expr ::= ( type-spec ) unary-expr

| ++ unary-expr
| -- unary-expr
| + unary-expr
| - unary-expr
| unary-expr-not-plus-minus

unary-expr-not-plus-minus ::= ~ unary-expr
| ! unary-expr
| ( builtinType ) unary-expr
| ( reference-type ) unary-expr-not-plus-minus
| postfix-expr

postfix-expr ::= primary-expr [ primary-suffix ] . . . [ ++ ]
| primary-expr [ primary-suffix ] . . . [ -- ]
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| builtinType [ ‘[’ ‘]’ ] . . . . class
primary-suffix ::= . ident

| . this
| . class
| . new-expr
| . super ( [ expression-list ] )
| ( [ expression-list ] )
| ‘[’ expression ‘]’
| [ ‘[’ ‘]’ ] . . . . class

primary-expr ::= ident | new-expr
| constant | super | true
| false | this | null
| ( expression )
| jml-primary
| informal-description

builtInType ::= void | boolean | byte
| char | short | int
| long | float | double

constant ::= java-literal
new-expr ::= new type new-suffix
new-suffix ::= ( [ expression-list ] ) [ class-block ]

| array-decl [ array-initializer ]
| set-comprehension

array-decl ::= dim-exprs [ dims ]
dim-exprs ::= ‘[’ expression ‘]’ [ ‘[’ expression ‘]’ ] . . .
dims ::= ‘[’ ‘]’ [ ‘[’ ‘]’ ] . . .
array-initializer ::= { [ initializer [ , initializer ] . . . [ , ] ] }
initializer ::= expression

| array-initializer

13.3 Store Refs

[[[ Needs discussion, where used, what do they represent?]]]
The syntax related to the store-ref production is used in several places.

store-ref-list ::= store-ref [ , store-ref ] . . .
store-ref ::= store-ref-expression

| informal-description
| store-ref-keyword

store-ref-expression ::= store-ref-name [ store-ref-name-suffix ] . . .
store-ref-name ::= ident | super | this
store-ref-name-suffix ::= . ident | . this | ‘[’ spec-array-ref-expr ‘]’ | . *
spec-array-ref-expr ::= spec-expression

| spec-expression .. spec-expression
| *

store-ref-keyword ::= \nothing | \everything | \not_specified | \private_data
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14 JML primitive types

14.1 \TYPE

[[[ needs discussion ]]]

14.2 \real

[[[ needs discussion ]]]

14.3 \bigint

[[[ needs discussion ]]]
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15 Statements and Annotation Statements

JML also defines a number of annotation statements that may be interspersed with Java
statements in the body of a method, constructor, or initialization block.

The following gives the syntax of statements. These are the standard Java statements,
with the addition of annotations, the hence-by-statement, assert-redundantly-statement,
assume-statement, set-statement, and unreachable-statement, and the various forms of
model-prog-statement. See Chapter 17 [Model Programs], page 73, for the syntax of model-
prog-statement, which is only allowed in model programs. [[[ Does this include local class
declarations?]]]

compound-statement ::= { statement [ statement ] . . . }
statement ::= compound-statement

| local-declaration ;
| ident : statement
| expression ;
| if ( expression ) statement [ else statement ]
| [ loop-invariant ] . . . [ variant-function ] . . . [ ident ] : loop-stmt
| break [ ident ] ;
| continue [ ident ] ;
| return [ expression ] ;
| switch-statement
| try-block
| throw expression ;
| synchronized ( expression ) statement
| ;
| assert-statement
| hence-by-statement
| assert-redundantly-statement
| assume-statement
| set-statement
| unreachable-statement
| model-prog-statement // only allowed in model programs

loop-stmt ::= while ( expression ) statement
| do statement while ( expression ) ;
| for ( [ for-init ] ; [ expression ] ; [ expression-list ] )

statement
for-init ::= local-declaration | expression-list
local-declaration ::= local-modifiers variable-decls
local-modifiers ::= [ local-modifier ] . . .
local-modifier ::= model | ghost | final | non_null
[[[ I don’t think model can be a local-modifier - David ]]]
switch-statement ::= switch ( expression ) { [ switch-body ] . . . }
switch-body ::= switch-label-seq [ statement ] . . .
switch-label-seq ::= switch-label [ switch-label ] . . .
switch-label ::= case expression : | default :
try-block ::= try compound-statement [ handler ] . . .
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[ finally compound-statement ]
handler ::= catch ( param-declaration ) compound-statement
assert-statement ::= assert expression [ : expression ] ;

Note that Java (as of J2SDK 1.4) also has its own assert statement. JML distinguishes
between assert statements that occur inside and outside annotations. Inside an annotation,
such a statement is a JML assert statement, and the first expression thus can’t have side
effects. (The second expression is a String that, as in Java, is printed if the assertion
fails.) Outside an annotation, an assert statement is a Java assert statement, and so the
first expression can have side effects (potentially, although it shouldn’t).

The following gives the syntax of JML annotations that can be used on statements. See
Chapter 17 [Model Programs], page 73, for the syntax of statements that can only be used
in model programs.

hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly
assert-redundantly-statement ::= assert_redundantly predicate [ : expression ] ;
assume-statement ::= assume-keyword predicate [ : expression ] ;
assume-keyword ::= assume | assume_redundantly
set-statement ::= set assignment-expr ;
unreachable-statement ::= unreachable ;
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining_redundantly

| loop_invariant | loop_invariant_redundantly
variant-function ::= decreasing-keyword spec-expression ;
decreasing-keyword ::= decreasing | decreasing_redundantly

| decreases | decreases_redundantly

15.1 assume statement

[[[ needs discussion ]]]

15.2 assert statement

[[[ needs discussion ]]]

15.3 Local ghost declaration

A local ghost declaration is a variable declaration with a ghost modifier, entirely con-
tained in an annotation. It introduces a new variable that may be used in subsequent
annotations within the remainder of the block in which the declaration appears. A ghost
variable is not used in program execution as Java variables are, but is used by the static
checker to reason about the execution of the routine body in which the ghost variable is
used.
• The variable name may not be already declared as a local variable or local ghost variable

or as a formal parameter of the routine in which the declaration appears.
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• Each variable declared may have an initializer; the initializer is in the scope of the
newly declared variable.

• The modifiers final, uninitialized, non_null may be used on the ghost declaration.

Examples:

//@ ghost int i = 0;
//@ ghost int i = 0, j, k = i+3;
//@ ghost float[] a = { 1,2,3 };
//@ ghost Object o;
//@ final ghost non_null Object o = new Object();
//@ ghost \TYPE t = \typeof(t);

15.4 set statement

A set statement is the equivalent of an assignment statement but is within an annotation.
It is used to assign a value to a ghost variable or to a ghost field. A set statement serves
to assist the static checker in reasoning about the execution of the routine body in which
it appears.
• the target of the set statement must be a ghost variable or a ghost field
• the right-hand-side of the set statement must be pure (not have side effects)

Examples:

//@ set i = 0;
//@ set collection.elementType = \type(int);

[[[ Questions: must the rhs be pure? Should we allow an arabitrary statement, not just
an assignment? such as set ++i; or set i += 5; ]]]

15.5 unreachable statement

The unreachable statement is an annotation that asserts that the control flow of a
routine will never reach that point in the program. It is equivalent to assert false. If
control flow does reach an unreachable statement, tool that checks (by reasoning or at
runtime) the behavior of the routine should issue an error of some kind. The following is
an example:

if (true) {
...

} else {
//@ unreachable;

}

15.6 hence by statement

[[[ needs discussion ]]]



Chapter 15: Statements and Annotation Statements 71

15.7 loop invariant statement

[[[ needs discussion ]]]

15.8 decreases statement

[[[ needs discussion ]]]

15.9 JML Modifiers for Local Declarations

The following modifiers may be applied to local declarations of either Java variables or
ghost variables within routine bodies.

15.9.1 non null

[[[ needs discussion ]]]

15.9.2 uninitialized

[[[ needs discussion ]]]
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16 Redundancy

redundant-spec ::= implications [ examples ] | examples
examples ::= for_example example [ also example ] . . .

16.1 Redundant Implications

implications ::= implies_that spec-case-seq

16.2 Redundant Examples

The following gives the syntax of examples.
example ::= [ [ privacy ] example ]

[ spec-var-decls ] [ spec-header ] simple-spec-body
| [ privacy ] exceptional_example

[ spec-var-decls ] spec-header [ exceptional-example-body ]
| [ privacy ] exceptional_example

[ spec-var-decls ] exceptional-example-body
| [ privacy ] normal_example

[ spec-var-decls ] spec-header [ normal-example-body ]
| [ privacy ] normal_example

[ spec-var-decls ] normal-example-body
exceptional-example-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
normal-example-body ::= normal-spec-clause [ normal-spec-clause ] . . .
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17 Model Programs

This chapter discusses JML’s model programs, which are adapted from the refinement
calculus [Back88] [Back-vonWright89a] [Buechi-Weck00] [Morgan94] [Morris87].

17.1 Ideas Behind Model Programs

The basic idea of a model program is that it is a specification that is written as an
abstract algorithm. Such an abstract algorithm specifies a method in the sense that the
method’s execution should be a refinement of the model program.

In JML adopt the semantics of the "greybox approach" to refinement calculus [Buechi-
Weck00] [Buechi00]. In this semantics, calls to non-pure methods in a model program must
occur in the same states in a correct implementation. That is, the notion of refinement is
restricted to not permit all implementations with equivalent behavior, but to require that
the implementation make certain method calls in the model program. This turns out to be
very nice for describing both higher-order features and callbacks.

Consider the following example (from a survey on behavioral subtyping by Leavens and
Dhara [Leavens-Dhara00]). In this example, both the methods are specified using model
programs, which are explained below.

package org.jmlspecs.samples.dirobserver;

//@ model import org.jmlspecs.models.JMLString;
//@ model import org.jmlspecs.models.JMLObjectSetEnumerator;

public interface Directory extends RODirectory {

/*@ public model_program {
@ normal_behavior
@ requires !in_notifier && n != null && n != "" && f != null;
@ assignable entries;
@ ensures entries != null
@ && entries.equals(\old(entries.extend(new JMLString(n), f)));
@ for (JMLObjectSetEnumerator e = listeners.elements();
@ e.hasMoreElements(); ) {
@ in_notifier = true;
@ ((DirObserver)e.nextElement()).addNotification(this, n);
@ in_notifier = false;
@ }
@ }
@*/

public void addEntry(String n, File f);

/*@ public model_program {
@ normal_behavior
@ requires !in_notifier && n != null && n != "";
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@ assignable entries;
@ ensures entries != null
@ && entries.equals(\old(entries.remove(new JMLString(n))));
@ for (JMLObjectSetEnumerator e = listeners.elements();
@ e.hasMoreElements(); ) {
@ in_notifier = true;
@ ((DirObserver)e.nextElement()).removeNotification(this, n);
@ in_notifier = false;
@ }
@ }
@*/

public void removeEntry(String n);
}

Both model programs in the above example are formed from a specification statement,
which begins with the keyword normal_behavior in these examples, and a for-loop. The
key event in the for loop bodies is a method call to a non-pure method (addNotification
or removeNotification). These calls must occur in a state equivalent to the one reached
in the model program for the implementation to be legal.

The behavior statements abstract away part of a correct implementation. The normal_
behavior statements in these examples both have a precondition, a frame axiom, and a
postcondition. These mean that the statements that they abstract away from must be able
to, in any state satisfying the precondition, finish in a state satisfying the postcondition,
while only assigning to the locations (and their dependees) named in the frame axiom. For
example, the first behavior statements says that whenever in_notifier is false, n is not
null and not empty, and f is not null, then this part of the method can assign to entries
something that isn’t null and that is equal to the old value of entries extended with a pair
consisting of the string n and the file f.

The model field entries, of type JMLValueToObjectMap, is declared in the supertype
RODirectory [Leavens-Dhara00].

17.2 Details of Model Programs

The following gives the syntax of model programs. See Chapter 15 [Statements and
Annotation Statements], page 68, for the parts of the syntax of statements that are un-
changed from Java. The jml-compound-statement and jml-statement syntax is the same
as the compound-statement and statement syntax, except that model-prog-statements are
not flagged as errors within the jml-compound-statement and jml-statements.

model-program ::= [ privacy ] model_program jml-compound-statement
jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice

| nondeterministic-if
| spec-statement
| invariant

nondeterministic-choice ::= choose alternative-statements
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alternative-statements ::= jml-compound-statement
[ or jml-compound-statement ] . . .

nondeterministic-if ::= choose_if guarded-statements
[ else jml-compound-statement ]

guarded-statements ::= guarded-statement
[ or guarded-statement ] . . .

guarded-statement ::= {
assume-statement
jml-statement [ jml-statement] . . .

}

The grammar for specification statements appears below. It is unusual, compared to
specification statements in refinement calculus, in that it allows one to specify statements
that can signal exceptions, or terminate abruptly. The reasons for this are based on ver-
ification logics for Java [Huisman01] [Poll-Jacobs00], which have these possibilities. The
meaning of an abrupt-spec-case is that the normal termination and signaling an exception
are forbidden; that is, the equivalent spec-statement using behavior would have ensures
false; and signals (Exception) false; clauses.

spec-statement ::= [ privacy ] behavior generic-spec-statement-case
| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case
| [ privacy ] abrupt_behavior abrupt-spec-case

generic-spec-statement-case ::= [ spec-var-decls ] generic-spec-statement-body
| [ spec-var-decls ] spec-header [ generic-spec-statement-body ]

generic-spec-statement-body ::= simple-spec-statement-body
| {| generic-spec-statement-case-seq |}

generic-spec-statement-body-seq ::= generic-spec-statement-case
[ also generic-spec-statement-case ] . . .

simple-spec-statement-body ::= simple-spec-statement-clause [ simple-spec-statement-
clause ] . . .
simple-spec-statement-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause | duration-clause
| ensures-clause | signals-clause
| continues-clause | breaks-clause | returns-clause

abrupt-spec-case ::= [ spec-var-decls ] spec-header
[ abrupt-spec-body ]

| [ spec-var-decls ] abrupt-spec-body
abrupt-spec-body ::= abrupt-spec-clause [ abrupt-spec-clause ] . . .

| {| abrupt-spec-case-seq |}
abrupt-spec-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause | duration-clause
| continues-clause | breaks-clause | returns-clause

abrupt-spec-case-seq ::= abrupt-spec-case [ also abrupt-spec-case ] . . .

continues-clause ::= continues-keyword [ target-label ] [ pred-or-not ] ;
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continues-keyword ::= continues | continues_redundantly
target-label ::= -> ( ident )
breaks-clause ::= breaks-keyword [ target-label ] [ pred-or-not ] ;
breaks-keyword ::= breaks | breaks_redundantly
returns-clause ::= returns-keyword [ pred-or-not ] ;
returns-keyword ::= returns | returns_redundantly
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18 Specification for Subtypes

code-contract-spec ::= code_contract code-contract-clause [ code-contract-clause ] . . .
code-contract-clause ::= accessible-clause | callable-clause | measured-clause

[[[ Should the section where ‘accessible’ and ’callable’ are discussed as part of the method
specs be moved here? ]]]

See Section 11.9.12 [Accessible Clauses], page 54, for the syntax and semantics of the
accessible-clause. See Section 11.9.13 [Callable Clauses], page 55, for the syntax and se-
mantics of the callable-clause.

See [Kiczales-Lamping92] [Steyaert-etal96] for the problem and [Ruby-Leavens00] for
how JML deals with these problems.

[[[Need an explanation of the callable clause]]]
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19 Refinement

This chapter explains JML’s notion of refinement files, which uses the following syntax.
refine-prefix ::= refine string-literal ;

The refine-prefix in a compilation unit says that the declarations in this compilation unit
refine the corresponding declarations in the file named by the string-literal. The string-
literal should name a file, complete with a suffix, for example, "MyType.java-refined".
The suffix of such a file is used by JML tools to find the file that is the base of a refinement
chain, and all other files in the chain are found using the files named in the refine-prefix of
a previous file in the chain.

One use of this feature is to allow specifications to be written first, in a separate file
from the source code. For example, to specify MyType, and then write the code for it in a
file named ‘MyType.java-refined’, and then one would write Java code in ‘MyType.java’.
The file ‘MyType.java’ would also include the following refine-prefix.

refine "MyType.java-refined";

Another typical use of this feature is to allow one to add specifications to source code
that one does not want to modify. To do that, one would use a ‘.refines-java’ (or
‘.refines-spec’ or ‘.refines-jml’) file with the specifications of the corresponding
Java file in it. For example, if one wants to specify the type LibraryType, without
touching the file ‘LibraryType.java’ then one could write specifications in the file
‘LibraryType.refines-java’, and include in that file the following refine-prefix.

refine "LibraryType.java";

The following gives more details about the checks and meaning of this feature of JML.

19.1 File Name Suffixes

The JML tools recognize several filename suffixes. The following are considered to
be active suffixes: ‘.refines-java’, ‘.refines-spec’, ‘.refines-jml’, ‘.java’, ‘.spec’,
and ‘.jml’; There are also three passive suffixes: ‘.java-refined’, ‘.spec-refined’, and
‘.jml-refined’. Files with passive suffixes can be used in refinements but should not
normally be passed explicitly to the tools directly.

The filename suffixes are ordered so tools can find the base file in a refinement chain. In
the above list of active suffixes, those listed earlier are considered to be more active than
those listed later. Among files with the same prefix, the one whose suffix appears first in
the above list of active suffixes is considered primary by JML tools. For example, when
searching for the compilation unit containing a type declaration, JML tools look for those
files in the package directory with a prefix that matches the type name; they then select
the file with the most active suffix as the base of the refinement sequence. When the base
is correctly selected, then all the rest of the files in the refinement sequence will be loaded
automatically so that all the specifications for that type are available.

To help ensure that the base is correctly selected, the file with the most active suffix
must be the base of a refinement sequence, otherwise the JML typechecker issues an error
message. Also, the prefix of the base file must be the same as the public type declared
in that compilation unit or an error message is issued. However, it is not necessary that
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the file being refined have the same prefix as the file at the base of the refinement chain.
Furthermore, a file with the same prefix as the base file may not be in a different refinement
sequence. For example, ‘SomeName.java-refined’ can be refined by ‘MyType.java’ as long
as there is no refinement sequence with ‘SomeName’ as the prefix of the base of another
refinement.

The JML tools deal with all files in a refinement chain whenever one of them is selected
for processing by the tool. This allows all of the specifications that apply to be consistently
dealt with at all times. For example, supose that there are files named ‘Foo.refines-java’
and ‘Foo.java’, then if a tool selects the ‘Foo.java’, e.g., with the command:

$ jmlc *.java

then it will see both the ‘Foo.refines-java’ and the ‘Foo.java’ file.

[[[Have to clarify how this interacts with the CLASSPATH]]]

19.2 Type Checking Refinements

There are some restrictions on what can appear in the different files involved in a partic-
ular refinement. Since the Java compilers only see the ‘.java’ files, executable code (that
is not just for use in specifications) should only be placed in the ‘.java’ files. In particular
the following restrictions are enforced by JML.

• When the same method is declared in more than one file in a refinement sequence,
most parts of the method declaration must be identical in all the files. (Two method
declarations are considered to be declaring the same method if they have the same
signature, i.e., same name and static formal parameter types.) However, in addition to
the signature of such a method, the return type, the names of the formal parameters,
the declared exceptions the method may throw, and the non-JML modifiers public,
protected, private, static, and final, must all match exactly in each such decla-
ration in a refinement chain.

• The model modifier must appear in all declarations of a given method or it must appear
in none of them. It is not permitted to implement a model method with a non-model
method or to refine a non-model method with a model method. Use a spec_public or
spec_protected method if you want to use that method in a specification.

• Some of the JML method modifiers do not always have to match in all declarations of
the same method in a refinement chain. One may add pure, non_null, spec_public,
or spec_protected to any of the declarations for a method in any file. However, if pure
is added to a method specification, then all subsequent declarations of that method in
a refinement sequence must also be declared pure. Also, it is, of course, not permitted
to add spec_protected to a method that has been declared public or spec_public
in other declarations. One can add non_null to any formal parameter in any file,
although good style suggests that all of these annotations appear on one declaration of
that method.

• The specification of a refining method declaration must start with the JML keyword
also; if it does not an error message is issued. A refining method declaration is
a declaration that overrides a superclass method or refines the specification of the
same method in a refinement chain. In JML, method specifications are inherited by
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subclasses and in refinement chains. The also keyword indicates that the current
specification is refining the specification inherited either from the superclass or from
the previous declaration of the method in a refinement sequence. Therefore, it is an
error if the specification of a non-refining method begins with also (unless it overrides
an inherited method).

• If a non-model method has a body, then the body can only appear in a ‘.java’ file; an
error message is issued if the body of a non-model method appears in a file with any
other suffix. Furthermore, the body of a model method may only appear in one file of
a refinement sequence. This means that each method of each class can have at most
one method body.

• When the same field is declared in more than one file in a refinement sequence, then the
signature of each such declaration must be identical in all the files. (Two field declara-
tions are considered to be declaring the same field if they have the same name.) The
signature of such a field, including its type, the non-JML modifiers public, protected,
private, static, and final, must all match exactly in each such declaration.

• All declarations of a given field must either use the modifier model or not. It is not
permitted to implement a model field with a non-model field or vice versa. Use a
spec_public or spec_protected field if you want to use the same name. The same
comment holds for ghost fields.

• Some of the JML field modifiers do not always have to match in all declarations of
the same field in a refinement chain. One may add non_null, spec_public, or spec_
protected to any of of the declarations for a field in any file. However, it is of course
not permitted to add spec_protected to a field that has been declared public in other
declarations.

• Initializers are not allowed in all field declarations. A non-model field can have an
initializer expression but it can only appear in a ‘.java’ file because this is where a
compiler expects to find it.

Fields declared using the ghost modifier can have an initializer expression in any file,
but they may have at most one initializer expression in all the files.

Model fields cannot have an initializer expression because there is no storage associated
with such fields. Use the initially clause to specify the initial state of model fields
(although the initial state is usually determined from the represents clause).

• Any number of jml-var-assertion’s can be declared for any field declaration and these
are all conjoined. For example, if a variable int count is declared and there are two
initially clauses, in the same or different files, then these initially clause predicates
are conjoined; that is, both must be satisfied initially.

• An initializer block or a static initializer block (with code) may only appear in a
‘.java’ file. One can write annotations to specify the effects of such initializers in JML
annotations in other files, using the keywords initializer and static_initializer.

JML uses specification inheritance to impose the specifications of supertypes on their
subtypes [Dhara-Leavens96] to support the concept of behavioral subtyping [America87]
[Leavens90] [Leavens91] [Leavens-Weihl90] [Leavens-Weihl95] [Liskov-Wing94]. JML also
supports a notion of weak behavioral subtyping [Dhara-Leavens94b] [Dhara97].



Chapter 19: Refinement 81

19.3 Refinement Viewpoints

In refinements, specification inheritance allows the specifier to separate the public, pro-
tected, and private specifications into different files. Public specifications give the public
behavior and are meant for clients of the class. Protected specifications are meant for pro-
grammers creating subclasses and give the protected behavior of the type; they give the
behavior of protected methods and fields that are not visible to clients. Similarly, private
specifications are meant for implementors of the class and provide the behavior related to
private methods and fields of the class; implementors must satisfy the combined public,
protected, and private specifications of a method.

[[[Needs work]]]

19.3.1 default constructor refinement

In Java, a default constructor is automatically generated for a class when no constructors
are declared in a class. However, in JML, a default constructor is not generated for a class
unless the file suffix is ‘.java’ (the same constructor is generated as in the Java language).
Consider, for example, the following refinement sequence.

// ------ file MyClass.jml-refined --------
public class MyClass {

//@ public model int x;

/*@ public normal_behavior
@ ensures x == 0; @*/

public MyClass();
}

// --------- file MyClass.jml -------------
// refine "MyClass.jml-refined";
public class MyClass {

protected int x_;
//@ in x;

//@ protected represents x <- x_;
}

// ---------- file MyClass.java -----------
// refine "MyClass.jml";
public class MyClass {

protected int x_;
public MyClass() { x_ = 0; }

}

// ----------------------------------------
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In the protected specification declared in ‘MyClass.jml’, no constructor is defined. If
JML were to generate a default constructor for this class declaration, then the public con-
structor defined earlier in the refinement chain, in ‘MyClass.jml-refined’, could have a
visibility modifier that conflicts with the one automatically generated for the protected spec-
ification (the visibility modifier of an automatically generated default constructor depends
on other factors including the visibility of the class). Recall that the signature, including the
visibility modifier, must match for every method and constructor declared in a refinement
chain. To avoid such conflicts, JML does not generate a default constructor unless the file
suffix is ‘.java’ (as part of the standard compilation process).

A similar problem can occur when the only constructor is protected or private as in the
following example.

// ------ file MyClass2.jml-refined --------
public class MyClass2 {

//@ public model int x;
//@ public initially x == 0;

}

// --------- file MyClass2.jml -------------
// refine "MyClass2.jml-refined";
public class MyClass2 {

protected int x_;
//@ in x;

//@ protected represents x <- x_;

/*@ protected normal_behavior
@ ensures x == 0; @*/

protected MyClass2();
}

// ---------- file MyClass2.java -----------
// refine "MyClass2.jml";
public class MyClass2 {

protected int x_;
protected MyClass2() { x_ = 0; }

}

// ----------------------------------------

In this example, no constructor is defined for the public specification in
‘MyClass2.jml-refined’. If a default constructor were generated for this class declaration,
then the protected constructor defined later in the refinement chain, in ‘MyClass2.jml’,
would have a visibility modifier that conflicts with the one automatically generated and
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JML would emit an error. Thus JML only generates the default constructor for the
executable declaration of a class in the ‘.java’ file and only when required by the Java
language.
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Appendix A Grammar Summary

The following is a summary of the context-free grammar for JML. See Chapter 3 [Syntax
Notation], page 12, for the notation used. In the first section below, grammatical produc-
tions are to be understood lexically. That is, no white space (see Section 4.1 [White Space],
page 13) may intervene between the characters of a token.

A.1 Lexical Conventions

microsyntax ::= lexeme [ lexeme ] . . .
lexeme ::= white-space | lexical-pragma | comment

| annotation-marker | doc-comment | token
token ::= ident | keyword | special-symbol | java-literal

| informal-description
white-space ::= non-nl-white-space | end-of-line
non-nl-white-space ::= a blank, tab, or formfeed character
end-of-line ::= newline | carriage-return | carriage-return newline
newline ::= a newline character
carriage-return ::= a carriage return character
lexical-pragma ::= nowarn-pragma
nowarn-pragma ::= nowarn [ spaces [ nowarn-label-list ] ] ;
spaces ::= non-nl-white-space [ non-nl-white-space ] . . .
nowarn-label-list ::= nowarn-label [ spaces ] [ , [ spaces ] nowarn-label [ spaces ] ] . . .
nowarn-label ::= letter [ letter ] . . .
comment ::= C-style-comment | C++-style-comment
C-style-comment ::= /* [ C-style-body ] C-style-end
C-style-body ::= non-at-plus-star [ non-star-slash ] . . .

| + non-at [ non-star-slash ] . . .
| stars-non-slash [non-star-slash] . . .

non-star-slash ::= non-star
| stars-non-slash

stars-non-slash ::= * [ * ] . . . non-slash
non-at-plus-star ::= any character except @, +, or *
non-at ::= any character except @
non-star ::= any character except *
non-slash ::= any character except /
C-style-end ::= [ * ] . . . */
C++-style-comment ::= // [ + ] end-of-line

| // non-at-plus-end-of-line [ non-end-of-line ] . . . end-of-line
| //+ non-at-end-of-line [ non-end-of-line ] . . . end-of-line

non-end-of-line ::= any character except a newline or carriage return
non-at-plus-end-of-line ::= any character except @, +, newline, or carriage return
non-at-end-of-line ::= any character except @, newline, or carriage return
annotation-marker ::= //@ | //+@

| /*@ | /*+@ | @+*/ | @*/ | */
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ignored-at-in-annotation ::= @
doc-comment ::= /** [ * ] . . . doc-comment-body */
doc-comment-ignored ::= doc-comment
doc-comment-body ::= [ description ] . . .
description ::= doc-non-empty-textline
tagged-paragraph ::= paragraph-tag [ doc-non-nl-ws ] . . .
jml-specs ::= jml-tag [ method-specification ] end-jml-tag
paragraph-tag ::= @author | @deprecated | @exception

| @param | @return | @see
| @serial | @serialdata | @serialfield
| @since | @throws | @version
| @ letter [ letter ] . . .

doc-atsign ::= @
doc-nl-ws ::= end-of-line [ doc-non-nl-ws ] . . . [ * [ * ] . . . [ doc-non-nl-ws ] . . . ]
doc-non-nl-ws ::= non-nl-white-space
doc-non-empty-textline ::= non-at-end-of-line [ non-end-of-line ] . . .
jml-tag ::= <jml> | <JML> | <esc> | <ESC>
end-jml-tag ::= </jml> | </JML> | </esc> | </ESC>
ident ::= letter [ letter-or-digit ] . . .
letter ::= _, $, a through z, or A through Z
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
letter-or-digit ::= letter | digit
keyword ::= java-keyword | jml-predicate-keyword | jml-keyword
jml-predicate-keyword ::= \duration | \elemtype

| \everything | \exists
| \forall | \fresh | \invariant_for
| \is_initialized | \lblneg | \lblpos
| \lockset | \max | \min
| \nonnullelements | \nothing | \not_modified
| \not_specified | \num_of |\old
| \other | \private_data | \product
| \reach | \result | \space
| \such_that | \sum | \type
| \typeof | \TYPE | \working_space

jml-keyword ::= abrupt_behavior | accessible_redundantly | accessible
| also | assert_redundantly
| assignable_redundantly | assignable
| assume_redundantly | assume | axiom
| behavior | breaks_redundantly | breaks
| callable_redundantly | callable | choose_if
| choose | code_contract
| constraint_redundantly | constraint
| constructor | continues_redundantly | continues
| decreases_redundantly | decreases
| decreasing_redundantly | decreasing
| diverges_redundantly | diverges | duration_redundantly
| duration | ensures_redundantly
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| ensures | example | exceptional_behavior
| exceptional_example | exsures_redundantly | exsures
| field | forall
| for_example | ghost
| implies_that | helper | hence_by_redundantly
| hence_by | initializer | initially
| instance | invariant_redundantly | invariant
| loop_invariant_redundantly | loop_invariant
| maintaining_redundantly | maintaining
| measured_by_redundantly | measured_by | method
| model_program | model | modifiable_redundantly
| modifiable | modifies_redundantly | modifies
| monitors_for | monitored | non_null
| normal_behavior | normal_example | nowarn
| old | or | post_redundantly | post
| pre_redundantly | pre
| pure | readable | refine
| represents_redundantly | represents | requires_redundantly
| requires | returns_redundantly | returns
| set | signals_redundantly | signals
| spec_protected | spec_public | static_initializer
| uninitialized | unreachable
| weakly | when_redundantly | when
| working_space_redundantly | working_space

special-symbol ::= java-special-symbol | jml-special-symbol
java-special-symbol ::= java-separator | java-operator
java-separator ::= ( | ) | { | } | ‘[’ | ‘]’ | ; | , | .
java-operator ::= = | < | > | ! | ~ | ? | :

| == | <= | >= | != | && | ‘||’ | ++ | --
| + | - | * | / | & | ‘|’ | ^ | % | << | >> | >>>
| += | -= | *= | /= | &= | ‘|=’ | ^= | %= | <<= | >>= | >>>=

jml-special-symbol ::= ==> | <== | <==> | <=!=> | -> | <- | <: | .. | ‘{|’ | ‘|}’
java-literal ::= integer-literal | floating-point-literal | boolean-literal

| character-literal | string-literal | null-literal
integer-literal ::= decimal-integer-literal | hex-integer-literal | octal-integer-literal
decimal-integer-literal ::= decimal-numeral [ integer-type-suffix ]
decimal-numeral ::= 0 | non-zero-digit [ digits ]
digits ::= digit [ digit ] . . .
digit ::= 0 | non-zero-digit
non-zero-digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
integer-type-suffix ::= l | L
hex-integer-literal ::= hex-numeral [ integer-type-suffix ]
hex-numeral ::= 0x hex-digit [ hex-digit ] . . . | 0X hex-digit [ hex-digit ] . . .
hex-digit ::= digit | a | b | c | d | e | f

| A | B | C | D | E | F
octal-integer-literal ::= octal-numeral [ integer-type-suffix ]
octal-numeral ::= 0 octal-digit [ octal-digit ] . . .



Appendix A: Grammar Summary 87

octal-digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
floating-point-literal ::= digits . [ digits ] [ exponent-part ] [ float-type-suffix ]

| . digits [ exponent-part ] [ float-type-suffix ]
| digits exponent-part [ float-type-suffix ]
| digits [ exponent-part ] float-type-suffix

exponent-part ::= exponent-indicator signed-integer
exponent-indicator ::= e | E
signed-integer ::= [ sign ] digits
sign ::= + | -
float-type-suffix ::= f | F | d | D
boolean-literal ::= true | false
character-literal ::= ’ single-character ’ | ’ escape-sequence ’
single-character ::= any character except ’, \, carriage return, or newline
escape-sequence ::= \b // backspace

| \t // tab
| \n // newline
| \r // carriage return
| \’ // single quote
| \" // double quote
| \\ // backslash
| octal-escape
| unicode-escape

octal-escape ::= \ octal-digit [ octal-digit ]
| \ zero-to-three octal-digit octal-digit

zero-to-three ::= 0 | 1 | 2 | 3
unicode-escape ::= \u hex-digit hex-digit hex-digit hex-digit
string-literal ::= " [ string-character ] . . . "
string-character ::= escape-sequence

| any character except ", \, carriage return, or newline
null-literal ::= null
informal-description ::= (* non-star-close [ non-star-close ] . . . *)
non-star-close ::= non-star

| stars-non-close
stars-non-close ::= * [ * ] . . . non-close
non-close ::= any character except )

A.2 Compilation Units

compilation-unit ::= [ package-definition ]
package-definition ::= package name ;
import-definition ::= [ model ] import name-star ;
name ::= ident [ . ident ] . . .
name-star ::= ident [ . ident ] . . . [ . * ]
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A.3 Type Definitions

type-definition ::= [ doc-comment ] modifiers class-or-interface-def
| ;

class-or-interface-def ::= class-definition | interface-definition
type-spec ::= type [ dims ] | \TYPE [ dims ]
type ::= reference-type | builtInType
reference-type ::= name
modifiers ::= [ modifier ] . . .
modifier ::= public | private | protected

| spec_public | spec_protected
| abstract | static |
| model | ghost | pure
| final | synchronized
| instance | helper
| transient | volatile
| native | strictfp
| const1

| non_null
class-definition ::= class ident [ extends name [ weakly ] ]
interface-definition ::= interface ident [ interface-extends ] class-block
interface-extends ::= extends name-weakly-list
implements-clause ::= implements name-weakly-list
name-weakly-list ::= name [ weakly ] [ , name [ weakly ] ] . . .
class-block ::= { [ field ] . . . }

A.4 Field declarations

field ::= [ doc-comment ] . . . modifiers member-decl
| modifiers jml-declaration
| [ method-specification ] [ static ] compound-statement
| method-specification static_initializer
| method-specification initializer
| axiom predicate ;
| ;

member-decl ::= variable-decls | method-decl
| class-definition | interface-definition

variable-decls ::= [ field ] type-spec variable-declarators ; [ jml-data-group-clause ] . . .
variable-declarators ::= variable-declarator [ , variable-declarator ] . . .
variable-declarator ::= ident [ dims ] [ = initializer ]
initializer ::= expression | array-initializer
array-initializer ::= { [ initializer-list ] }
initializer-list ::= initializer [ , initializer ] . . . [ , ]

1 const is reserved but not used in Java
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method-decl ::= method-specification
| method-or-constructor-keyword

method-or-constructor-keyword ::= method | constructor
method-head ::= ident ( [ param-declaration-list ] )
method-body ::= compound-statement | ;
throws-clause ::= throws name [ , name ] . . .
param-declaration-list ::= param-declaration [ , param-declaration ] . . .
param-declaration ::= [ param-modifier ] . . . type-spec ident [ dims ]
param-modifier ::= final | non_null

A.5 Methods and constructors

A.6 Other elements of type declarations

A.7 Type Specifications

jml-declaration ::= invariant | history-constraint
| represents-decl | initially-clause
| monitors-for-clause | readable-if-clause

invariant ::= invariant-keyword predicate ;
invariant-keyword ::= invariant | invariant_redundantly
history-constraint ::= constraint-keyword predicate
constraint-keyword ::= constraint | constraint_redundantly
constrained-list ::= method-name-list | \everything
method-name-list ::= method-name [ , method-name ] . . .
method-name ::= method-ref [ ( [ param-disambig-list ] ) ]
method-ref ::= method-ref-start [ . method-ref-rest ] . . .

| new reference-type
method-ref-start ::= super | this | ident | \other
method-ref-rest ::= this | ident | \other
param-disambig-list ::= param-disambig [ , param-disambig ] . . .
param-disambig ::= type-spec [ ident [ dims ] ]
represents-decl ::= represents-keyword store-ref-expression l-arrow-or-eq spec-expression ;

| represents-keyword store-ref-expression \such_that predicate ;
represents-keyword ::= represents | represents_redundantly
l-arrow-or-eq ::= <- | =
initially-clause ::= initially predicate ;
readable-if-clause ::= readable ident if predicate ;
monitors-for-clause ::= monitors_for ident l-arrow-or-eq spec-expression-list ;
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A.8 Method Specifications

method-specification ::= specification | extending-specification
extending-specification ::= also specification
specification ::= spec-case-seq [ redundant-spec ]

| redundant-spec
spec-case-seq ::= spec-case [ also spec-case ] . . .
spec-case ::= lightweight-spec-case | heavyweight-spec-case

| model-program | code-contract-spec
privacy ::= public | protected | private
lightweight-spec-case ::= generic-spec-case
generic-spec-case ::= [ spec-var-decls ] [ spec-header ] simple-spec-body

| [ spec-var-decls ] [ spec-header ] {| generic-spec-case-seq |}
generic-spec-case-seq ::= generic-spec-case [ also generic-spec-case ] . . .
spec-header ::= requires-clause
simple-spec-body ::= simple-spec-body-clause [ simple-spec-body-clause ] . . .
simple-spec-body-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause | signals-clause

heavyweight-spec-case ::= behavior-spec-case
| exceptional-behavior-spec-case
| normal-behavior-spec-case

behavior-spec-case ::= [ privacy ] behavior generic-spec-case
normal-behavior-spec-case ::= [ privacy ] normal_behavior normal-spec-case
normal-spec-case ::= [ spec-var-decls ] normal-spec-body

| [ spec-var-decls ] [ spec-header ] {| normal-spec-case-seq |}
normal-spec-case-seq ::= normal-spec-case [ also normal-spec-case ] . . .
normal-spec-body ::= normal-spec-clause [ normal-spec-clause ] . . .
normal-spec-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | ensures-clause

exceptional-behavior-spec-case ::= [ privacy ] exceptional_behavior exceptional-
spec-case
exceptional-spec-case ::= [ spec-var-decls ] exceptional-spec-body

| [ spec-var-decls ] [ spec-header ] {| exceptional-spec-case-seq |}
exceptional-spec-case-seq ::= exceptional-spec-case [ also exceptional-spec-case ] . . .
exceptional-spec-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
exceptional-spec-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause
| duration-clause | signals-clause

spec-var-decls ::= forall-var-decls [ old-var-decls ]
| old-var-decls

forall-var-decls ::= forall-var-decl [ forall-var-decl ] . . .
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forall-var-decl ::= forall quantified-var-decl ;
old-var-decls ::= old-var-decl [ old-var-decl ] . . .
old-var-decl ::= old type-spec spec-variable-declarators ;
requires-clause ::= requires-keyword pred-or-not ;
requires-keyword ::= requires | pre

| requires_redundantly | pre_redundantly
pred-or-not ::= predicate | \not_specified
ensures-clause ::= ensures-keyword pred-or-not ;
ensures-keyword ::= ensures | post

| ensures_redundantly | post_redundantly
signals-clause ::= signals-keyword
signals-keyword ::= signals | signals_redundantly

| exsures | exsures_redundantly
diverges-clause ::= diverges-keyword pred-or-not ;
diverges-keyword ::= diverges | diverges_redundantly
when-clause ::= when-keyword pred-or-not ;
when-keyword ::= when | when_redundantly
assignable-clause ::= assignable-keyword conditional-store-ref-list ;
assignable-keyword ::= assignable | assignable_redundantly

| modifiable | modifiable_redundantly
| modifies | modifies_redundantly

conditional-store-ref-list ::= conditional-store-ref
conditional-store-ref ::= store-ref [ if predicate ]

| other-ref [ if predicate ]
other-ref ::= \other [ store-ref-name-suffix ] . . .
working-space-clause ::= working-space-keyword \not_specified ;

| working-space-keyword spec-expression [ if predicate ] ;
working-space-keyword ::= working_space | working_space_redundantly
duration-clause ::= duration-keyword \not_specified ;

| duration-keyword spec-expression [ if predicate ] ;
duration-keyword ::= duration | duration_redundantly
measured-clause ::= measured-by-keyword \not_specified ;

| measured-by-keyword spec-expression [ if predicate ] ;
measured-by-keyword ::= measured_by | measured_by_redundantly
accessible-clause ::= accessible-keyword conditional-store-ref-list ;
accessible-keyword ::= accessible | accessible_redundantly
callable-clause ::= callable-keyword callable-methods-list ;
callable-keyword ::= callable | callable_redundantly
callable-methods-list ::= method-name-list | store-ref-keyword

A.9 Frame Conditions and Data Groups

jml-data-group-clause ::= in-group-clause | maps-into-clause
in-group-clause ::= in-keyword group-list ;
in-keyword ::= in | in_redundantly
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group-list ::= group-name [ , group-name ] . . .
group-name ::= [ group-name-prefix ] ident
group-name-prefix ::= super . | this .
maps-into-clause ::= maps-keyword member-field-ref \into group-list ;
maps-keyword ::= maps | maps_redundantly
member-field-ref ::= ident . maps-member-ref-expr

| maps-array-ref-expr [ . maps-member-ref-expr ]
maps-member-ref-expr ::= ident | *
maps-array-ref-expr ::= ident maps-spec-array-dim [ maps-spec-array-dim ] . . .
maps-spec-array-dim ::= ‘[’ spec-array-ref-expr ‘]’

A.10 Predicates and Specification Expressions

predicate ::= spec-expression
spec-expression-list ::= spec-expression [ , spec-expression ] . . .
spec-expression ::= expression
jml-primary ::= \result

| \old ( spec-expression )
| \not_modified ( store-ref-list )
| \fresh ( spec-expression-list )
| \reach ( spec-expression )
| \duration ( expression )
| \space ( spec-expression )
| \max ( spec-expression )
| \working_space ( expression )
| informal-description
| \nonnullelements ( spec-expression )
| \typeof ( spec-expression )
| \elemtype ( spec-expression )
| \type ( type )
| \lockset
| \is_initialized ( reference-type )
| \invariant_for ( spec-expression )
| ( \lblneg ident spec-expression )
| ( \lblpos ident spec-expression )
| spec-quantified-expr

set-comprehension ::= { type-spec quantified-var-declarator
set-comprehension-pred ::= postfix-expr . has ( ident )
spec-quantified-expr ::= ( quantifier quantified-var-decls ; [ [ predicate ] ; ]
quantifier ::= \forall | \exists | \max | \min | \num_of | \product | \sum
quantified-var-decls ::= type-spec quantified-var-declarator
quantified-var-declarator ::= ident [ dims ]
spec-variable-declarators ::= spec-variable-declarator
spec-variable-declarator ::= ident [ dims ] [ = spec-initializer ]
spec-array-initializer ::= { [ spec-initializer
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spec-initializer ::= spec-expression
| spec-array-initializer

expression-list ::= expression [ , expression ] . . .
expression ::= assignment-expr
assignment-expr ::= conditional-expr [ assignment-op assignment-expr ]
assignment-op ::= = | += | -= | *= | /= | %= | >>=

| >>>= | <<= | &= | ‘|=’ | ^=
conditional-expr ::= equivalence-expr
equivalence-expr ::= implies-expr [ equivalence-op implies-expr ] . . .
equivalence-op ::= <==> | <=!=>
implies-expr ::= logical-or-expr

| logical-or-expr <== logical-or-expr
implies-non-backward-expr ::= logical-or-expr
logical-or-expr ::= logical-and-expr [ ‘||’ logical-and-expr ] . . .
logical-and-expr ::= inclusive-or-expr [ && inclusive-or-expr ] . . .
inclusive-or-expr ::= exclusive-or-expr [ ‘|’ exclusive-or-expr ] . . .
exclusive-or-expr ::= and-expr [ ^ and-expr ] . . .
and-expr ::= equality-expr [ & equality-expr ] . . .
equality-expr ::= relational-expr [ == relational-expr] . . .

| relational-expr [ != relational-expr] . . .
relational-expr ::= shift-expr < shift-expr

| shift-expr > shift-expr
| shift-expr <= shift-expr
| shift-expr >= shift-expr
| shift-expr <: shift-expr
| shift-expr [ instanceof type-spec ]

shift-expr ::= additive-expr [ shift-op additive-expr ] . . .
shift-op ::= << | >> | >>>
additive-expr ::= mult-expr [ additive-op mult-expr ] . . .
additive-op ::= + | -
mult-expr ::= unary-expr [ mult-op unary-expr ] . . .
mult-op ::= * | / | %
unary-expr ::= ( type-spec ) unary-expr

| ++ unary-expr
| -- unary-expr
| + unary-expr
| - unary-expr
| unary-expr-not-plus-minus

unary-expr-not-plus-minus ::= ~ unary-expr
| ! unary-expr
| ( builtinType ) unary-expr
| ( reference-type ) unary-expr-not-plus-minus
| postfix-expr

postfix-expr ::= primary-expr [ primary-suffix ] . . . [ ++ ]
| primary-expr [ primary-suffix ] . . . [ -- ]
| builtinType [ ‘[’ ‘]’ ] . . . . class

primary-suffix ::= . ident
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| . this
| . class
| . new-expr
| . super ( [ expression-list ] )
| ( [ expression-list ] )
| ‘[’ expression ‘]’
| [ ‘[’ ‘]’ ] . . . . class

primary-expr ::= ident | new-expr
| constant | super | true
| false | this | null
| ( expression )
| jml-primary
| informal-description

builtInType ::= void | boolean | byte
| char | short | int
| long | float | double

constant ::= java-literal
new-expr ::= new type new-suffix
new-suffix ::= ( [ expression-list ] ) [ class-block ]

| array-decl [ array-initializer ]
| set-comprehension

array-decl ::= dim-exprs [ dims ]
dim-exprs ::= ‘[’ expression ‘]’ [ ‘[’ expression ‘]’ ] . . .
dims ::= ‘[’ ‘]’ [ ‘[’ ‘]’ ] . . .
array-initializer ::= { [ initializer [ , initializer ] . . . [ , ] ] }
initializer ::= expression

| array-initializer
store-ref-list ::= store-ref [ , store-ref ] . . .
store-ref ::= store-ref-expression

| informal-description
| store-ref-keyword

store-ref-expression ::= store-ref-name [ store-ref-name-suffix ] . . .
store-ref-name ::= ident | super | this
store-ref-name-suffix ::= . ident | . this | ‘[’ spec-array-ref-expr ‘]’ | . *
spec-array-ref-expr ::= spec-expression

| spec-expression .. spec-expression
| *

store-ref-keyword ::= \nothing | \everything | \not_specified | \private_data

A.11 JML primitive types

A.12 Statements and Annotation Statements
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compound-statement ::= { statement [ statement ] . . . }
statement ::= compound-statement

| local-declaration ;
| ident : statement
| expression ;
| if ( expression ) statement [ else statement ]
| [ loop-invariant ] . . . [ variant-function ] . . . [ ident ] : loop-stmt
| break [ ident ] ;
| continue [ ident ] ;
| return [ expression ] ;
| switch-statement
| try-block
| throw expression ;
| synchronized ( expression ) statement
| ;
| assert-statement
| hence-by-statement
| assert-redundantly-statement
| assume-statement
| set-statement
| unreachable-statement
| model-prog-statement // only allowed in model programs

loop-stmt ::= while ( expression ) statement
| do statement while ( expression ) ;
| for ( [ for-init ] ; [ expression ] ; [ expression-list ] )

for-init ::= local-declaration | expression-list
local-declaration ::= local-modifiers variable-decls
local-modifiers ::= [ local-modifier ] . . .
local-modifier ::= model | ghost | final | non_null
switch-statement ::= switch ( expression ) { [ switch-body ] . . . }
switch-body ::= switch-label-seq [ statement ] . . .
switch-label-seq ::= switch-label [ switch-label ] . . .
switch-label ::= case expression : | default :
try-block ::= try compound-statement [ handler ] . . .
handler ::= catch ( param-declaration ) compound-statement
assert-statement ::= assert expression [ : expression ] ;
hence-by-statement ::= hence-by-keyword predicate ;
hence-by-keyword ::= hence_by | hence_by_redundantly
assert-redundantly-statement ::= assert_redundantly predicate [ : expression ] ;
assume-statement ::= assume-keyword predicate [ : expression ] ;
assume-keyword ::= assume | assume_redundantly
set-statement ::= set assignment-expr ;
unreachable-statement ::= unreachable ;
loop-invariant ::= maintaining-keyword predicate ;
maintaining-keyword ::= maintaining | maintaining_redundantly

| loop_invariant | loop_invariant_redundantly
variant-function ::= decreasing-keyword spec-expression ;
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decreasing-keyword ::= decreasing | decreasing_redundantly
| decreases | decreases_redundantly

A.13 Redundancy

redundant-spec ::= implications [ examples ] | examples
examples ::= for_example example [ also example ] . . .
implications ::= implies_that spec-case-seq
example ::= [ [ privacy ] example ]

| [ privacy ] exceptional_example
| [ privacy ] exceptional_example
| [ privacy ] normal_example
| [ privacy ] normal_example

exceptional-example-body ::= exceptional-spec-clause [ exceptional-spec-clause ] . . .
normal-example-body ::= normal-spec-clause [ normal-spec-clause ] . . .

A.14 Model Programs

model-program ::= [ privacy ] model_program jml-compound-statement
jml-compound-statement ::= compound-statement
jml-statement ::= statement
model-prog-statement ::= nondeterministic-choice

| nondeterministic-if
| spec-statement
| invariant

nondeterministic-choice ::= choose alternative-statements
alternative-statements ::= jml-compound-statement
nondeterministic-if ::= choose_if guarded-statements
guarded-statements ::= guarded-statement
guarded-statement ::= {
spec-statement ::= [ privacy ] behavior generic-spec-statement-case

| [ privacy ] exceptional_behavior exceptional-spec-case
| [ privacy ] normal_behavior normal-spec-case
| [ privacy ] abrupt_behavior abrupt-spec-case

generic-spec-statement-case ::= [ spec-var-decls ] generic-spec-statement-body
| [ spec-var-decls ] spec-header [ generic-spec-statement-body ]

generic-spec-statement-body ::= simple-spec-statement-body
| {| generic-spec-statement-case-seq |}

generic-spec-statement-body-seq ::= generic-spec-statement-case
simple-spec-statement-body ::= simple-spec-statement-clause [ simple-spec-statement-
clause ] . . .
simple-spec-statement-clause ::= diverges-clause

| assignable-clause
| when-clause | working-space-clause | duration-clause
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| ensures-clause | signals-clause
| continues-clause | breaks-clause | returns-clause

abrupt-spec-case ::= [ spec-var-decls ] spec-header
| [ spec-var-decls ] abrupt-spec-body

abrupt-spec-body ::= abrupt-spec-clause [ abrupt-spec-clause ] . . .
| {| abrupt-spec-case-seq |}

abrupt-spec-clause ::= diverges-clause
| assignable-clause
| when-clause | working-space-clause | duration-clause
| continues-clause | breaks-clause | returns-clause

abrupt-spec-case-seq ::= abrupt-spec-case [ also abrupt-spec-case ] . . .
continues-clause ::= continues-keyword [ target-label ] [ pred-or-not ] ;
continues-keyword ::= continues | continues_redundantly
target-label ::= -> ( ident )
breaks-clause ::= breaks-keyword [ target-label ] [ pred-or-not ] ;
breaks-keyword ::= breaks | breaks_redundantly
returns-clause ::= returns-keyword [ pred-or-not ] ;
returns-keyword ::= returns | returns_redundantly

A.15 Specification for Subtypes

code-contract-spec ::= code_contract code-contract-clause [ code-contract-clause ] . . .
code-contract-clause ::= accessible-clause | callable-clause | measured-clause

A.16 Refinement

refine-prefix ::= refine string-literal ;
depends-keyword ::= depends | depends_redundantly
depends-decl ::= depends-keyword
jml-var-assertions ::= jml-var-assertion [ ; jml-var-assertion ] . . .
jml-var-assertion ::= readable_if predicate

| monitored_by spec-expression-list
store-ref ::= \fields_of ( spec-expression [ , reference-type [ , store-ref-expression ] ] )
jml-primary ::= \reach ( spec-expression , reference-type [ , store-ref-expression ] )
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Appendix B Modifier Summary

This table summarizes which Java and JML modifiers may be used in various grammat-
ical contexts.

Grammatical construct Java modifiers JML modifiers

All modifiers public
protected
private
abstract
static final
synchronized
transient
volatile
native
strictfp

spec_public
spec_protected
model ghost
pure instance
helper
non_null

Class declaration public final
abstract
strictfp

pure model

Interface declaration public
strictfp

pure model

Nested Class declaration public
protected
private
static final
abstract
strictfp

spec_public
spec_protected
model pure

Nested interface declaration public
protected
private
static
strictfp

spec_public
spec_protected
model pure

Local Class (and local model class)
declaration

final
abstract
strictfp

pure model

Type specification (e.g. invariant) public
protected
private

-
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Field declaration public
protected
private final
volatile
transient
static

spec_public
spec_protected
non_null
instance

Ghost Field declaration public
protected
private
static final

non_null
instance

Model Field declaration public
protected
private
static

non_null
instance

Method declaration public
protected
private
abstract
final static
synchronized
native
strictfp

spec_public
spec_protected
pure non_null
helper

Constructor declaration public
protected
private

spec_public
spec_protected
helper pure

Model method public
protected
private
abstract
static final
synchronized
strictfp

pure non_null
helper

Model constructor public
protected
private

pure helper

Java Initialization block static ??? ???
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JML initializer annotation static ??? ???

Formal parameter final non_null

Local variable and local ghost variable
declaration

final ghost non_null
uninitialized

Note that within interfaces, fields are implicitly public, static and final. Ghost and
model fields are implicitly public and static, though they may be declared instance (i.e. not
static).
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Appendix C Type Checking Summary

[[[Hope to generate this automatically]]]
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Appendix D Verification Logic Summary

[[[Hope to generate this automatically]]]
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Appendix E Differences

The subsections below detail the differences between JML and other tools. and between
JML and Java itself.

E.1 Differences Between JML and Other Tools

ESC/Java and JML share a common syntax thanks to the efforts of Raymie Stata who
initiated the effort to bring their syntaxes together. After a long process, the syntax of
ESC/Java and JML were both changed and JML is nearly a superset of ESC/Java now.
This section discusses the current state of affairs, as of JML 3.5 and ESC/Java 1.2.4.

The following differences remain between ESC/Java and JML, but could, we hope be
eliminated by changing ESC/Java to be more compatible with JML. (This is starting to
happen.)
• ESC/Java has ghost variables which are concrete, specification-only variables. In

ESC/Java, ghost variables must be public, and they seem to be scoped differently than
normal variables, while in JML the scope of a ghost variable declaration is exactly the
same as for a normal Java declaration. ESC/Java should change to make the scope
of ghost variable declarations the same scoping as normal Java declarations. It would
also be convenient to allow local ghost variables, as JML does, and to allow non-public
ghost variables.

• ESC/Java changed to support the following syntax for loop invariants and termination
functions:

//@ loop_invariant ...loop_inv...
//@ decreases ...termination_fun...
while (...cond...) do { ...statements... }

JML supports this and also the following synonyms (adapted from RESOLVE
[Edwards-etal94])

//@ maintaining ...loop_inv...
//@ decreasing ...termination_fun...
while (...cond...) do { ...statements... }

(Completed by Joe Kiniry as of April 2003.)
• ESC/Java has not yet adopted JML’s syntax for method specifications that includes

the use of also as a separate keyword, (instead of ESC/Java’s also_requires,
also_ensures keywords, which JML does not support) and the use of {| and |} as
brackets for spec-case sequences. ESC/Java also does not parse JML’s heavyweight
method specifications, and does not understand (and does not need to understand)
the implies_that and for_example sections of a method specification. (Completed
by Joe Kiniry and David Cok as of Spring 2003.)

• ESC/Java does not support the following synonyms that JML supports.
ESC/Java JML allowed
keyword synonyms
----------------------
requires pre
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modifies assignable, modifiable
ensures post
exsures signals

(Completed by Joe Kiniry as of April 2003.)
• ESC/Java does not parse JML’s initially clauses on declarations.
• ESC/Java does not require semicolons where they are required by JML. Currently

semicolons at the end of an annotation comment are optional in ESC/Java.
• JML allows privacy modifiers (public, protected, private) on invariants, and enforces

them; for example, public invariants cannot mention protected or private names. (Com-
pleted by David Cok as of April 2003.)

• JML has the modifier pure, which can be used to declare classes and methods that
have no side effects. (Completed by David Cok and Joe Kiniry as of Spring 2003.)

• JML allows \nothing and \everything in a modifies clause. (Completed by David
Cok as of Spring 2003.)

• JML allows final fields in modifies clauses in constructors.
• ESC/Java seems to have a \max operator which can be applied to a lockset. This

conflicts with JML’s \max quantifier. (Completed by Joe Kiniry as of July 2003.)
• ESC/Java requires bodies for methods in ‘.spec’ files (Completed by David Cok as of

Spring 2003.)
• JML treats non_null annotations as redundant, and allows them to be specified on

arguments in overrides of methods. ESC/Java rejects files when this happens. It’s true
that it’s a specification error to add non_null to a parameter in an override, but it
should be okay to specify it redundantly. For return types, it should be okay to add it
in subtypes. (Planning underway by Joe Kiniry as of January 2003.) ESC/Java does
not permit non_null annotations on method return types.

• ESC/Java has lexical pragmas of the form nowarn labels;. JML requires a semicolon
at the end of such pragmas. (Completed by Joe Kiniry as of Spring 2003.)

• ESC/Java requires a whole syntactic construct in a //@ comment, whereas in JML the
construct can be split over multiple lines. (This is theoretically the case now in JML,
but is not enforced as in the JML parser //@ is simply ignored, as are /*@ and @*/.)
(Underway by Joe Kiniry and David Cok as of Spring 2003.)

The following differences between ESC/Java and JML are designed to remain differences,
due to the differing goals of the two languages. While it would be nice if ESC/Java could
parse and ignore all of JML’s syntax, but that is not currently planned. The first two
differences below allow users of both tools to deal with this problem.
• JML supports annotation forms //+@ and /*+@ ... @+*/, so that annotations that JML

understands but ESC/Java doesn’t can be written.
• JML allows specifications to appear within javadoc comments in the form

/** ...
<pre><JML>
...

</JML></pre>
*/
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which, of course, will appear before the method signature. ESC/Java already has
such comments of the form <esc> ... </esc>. ESC/Java will not recognize the <JML>,
<ESC>, or <jml> forms so that specification forms that JML understands but ESC/Java
doesn’t can be written in documentation comments.

• JML uses the file suffixes ‘.jml’, ‘.jml-refined’, ‘.java-refined’, ‘.refines-jml’,
and ‘.refines-java’ files as well as ‘.java’ files.

• JML has dependent (abstract) model variables.
• JML has model classes, interfaces, or methods.
• JML has in and maps-into data group declarations.
• JML has history constraints (constraint).
• JML has other refinement calculus and annotation primitives besides the assert and

assume that are in ESC/Java, that can appear only in model programs.
• JML allows pure method invocations in assertions.
• JML allows new expressions (with pure constructors) in assertions.
• JML has working_space and duration clauses for space and time specifications.
• JML has measured_by clauses to give termination functions for recursive methods and

specifications.
• JML has a notion of refinement of specifications with a refine keyword.
• JML has model import declarations.
• JML has when clauses in specifications for concurrency.
• JML method specifications may have an implications (implies_that) and examples

(for_example) section.

E.2 Differences Between JML and Java
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Appendix F Deprecated

The subsections below briefly describe the deprecated features of JML. A feature is dep-
recated if it is supported in the current release, but slated to be removed from a subsequent
release. Such features should not be used.

F.1 Deprecated Syntax

The following syntax is deprecated. (Note that incompatible changes and syntax that is
no longer supported is not included in this list.)

The syntax of jml-var-assertions was used in declarations. The former initially clause
in a jml-var-assertion has been deleted entirely, as it caused a grammar conflict. It has been
replaced by the initially clause at the top-level of a type declaration.

The readable_if and monitored_by clauses have been replaced by their own clauses,
which appear at the top-level in a type declaration.

The \fields_of store reference has been replaced by data groups and the x.* expression.
The \reach expression has been simplified because the more complicated syntax (ex-

pressions with more than one argument) can be replaced by expressions that reference data
groups if necessary. Also, one of the main purposes of the complex syntax was to create
sets of objects for the \fields_of expression, a construct that is going to be removed in a
future release.

The depends clause has also been replaced by data group clauses, i.e., the maps and in
clauses.

depends-keyword ::= depends | depends_redundantly
depends-decl ::= depends-keyword

store-ref-expression l arrow-or-eq store-ref-list ;
jml-var-assertions ::= jml-var-assertion [ ; jml-var-assertion ] . . .
jml-var-assertion ::= readable_if predicate

| monitored_by spec-expression-list
store-ref ::= \fields_of ( spec-expression [ , reference-type [ , store-ref-expression ] ] )
jml-primary ::= \reach ( spec-expression , reference-type [ , store-ref-expression ] )
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Appendix G What’s Missing

What is missing from this reference manual?
The following constructs are not discussed at all:
• \other

• \private_data

• \such_that

• abrupt_behavior

• breaks and breaks_redundantly

• callable and callable_redundantly

• choose and choose_if

• continues and continues_redundantly

• in and in_redundantly

• maps and maps_redundantly

• example and exceptional_example

• forall

• implies_that

• hence_by and hence_by_redundantly

• measured_by and measured_by_redundantly

• model_program

• old – In fact, it is unclear if old is a separate keyword from \old.
• represents and represents_redundantly

• returns and returns_redundantly

• weakly xxx
• The fact that if is a keyword is not discussed at all.

Other stuff not to forget - DRCok
• \not specified
• \private data
• \nothing
• \everything
• nowarn annotation
• methods and constructors without bodies in java files
• methods and constructors with bodies in specification files
• methods and constructors in annotation expressions - purity - modifies clauses - various

checking
• anonymous and block-level classes
• field, method, constructor keywords
• exceptions in annotation expressions
• equivalence of \TYPE and java.lang.Class
• inheritance of non null



Bibliography 108

Bibliography

[America87]
Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented Lan-
guage. In Jean Bezivin and others (eds.), ECOOP ’87, European Conference
on Object-Oriented Programming, Paris, France. Lecture Notes in Computer
Science, Vol. 276 (Springer-Verlag, NY), pages 234-242.

[Arnold-Gosling-Holmes00]
Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage Third Edition. The Java Series. Addison-Wesley, Reading, MA, 2000.

[ANSI95] Working Paper for Draft Proposed International Standard for Information Sys-
tems — Programming Language Java. CBEMA, 1250 Eye Street NW, Suite
200, Washington DC 20005, April 28, 1995. (Obtained by anonymous ftp to
research.att.com, directory dist/c++std/WP.)

[Back88] R. J. R. Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25(6):593-624, August 1988.

[Back-vonWright89a]
R. J. R. Back and J. von Wright. Refinement Calculus, Part I: Sequential
Nondeterministic Programs. In J. W. de Bakker, et al, (eds.), Stepwise Refine-
ment of Distributed Systems, Models, Formalisms, Correctness, REX Work-
shop, Mook, The Netherlands, May/June 1989, pages 42-66. Volume 430 of
Lecture Notes Computer Science, Spring-Verlag, 1989.

[Back-vonWright98]
Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[Borgida-etal95]
Alex Borgida, John Mylopoulos, and Raymond Reiter. On the Frame Prob-
lem in Procedure Specifications. IEEE Transactions on Software Engineering,
21(10):785-798, October 1995.

[Buechi-Weck00]
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